Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / cifs / file.c
blobe964b1cd5dd092bda83d274da53248a50dfd0ba3
1 /*
2 * fs/cifs/file.c
4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <asm/div64.h>
36 #include "cifsfs.h"
37 #include "cifspdu.h"
38 #include "cifsglob.h"
39 #include "cifsproto.h"
40 #include "cifs_unicode.h"
41 #include "cifs_debug.h"
42 #include "cifs_fs_sb.h"
43 #include "fscache.h"
45 static inline int cifs_convert_flags(unsigned int flags)
47 if ((flags & O_ACCMODE) == O_RDONLY)
48 return GENERIC_READ;
49 else if ((flags & O_ACCMODE) == O_WRONLY)
50 return GENERIC_WRITE;
51 else if ((flags & O_ACCMODE) == O_RDWR) {
52 /* GENERIC_ALL is too much permission to request
53 can cause unnecessary access denied on create */
54 /* return GENERIC_ALL; */
55 return (GENERIC_READ | GENERIC_WRITE);
58 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
59 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
60 FILE_READ_DATA);
63 static u32 cifs_posix_convert_flags(unsigned int flags)
65 u32 posix_flags = 0;
67 if ((flags & O_ACCMODE) == O_RDONLY)
68 posix_flags = SMB_O_RDONLY;
69 else if ((flags & O_ACCMODE) == O_WRONLY)
70 posix_flags = SMB_O_WRONLY;
71 else if ((flags & O_ACCMODE) == O_RDWR)
72 posix_flags = SMB_O_RDWR;
74 if (flags & O_CREAT)
75 posix_flags |= SMB_O_CREAT;
76 if (flags & O_EXCL)
77 posix_flags |= SMB_O_EXCL;
78 if (flags & O_TRUNC)
79 posix_flags |= SMB_O_TRUNC;
80 /* be safe and imply O_SYNC for O_DSYNC */
81 if (flags & O_DSYNC)
82 posix_flags |= SMB_O_SYNC;
83 if (flags & O_DIRECTORY)
84 posix_flags |= SMB_O_DIRECTORY;
85 if (flags & O_NOFOLLOW)
86 posix_flags |= SMB_O_NOFOLLOW;
87 if (flags & O_DIRECT)
88 posix_flags |= SMB_O_DIRECT;
90 return posix_flags;
93 static inline int cifs_get_disposition(unsigned int flags)
95 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
96 return FILE_CREATE;
97 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
98 return FILE_OVERWRITE_IF;
99 else if ((flags & O_CREAT) == O_CREAT)
100 return FILE_OPEN_IF;
101 else if ((flags & O_TRUNC) == O_TRUNC)
102 return FILE_OVERWRITE;
103 else
104 return FILE_OPEN;
107 int cifs_posix_open(char *full_path, struct inode **pinode,
108 struct super_block *sb, int mode, unsigned int f_flags,
109 __u32 *poplock, __u16 *pnetfid, int xid)
111 int rc;
112 FILE_UNIX_BASIC_INFO *presp_data;
113 __u32 posix_flags = 0;
114 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
115 struct cifs_fattr fattr;
116 struct tcon_link *tlink;
117 struct cifsTconInfo *tcon;
119 cFYI(1, "posix open %s", full_path);
121 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
122 if (presp_data == NULL)
123 return -ENOMEM;
125 tlink = cifs_sb_tlink(cifs_sb);
126 if (IS_ERR(tlink)) {
127 rc = PTR_ERR(tlink);
128 goto posix_open_ret;
131 tcon = tlink_tcon(tlink);
132 mode &= ~current_umask();
134 posix_flags = cifs_posix_convert_flags(f_flags);
135 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
136 poplock, full_path, cifs_sb->local_nls,
137 cifs_sb->mnt_cifs_flags &
138 CIFS_MOUNT_MAP_SPECIAL_CHR);
139 cifs_put_tlink(tlink);
141 if (rc)
142 goto posix_open_ret;
144 if (presp_data->Type == cpu_to_le32(-1))
145 goto posix_open_ret; /* open ok, caller does qpathinfo */
147 if (!pinode)
148 goto posix_open_ret; /* caller does not need info */
150 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
152 /* get new inode and set it up */
153 if (*pinode == NULL) {
154 cifs_fill_uniqueid(sb, &fattr);
155 *pinode = cifs_iget(sb, &fattr);
156 if (!*pinode) {
157 rc = -ENOMEM;
158 goto posix_open_ret;
160 } else {
161 cifs_fattr_to_inode(*pinode, &fattr);
164 posix_open_ret:
165 kfree(presp_data);
166 return rc;
169 static int
170 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
171 struct cifsTconInfo *tcon, unsigned int f_flags, __u32 *poplock,
172 __u16 *pnetfid, int xid)
174 int rc;
175 int desiredAccess;
176 int disposition;
177 FILE_ALL_INFO *buf;
179 desiredAccess = cifs_convert_flags(f_flags);
181 /*********************************************************************
182 * open flag mapping table:
184 * POSIX Flag CIFS Disposition
185 * ---------- ----------------
186 * O_CREAT FILE_OPEN_IF
187 * O_CREAT | O_EXCL FILE_CREATE
188 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
189 * O_TRUNC FILE_OVERWRITE
190 * none of the above FILE_OPEN
192 * Note that there is not a direct match between disposition
193 * FILE_SUPERSEDE (ie create whether or not file exists although
194 * O_CREAT | O_TRUNC is similar but truncates the existing
195 * file rather than creating a new file as FILE_SUPERSEDE does
196 * (which uses the attributes / metadata passed in on open call)
198 *? O_SYNC is a reasonable match to CIFS writethrough flag
199 *? and the read write flags match reasonably. O_LARGEFILE
200 *? is irrelevant because largefile support is always used
201 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
202 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
203 *********************************************************************/
205 disposition = cifs_get_disposition(f_flags);
207 /* BB pass O_SYNC flag through on file attributes .. BB */
209 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
210 if (!buf)
211 return -ENOMEM;
213 if (tcon->ses->capabilities & CAP_NT_SMBS)
214 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
215 desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
216 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
217 & CIFS_MOUNT_MAP_SPECIAL_CHR);
218 else
219 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
220 desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
221 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
222 & CIFS_MOUNT_MAP_SPECIAL_CHR);
224 if (rc)
225 goto out;
227 if (tcon->unix_ext)
228 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
229 xid);
230 else
231 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
232 xid, pnetfid);
234 out:
235 kfree(buf);
236 return rc;
239 struct cifsFileInfo *
240 cifs_new_fileinfo(__u16 fileHandle, struct file *file,
241 struct tcon_link *tlink, __u32 oplock)
243 struct dentry *dentry = file->f_path.dentry;
244 struct inode *inode = dentry->d_inode;
245 struct cifsInodeInfo *pCifsInode = CIFS_I(inode);
246 struct cifsFileInfo *pCifsFile;
248 pCifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
249 if (pCifsFile == NULL)
250 return pCifsFile;
252 pCifsFile->count = 1;
253 pCifsFile->netfid = fileHandle;
254 pCifsFile->pid = current->tgid;
255 pCifsFile->uid = current_fsuid();
256 pCifsFile->dentry = dget(dentry);
257 pCifsFile->f_flags = file->f_flags;
258 pCifsFile->invalidHandle = false;
259 pCifsFile->tlink = cifs_get_tlink(tlink);
260 mutex_init(&pCifsFile->fh_mutex);
261 mutex_init(&pCifsFile->lock_mutex);
262 INIT_LIST_HEAD(&pCifsFile->llist);
263 INIT_WORK(&pCifsFile->oplock_break, cifs_oplock_break);
265 spin_lock(&cifs_file_list_lock);
266 list_add(&pCifsFile->tlist, &(tlink_tcon(tlink)->openFileList));
267 /* if readable file instance put first in list*/
268 if (file->f_mode & FMODE_READ)
269 list_add(&pCifsFile->flist, &pCifsInode->openFileList);
270 else
271 list_add_tail(&pCifsFile->flist, &pCifsInode->openFileList);
272 spin_unlock(&cifs_file_list_lock);
274 cifs_set_oplock_level(pCifsInode, oplock);
276 file->private_data = pCifsFile;
277 return pCifsFile;
281 * Release a reference on the file private data. This may involve closing
282 * the filehandle out on the server. Must be called without holding
283 * cifs_file_list_lock.
285 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
287 struct inode *inode = cifs_file->dentry->d_inode;
288 struct cifsTconInfo *tcon = tlink_tcon(cifs_file->tlink);
289 struct cifsInodeInfo *cifsi = CIFS_I(inode);
290 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
291 struct cifsLockInfo *li, *tmp;
293 spin_lock(&cifs_file_list_lock);
294 if (--cifs_file->count > 0) {
295 spin_unlock(&cifs_file_list_lock);
296 return;
299 /* remove it from the lists */
300 list_del(&cifs_file->flist);
301 list_del(&cifs_file->tlist);
303 if (list_empty(&cifsi->openFileList)) {
304 cFYI(1, "closing last open instance for inode %p",
305 cifs_file->dentry->d_inode);
307 /* in strict cache mode we need invalidate mapping on the last
308 close because it may cause a error when we open this file
309 again and get at least level II oplock */
310 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
311 CIFS_I(inode)->invalid_mapping = true;
313 cifs_set_oplock_level(cifsi, 0);
315 spin_unlock(&cifs_file_list_lock);
317 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
318 int xid, rc;
320 xid = GetXid();
321 rc = CIFSSMBClose(xid, tcon, cifs_file->netfid);
322 FreeXid(xid);
325 /* Delete any outstanding lock records. We'll lose them when the file
326 * is closed anyway.
328 mutex_lock(&cifs_file->lock_mutex);
329 list_for_each_entry_safe(li, tmp, &cifs_file->llist, llist) {
330 list_del(&li->llist);
331 kfree(li);
333 mutex_unlock(&cifs_file->lock_mutex);
335 cifs_put_tlink(cifs_file->tlink);
336 dput(cifs_file->dentry);
337 kfree(cifs_file);
340 int cifs_open(struct inode *inode, struct file *file)
342 int rc = -EACCES;
343 int xid;
344 __u32 oplock;
345 struct cifs_sb_info *cifs_sb;
346 struct cifsTconInfo *tcon;
347 struct tcon_link *tlink;
348 struct cifsFileInfo *pCifsFile = NULL;
349 char *full_path = NULL;
350 bool posix_open_ok = false;
351 __u16 netfid;
353 xid = GetXid();
355 cifs_sb = CIFS_SB(inode->i_sb);
356 tlink = cifs_sb_tlink(cifs_sb);
357 if (IS_ERR(tlink)) {
358 FreeXid(xid);
359 return PTR_ERR(tlink);
361 tcon = tlink_tcon(tlink);
363 full_path = build_path_from_dentry(file->f_path.dentry);
364 if (full_path == NULL) {
365 rc = -ENOMEM;
366 goto out;
369 cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
370 inode, file->f_flags, full_path);
372 if (oplockEnabled)
373 oplock = REQ_OPLOCK;
374 else
375 oplock = 0;
377 if (!tcon->broken_posix_open && tcon->unix_ext &&
378 (tcon->ses->capabilities & CAP_UNIX) &&
379 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
380 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
381 /* can not refresh inode info since size could be stale */
382 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
383 cifs_sb->mnt_file_mode /* ignored */,
384 file->f_flags, &oplock, &netfid, xid);
385 if (rc == 0) {
386 cFYI(1, "posix open succeeded");
387 posix_open_ok = true;
388 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
389 if (tcon->ses->serverNOS)
390 cERROR(1, "server %s of type %s returned"
391 " unexpected error on SMB posix open"
392 ", disabling posix open support."
393 " Check if server update available.",
394 tcon->ses->serverName,
395 tcon->ses->serverNOS);
396 tcon->broken_posix_open = true;
397 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
398 (rc != -EOPNOTSUPP)) /* path not found or net err */
399 goto out;
400 /* else fallthrough to retry open the old way on network i/o
401 or DFS errors */
404 if (!posix_open_ok) {
405 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
406 file->f_flags, &oplock, &netfid, xid);
407 if (rc)
408 goto out;
411 pCifsFile = cifs_new_fileinfo(netfid, file, tlink, oplock);
412 if (pCifsFile == NULL) {
413 CIFSSMBClose(xid, tcon, netfid);
414 rc = -ENOMEM;
415 goto out;
418 cifs_fscache_set_inode_cookie(inode, file);
420 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
421 /* time to set mode which we can not set earlier due to
422 problems creating new read-only files */
423 struct cifs_unix_set_info_args args = {
424 .mode = inode->i_mode,
425 .uid = NO_CHANGE_64,
426 .gid = NO_CHANGE_64,
427 .ctime = NO_CHANGE_64,
428 .atime = NO_CHANGE_64,
429 .mtime = NO_CHANGE_64,
430 .device = 0,
432 CIFSSMBUnixSetFileInfo(xid, tcon, &args, netfid,
433 pCifsFile->pid);
436 out:
437 kfree(full_path);
438 FreeXid(xid);
439 cifs_put_tlink(tlink);
440 return rc;
443 /* Try to reacquire byte range locks that were released when session */
444 /* to server was lost */
445 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
447 int rc = 0;
449 /* BB list all locks open on this file and relock */
451 return rc;
454 static int cifs_reopen_file(struct cifsFileInfo *pCifsFile, bool can_flush)
456 int rc = -EACCES;
457 int xid;
458 __u32 oplock;
459 struct cifs_sb_info *cifs_sb;
460 struct cifsTconInfo *tcon;
461 struct cifsInodeInfo *pCifsInode;
462 struct inode *inode;
463 char *full_path = NULL;
464 int desiredAccess;
465 int disposition = FILE_OPEN;
466 __u16 netfid;
468 xid = GetXid();
469 mutex_lock(&pCifsFile->fh_mutex);
470 if (!pCifsFile->invalidHandle) {
471 mutex_unlock(&pCifsFile->fh_mutex);
472 rc = 0;
473 FreeXid(xid);
474 return rc;
477 inode = pCifsFile->dentry->d_inode;
478 cifs_sb = CIFS_SB(inode->i_sb);
479 tcon = tlink_tcon(pCifsFile->tlink);
481 /* can not grab rename sem here because various ops, including
482 those that already have the rename sem can end up causing writepage
483 to get called and if the server was down that means we end up here,
484 and we can never tell if the caller already has the rename_sem */
485 full_path = build_path_from_dentry(pCifsFile->dentry);
486 if (full_path == NULL) {
487 rc = -ENOMEM;
488 mutex_unlock(&pCifsFile->fh_mutex);
489 FreeXid(xid);
490 return rc;
493 cFYI(1, "inode = 0x%p file flags 0x%x for %s",
494 inode, pCifsFile->f_flags, full_path);
496 if (oplockEnabled)
497 oplock = REQ_OPLOCK;
498 else
499 oplock = 0;
501 if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
502 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
503 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
506 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
507 * original open. Must mask them off for a reopen.
509 unsigned int oflags = pCifsFile->f_flags &
510 ~(O_CREAT | O_EXCL | O_TRUNC);
512 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
513 cifs_sb->mnt_file_mode /* ignored */,
514 oflags, &oplock, &netfid, xid);
515 if (rc == 0) {
516 cFYI(1, "posix reopen succeeded");
517 goto reopen_success;
519 /* fallthrough to retry open the old way on errors, especially
520 in the reconnect path it is important to retry hard */
523 desiredAccess = cifs_convert_flags(pCifsFile->f_flags);
525 /* Can not refresh inode by passing in file_info buf to be returned
526 by SMBOpen and then calling get_inode_info with returned buf
527 since file might have write behind data that needs to be flushed
528 and server version of file size can be stale. If we knew for sure
529 that inode was not dirty locally we could do this */
531 rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
532 CREATE_NOT_DIR, &netfid, &oplock, NULL,
533 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
534 CIFS_MOUNT_MAP_SPECIAL_CHR);
535 if (rc) {
536 mutex_unlock(&pCifsFile->fh_mutex);
537 cFYI(1, "cifs_open returned 0x%x", rc);
538 cFYI(1, "oplock: %d", oplock);
539 goto reopen_error_exit;
542 reopen_success:
543 pCifsFile->netfid = netfid;
544 pCifsFile->invalidHandle = false;
545 mutex_unlock(&pCifsFile->fh_mutex);
546 pCifsInode = CIFS_I(inode);
548 if (can_flush) {
549 rc = filemap_write_and_wait(inode->i_mapping);
550 mapping_set_error(inode->i_mapping, rc);
552 if (tcon->unix_ext)
553 rc = cifs_get_inode_info_unix(&inode,
554 full_path, inode->i_sb, xid);
555 else
556 rc = cifs_get_inode_info(&inode,
557 full_path, NULL, inode->i_sb,
558 xid, NULL);
559 } /* else we are writing out data to server already
560 and could deadlock if we tried to flush data, and
561 since we do not know if we have data that would
562 invalidate the current end of file on the server
563 we can not go to the server to get the new inod
564 info */
566 cifs_set_oplock_level(pCifsInode, oplock);
568 cifs_relock_file(pCifsFile);
570 reopen_error_exit:
571 kfree(full_path);
572 FreeXid(xid);
573 return rc;
576 int cifs_close(struct inode *inode, struct file *file)
578 cifsFileInfo_put(file->private_data);
579 file->private_data = NULL;
581 /* return code from the ->release op is always ignored */
582 return 0;
585 int cifs_closedir(struct inode *inode, struct file *file)
587 int rc = 0;
588 int xid;
589 struct cifsFileInfo *pCFileStruct = file->private_data;
590 char *ptmp;
592 cFYI(1, "Closedir inode = 0x%p", inode);
594 xid = GetXid();
596 if (pCFileStruct) {
597 struct cifsTconInfo *pTcon = tlink_tcon(pCFileStruct->tlink);
599 cFYI(1, "Freeing private data in close dir");
600 spin_lock(&cifs_file_list_lock);
601 if (!pCFileStruct->srch_inf.endOfSearch &&
602 !pCFileStruct->invalidHandle) {
603 pCFileStruct->invalidHandle = true;
604 spin_unlock(&cifs_file_list_lock);
605 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
606 cFYI(1, "Closing uncompleted readdir with rc %d",
607 rc);
608 /* not much we can do if it fails anyway, ignore rc */
609 rc = 0;
610 } else
611 spin_unlock(&cifs_file_list_lock);
612 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
613 if (ptmp) {
614 cFYI(1, "closedir free smb buf in srch struct");
615 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
616 if (pCFileStruct->srch_inf.smallBuf)
617 cifs_small_buf_release(ptmp);
618 else
619 cifs_buf_release(ptmp);
621 cifs_put_tlink(pCFileStruct->tlink);
622 kfree(file->private_data);
623 file->private_data = NULL;
625 /* BB can we lock the filestruct while this is going on? */
626 FreeXid(xid);
627 return rc;
630 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
631 __u64 offset, __u8 lockType)
633 struct cifsLockInfo *li =
634 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
635 if (li == NULL)
636 return -ENOMEM;
637 li->offset = offset;
638 li->length = len;
639 li->type = lockType;
640 mutex_lock(&fid->lock_mutex);
641 list_add(&li->llist, &fid->llist);
642 mutex_unlock(&fid->lock_mutex);
643 return 0;
646 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
648 int rc, xid;
649 __u32 numLock = 0;
650 __u32 numUnlock = 0;
651 __u64 length;
652 bool wait_flag = false;
653 struct cifs_sb_info *cifs_sb;
654 struct cifsTconInfo *tcon;
655 __u16 netfid;
656 __u8 lockType = LOCKING_ANDX_LARGE_FILES;
657 bool posix_locking = 0;
659 length = 1 + pfLock->fl_end - pfLock->fl_start;
660 rc = -EACCES;
661 xid = GetXid();
663 cFYI(1, "Lock parm: 0x%x flockflags: "
664 "0x%x flocktype: 0x%x start: %lld end: %lld",
665 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
666 pfLock->fl_end);
668 if (pfLock->fl_flags & FL_POSIX)
669 cFYI(1, "Posix");
670 if (pfLock->fl_flags & FL_FLOCK)
671 cFYI(1, "Flock");
672 if (pfLock->fl_flags & FL_SLEEP) {
673 cFYI(1, "Blocking lock");
674 wait_flag = true;
676 if (pfLock->fl_flags & FL_ACCESS)
677 cFYI(1, "Process suspended by mandatory locking - "
678 "not implemented yet");
679 if (pfLock->fl_flags & FL_LEASE)
680 cFYI(1, "Lease on file - not implemented yet");
681 if (pfLock->fl_flags &
682 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
683 cFYI(1, "Unknown lock flags 0x%x", pfLock->fl_flags);
685 if (pfLock->fl_type == F_WRLCK) {
686 cFYI(1, "F_WRLCK ");
687 numLock = 1;
688 } else if (pfLock->fl_type == F_UNLCK) {
689 cFYI(1, "F_UNLCK");
690 numUnlock = 1;
691 /* Check if unlock includes more than
692 one lock range */
693 } else if (pfLock->fl_type == F_RDLCK) {
694 cFYI(1, "F_RDLCK");
695 lockType |= LOCKING_ANDX_SHARED_LOCK;
696 numLock = 1;
697 } else if (pfLock->fl_type == F_EXLCK) {
698 cFYI(1, "F_EXLCK");
699 numLock = 1;
700 } else if (pfLock->fl_type == F_SHLCK) {
701 cFYI(1, "F_SHLCK");
702 lockType |= LOCKING_ANDX_SHARED_LOCK;
703 numLock = 1;
704 } else
705 cFYI(1, "Unknown type of lock");
707 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
708 tcon = tlink_tcon(((struct cifsFileInfo *)file->private_data)->tlink);
709 netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
711 if ((tcon->ses->capabilities & CAP_UNIX) &&
712 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
713 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
714 posix_locking = 1;
715 /* BB add code here to normalize offset and length to
716 account for negative length which we can not accept over the
717 wire */
718 if (IS_GETLK(cmd)) {
719 if (posix_locking) {
720 int posix_lock_type;
721 if (lockType & LOCKING_ANDX_SHARED_LOCK)
722 posix_lock_type = CIFS_RDLCK;
723 else
724 posix_lock_type = CIFS_WRLCK;
725 rc = CIFSSMBPosixLock(xid, tcon, netfid, 1 /* get */,
726 length, pfLock,
727 posix_lock_type, wait_flag);
728 FreeXid(xid);
729 return rc;
732 /* BB we could chain these into one lock request BB */
733 rc = CIFSSMBLock(xid, tcon, netfid, length, pfLock->fl_start,
734 0, 1, lockType, 0 /* wait flag */, 0);
735 if (rc == 0) {
736 rc = CIFSSMBLock(xid, tcon, netfid, length,
737 pfLock->fl_start, 1 /* numUnlock */ ,
738 0 /* numLock */ , lockType,
739 0 /* wait flag */, 0);
740 pfLock->fl_type = F_UNLCK;
741 if (rc != 0)
742 cERROR(1, "Error unlocking previously locked "
743 "range %d during test of lock", rc);
744 rc = 0;
746 } else {
747 /* if rc == ERR_SHARING_VIOLATION ? */
748 rc = 0;
750 if (lockType & LOCKING_ANDX_SHARED_LOCK) {
751 pfLock->fl_type = F_WRLCK;
752 } else {
753 rc = CIFSSMBLock(xid, tcon, netfid, length,
754 pfLock->fl_start, 0, 1,
755 lockType | LOCKING_ANDX_SHARED_LOCK,
756 0 /* wait flag */, 0);
757 if (rc == 0) {
758 rc = CIFSSMBLock(xid, tcon, netfid,
759 length, pfLock->fl_start, 1, 0,
760 lockType |
761 LOCKING_ANDX_SHARED_LOCK,
762 0 /* wait flag */, 0);
763 pfLock->fl_type = F_RDLCK;
764 if (rc != 0)
765 cERROR(1, "Error unlocking "
766 "previously locked range %d "
767 "during test of lock", rc);
768 rc = 0;
769 } else {
770 pfLock->fl_type = F_WRLCK;
771 rc = 0;
776 FreeXid(xid);
777 return rc;
780 if (!numLock && !numUnlock) {
781 /* if no lock or unlock then nothing
782 to do since we do not know what it is */
783 FreeXid(xid);
784 return -EOPNOTSUPP;
787 if (posix_locking) {
788 int posix_lock_type;
789 if (lockType & LOCKING_ANDX_SHARED_LOCK)
790 posix_lock_type = CIFS_RDLCK;
791 else
792 posix_lock_type = CIFS_WRLCK;
794 if (numUnlock == 1)
795 posix_lock_type = CIFS_UNLCK;
797 rc = CIFSSMBPosixLock(xid, tcon, netfid, 0 /* set */,
798 length, pfLock,
799 posix_lock_type, wait_flag);
800 } else {
801 struct cifsFileInfo *fid = file->private_data;
803 if (numLock) {
804 rc = CIFSSMBLock(xid, tcon, netfid, length,
805 pfLock->fl_start, 0, numLock, lockType,
806 wait_flag, 0);
808 if (rc == 0) {
809 /* For Windows locks we must store them. */
810 rc = store_file_lock(fid, length,
811 pfLock->fl_start, lockType);
813 } else if (numUnlock) {
814 /* For each stored lock that this unlock overlaps
815 completely, unlock it. */
816 int stored_rc = 0;
817 struct cifsLockInfo *li, *tmp;
819 rc = 0;
820 mutex_lock(&fid->lock_mutex);
821 list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
822 if (pfLock->fl_start <= li->offset &&
823 (pfLock->fl_start + length) >=
824 (li->offset + li->length)) {
825 stored_rc = CIFSSMBLock(xid, tcon,
826 netfid, li->length,
827 li->offset, 1, 0,
828 li->type, false, 0);
829 if (stored_rc)
830 rc = stored_rc;
831 else {
832 list_del(&li->llist);
833 kfree(li);
837 mutex_unlock(&fid->lock_mutex);
841 if (pfLock->fl_flags & FL_POSIX)
842 posix_lock_file_wait(file, pfLock);
843 FreeXid(xid);
844 return rc;
847 /* update the file size (if needed) after a write */
848 void
849 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
850 unsigned int bytes_written)
852 loff_t end_of_write = offset + bytes_written;
854 if (end_of_write > cifsi->server_eof)
855 cifsi->server_eof = end_of_write;
858 ssize_t cifs_user_write(struct file *file, const char __user *write_data,
859 size_t write_size, loff_t *poffset)
861 struct inode *inode = file->f_path.dentry->d_inode;
862 int rc = 0;
863 unsigned int bytes_written = 0;
864 unsigned int total_written;
865 struct cifs_sb_info *cifs_sb;
866 struct cifsTconInfo *pTcon;
867 int xid;
868 struct cifsFileInfo *open_file;
869 struct cifsInodeInfo *cifsi = CIFS_I(inode);
871 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
873 /* cFYI(1, " write %d bytes to offset %lld of %s", write_size,
874 *poffset, file->f_path.dentry->d_name.name); */
876 if (file->private_data == NULL)
877 return -EBADF;
879 open_file = file->private_data;
880 pTcon = tlink_tcon(open_file->tlink);
882 rc = generic_write_checks(file, poffset, &write_size, 0);
883 if (rc)
884 return rc;
886 xid = GetXid();
888 for (total_written = 0; write_size > total_written;
889 total_written += bytes_written) {
890 rc = -EAGAIN;
891 while (rc == -EAGAIN) {
892 if (file->private_data == NULL) {
893 /* file has been closed on us */
894 FreeXid(xid);
895 /* if we have gotten here we have written some data
896 and blocked, and the file has been freed on us while
897 we blocked so return what we managed to write */
898 return total_written;
900 if (open_file->invalidHandle) {
901 /* we could deadlock if we called
902 filemap_fdatawait from here so tell
903 reopen_file not to flush data to server
904 now */
905 rc = cifs_reopen_file(open_file, false);
906 if (rc != 0)
907 break;
910 rc = CIFSSMBWrite(xid, pTcon,
911 open_file->netfid,
912 min_t(const int, cifs_sb->wsize,
913 write_size - total_written),
914 *poffset, &bytes_written,
915 NULL, write_data + total_written, 0);
917 if (rc || (bytes_written == 0)) {
918 if (total_written)
919 break;
920 else {
921 FreeXid(xid);
922 return rc;
924 } else {
925 cifs_update_eof(cifsi, *poffset, bytes_written);
926 *poffset += bytes_written;
930 cifs_stats_bytes_written(pTcon, total_written);
932 /* Do not update local mtime - server will set its actual value on write
933 * inode->i_ctime = inode->i_mtime =
934 * current_fs_time(inode->i_sb);*/
935 if (total_written > 0) {
936 spin_lock(&inode->i_lock);
937 if (*poffset > inode->i_size)
938 i_size_write(inode, *poffset);
939 spin_unlock(&inode->i_lock);
941 mark_inode_dirty_sync(inode);
943 FreeXid(xid);
944 return total_written;
947 static ssize_t cifs_write(struct cifsFileInfo *open_file,
948 const char *write_data, size_t write_size,
949 loff_t *poffset)
951 int rc = 0;
952 unsigned int bytes_written = 0;
953 unsigned int total_written;
954 struct cifs_sb_info *cifs_sb;
955 struct cifsTconInfo *pTcon;
956 int xid;
957 struct dentry *dentry = open_file->dentry;
958 struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
960 cifs_sb = CIFS_SB(dentry->d_sb);
962 cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
963 *poffset, dentry->d_name.name);
965 pTcon = tlink_tcon(open_file->tlink);
967 xid = GetXid();
969 for (total_written = 0; write_size > total_written;
970 total_written += bytes_written) {
971 rc = -EAGAIN;
972 while (rc == -EAGAIN) {
973 if (open_file->invalidHandle) {
974 /* we could deadlock if we called
975 filemap_fdatawait from here so tell
976 reopen_file not to flush data to
977 server now */
978 rc = cifs_reopen_file(open_file, false);
979 if (rc != 0)
980 break;
982 if (experimEnabled || (pTcon->ses->server &&
983 ((pTcon->ses->server->secMode &
984 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
985 == 0))) {
986 struct kvec iov[2];
987 unsigned int len;
989 len = min((size_t)cifs_sb->wsize,
990 write_size - total_written);
991 /* iov[0] is reserved for smb header */
992 iov[1].iov_base = (char *)write_data +
993 total_written;
994 iov[1].iov_len = len;
995 rc = CIFSSMBWrite2(xid, pTcon,
996 open_file->netfid, len,
997 *poffset, &bytes_written,
998 iov, 1, 0);
999 } else
1000 rc = CIFSSMBWrite(xid, pTcon,
1001 open_file->netfid,
1002 min_t(const int, cifs_sb->wsize,
1003 write_size - total_written),
1004 *poffset, &bytes_written,
1005 write_data + total_written,
1006 NULL, 0);
1008 if (rc || (bytes_written == 0)) {
1009 if (total_written)
1010 break;
1011 else {
1012 FreeXid(xid);
1013 return rc;
1015 } else {
1016 cifs_update_eof(cifsi, *poffset, bytes_written);
1017 *poffset += bytes_written;
1021 cifs_stats_bytes_written(pTcon, total_written);
1023 if (total_written > 0) {
1024 spin_lock(&dentry->d_inode->i_lock);
1025 if (*poffset > dentry->d_inode->i_size)
1026 i_size_write(dentry->d_inode, *poffset);
1027 spin_unlock(&dentry->d_inode->i_lock);
1029 mark_inode_dirty_sync(dentry->d_inode);
1030 FreeXid(xid);
1031 return total_written;
1034 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1035 bool fsuid_only)
1037 struct cifsFileInfo *open_file = NULL;
1038 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1040 /* only filter by fsuid on multiuser mounts */
1041 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1042 fsuid_only = false;
1044 spin_lock(&cifs_file_list_lock);
1045 /* we could simply get the first_list_entry since write-only entries
1046 are always at the end of the list but since the first entry might
1047 have a close pending, we go through the whole list */
1048 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1049 if (fsuid_only && open_file->uid != current_fsuid())
1050 continue;
1051 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1052 if (!open_file->invalidHandle) {
1053 /* found a good file */
1054 /* lock it so it will not be closed on us */
1055 cifsFileInfo_get(open_file);
1056 spin_unlock(&cifs_file_list_lock);
1057 return open_file;
1058 } /* else might as well continue, and look for
1059 another, or simply have the caller reopen it
1060 again rather than trying to fix this handle */
1061 } else /* write only file */
1062 break; /* write only files are last so must be done */
1064 spin_unlock(&cifs_file_list_lock);
1065 return NULL;
1068 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1069 bool fsuid_only)
1071 struct cifsFileInfo *open_file;
1072 struct cifs_sb_info *cifs_sb;
1073 bool any_available = false;
1074 int rc;
1076 /* Having a null inode here (because mapping->host was set to zero by
1077 the VFS or MM) should not happen but we had reports of on oops (due to
1078 it being zero) during stress testcases so we need to check for it */
1080 if (cifs_inode == NULL) {
1081 cERROR(1, "Null inode passed to cifs_writeable_file");
1082 dump_stack();
1083 return NULL;
1086 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1088 /* only filter by fsuid on multiuser mounts */
1089 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1090 fsuid_only = false;
1092 spin_lock(&cifs_file_list_lock);
1093 refind_writable:
1094 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1095 if (!any_available && open_file->pid != current->tgid)
1096 continue;
1097 if (fsuid_only && open_file->uid != current_fsuid())
1098 continue;
1099 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1100 cifsFileInfo_get(open_file);
1102 if (!open_file->invalidHandle) {
1103 /* found a good writable file */
1104 spin_unlock(&cifs_file_list_lock);
1105 return open_file;
1108 spin_unlock(&cifs_file_list_lock);
1110 /* Had to unlock since following call can block */
1111 rc = cifs_reopen_file(open_file, false);
1112 if (!rc)
1113 return open_file;
1115 /* if it fails, try another handle if possible */
1116 cFYI(1, "wp failed on reopen file");
1117 cifsFileInfo_put(open_file);
1119 spin_lock(&cifs_file_list_lock);
1121 /* else we simply continue to the next entry. Thus
1122 we do not loop on reopen errors. If we
1123 can not reopen the file, for example if we
1124 reconnected to a server with another client
1125 racing to delete or lock the file we would not
1126 make progress if we restarted before the beginning
1127 of the loop here. */
1130 /* couldn't find useable FH with same pid, try any available */
1131 if (!any_available) {
1132 any_available = true;
1133 goto refind_writable;
1135 spin_unlock(&cifs_file_list_lock);
1136 return NULL;
1139 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1141 struct address_space *mapping = page->mapping;
1142 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1143 char *write_data;
1144 int rc = -EFAULT;
1145 int bytes_written = 0;
1146 struct inode *inode;
1147 struct cifsFileInfo *open_file;
1149 if (!mapping || !mapping->host)
1150 return -EFAULT;
1152 inode = page->mapping->host;
1154 offset += (loff_t)from;
1155 write_data = kmap(page);
1156 write_data += from;
1158 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1159 kunmap(page);
1160 return -EIO;
1163 /* racing with truncate? */
1164 if (offset > mapping->host->i_size) {
1165 kunmap(page);
1166 return 0; /* don't care */
1169 /* check to make sure that we are not extending the file */
1170 if (mapping->host->i_size - offset < (loff_t)to)
1171 to = (unsigned)(mapping->host->i_size - offset);
1173 open_file = find_writable_file(CIFS_I(mapping->host), false);
1174 if (open_file) {
1175 bytes_written = cifs_write(open_file, write_data,
1176 to - from, &offset);
1177 cifsFileInfo_put(open_file);
1178 /* Does mm or vfs already set times? */
1179 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1180 if ((bytes_written > 0) && (offset))
1181 rc = 0;
1182 else if (bytes_written < 0)
1183 rc = bytes_written;
1184 } else {
1185 cFYI(1, "No writeable filehandles for inode");
1186 rc = -EIO;
1189 kunmap(page);
1190 return rc;
1193 static int cifs_writepages(struct address_space *mapping,
1194 struct writeback_control *wbc)
1196 unsigned int bytes_to_write;
1197 unsigned int bytes_written;
1198 struct cifs_sb_info *cifs_sb;
1199 int done = 0;
1200 pgoff_t end;
1201 pgoff_t index;
1202 int range_whole = 0;
1203 struct kvec *iov;
1204 int len;
1205 int n_iov = 0;
1206 pgoff_t next;
1207 int nr_pages;
1208 __u64 offset = 0;
1209 struct cifsFileInfo *open_file;
1210 struct cifsTconInfo *tcon;
1211 struct cifsInodeInfo *cifsi = CIFS_I(mapping->host);
1212 struct page *page;
1213 struct pagevec pvec;
1214 int rc = 0;
1215 int scanned = 0;
1216 int xid;
1218 cifs_sb = CIFS_SB(mapping->host->i_sb);
1221 * If wsize is smaller that the page cache size, default to writing
1222 * one page at a time via cifs_writepage
1224 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1225 return generic_writepages(mapping, wbc);
1227 iov = kmalloc(32 * sizeof(struct kvec), GFP_KERNEL);
1228 if (iov == NULL)
1229 return generic_writepages(mapping, wbc);
1232 * if there's no open file, then this is likely to fail too,
1233 * but it'll at least handle the return. Maybe it should be
1234 * a BUG() instead?
1236 open_file = find_writable_file(CIFS_I(mapping->host), false);
1237 if (!open_file) {
1238 kfree(iov);
1239 return generic_writepages(mapping, wbc);
1242 tcon = tlink_tcon(open_file->tlink);
1243 if (!experimEnabled && tcon->ses->server->secMode &
1244 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED)) {
1245 cifsFileInfo_put(open_file);
1246 kfree(iov);
1247 return generic_writepages(mapping, wbc);
1249 cifsFileInfo_put(open_file);
1251 xid = GetXid();
1253 pagevec_init(&pvec, 0);
1254 if (wbc->range_cyclic) {
1255 index = mapping->writeback_index; /* Start from prev offset */
1256 end = -1;
1257 } else {
1258 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1259 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1260 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1261 range_whole = 1;
1262 scanned = 1;
1264 retry:
1265 while (!done && (index <= end) &&
1266 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1267 PAGECACHE_TAG_DIRTY,
1268 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1))) {
1269 int first;
1270 unsigned int i;
1272 first = -1;
1273 next = 0;
1274 n_iov = 0;
1275 bytes_to_write = 0;
1277 for (i = 0; i < nr_pages; i++) {
1278 page = pvec.pages[i];
1280 * At this point we hold neither mapping->tree_lock nor
1281 * lock on the page itself: the page may be truncated or
1282 * invalidated (changing page->mapping to NULL), or even
1283 * swizzled back from swapper_space to tmpfs file
1284 * mapping
1287 if (first < 0)
1288 lock_page(page);
1289 else if (!trylock_page(page))
1290 break;
1292 if (unlikely(page->mapping != mapping)) {
1293 unlock_page(page);
1294 break;
1297 if (!wbc->range_cyclic && page->index > end) {
1298 done = 1;
1299 unlock_page(page);
1300 break;
1303 if (next && (page->index != next)) {
1304 /* Not next consecutive page */
1305 unlock_page(page);
1306 break;
1309 if (wbc->sync_mode != WB_SYNC_NONE)
1310 wait_on_page_writeback(page);
1312 if (PageWriteback(page) ||
1313 !clear_page_dirty_for_io(page)) {
1314 unlock_page(page);
1315 break;
1319 * This actually clears the dirty bit in the radix tree.
1320 * See cifs_writepage() for more commentary.
1322 set_page_writeback(page);
1324 if (page_offset(page) >= mapping->host->i_size) {
1325 done = 1;
1326 unlock_page(page);
1327 end_page_writeback(page);
1328 break;
1332 * BB can we get rid of this? pages are held by pvec
1334 page_cache_get(page);
1336 len = min(mapping->host->i_size - page_offset(page),
1337 (loff_t)PAGE_CACHE_SIZE);
1339 /* reserve iov[0] for the smb header */
1340 n_iov++;
1341 iov[n_iov].iov_base = kmap(page);
1342 iov[n_iov].iov_len = len;
1343 bytes_to_write += len;
1345 if (first < 0) {
1346 first = i;
1347 offset = page_offset(page);
1349 next = page->index + 1;
1350 if (bytes_to_write + PAGE_CACHE_SIZE > cifs_sb->wsize)
1351 break;
1353 if (n_iov) {
1354 retry_write:
1355 open_file = find_writable_file(CIFS_I(mapping->host),
1356 false);
1357 if (!open_file) {
1358 cERROR(1, "No writable handles for inode");
1359 rc = -EBADF;
1360 } else {
1361 rc = CIFSSMBWrite2(xid, tcon, open_file->netfid,
1362 bytes_to_write, offset,
1363 &bytes_written, iov, n_iov,
1365 cifsFileInfo_put(open_file);
1368 cFYI(1, "Write2 rc=%d, wrote=%u", rc, bytes_written);
1371 * For now, treat a short write as if nothing got
1372 * written. A zero length write however indicates
1373 * ENOSPC or EFBIG. We have no way to know which
1374 * though, so call it ENOSPC for now. EFBIG would
1375 * get translated to AS_EIO anyway.
1377 * FIXME: make it take into account the data that did
1378 * get written
1380 if (rc == 0) {
1381 if (bytes_written == 0)
1382 rc = -ENOSPC;
1383 else if (bytes_written < bytes_to_write)
1384 rc = -EAGAIN;
1387 /* retry on data-integrity flush */
1388 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN)
1389 goto retry_write;
1391 /* fix the stats and EOF */
1392 if (bytes_written > 0) {
1393 cifs_stats_bytes_written(tcon, bytes_written);
1394 cifs_update_eof(cifsi, offset, bytes_written);
1397 for (i = 0; i < n_iov; i++) {
1398 page = pvec.pages[first + i];
1399 /* on retryable write error, redirty page */
1400 if (rc == -EAGAIN)
1401 redirty_page_for_writepage(wbc, page);
1402 else if (rc != 0)
1403 SetPageError(page);
1404 kunmap(page);
1405 unlock_page(page);
1406 end_page_writeback(page);
1407 page_cache_release(page);
1410 if (rc != -EAGAIN)
1411 mapping_set_error(mapping, rc);
1412 else
1413 rc = 0;
1415 if ((wbc->nr_to_write -= n_iov) <= 0)
1416 done = 1;
1417 index = next;
1418 } else
1419 /* Need to re-find the pages we skipped */
1420 index = pvec.pages[0]->index + 1;
1422 pagevec_release(&pvec);
1424 if (!scanned && !done) {
1426 * We hit the last page and there is more work to be done: wrap
1427 * back to the start of the file
1429 scanned = 1;
1430 index = 0;
1431 goto retry;
1433 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1434 mapping->writeback_index = index;
1436 FreeXid(xid);
1437 kfree(iov);
1438 return rc;
1441 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1443 int rc = -EFAULT;
1444 int xid;
1446 xid = GetXid();
1447 /* BB add check for wbc flags */
1448 page_cache_get(page);
1449 if (!PageUptodate(page))
1450 cFYI(1, "ppw - page not up to date");
1453 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1455 * A writepage() implementation always needs to do either this,
1456 * or re-dirty the page with "redirty_page_for_writepage()" in
1457 * the case of a failure.
1459 * Just unlocking the page will cause the radix tree tag-bits
1460 * to fail to update with the state of the page correctly.
1462 set_page_writeback(page);
1463 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1464 SetPageUptodate(page); /* BB add check for error and Clearuptodate? */
1465 unlock_page(page);
1466 end_page_writeback(page);
1467 page_cache_release(page);
1468 FreeXid(xid);
1469 return rc;
1472 static int cifs_write_end(struct file *file, struct address_space *mapping,
1473 loff_t pos, unsigned len, unsigned copied,
1474 struct page *page, void *fsdata)
1476 int rc;
1477 struct inode *inode = mapping->host;
1479 cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1480 page, pos, copied);
1482 if (PageChecked(page)) {
1483 if (copied == len)
1484 SetPageUptodate(page);
1485 ClearPageChecked(page);
1486 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
1487 SetPageUptodate(page);
1489 if (!PageUptodate(page)) {
1490 char *page_data;
1491 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1492 int xid;
1494 xid = GetXid();
1495 /* this is probably better than directly calling
1496 partialpage_write since in this function the file handle is
1497 known which we might as well leverage */
1498 /* BB check if anything else missing out of ppw
1499 such as updating last write time */
1500 page_data = kmap(page);
1501 rc = cifs_write(file->private_data, page_data + offset,
1502 copied, &pos);
1503 /* if (rc < 0) should we set writebehind rc? */
1504 kunmap(page);
1506 FreeXid(xid);
1507 } else {
1508 rc = copied;
1509 pos += copied;
1510 set_page_dirty(page);
1513 if (rc > 0) {
1514 spin_lock(&inode->i_lock);
1515 if (pos > inode->i_size)
1516 i_size_write(inode, pos);
1517 spin_unlock(&inode->i_lock);
1520 unlock_page(page);
1521 page_cache_release(page);
1523 return rc;
1526 int cifs_strict_fsync(struct file *file, int datasync)
1528 int xid;
1529 int rc = 0;
1530 struct cifsTconInfo *tcon;
1531 struct cifsFileInfo *smbfile = file->private_data;
1532 struct inode *inode = file->f_path.dentry->d_inode;
1533 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
1535 xid = GetXid();
1537 cFYI(1, "Sync file - name: %s datasync: 0x%x",
1538 file->f_path.dentry->d_name.name, datasync);
1540 if (!CIFS_I(inode)->clientCanCacheRead)
1541 cifs_invalidate_mapping(inode);
1543 tcon = tlink_tcon(smbfile->tlink);
1544 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
1545 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
1547 FreeXid(xid);
1548 return rc;
1551 int cifs_fsync(struct file *file, int datasync)
1553 int xid;
1554 int rc = 0;
1555 struct cifsTconInfo *tcon;
1556 struct cifsFileInfo *smbfile = file->private_data;
1557 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1559 xid = GetXid();
1561 cFYI(1, "Sync file - name: %s datasync: 0x%x",
1562 file->f_path.dentry->d_name.name, datasync);
1564 tcon = tlink_tcon(smbfile->tlink);
1565 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
1566 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
1568 FreeXid(xid);
1569 return rc;
1572 /* static void cifs_sync_page(struct page *page)
1574 struct address_space *mapping;
1575 struct inode *inode;
1576 unsigned long index = page->index;
1577 unsigned int rpages = 0;
1578 int rc = 0;
1580 cFYI(1, "sync page %p", page);
1581 mapping = page->mapping;
1582 if (!mapping)
1583 return 0;
1584 inode = mapping->host;
1585 if (!inode)
1586 return; */
1588 /* fill in rpages then
1589 result = cifs_pagein_inode(inode, index, rpages); */ /* BB finish */
1591 /* cFYI(1, "rpages is %d for sync page of Index %ld", rpages, index);
1593 #if 0
1594 if (rc < 0)
1595 return rc;
1596 return 0;
1597 #endif
1598 } */
1601 * As file closes, flush all cached write data for this inode checking
1602 * for write behind errors.
1604 int cifs_flush(struct file *file, fl_owner_t id)
1606 struct inode *inode = file->f_path.dentry->d_inode;
1607 int rc = 0;
1609 if (file->f_mode & FMODE_WRITE)
1610 rc = filemap_write_and_wait(inode->i_mapping);
1612 cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
1614 return rc;
1617 static int
1618 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
1620 int rc = 0;
1621 unsigned long i;
1623 for (i = 0; i < num_pages; i++) {
1624 pages[i] = alloc_page(__GFP_HIGHMEM);
1625 if (!pages[i]) {
1627 * save number of pages we have already allocated and
1628 * return with ENOMEM error
1630 num_pages = i;
1631 rc = -ENOMEM;
1632 goto error;
1636 return rc;
1638 error:
1639 for (i = 0; i < num_pages; i++)
1640 put_page(pages[i]);
1641 return rc;
1644 static inline
1645 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
1647 size_t num_pages;
1648 size_t clen;
1650 clen = min_t(const size_t, len, wsize);
1651 num_pages = clen / PAGE_CACHE_SIZE;
1652 if (clen % PAGE_CACHE_SIZE)
1653 num_pages++;
1655 if (cur_len)
1656 *cur_len = clen;
1658 return num_pages;
1661 static ssize_t
1662 cifs_iovec_write(struct file *file, const struct iovec *iov,
1663 unsigned long nr_segs, loff_t *poffset)
1665 unsigned int written;
1666 unsigned long num_pages, npages, i;
1667 size_t copied, len, cur_len;
1668 ssize_t total_written = 0;
1669 struct kvec *to_send;
1670 struct page **pages;
1671 struct iov_iter it;
1672 struct inode *inode;
1673 struct cifsFileInfo *open_file;
1674 struct cifsTconInfo *pTcon;
1675 struct cifs_sb_info *cifs_sb;
1676 int xid, rc;
1678 len = iov_length(iov, nr_segs);
1679 if (!len)
1680 return 0;
1682 rc = generic_write_checks(file, poffset, &len, 0);
1683 if (rc)
1684 return rc;
1686 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1687 num_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
1689 pages = kmalloc(sizeof(struct pages *)*num_pages, GFP_KERNEL);
1690 if (!pages)
1691 return -ENOMEM;
1693 to_send = kmalloc(sizeof(struct kvec)*(num_pages + 1), GFP_KERNEL);
1694 if (!to_send) {
1695 kfree(pages);
1696 return -ENOMEM;
1699 rc = cifs_write_allocate_pages(pages, num_pages);
1700 if (rc) {
1701 kfree(pages);
1702 kfree(to_send);
1703 return rc;
1706 xid = GetXid();
1707 open_file = file->private_data;
1708 pTcon = tlink_tcon(open_file->tlink);
1709 inode = file->f_path.dentry->d_inode;
1711 iov_iter_init(&it, iov, nr_segs, len, 0);
1712 npages = num_pages;
1714 do {
1715 size_t save_len = cur_len;
1716 for (i = 0; i < npages; i++) {
1717 copied = min_t(const size_t, cur_len, PAGE_CACHE_SIZE);
1718 copied = iov_iter_copy_from_user(pages[i], &it, 0,
1719 copied);
1720 cur_len -= copied;
1721 iov_iter_advance(&it, copied);
1722 to_send[i+1].iov_base = kmap(pages[i]);
1723 to_send[i+1].iov_len = copied;
1726 cur_len = save_len - cur_len;
1728 do {
1729 if (open_file->invalidHandle) {
1730 rc = cifs_reopen_file(open_file, false);
1731 if (rc != 0)
1732 break;
1734 rc = CIFSSMBWrite2(xid, pTcon, open_file->netfid,
1735 cur_len, *poffset, &written,
1736 to_send, npages, 0);
1737 } while (rc == -EAGAIN);
1739 for (i = 0; i < npages; i++)
1740 kunmap(pages[i]);
1742 if (written) {
1743 len -= written;
1744 total_written += written;
1745 cifs_update_eof(CIFS_I(inode), *poffset, written);
1746 *poffset += written;
1747 } else if (rc < 0) {
1748 if (!total_written)
1749 total_written = rc;
1750 break;
1753 /* get length and number of kvecs of the next write */
1754 npages = get_numpages(cifs_sb->wsize, len, &cur_len);
1755 } while (len > 0);
1757 if (total_written > 0) {
1758 spin_lock(&inode->i_lock);
1759 if (*poffset > inode->i_size)
1760 i_size_write(inode, *poffset);
1761 spin_unlock(&inode->i_lock);
1764 cifs_stats_bytes_written(pTcon, total_written);
1765 mark_inode_dirty_sync(inode);
1767 for (i = 0; i < num_pages; i++)
1768 put_page(pages[i]);
1769 kfree(to_send);
1770 kfree(pages);
1771 FreeXid(xid);
1772 return total_written;
1775 static ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
1776 unsigned long nr_segs, loff_t pos)
1778 ssize_t written;
1779 struct inode *inode;
1781 inode = iocb->ki_filp->f_path.dentry->d_inode;
1784 * BB - optimize the way when signing is disabled. We can drop this
1785 * extra memory-to-memory copying and use iovec buffers for constructing
1786 * write request.
1789 written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
1790 if (written > 0) {
1791 CIFS_I(inode)->invalid_mapping = true;
1792 iocb->ki_pos = pos;
1795 return written;
1798 ssize_t cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
1799 unsigned long nr_segs, loff_t pos)
1801 struct inode *inode;
1803 inode = iocb->ki_filp->f_path.dentry->d_inode;
1805 if (CIFS_I(inode)->clientCanCacheAll)
1806 return generic_file_aio_write(iocb, iov, nr_segs, pos);
1809 * In strict cache mode we need to write the data to the server exactly
1810 * from the pos to pos+len-1 rather than flush all affected pages
1811 * because it may cause a error with mandatory locks on these pages but
1812 * not on the region from pos to ppos+len-1.
1815 return cifs_user_writev(iocb, iov, nr_segs, pos);
1818 static ssize_t
1819 cifs_iovec_read(struct file *file, const struct iovec *iov,
1820 unsigned long nr_segs, loff_t *poffset)
1822 int rc;
1823 int xid;
1824 ssize_t total_read;
1825 unsigned int bytes_read = 0;
1826 size_t len, cur_len;
1827 int iov_offset = 0;
1828 struct cifs_sb_info *cifs_sb;
1829 struct cifsTconInfo *pTcon;
1830 struct cifsFileInfo *open_file;
1831 struct smb_com_read_rsp *pSMBr;
1832 char *read_data;
1834 if (!nr_segs)
1835 return 0;
1837 len = iov_length(iov, nr_segs);
1838 if (!len)
1839 return 0;
1841 xid = GetXid();
1842 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1844 open_file = file->private_data;
1845 pTcon = tlink_tcon(open_file->tlink);
1847 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1848 cFYI(1, "attempting read on write only file instance");
1850 for (total_read = 0; total_read < len; total_read += bytes_read) {
1851 cur_len = min_t(const size_t, len - total_read, cifs_sb->rsize);
1852 rc = -EAGAIN;
1853 read_data = NULL;
1855 while (rc == -EAGAIN) {
1856 int buf_type = CIFS_NO_BUFFER;
1857 if (open_file->invalidHandle) {
1858 rc = cifs_reopen_file(open_file, true);
1859 if (rc != 0)
1860 break;
1862 rc = CIFSSMBRead(xid, pTcon, open_file->netfid,
1863 cur_len, *poffset, &bytes_read,
1864 &read_data, &buf_type);
1865 pSMBr = (struct smb_com_read_rsp *)read_data;
1866 if (read_data) {
1867 char *data_offset = read_data + 4 +
1868 le16_to_cpu(pSMBr->DataOffset);
1869 if (memcpy_toiovecend(iov, data_offset,
1870 iov_offset, bytes_read))
1871 rc = -EFAULT;
1872 if (buf_type == CIFS_SMALL_BUFFER)
1873 cifs_small_buf_release(read_data);
1874 else if (buf_type == CIFS_LARGE_BUFFER)
1875 cifs_buf_release(read_data);
1876 read_data = NULL;
1877 iov_offset += bytes_read;
1881 if (rc || (bytes_read == 0)) {
1882 if (total_read) {
1883 break;
1884 } else {
1885 FreeXid(xid);
1886 return rc;
1888 } else {
1889 cifs_stats_bytes_read(pTcon, bytes_read);
1890 *poffset += bytes_read;
1894 FreeXid(xid);
1895 return total_read;
1898 ssize_t cifs_user_read(struct file *file, char __user *read_data,
1899 size_t read_size, loff_t *poffset)
1901 struct iovec iov;
1902 iov.iov_base = read_data;
1903 iov.iov_len = read_size;
1905 return cifs_iovec_read(file, &iov, 1, poffset);
1908 static ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
1909 unsigned long nr_segs, loff_t pos)
1911 ssize_t read;
1913 read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
1914 if (read > 0)
1915 iocb->ki_pos = pos;
1917 return read;
1920 ssize_t cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
1921 unsigned long nr_segs, loff_t pos)
1923 struct inode *inode;
1925 inode = iocb->ki_filp->f_path.dentry->d_inode;
1927 if (CIFS_I(inode)->clientCanCacheRead)
1928 return generic_file_aio_read(iocb, iov, nr_segs, pos);
1931 * In strict cache mode we need to read from the server all the time
1932 * if we don't have level II oplock because the server can delay mtime
1933 * change - so we can't make a decision about inode invalidating.
1934 * And we can also fail with pagereading if there are mandatory locks
1935 * on pages affected by this read but not on the region from pos to
1936 * pos+len-1.
1939 return cifs_user_readv(iocb, iov, nr_segs, pos);
1942 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1943 loff_t *poffset)
1945 int rc = -EACCES;
1946 unsigned int bytes_read = 0;
1947 unsigned int total_read;
1948 unsigned int current_read_size;
1949 struct cifs_sb_info *cifs_sb;
1950 struct cifsTconInfo *pTcon;
1951 int xid;
1952 char *current_offset;
1953 struct cifsFileInfo *open_file;
1954 int buf_type = CIFS_NO_BUFFER;
1956 xid = GetXid();
1957 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1959 if (file->private_data == NULL) {
1960 rc = -EBADF;
1961 FreeXid(xid);
1962 return rc;
1964 open_file = file->private_data;
1965 pTcon = tlink_tcon(open_file->tlink);
1967 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1968 cFYI(1, "attempting read on write only file instance");
1970 for (total_read = 0, current_offset = read_data;
1971 read_size > total_read;
1972 total_read += bytes_read, current_offset += bytes_read) {
1973 current_read_size = min_t(const int, read_size - total_read,
1974 cifs_sb->rsize);
1975 /* For windows me and 9x we do not want to request more
1976 than it negotiated since it will refuse the read then */
1977 if ((pTcon->ses) &&
1978 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1979 current_read_size = min_t(const int, current_read_size,
1980 pTcon->ses->server->maxBuf - 128);
1982 rc = -EAGAIN;
1983 while (rc == -EAGAIN) {
1984 if (open_file->invalidHandle) {
1985 rc = cifs_reopen_file(open_file, true);
1986 if (rc != 0)
1987 break;
1989 rc = CIFSSMBRead(xid, pTcon,
1990 open_file->netfid,
1991 current_read_size, *poffset,
1992 &bytes_read, &current_offset,
1993 &buf_type);
1995 if (rc || (bytes_read == 0)) {
1996 if (total_read) {
1997 break;
1998 } else {
1999 FreeXid(xid);
2000 return rc;
2002 } else {
2003 cifs_stats_bytes_read(pTcon, total_read);
2004 *poffset += bytes_read;
2007 FreeXid(xid);
2008 return total_read;
2011 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
2013 int rc, xid;
2014 struct inode *inode = file->f_path.dentry->d_inode;
2016 xid = GetXid();
2018 if (!CIFS_I(inode)->clientCanCacheRead)
2019 cifs_invalidate_mapping(inode);
2021 rc = generic_file_mmap(file, vma);
2022 FreeXid(xid);
2023 return rc;
2026 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
2028 int rc, xid;
2030 xid = GetXid();
2031 rc = cifs_revalidate_file(file);
2032 if (rc) {
2033 cFYI(1, "Validation prior to mmap failed, error=%d", rc);
2034 FreeXid(xid);
2035 return rc;
2037 rc = generic_file_mmap(file, vma);
2038 FreeXid(xid);
2039 return rc;
2043 static void cifs_copy_cache_pages(struct address_space *mapping,
2044 struct list_head *pages, int bytes_read, char *data)
2046 struct page *page;
2047 char *target;
2049 while (bytes_read > 0) {
2050 if (list_empty(pages))
2051 break;
2053 page = list_entry(pages->prev, struct page, lru);
2054 list_del(&page->lru);
2056 if (add_to_page_cache_lru(page, mapping, page->index,
2057 GFP_KERNEL)) {
2058 page_cache_release(page);
2059 cFYI(1, "Add page cache failed");
2060 data += PAGE_CACHE_SIZE;
2061 bytes_read -= PAGE_CACHE_SIZE;
2062 continue;
2064 page_cache_release(page);
2066 target = kmap_atomic(page, KM_USER0);
2068 if (PAGE_CACHE_SIZE > bytes_read) {
2069 memcpy(target, data, bytes_read);
2070 /* zero the tail end of this partial page */
2071 memset(target + bytes_read, 0,
2072 PAGE_CACHE_SIZE - bytes_read);
2073 bytes_read = 0;
2074 } else {
2075 memcpy(target, data, PAGE_CACHE_SIZE);
2076 bytes_read -= PAGE_CACHE_SIZE;
2078 kunmap_atomic(target, KM_USER0);
2080 flush_dcache_page(page);
2081 SetPageUptodate(page);
2082 unlock_page(page);
2083 data += PAGE_CACHE_SIZE;
2085 /* add page to FS-Cache */
2086 cifs_readpage_to_fscache(mapping->host, page);
2088 return;
2091 static int cifs_readpages(struct file *file, struct address_space *mapping,
2092 struct list_head *page_list, unsigned num_pages)
2094 int rc = -EACCES;
2095 int xid;
2096 loff_t offset;
2097 struct page *page;
2098 struct cifs_sb_info *cifs_sb;
2099 struct cifsTconInfo *pTcon;
2100 unsigned int bytes_read = 0;
2101 unsigned int read_size, i;
2102 char *smb_read_data = NULL;
2103 struct smb_com_read_rsp *pSMBr;
2104 struct cifsFileInfo *open_file;
2105 int buf_type = CIFS_NO_BUFFER;
2107 xid = GetXid();
2108 if (file->private_data == NULL) {
2109 rc = -EBADF;
2110 FreeXid(xid);
2111 return rc;
2113 open_file = file->private_data;
2114 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2115 pTcon = tlink_tcon(open_file->tlink);
2118 * Reads as many pages as possible from fscache. Returns -ENOBUFS
2119 * immediately if the cookie is negative
2121 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
2122 &num_pages);
2123 if (rc == 0)
2124 goto read_complete;
2126 cFYI(DBG2, "rpages: num pages %d", num_pages);
2127 for (i = 0; i < num_pages; ) {
2128 unsigned contig_pages;
2129 struct page *tmp_page;
2130 unsigned long expected_index;
2132 if (list_empty(page_list))
2133 break;
2135 page = list_entry(page_list->prev, struct page, lru);
2136 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2138 /* count adjacent pages that we will read into */
2139 contig_pages = 0;
2140 expected_index =
2141 list_entry(page_list->prev, struct page, lru)->index;
2142 list_for_each_entry_reverse(tmp_page, page_list, lru) {
2143 if (tmp_page->index == expected_index) {
2144 contig_pages++;
2145 expected_index++;
2146 } else
2147 break;
2149 if (contig_pages + i > num_pages)
2150 contig_pages = num_pages - i;
2152 /* for reads over a certain size could initiate async
2153 read ahead */
2155 read_size = contig_pages * PAGE_CACHE_SIZE;
2156 /* Read size needs to be in multiples of one page */
2157 read_size = min_t(const unsigned int, read_size,
2158 cifs_sb->rsize & PAGE_CACHE_MASK);
2159 cFYI(DBG2, "rpages: read size 0x%x contiguous pages %d",
2160 read_size, contig_pages);
2161 rc = -EAGAIN;
2162 while (rc == -EAGAIN) {
2163 if (open_file->invalidHandle) {
2164 rc = cifs_reopen_file(open_file, true);
2165 if (rc != 0)
2166 break;
2169 rc = CIFSSMBRead(xid, pTcon,
2170 open_file->netfid,
2171 read_size, offset,
2172 &bytes_read, &smb_read_data,
2173 &buf_type);
2174 /* BB more RC checks ? */
2175 if (rc == -EAGAIN) {
2176 if (smb_read_data) {
2177 if (buf_type == CIFS_SMALL_BUFFER)
2178 cifs_small_buf_release(smb_read_data);
2179 else if (buf_type == CIFS_LARGE_BUFFER)
2180 cifs_buf_release(smb_read_data);
2181 smb_read_data = NULL;
2185 if ((rc < 0) || (smb_read_data == NULL)) {
2186 cFYI(1, "Read error in readpages: %d", rc);
2187 break;
2188 } else if (bytes_read > 0) {
2189 task_io_account_read(bytes_read);
2190 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
2191 cifs_copy_cache_pages(mapping, page_list, bytes_read,
2192 smb_read_data + 4 /* RFC1001 hdr */ +
2193 le16_to_cpu(pSMBr->DataOffset));
2195 i += bytes_read >> PAGE_CACHE_SHIFT;
2196 cifs_stats_bytes_read(pTcon, bytes_read);
2197 if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
2198 i++; /* account for partial page */
2200 /* server copy of file can have smaller size
2201 than client */
2202 /* BB do we need to verify this common case ?
2203 this case is ok - if we are at server EOF
2204 we will hit it on next read */
2206 /* break; */
2208 } else {
2209 cFYI(1, "No bytes read (%d) at offset %lld . "
2210 "Cleaning remaining pages from readahead list",
2211 bytes_read, offset);
2212 /* BB turn off caching and do new lookup on
2213 file size at server? */
2214 break;
2216 if (smb_read_data) {
2217 if (buf_type == CIFS_SMALL_BUFFER)
2218 cifs_small_buf_release(smb_read_data);
2219 else if (buf_type == CIFS_LARGE_BUFFER)
2220 cifs_buf_release(smb_read_data);
2221 smb_read_data = NULL;
2223 bytes_read = 0;
2226 /* need to free smb_read_data buf before exit */
2227 if (smb_read_data) {
2228 if (buf_type == CIFS_SMALL_BUFFER)
2229 cifs_small_buf_release(smb_read_data);
2230 else if (buf_type == CIFS_LARGE_BUFFER)
2231 cifs_buf_release(smb_read_data);
2232 smb_read_data = NULL;
2235 read_complete:
2236 FreeXid(xid);
2237 return rc;
2240 static int cifs_readpage_worker(struct file *file, struct page *page,
2241 loff_t *poffset)
2243 char *read_data;
2244 int rc;
2246 /* Is the page cached? */
2247 rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
2248 if (rc == 0)
2249 goto read_complete;
2251 page_cache_get(page);
2252 read_data = kmap(page);
2253 /* for reads over a certain size could initiate async read ahead */
2255 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
2257 if (rc < 0)
2258 goto io_error;
2259 else
2260 cFYI(1, "Bytes read %d", rc);
2262 file->f_path.dentry->d_inode->i_atime =
2263 current_fs_time(file->f_path.dentry->d_inode->i_sb);
2265 if (PAGE_CACHE_SIZE > rc)
2266 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
2268 flush_dcache_page(page);
2269 SetPageUptodate(page);
2271 /* send this page to the cache */
2272 cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
2274 rc = 0;
2276 io_error:
2277 kunmap(page);
2278 page_cache_release(page);
2280 read_complete:
2281 return rc;
2284 static int cifs_readpage(struct file *file, struct page *page)
2286 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2287 int rc = -EACCES;
2288 int xid;
2290 xid = GetXid();
2292 if (file->private_data == NULL) {
2293 rc = -EBADF;
2294 FreeXid(xid);
2295 return rc;
2298 cFYI(1, "readpage %p at offset %d 0x%x\n",
2299 page, (int)offset, (int)offset);
2301 rc = cifs_readpage_worker(file, page, &offset);
2303 unlock_page(page);
2305 FreeXid(xid);
2306 return rc;
2309 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
2311 struct cifsFileInfo *open_file;
2313 spin_lock(&cifs_file_list_lock);
2314 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2315 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
2316 spin_unlock(&cifs_file_list_lock);
2317 return 1;
2320 spin_unlock(&cifs_file_list_lock);
2321 return 0;
2324 /* We do not want to update the file size from server for inodes
2325 open for write - to avoid races with writepage extending
2326 the file - in the future we could consider allowing
2327 refreshing the inode only on increases in the file size
2328 but this is tricky to do without racing with writebehind
2329 page caching in the current Linux kernel design */
2330 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2332 if (!cifsInode)
2333 return true;
2335 if (is_inode_writable(cifsInode)) {
2336 /* This inode is open for write at least once */
2337 struct cifs_sb_info *cifs_sb;
2339 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2340 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2341 /* since no page cache to corrupt on directio
2342 we can change size safely */
2343 return true;
2346 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2347 return true;
2349 return false;
2350 } else
2351 return true;
2354 static int cifs_write_begin(struct file *file, struct address_space *mapping,
2355 loff_t pos, unsigned len, unsigned flags,
2356 struct page **pagep, void **fsdata)
2358 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2359 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
2360 loff_t page_start = pos & PAGE_MASK;
2361 loff_t i_size;
2362 struct page *page;
2363 int rc = 0;
2365 cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
2367 page = grab_cache_page_write_begin(mapping, index, flags);
2368 if (!page) {
2369 rc = -ENOMEM;
2370 goto out;
2373 if (PageUptodate(page))
2374 goto out;
2377 * If we write a full page it will be up to date, no need to read from
2378 * the server. If the write is short, we'll end up doing a sync write
2379 * instead.
2381 if (len == PAGE_CACHE_SIZE)
2382 goto out;
2385 * optimize away the read when we have an oplock, and we're not
2386 * expecting to use any of the data we'd be reading in. That
2387 * is, when the page lies beyond the EOF, or straddles the EOF
2388 * and the write will cover all of the existing data.
2390 if (CIFS_I(mapping->host)->clientCanCacheRead) {
2391 i_size = i_size_read(mapping->host);
2392 if (page_start >= i_size ||
2393 (offset == 0 && (pos + len) >= i_size)) {
2394 zero_user_segments(page, 0, offset,
2395 offset + len,
2396 PAGE_CACHE_SIZE);
2398 * PageChecked means that the parts of the page
2399 * to which we're not writing are considered up
2400 * to date. Once the data is copied to the
2401 * page, it can be set uptodate.
2403 SetPageChecked(page);
2404 goto out;
2408 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2410 * might as well read a page, it is fast enough. If we get
2411 * an error, we don't need to return it. cifs_write_end will
2412 * do a sync write instead since PG_uptodate isn't set.
2414 cifs_readpage_worker(file, page, &page_start);
2415 } else {
2416 /* we could try using another file handle if there is one -
2417 but how would we lock it to prevent close of that handle
2418 racing with this read? In any case
2419 this will be written out by write_end so is fine */
2421 out:
2422 *pagep = page;
2423 return rc;
2426 static int cifs_release_page(struct page *page, gfp_t gfp)
2428 if (PagePrivate(page))
2429 return 0;
2431 return cifs_fscache_release_page(page, gfp);
2434 static void cifs_invalidate_page(struct page *page, unsigned long offset)
2436 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
2438 if (offset == 0)
2439 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
2442 void cifs_oplock_break(struct work_struct *work)
2444 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
2445 oplock_break);
2446 struct inode *inode = cfile->dentry->d_inode;
2447 struct cifsInodeInfo *cinode = CIFS_I(inode);
2448 int rc = 0;
2450 if (inode && S_ISREG(inode->i_mode)) {
2451 if (cinode->clientCanCacheRead)
2452 break_lease(inode, O_RDONLY);
2453 else
2454 break_lease(inode, O_WRONLY);
2455 rc = filemap_fdatawrite(inode->i_mapping);
2456 if (cinode->clientCanCacheRead == 0) {
2457 rc = filemap_fdatawait(inode->i_mapping);
2458 mapping_set_error(inode->i_mapping, rc);
2459 invalidate_remote_inode(inode);
2461 cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
2465 * releasing stale oplock after recent reconnect of smb session using
2466 * a now incorrect file handle is not a data integrity issue but do
2467 * not bother sending an oplock release if session to server still is
2468 * disconnected since oplock already released by the server
2470 if (!cfile->oplock_break_cancelled) {
2471 rc = CIFSSMBLock(0, tlink_tcon(cfile->tlink), cfile->netfid, 0,
2472 0, 0, 0, LOCKING_ANDX_OPLOCK_RELEASE, false,
2473 cinode->clientCanCacheRead ? 1 : 0);
2474 cFYI(1, "Oplock release rc = %d", rc);
2478 * We might have kicked in before is_valid_oplock_break()
2479 * finished grabbing reference for us. Make sure it's done by
2480 * waiting for cifs_file_list_lock.
2482 spin_lock(&cifs_file_list_lock);
2483 spin_unlock(&cifs_file_list_lock);
2485 cifs_oplock_break_put(cfile);
2488 /* must be called while holding cifs_file_list_lock */
2489 void cifs_oplock_break_get(struct cifsFileInfo *cfile)
2491 cifs_sb_active(cfile->dentry->d_sb);
2492 cifsFileInfo_get(cfile);
2495 void cifs_oplock_break_put(struct cifsFileInfo *cfile)
2497 struct super_block *sb = cfile->dentry->d_sb;
2499 cifsFileInfo_put(cfile);
2500 cifs_sb_deactive(sb);
2503 const struct address_space_operations cifs_addr_ops = {
2504 .readpage = cifs_readpage,
2505 .readpages = cifs_readpages,
2506 .writepage = cifs_writepage,
2507 .writepages = cifs_writepages,
2508 .write_begin = cifs_write_begin,
2509 .write_end = cifs_write_end,
2510 .set_page_dirty = __set_page_dirty_nobuffers,
2511 .releasepage = cifs_release_page,
2512 .invalidatepage = cifs_invalidate_page,
2513 /* .sync_page = cifs_sync_page, */
2514 /* .direct_IO = */
2518 * cifs_readpages requires the server to support a buffer large enough to
2519 * contain the header plus one complete page of data. Otherwise, we need
2520 * to leave cifs_readpages out of the address space operations.
2522 const struct address_space_operations cifs_addr_ops_smallbuf = {
2523 .readpage = cifs_readpage,
2524 .writepage = cifs_writepage,
2525 .writepages = cifs_writepages,
2526 .write_begin = cifs_write_begin,
2527 .write_end = cifs_write_end,
2528 .set_page_dirty = __set_page_dirty_nobuffers,
2529 .releasepage = cifs_release_page,
2530 .invalidatepage = cifs_invalidate_page,
2531 /* .sync_page = cifs_sync_page, */
2532 /* .direct_IO = */