1 /* Driver for SanDisk SDDR-09 SmartMedia reader
3 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
5 * Developed with the assistance of:
6 * (c) 2002 Alan Stern <stern@rowland.org>
8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9 * This chip is a programmable USB controller. In the SDDR-09, it has
10 * been programmed to obey a certain limited set of SCSI commands.
11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 * Known vendor commands: 12 bytes, first byte is opcode
32 * E7: read scatter gather
40 * EF: compute checksum (?)
43 #include <linux/errno.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
52 #include "transport.h"
56 MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
57 MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
58 MODULE_LICENSE("GPL");
60 static int usb_stor_sddr09_dpcm_init(struct us_data
*us
);
61 static int sddr09_transport(struct scsi_cmnd
*srb
, struct us_data
*us
);
62 static int usb_stor_sddr09_init(struct us_data
*us
);
66 * The table of devices
68 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
69 vendorName, productName, useProtocol, useTransport, \
70 initFunction, flags) \
71 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
72 .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
74 struct usb_device_id sddr09_usb_ids
[] = {
75 # include "unusual_sddr09.h"
76 { } /* Terminating entry */
78 MODULE_DEVICE_TABLE(usb
, sddr09_usb_ids
);
85 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
86 vendor_name, product_name, use_protocol, use_transport, \
87 init_function, Flags) \
89 .vendorName = vendor_name, \
90 .productName = product_name, \
91 .useProtocol = use_protocol, \
92 .useTransport = use_transport, \
93 .initFunction = init_function, \
96 static struct us_unusual_dev sddr09_unusual_dev_list
[] = {
97 # include "unusual_sddr09.h"
98 { } /* Terminating entry */
104 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
105 #define LSB_of(s) ((s)&0xFF)
106 #define MSB_of(s) ((s)>>8)
108 /* #define US_DEBUGP printk */
111 * First some stuff that does not belong here:
112 * data on SmartMedia and other cards, completely
113 * unrelated to this driver.
114 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
117 struct nand_flash_dev
{
119 int chipshift
; /* 1<<cs bytes total capacity */
120 char pageshift
; /* 1<<ps bytes in a page */
121 char blockshift
; /* 1<<bs pages in an erase block */
122 char zoneshift
; /* 1<<zs blocks in a zone */
123 /* # of logical blocks is 125/128 of this */
124 char pageadrlen
; /* length of an address in bytes - 1 */
128 * NAND Flash Manufacturer ID Codes
130 #define NAND_MFR_AMD 0x01
131 #define NAND_MFR_NATSEMI 0x8f
132 #define NAND_MFR_TOSHIBA 0x98
133 #define NAND_MFR_SAMSUNG 0xec
135 static inline char *nand_flash_manufacturer(int manuf_id
) {
139 case NAND_MFR_NATSEMI
:
141 case NAND_MFR_TOSHIBA
:
143 case NAND_MFR_SAMSUNG
:
151 * It looks like it is unnecessary to attach manufacturer to the
152 * remaining data: SSFDC prescribes manufacturer-independent id codes.
154 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
157 static struct nand_flash_dev nand_flash_ids
[] = {
159 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
160 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
161 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
163 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
164 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
165 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
166 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
168 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
169 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
170 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
171 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
174 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
175 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
176 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
177 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
178 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
182 static struct nand_flash_dev
*
183 nand_find_id(unsigned char id
) {
186 for (i
= 0; i
< ARRAY_SIZE(nand_flash_ids
); i
++)
187 if (nand_flash_ids
[i
].model_id
== id
)
188 return &(nand_flash_ids
[i
]);
195 static unsigned char parity
[256];
196 static unsigned char ecc2
[256];
198 static void nand_init_ecc(void) {
202 for (i
= 1; i
< 256; i
++)
203 parity
[i
] = (parity
[i
&(i
-1)] ^ 1);
205 for (i
= 0; i
< 256; i
++) {
207 for (j
= 0; j
< 8; j
++) {
217 ecc2
[i
] = ~(a
^ (a
<<1) ^ (parity
[i
] ? 0xa8 : 0));
221 /* compute 3-byte ecc on 256 bytes */
222 static void nand_compute_ecc(unsigned char *data
, unsigned char *ecc
) {
224 unsigned char par
, bit
, bits
[8];
227 for (j
= 0; j
< 8; j
++)
230 /* collect 16 checksum bits */
231 for (i
= 0; i
< 256; i
++) {
233 bit
= parity
[data
[i
]];
234 for (j
= 0; j
< 8; j
++)
235 if ((i
& (1<<j
)) == 0)
239 /* put 4+4+4 = 12 bits in the ecc */
240 a
= (bits
[3] << 6) + (bits
[2] << 4) + (bits
[1] << 2) + bits
[0];
241 ecc
[0] = ~(a
^ (a
<<1) ^ (parity
[par
] ? 0xaa : 0));
243 a
= (bits
[7] << 6) + (bits
[6] << 4) + (bits
[5] << 2) + bits
[4];
244 ecc
[1] = ~(a
^ (a
<<1) ^ (parity
[par
] ? 0xaa : 0));
249 static int nand_compare_ecc(unsigned char *data
, unsigned char *ecc
) {
250 return (data
[0] == ecc
[0] && data
[1] == ecc
[1] && data
[2] == ecc
[2]);
253 static void nand_store_ecc(unsigned char *data
, unsigned char *ecc
) {
254 memcpy(data
, ecc
, 3);
258 * The actual driver starts here.
261 struct sddr09_card_info
{
262 unsigned long capacity
; /* Size of card in bytes */
263 int pagesize
; /* Size of page in bytes */
264 int pageshift
; /* log2 of pagesize */
265 int blocksize
; /* Size of block in pages */
266 int blockshift
; /* log2 of blocksize */
267 int blockmask
; /* 2^blockshift - 1 */
268 int *lba_to_pba
; /* logical to physical map */
269 int *pba_to_lba
; /* physical to logical map */
270 int lbact
; /* number of available pages */
272 #define SDDR09_WP 1 /* write protected */
276 * On my 16MB card, control blocks have size 64 (16 real control bytes,
277 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
278 * so the reader makes up the remaining 48. Don't know whether these numbers
279 * depend on the card. For now a constant.
281 #define CONTROL_SHIFT 6
284 * On my Combo CF/SM reader, the SM reader has LUN 1.
285 * (and things fail with LUN 0).
286 * It seems LUN is irrelevant for others.
289 #define LUNBITS (LUN << 5)
292 * LBA and PBA are unsigned ints. Special values.
294 #define UNDEF 0xffffffff
295 #define SPARE 0xfffffffe
296 #define UNUSABLE 0xfffffffd
298 static const int erase_bad_lba_entries
= 0;
300 /* send vendor interface command (0x41) */
301 /* called for requests 0, 1, 8 */
303 sddr09_send_command(struct us_data
*us
,
304 unsigned char request
,
305 unsigned char direction
,
306 unsigned char *xfer_data
,
307 unsigned int xfer_len
) {
309 unsigned char requesttype
= (0x41 | direction
);
312 // Get the receive or send control pipe number
314 if (direction
== USB_DIR_IN
)
315 pipe
= us
->recv_ctrl_pipe
;
317 pipe
= us
->send_ctrl_pipe
;
319 rc
= usb_stor_ctrl_transfer(us
, pipe
, request
, requesttype
,
320 0, 0, xfer_data
, xfer_len
);
322 case USB_STOR_XFER_GOOD
: return 0;
323 case USB_STOR_XFER_STALLED
: return -EPIPE
;
324 default: return -EIO
;
329 sddr09_send_scsi_command(struct us_data
*us
,
330 unsigned char *command
,
331 unsigned int command_len
) {
332 return sddr09_send_command(us
, 0, USB_DIR_OUT
, command
, command_len
);
337 * Test Unit Ready Command: 12 bytes.
341 sddr09_test_unit_ready(struct us_data
*us
) {
342 unsigned char *command
= us
->iobuf
;
345 memset(command
, 0, 6);
346 command
[1] = LUNBITS
;
348 result
= sddr09_send_scsi_command(us
, command
, 6);
350 US_DEBUGP("sddr09_test_unit_ready returns %d\n", result
);
357 * Request Sense Command: 12 bytes.
359 * byte 4: data length
362 sddr09_request_sense(struct us_data
*us
, unsigned char *sensebuf
, int buflen
) {
363 unsigned char *command
= us
->iobuf
;
366 memset(command
, 0, 12);
368 command
[1] = LUNBITS
;
371 result
= sddr09_send_scsi_command(us
, command
, 12);
375 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
376 sensebuf
, buflen
, NULL
);
377 return (result
== USB_STOR_XFER_GOOD
? 0 : -EIO
);
381 * Read Command: 12 bytes.
383 * byte 1: last two bits: 00: read data, 01: read blockwise control,
384 * 10: read both, 11: read pagewise control.
385 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
386 * bytes 2-5: address (interpretation depends on byte 1, see below)
387 * bytes 10-11: count (idem)
389 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
390 * A read data command gets data in 512-byte pages.
391 * A read control command gets control in 64-byte chunks.
392 * A read both command gets data+control in 576-byte chunks.
394 * Blocks are groups of 32 pages, and read blockwise control jumps to the
395 * next block, while read pagewise control jumps to the next page after
396 * reading a group of 64 control bytes.
397 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
399 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
403 sddr09_readX(struct us_data
*us
, int x
, unsigned long fromaddress
,
404 int nr_of_pages
, int bulklen
, unsigned char *buf
,
407 unsigned char *command
= us
->iobuf
;
411 command
[1] = LUNBITS
| x
;
412 command
[2] = MSB_of(fromaddress
>>16);
413 command
[3] = LSB_of(fromaddress
>>16);
414 command
[4] = MSB_of(fromaddress
& 0xFFFF);
415 command
[5] = LSB_of(fromaddress
& 0xFFFF);
420 command
[10] = MSB_of(nr_of_pages
);
421 command
[11] = LSB_of(nr_of_pages
);
423 result
= sddr09_send_scsi_command(us
, command
, 12);
426 US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
431 result
= usb_stor_bulk_transfer_sg(us
, us
->recv_bulk_pipe
,
432 buf
, bulklen
, use_sg
, NULL
);
434 if (result
!= USB_STOR_XFER_GOOD
) {
435 US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
445 * fromaddress counts data shorts:
446 * increasing it by 256 shifts the bytestream by 512 bytes;
447 * the last 8 bits are ignored.
449 * nr_of_pages counts pages of size (1 << pageshift).
452 sddr09_read20(struct us_data
*us
, unsigned long fromaddress
,
453 int nr_of_pages
, int pageshift
, unsigned char *buf
, int use_sg
) {
454 int bulklen
= nr_of_pages
<< pageshift
;
456 /* The last 8 bits of fromaddress are ignored. */
457 return sddr09_readX(us
, 0, fromaddress
, nr_of_pages
, bulklen
,
462 * Read Blockwise Control
464 * fromaddress gives the starting position (as in read data;
465 * the last 8 bits are ignored); increasing it by 32*256 shifts
466 * the output stream by 64 bytes.
468 * count counts control groups of size (1 << controlshift).
469 * For me, controlshift = 6. Is this constant?
471 * After getting one control group, jump to the next block
472 * (fromaddress += 8192).
475 sddr09_read21(struct us_data
*us
, unsigned long fromaddress
,
476 int count
, int controlshift
, unsigned char *buf
, int use_sg
) {
478 int bulklen
= (count
<< controlshift
);
479 return sddr09_readX(us
, 1, fromaddress
, count
, bulklen
,
484 * Read both Data and Control
486 * fromaddress counts data shorts, ignoring control:
487 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
488 * the last 8 bits are ignored.
490 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
493 sddr09_read22(struct us_data
*us
, unsigned long fromaddress
,
494 int nr_of_pages
, int pageshift
, unsigned char *buf
, int use_sg
) {
496 int bulklen
= (nr_of_pages
<< pageshift
) + (nr_of_pages
<< CONTROL_SHIFT
);
497 US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
498 nr_of_pages
, bulklen
);
499 return sddr09_readX(us
, 2, fromaddress
, nr_of_pages
, bulklen
,
505 * Read Pagewise Control
507 * fromaddress gives the starting position (as in read data;
508 * the last 8 bits are ignored); increasing it by 256 shifts
509 * the output stream by 64 bytes.
511 * count counts control groups of size (1 << controlshift).
512 * For me, controlshift = 6. Is this constant?
514 * After getting one control group, jump to the next page
515 * (fromaddress += 256).
518 sddr09_read23(struct us_data
*us
, unsigned long fromaddress
,
519 int count
, int controlshift
, unsigned char *buf
, int use_sg
) {
521 int bulklen
= (count
<< controlshift
);
522 return sddr09_readX(us
, 3, fromaddress
, count
, bulklen
,
528 * Erase Command: 12 bytes.
530 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
532 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
533 * The byte address being erased is 2*Eaddress.
534 * The CIS cannot be erased.
537 sddr09_erase(struct us_data
*us
, unsigned long Eaddress
) {
538 unsigned char *command
= us
->iobuf
;
541 US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress
);
543 memset(command
, 0, 12);
545 command
[1] = LUNBITS
;
546 command
[6] = MSB_of(Eaddress
>>16);
547 command
[7] = LSB_of(Eaddress
>>16);
548 command
[8] = MSB_of(Eaddress
& 0xFFFF);
549 command
[9] = LSB_of(Eaddress
& 0xFFFF);
551 result
= sddr09_send_scsi_command(us
, command
, 12);
554 US_DEBUGP("Result for send_control in sddr09_erase %d\n",
561 * Write CIS Command: 12 bytes.
563 * bytes 2-5: write address in shorts
564 * bytes 10-11: sector count
566 * This writes at the indicated address. Don't know how it differs
567 * from E9. Maybe it does not erase? However, it will also write to
570 * When two such commands on the same page follow each other directly,
571 * the second one is not done.
575 * Write Command: 12 bytes.
577 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
578 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
579 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
581 * If write address equals erase address, the erase is done first,
582 * otherwise the write is done first. When erase address equals zero
586 sddr09_writeX(struct us_data
*us
,
587 unsigned long Waddress
, unsigned long Eaddress
,
588 int nr_of_pages
, int bulklen
, unsigned char *buf
, int use_sg
) {
590 unsigned char *command
= us
->iobuf
;
594 command
[1] = LUNBITS
;
596 command
[2] = MSB_of(Waddress
>>16);
597 command
[3] = LSB_of(Waddress
>>16);
598 command
[4] = MSB_of(Waddress
& 0xFFFF);
599 command
[5] = LSB_of(Waddress
& 0xFFFF);
601 command
[6] = MSB_of(Eaddress
>>16);
602 command
[7] = LSB_of(Eaddress
>>16);
603 command
[8] = MSB_of(Eaddress
& 0xFFFF);
604 command
[9] = LSB_of(Eaddress
& 0xFFFF);
606 command
[10] = MSB_of(nr_of_pages
);
607 command
[11] = LSB_of(nr_of_pages
);
609 result
= sddr09_send_scsi_command(us
, command
, 12);
612 US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
617 result
= usb_stor_bulk_transfer_sg(us
, us
->send_bulk_pipe
,
618 buf
, bulklen
, use_sg
, NULL
);
620 if (result
!= USB_STOR_XFER_GOOD
) {
621 US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
628 /* erase address, write same address */
630 sddr09_write_inplace(struct us_data
*us
, unsigned long address
,
631 int nr_of_pages
, int pageshift
, unsigned char *buf
,
633 int bulklen
= (nr_of_pages
<< pageshift
) + (nr_of_pages
<< CONTROL_SHIFT
);
634 return sddr09_writeX(us
, address
, address
, nr_of_pages
, bulklen
,
640 * Read Scatter Gather Command: 3+4n bytes.
643 * bytes 4i-1,4i,4i+1: page address
644 * byte 4i+2: page count
647 * This reads several pages from the card to a single memory buffer.
648 * The last two bits of byte 1 have the same meaning as for E8.
651 sddr09_read_sg_test_only(struct us_data
*us
) {
652 unsigned char *command
= us
->iobuf
;
653 int result
, bulklen
, nsg
, ct
;
655 unsigned long address
;
659 command
[1] = LUNBITS
;
661 address
= 040000; ct
= 1;
663 bulklen
+= (ct
<< 9);
664 command
[4*nsg
+2] = ct
;
665 command
[4*nsg
+1] = ((address
>> 9) & 0xFF);
666 command
[4*nsg
+0] = ((address
>> 17) & 0xFF);
667 command
[4*nsg
-1] = ((address
>> 25) & 0xFF);
669 address
= 0340000; ct
= 1;
671 bulklen
+= (ct
<< 9);
672 command
[4*nsg
+2] = ct
;
673 command
[4*nsg
+1] = ((address
>> 9) & 0xFF);
674 command
[4*nsg
+0] = ((address
>> 17) & 0xFF);
675 command
[4*nsg
-1] = ((address
>> 25) & 0xFF);
677 address
= 01000000; ct
= 2;
679 bulklen
+= (ct
<< 9);
680 command
[4*nsg
+2] = ct
;
681 command
[4*nsg
+1] = ((address
>> 9) & 0xFF);
682 command
[4*nsg
+0] = ((address
>> 17) & 0xFF);
683 command
[4*nsg
-1] = ((address
>> 25) & 0xFF);
687 result
= sddr09_send_scsi_command(us
, command
, 4*nsg
+3);
690 US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
695 buf
= kmalloc(bulklen
, GFP_NOIO
);
699 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
702 if (result
!= USB_STOR_XFER_GOOD
) {
703 US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
713 * Read Status Command: 12 bytes.
716 * Returns 64 bytes, all zero except for the first.
718 * bit 5: 1: Suspended
720 * bit 7: 1: Not write-protected
724 sddr09_read_status(struct us_data
*us
, unsigned char *status
) {
726 unsigned char *command
= us
->iobuf
;
727 unsigned char *data
= us
->iobuf
;
730 US_DEBUGP("Reading status...\n");
732 memset(command
, 0, 12);
734 command
[1] = LUNBITS
;
736 result
= sddr09_send_scsi_command(us
, command
, 12);
740 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
743 return (result
== USB_STOR_XFER_GOOD
? 0 : -EIO
);
747 sddr09_read_data(struct us_data
*us
,
748 unsigned long address
,
749 unsigned int sectors
) {
751 struct sddr09_card_info
*info
= (struct sddr09_card_info
*) us
->extra
;
752 unsigned char *buffer
;
753 unsigned int lba
, maxlba
, pba
;
754 unsigned int page
, pages
;
755 unsigned int len
, offset
;
756 struct scatterlist
*sg
;
759 // Figure out the initial LBA and page
760 lba
= address
>> info
->blockshift
;
761 page
= (address
& info
->blockmask
);
762 maxlba
= info
->capacity
>> (info
->pageshift
+ info
->blockshift
);
766 // Since we only read in one block at a time, we have to create
767 // a bounce buffer and move the data a piece at a time between the
768 // bounce buffer and the actual transfer buffer.
770 len
= min(sectors
, (unsigned int) info
->blocksize
) * info
->pagesize
;
771 buffer
= kmalloc(len
, GFP_NOIO
);
772 if (buffer
== NULL
) {
773 printk(KERN_WARNING
"sddr09_read_data: Out of memory\n");
777 // This could be made much more efficient by checking for
778 // contiguous LBA's. Another exercise left to the student.
784 while (sectors
> 0) {
786 /* Find number of pages we can read in this block */
787 pages
= min(sectors
, info
->blocksize
- page
);
788 len
= pages
<< info
->pageshift
;
790 /* Not overflowing capacity? */
792 US_DEBUGP("Error: Requested lba %u exceeds "
793 "maximum %u\n", lba
, maxlba
);
798 /* Find where this lba lives on disk */
799 pba
= info
->lba_to_pba
[lba
];
801 if (pba
== UNDEF
) { /* this lba was never written */
803 US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
806 /* This is not really an error. It just means
807 that the block has never been written.
808 Instead of returning an error
809 it is better to return all zero data. */
811 memset(buffer
, 0, len
);
814 US_DEBUGP("Read %d pages, from PBA %d"
815 " (LBA %d) page %d\n",
816 pages
, pba
, lba
, page
);
818 address
= ((pba
<< info
->blockshift
) + page
) <<
821 result
= sddr09_read20(us
, address
>>1,
822 pages
, info
->pageshift
, buffer
, 0);
827 // Store the data in the transfer buffer
828 usb_stor_access_xfer_buf(buffer
, len
, us
->srb
,
829 &sg
, &offset
, TO_XFER_BUF
);
841 sddr09_find_unused_pba(struct sddr09_card_info
*info
, unsigned int lba
) {
842 static unsigned int lastpba
= 1;
843 int zonestart
, end
, i
;
845 zonestart
= (lba
/1000) << 10;
846 end
= info
->capacity
>> (info
->blockshift
+ info
->pageshift
);
851 for (i
= lastpba
+1; i
< end
; i
++) {
852 if (info
->pba_to_lba
[zonestart
+i
] == UNDEF
) {
857 for (i
= 0; i
<= lastpba
; i
++) {
858 if (info
->pba_to_lba
[zonestart
+i
] == UNDEF
) {
867 sddr09_write_lba(struct us_data
*us
, unsigned int lba
,
868 unsigned int page
, unsigned int pages
,
869 unsigned char *ptr
, unsigned char *blockbuffer
) {
871 struct sddr09_card_info
*info
= (struct sddr09_card_info
*) us
->extra
;
872 unsigned long address
;
873 unsigned int pba
, lbap
;
874 unsigned int pagelen
;
875 unsigned char *bptr
, *cptr
, *xptr
;
876 unsigned char ecc
[3];
877 int i
, result
, isnew
;
879 lbap
= ((lba
% 1000) << 1) | 0x1000;
880 if (parity
[MSB_of(lbap
) ^ LSB_of(lbap
)])
882 pba
= info
->lba_to_pba
[lba
];
886 pba
= sddr09_find_unused_pba(info
, lba
);
889 "sddr09_write_lba: Out of unused blocks\n");
892 info
->pba_to_lba
[pba
] = lba
;
893 info
->lba_to_pba
[lba
] = pba
;
898 /* Maybe it is impossible to write to PBA 1.
899 Fake success, but don't do anything. */
900 printk(KERN_WARNING
"sddr09: avoid writing to pba 1\n");
904 pagelen
= (1 << info
->pageshift
) + (1 << CONTROL_SHIFT
);
906 /* read old contents */
907 address
= (pba
<< (info
->pageshift
+ info
->blockshift
));
908 result
= sddr09_read22(us
, address
>>1, info
->blocksize
,
909 info
->pageshift
, blockbuffer
, 0);
913 /* check old contents and fill lba */
914 for (i
= 0; i
< info
->blocksize
; i
++) {
915 bptr
= blockbuffer
+ i
*pagelen
;
916 cptr
= bptr
+ info
->pagesize
;
917 nand_compute_ecc(bptr
, ecc
);
918 if (!nand_compare_ecc(cptr
+13, ecc
)) {
919 US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
921 nand_store_ecc(cptr
+13, ecc
);
923 nand_compute_ecc(bptr
+(info
->pagesize
/ 2), ecc
);
924 if (!nand_compare_ecc(cptr
+8, ecc
)) {
925 US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
927 nand_store_ecc(cptr
+8, ecc
);
929 cptr
[6] = cptr
[11] = MSB_of(lbap
);
930 cptr
[7] = cptr
[12] = LSB_of(lbap
);
933 /* copy in new stuff and compute ECC */
935 for (i
= page
; i
< page
+pages
; i
++) {
936 bptr
= blockbuffer
+ i
*pagelen
;
937 cptr
= bptr
+ info
->pagesize
;
938 memcpy(bptr
, xptr
, info
->pagesize
);
939 xptr
+= info
->pagesize
;
940 nand_compute_ecc(bptr
, ecc
);
941 nand_store_ecc(cptr
+13, ecc
);
942 nand_compute_ecc(bptr
+(info
->pagesize
/ 2), ecc
);
943 nand_store_ecc(cptr
+8, ecc
);
946 US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba
, lba
);
948 result
= sddr09_write_inplace(us
, address
>>1, info
->blocksize
,
949 info
->pageshift
, blockbuffer
, 0);
951 US_DEBUGP("sddr09_write_inplace returns %d\n", result
);
955 unsigned char status
= 0;
956 int result2
= sddr09_read_status(us
, &status
);
958 US_DEBUGP("sddr09_write_inplace: cannot read status\n");
959 else if (status
!= 0xc0)
960 US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
967 int result2
= sddr09_test_unit_ready(us
);
975 sddr09_write_data(struct us_data
*us
,
976 unsigned long address
,
977 unsigned int sectors
) {
979 struct sddr09_card_info
*info
= (struct sddr09_card_info
*) us
->extra
;
980 unsigned int lba
, maxlba
, page
, pages
;
981 unsigned int pagelen
, blocklen
;
982 unsigned char *blockbuffer
;
983 unsigned char *buffer
;
984 unsigned int len
, offset
;
985 struct scatterlist
*sg
;
988 // Figure out the initial LBA and page
989 lba
= address
>> info
->blockshift
;
990 page
= (address
& info
->blockmask
);
991 maxlba
= info
->capacity
>> (info
->pageshift
+ info
->blockshift
);
995 // blockbuffer is used for reading in the old data, overwriting
996 // with the new data, and performing ECC calculations
998 /* TODO: instead of doing kmalloc/kfree for each write,
999 add a bufferpointer to the info structure */
1001 pagelen
= (1 << info
->pageshift
) + (1 << CONTROL_SHIFT
);
1002 blocklen
= (pagelen
<< info
->blockshift
);
1003 blockbuffer
= kmalloc(blocklen
, GFP_NOIO
);
1005 printk(KERN_WARNING
"sddr09_write_data: Out of memory\n");
1009 // Since we don't write the user data directly to the device,
1010 // we have to create a bounce buffer and move the data a piece
1011 // at a time between the bounce buffer and the actual transfer buffer.
1013 len
= min(sectors
, (unsigned int) info
->blocksize
) * info
->pagesize
;
1014 buffer
= kmalloc(len
, GFP_NOIO
);
1015 if (buffer
== NULL
) {
1016 printk(KERN_WARNING
"sddr09_write_data: Out of memory\n");
1025 while (sectors
> 0) {
1027 // Write as many sectors as possible in this block
1029 pages
= min(sectors
, info
->blocksize
- page
);
1030 len
= (pages
<< info
->pageshift
);
1032 /* Not overflowing capacity? */
1033 if (lba
>= maxlba
) {
1034 US_DEBUGP("Error: Requested lba %u exceeds "
1035 "maximum %u\n", lba
, maxlba
);
1040 // Get the data from the transfer buffer
1041 usb_stor_access_xfer_buf(buffer
, len
, us
->srb
,
1042 &sg
, &offset
, FROM_XFER_BUF
);
1044 result
= sddr09_write_lba(us
, lba
, page
, pages
,
1045 buffer
, blockbuffer
);
1061 sddr09_read_control(struct us_data
*us
,
1062 unsigned long address
,
1063 unsigned int blocks
,
1064 unsigned char *content
,
1067 US_DEBUGP("Read control address %lu, blocks %d\n",
1070 return sddr09_read21(us
, address
, blocks
,
1071 CONTROL_SHIFT
, content
, use_sg
);
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1085 sddr09_read_deviceID(struct us_data
*us
, unsigned char *deviceID
) {
1086 unsigned char *command
= us
->iobuf
;
1087 unsigned char *content
= us
->iobuf
;
1090 memset(command
, 0, 12);
1092 command
[1] = LUNBITS
;
1094 result
= sddr09_send_scsi_command(us
, command
, 12);
1098 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1101 for (i
= 0; i
< 4; i
++)
1102 deviceID
[i
] = content
[i
];
1104 return (result
== USB_STOR_XFER_GOOD
? 0 : -EIO
);
1108 sddr09_get_wp(struct us_data
*us
, struct sddr09_card_info
*info
) {
1110 unsigned char status
;
1112 result
= sddr09_read_status(us
, &status
);
1114 US_DEBUGP("sddr09_get_wp: read_status fails\n");
1117 US_DEBUGP("sddr09_get_wp: status 0x%02X", status
);
1118 if ((status
& 0x80) == 0) {
1119 info
->flags
|= SDDR09_WP
; /* write protected */
1123 US_DEBUGP(" Ready");
1124 if (status
& LUNBITS
)
1125 US_DEBUGP(" Suspended");
1127 US_DEBUGP(" Error");
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1138 sddr09_reset(struct us_data
*us
) {
1140 unsigned char *command
= us
->iobuf
;
1142 memset(command
, 0, 12);
1144 command
[1] = LUNBITS
;
1146 return sddr09_send_scsi_command(us
, command
, 12);
1150 static struct nand_flash_dev
*
1151 sddr09_get_cardinfo(struct us_data
*us
, unsigned char flags
) {
1152 struct nand_flash_dev
*cardinfo
;
1153 unsigned char deviceID
[4];
1157 US_DEBUGP("Reading capacity...\n");
1159 result
= sddr09_read_deviceID(us
, deviceID
);
1162 US_DEBUGP("Result of read_deviceID is %d\n", result
);
1163 printk(KERN_WARNING
"sddr09: could not read card info\n");
1167 sprintf(blurbtxt
, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1168 deviceID
[0], deviceID
[1], deviceID
[2], deviceID
[3]);
1170 /* Byte 0 is the manufacturer */
1171 sprintf(blurbtxt
+ strlen(blurbtxt
),
1173 nand_flash_manufacturer(deviceID
[0]));
1175 /* Byte 1 is the device type */
1176 cardinfo
= nand_find_id(deviceID
[1]);
1178 /* MB or MiB? It is neither. A 16 MB card has
1179 17301504 raw bytes, of which 16384000 are
1180 usable for user data. */
1181 sprintf(blurbtxt
+ strlen(blurbtxt
),
1182 ", %d MB", 1<<(cardinfo
->chipshift
- 20));
1184 sprintf(blurbtxt
+ strlen(blurbtxt
),
1185 ", type unrecognized");
1188 /* Byte 2 is code to signal availability of 128-bit ID */
1189 if (deviceID
[2] == 0xa5) {
1190 sprintf(blurbtxt
+ strlen(blurbtxt
),
1194 /* Byte 3 announces the availability of another read ID command */
1195 if (deviceID
[3] == 0xc0) {
1196 sprintf(blurbtxt
+ strlen(blurbtxt
),
1200 if (flags
& SDDR09_WP
)
1201 sprintf(blurbtxt
+ strlen(blurbtxt
),
1204 printk(KERN_WARNING
"%s\n", blurbtxt
);
1210 sddr09_read_map(struct us_data
*us
) {
1212 struct sddr09_card_info
*info
= (struct sddr09_card_info
*) us
->extra
;
1213 int numblocks
, alloc_len
, alloc_blocks
;
1215 unsigned char *buffer
, *buffer_end
, *ptr
;
1216 unsigned int lba
, lbact
;
1218 if (!info
->capacity
)
1221 // size of a block is 1 << (blockshift + pageshift) bytes
1222 // divide into the total capacity to get the number of blocks
1224 numblocks
= info
->capacity
>> (info
->blockshift
+ info
->pageshift
);
1226 // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1227 // but only use a 64 KB buffer
1228 // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1229 #define SDDR09_READ_MAP_BUFSZ 65536
1231 alloc_blocks
= min(numblocks
, SDDR09_READ_MAP_BUFSZ
>> CONTROL_SHIFT
);
1232 alloc_len
= (alloc_blocks
<< CONTROL_SHIFT
);
1233 buffer
= kmalloc(alloc_len
, GFP_NOIO
);
1234 if (buffer
== NULL
) {
1235 printk(KERN_WARNING
"sddr09_read_map: out of memory\n");
1239 buffer_end
= buffer
+ alloc_len
;
1241 #undef SDDR09_READ_MAP_BUFSZ
1243 kfree(info
->lba_to_pba
);
1244 kfree(info
->pba_to_lba
);
1245 info
->lba_to_pba
= kmalloc(numblocks
*sizeof(int), GFP_NOIO
);
1246 info
->pba_to_lba
= kmalloc(numblocks
*sizeof(int), GFP_NOIO
);
1248 if (info
->lba_to_pba
== NULL
|| info
->pba_to_lba
== NULL
) {
1249 printk(KERN_WARNING
"sddr09_read_map: out of memory\n");
1254 for (i
= 0; i
< numblocks
; i
++)
1255 info
->lba_to_pba
[i
] = info
->pba_to_lba
[i
] = UNDEF
;
1258 * Define lba-pba translation table
1262 for (i
= 0; i
< numblocks
; i
++) {
1263 ptr
+= (1 << CONTROL_SHIFT
);
1264 if (ptr
>= buffer_end
) {
1265 unsigned long address
;
1267 address
= i
<< (info
->pageshift
+ info
->blockshift
);
1268 result
= sddr09_read_control(
1270 min(alloc_blocks
, numblocks
- i
),
1279 if (i
== 0 || i
== 1) {
1280 info
->pba_to_lba
[i
] = UNUSABLE
;
1284 /* special PBAs have control field 0^16 */
1285 for (j
= 0; j
< 16; j
++)
1288 info
->pba_to_lba
[i
] = UNUSABLE
;
1289 printk(KERN_WARNING
"sddr09: PBA %d has no logical mapping\n",
1294 /* unwritten PBAs have control field FF^16 */
1295 for (j
= 0; j
< 16; j
++)
1301 /* normal PBAs start with six FFs */
1304 "sddr09: PBA %d has no logical mapping: "
1305 "reserved area = %02X%02X%02X%02X "
1306 "data status %02X block status %02X\n",
1307 i
, ptr
[0], ptr
[1], ptr
[2], ptr
[3],
1309 info
->pba_to_lba
[i
] = UNUSABLE
;
1313 if ((ptr
[6] >> 4) != 0x01) {
1315 "sddr09: PBA %d has invalid address field "
1316 "%02X%02X/%02X%02X\n",
1317 i
, ptr
[6], ptr
[7], ptr
[11], ptr
[12]);
1318 info
->pba_to_lba
[i
] = UNUSABLE
;
1322 /* check even parity */
1323 if (parity
[ptr
[6] ^ ptr
[7]]) {
1325 "sddr09: Bad parity in LBA for block %d"
1326 " (%02X %02X)\n", i
, ptr
[6], ptr
[7]);
1327 info
->pba_to_lba
[i
] = UNUSABLE
;
1331 lba
= short_pack(ptr
[7], ptr
[6]);
1332 lba
= (lba
& 0x07FF) >> 1;
1335 * Every 1024 physical blocks ("zone"), the LBA numbers
1336 * go back to zero, but are within a higher block of LBA's.
1337 * Also, there is a maximum of 1000 LBA's per zone.
1338 * In other words, in PBA 1024-2047 you will find LBA 0-999
1339 * which are really LBA 1000-1999. This allows for 24 bad
1340 * or special physical blocks per zone.
1345 "sddr09: Bad low LBA %d for block %d\n",
1347 goto possibly_erase
;
1350 lba
+= 1000*(i
/0x400);
1352 if (info
->lba_to_pba
[lba
] != UNDEF
) {
1354 "sddr09: LBA %d seen for PBA %d and %d\n",
1355 lba
, info
->lba_to_pba
[lba
], i
);
1356 goto possibly_erase
;
1359 info
->pba_to_lba
[i
] = lba
;
1360 info
->lba_to_pba
[lba
] = i
;
1364 if (erase_bad_lba_entries
) {
1365 unsigned long address
;
1367 address
= (i
<< (info
->pageshift
+ info
->blockshift
));
1368 sddr09_erase(us
, address
>>1);
1369 info
->pba_to_lba
[i
] = UNDEF
;
1371 info
->pba_to_lba
[i
] = UNUSABLE
;
1375 * Approximate capacity. This is not entirely correct yet,
1376 * since a zone with less than 1000 usable pages leads to
1377 * missing LBAs. Especially if it is the last zone, some
1378 * LBAs can be past capacity.
1381 for (i
= 0; i
< numblocks
; i
+= 1024) {
1384 for (j
= 0; j
< 1024 && i
+j
< numblocks
; j
++) {
1385 if (info
->pba_to_lba
[i
+j
] != UNUSABLE
) {
1387 info
->pba_to_lba
[i
+j
] = SPARE
;
1394 info
->lbact
= lbact
;
1395 US_DEBUGP("Found %d LBA's\n", lbact
);
1400 kfree(info
->lba_to_pba
);
1401 kfree(info
->pba_to_lba
);
1402 info
->lba_to_pba
= NULL
;
1403 info
->pba_to_lba
= NULL
;
1410 sddr09_card_info_destructor(void *extra
) {
1411 struct sddr09_card_info
*info
= (struct sddr09_card_info
*)extra
;
1416 kfree(info
->lba_to_pba
);
1417 kfree(info
->pba_to_lba
);
1421 sddr09_common_init(struct us_data
*us
) {
1424 /* set the configuration -- STALL is an acceptable response here */
1425 if (us
->pusb_dev
->actconfig
->desc
.bConfigurationValue
!= 1) {
1426 US_DEBUGP("active config #%d != 1 ??\n", us
->pusb_dev
1427 ->actconfig
->desc
.bConfigurationValue
);
1431 result
= usb_reset_configuration(us
->pusb_dev
);
1432 US_DEBUGP("Result of usb_reset_configuration is %d\n", result
);
1433 if (result
== -EPIPE
) {
1434 US_DEBUGP("-- stall on control interface\n");
1435 } else if (result
!= 0) {
1436 /* it's not a stall, but another error -- time to bail */
1437 US_DEBUGP("-- Unknown error. Rejecting device\n");
1441 us
->extra
= kzalloc(sizeof(struct sddr09_card_info
), GFP_NOIO
);
1444 us
->extra_destructor
= sddr09_card_info_destructor
;
1452 * This is needed at a very early stage. If this is not listed in the
1453 * unusual devices list but called from here then LUN 0 of the combo reader
1454 * is not recognized. But I do not know what precisely these calls do.
1457 usb_stor_sddr09_dpcm_init(struct us_data
*us
) {
1459 unsigned char *data
= us
->iobuf
;
1461 result
= sddr09_common_init(us
);
1465 result
= sddr09_send_command(us
, 0x01, USB_DIR_IN
, data
, 2);
1467 US_DEBUGP("sddr09_init: send_command fails\n");
1471 US_DEBUGP("SDDR09init: %02X %02X\n", data
[0], data
[1]);
1474 result
= sddr09_send_command(us
, 0x08, USB_DIR_IN
, data
, 2);
1476 US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1480 US_DEBUGP("SDDR09init: %02X %02X\n", data
[0], data
[1]);
1483 result
= sddr09_request_sense(us
, data
, 18);
1484 if (result
== 0 && data
[2] != 0) {
1486 for (j
=0; j
<18; j
++)
1487 printk(" %02X", data
[j
]);
1489 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1490 // 70: current command
1491 // sense key 0, sense code 0, extd sense code 0
1492 // additional transfer length * = sizeof(data) - 7
1493 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1494 // sense key 06, sense code 28: unit attention,
1495 // not ready to ready transition
1500 return 0; /* not result */
1504 * Transport for the Microtech DPCM-USB
1506 static int dpcm_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
1510 US_DEBUGP("dpcm_transport: LUN=%d\n", srb
->device
->lun
);
1512 switch (srb
->device
->lun
) {
1516 * LUN 0 corresponds to the CompactFlash card reader.
1518 ret
= usb_stor_CB_transport(srb
, us
);
1524 * LUN 1 corresponds to the SmartMedia card reader.
1528 * Set the LUN to 0 (just in case).
1530 srb
->device
->lun
= 0;
1531 ret
= sddr09_transport(srb
, us
);
1532 srb
->device
->lun
= 1;
1536 US_DEBUGP("dpcm_transport: Invalid LUN %d\n",
1538 ret
= USB_STOR_TRANSPORT_ERROR
;
1546 * Transport for the Sandisk SDDR-09
1548 static int sddr09_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
1550 static unsigned char sensekey
= 0, sensecode
= 0;
1551 static unsigned char havefakesense
= 0;
1553 unsigned char *ptr
= us
->iobuf
;
1554 unsigned long capacity
;
1555 unsigned int page
, pages
;
1557 struct sddr09_card_info
*info
;
1559 static unsigned char inquiry_response
[8] = {
1560 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1563 /* note: no block descriptor support */
1564 static unsigned char mode_page_01
[19] = {
1565 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1567 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1570 info
= (struct sddr09_card_info
*)us
->extra
;
1572 if (srb
->cmnd
[0] == REQUEST_SENSE
&& havefakesense
) {
1573 /* for a faked command, we have to follow with a faked sense */
1578 ptr
[12] = sensecode
;
1579 usb_stor_set_xfer_buf(ptr
, 18, srb
);
1580 sensekey
= sensecode
= havefakesense
= 0;
1581 return USB_STOR_TRANSPORT_GOOD
;
1586 /* Dummy up a response for INQUIRY since SDDR09 doesn't
1587 respond to INQUIRY commands */
1589 if (srb
->cmnd
[0] == INQUIRY
) {
1590 memcpy(ptr
, inquiry_response
, 8);
1591 fill_inquiry_response(us
, ptr
, 36);
1592 return USB_STOR_TRANSPORT_GOOD
;
1595 if (srb
->cmnd
[0] == READ_CAPACITY
) {
1596 struct nand_flash_dev
*cardinfo
;
1598 sddr09_get_wp(us
, info
); /* read WP bit */
1600 cardinfo
= sddr09_get_cardinfo(us
, info
->flags
);
1602 /* probably no media */
1604 sensekey
= 0x02; /* not ready */
1605 sensecode
= 0x3a; /* medium not present */
1606 return USB_STOR_TRANSPORT_FAILED
;
1609 info
->capacity
= (1 << cardinfo
->chipshift
);
1610 info
->pageshift
= cardinfo
->pageshift
;
1611 info
->pagesize
= (1 << info
->pageshift
);
1612 info
->blockshift
= cardinfo
->blockshift
;
1613 info
->blocksize
= (1 << info
->blockshift
);
1614 info
->blockmask
= info
->blocksize
- 1;
1616 // map initialization, must follow get_cardinfo()
1617 if (sddr09_read_map(us
)) {
1618 /* probably out of memory */
1624 capacity
= (info
->lbact
<< info
->blockshift
) - 1;
1626 ((__be32
*) ptr
)[0] = cpu_to_be32(capacity
);
1630 ((__be32
*) ptr
)[1] = cpu_to_be32(info
->pagesize
);
1631 usb_stor_set_xfer_buf(ptr
, 8, srb
);
1633 return USB_STOR_TRANSPORT_GOOD
;
1636 if (srb
->cmnd
[0] == MODE_SENSE_10
) {
1637 int modepage
= (srb
->cmnd
[2] & 0x3F);
1639 /* They ask for the Read/Write error recovery page,
1640 or for all pages. */
1641 /* %% We should check DBD %% */
1642 if (modepage
== 0x01 || modepage
== 0x3F) {
1643 US_DEBUGP("SDDR09: Dummy up request for "
1644 "mode page 0x%x\n", modepage
);
1646 memcpy(ptr
, mode_page_01
, sizeof(mode_page_01
));
1647 ((__be16
*)ptr
)[0] = cpu_to_be16(sizeof(mode_page_01
) - 2);
1648 ptr
[3] = (info
->flags
& SDDR09_WP
) ? 0x80 : 0;
1649 usb_stor_set_xfer_buf(ptr
, sizeof(mode_page_01
), srb
);
1650 return USB_STOR_TRANSPORT_GOOD
;
1653 sensekey
= 0x05; /* illegal request */
1654 sensecode
= 0x24; /* invalid field in CDB */
1655 return USB_STOR_TRANSPORT_FAILED
;
1658 if (srb
->cmnd
[0] == ALLOW_MEDIUM_REMOVAL
)
1659 return USB_STOR_TRANSPORT_GOOD
;
1663 if (srb
->cmnd
[0] == READ_10
) {
1665 page
= short_pack(srb
->cmnd
[3], srb
->cmnd
[2]);
1667 page
|= short_pack(srb
->cmnd
[5], srb
->cmnd
[4]);
1668 pages
= short_pack(srb
->cmnd
[8], srb
->cmnd
[7]);
1670 US_DEBUGP("READ_10: read page %d pagect %d\n",
1673 result
= sddr09_read_data(us
, page
, pages
);
1674 return (result
== 0 ? USB_STOR_TRANSPORT_GOOD
:
1675 USB_STOR_TRANSPORT_ERROR
);
1678 if (srb
->cmnd
[0] == WRITE_10
) {
1680 page
= short_pack(srb
->cmnd
[3], srb
->cmnd
[2]);
1682 page
|= short_pack(srb
->cmnd
[5], srb
->cmnd
[4]);
1683 pages
= short_pack(srb
->cmnd
[8], srb
->cmnd
[7]);
1685 US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1688 result
= sddr09_write_data(us
, page
, pages
);
1689 return (result
== 0 ? USB_STOR_TRANSPORT_GOOD
:
1690 USB_STOR_TRANSPORT_ERROR
);
1693 /* catch-all for all other commands, except
1694 * pass TEST_UNIT_READY and REQUEST_SENSE through
1696 if (srb
->cmnd
[0] != TEST_UNIT_READY
&&
1697 srb
->cmnd
[0] != REQUEST_SENSE
) {
1698 sensekey
= 0x05; /* illegal request */
1699 sensecode
= 0x20; /* invalid command */
1701 return USB_STOR_TRANSPORT_FAILED
;
1704 for (; srb
->cmd_len
<12; srb
->cmd_len
++)
1705 srb
->cmnd
[srb
->cmd_len
] = 0;
1707 srb
->cmnd
[1] = LUNBITS
;
1710 for (i
=0; i
<12; i
++)
1711 sprintf(ptr
+strlen(ptr
), "%02X ", srb
->cmnd
[i
]);
1713 US_DEBUGP("SDDR09: Send control for command %s\n", ptr
);
1715 result
= sddr09_send_scsi_command(us
, srb
->cmnd
, 12);
1717 US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1718 "returns %d\n", result
);
1719 return USB_STOR_TRANSPORT_ERROR
;
1722 if (scsi_bufflen(srb
) == 0)
1723 return USB_STOR_TRANSPORT_GOOD
;
1725 if (srb
->sc_data_direction
== DMA_TO_DEVICE
||
1726 srb
->sc_data_direction
== DMA_FROM_DEVICE
) {
1727 unsigned int pipe
= (srb
->sc_data_direction
== DMA_TO_DEVICE
)
1728 ? us
->send_bulk_pipe
: us
->recv_bulk_pipe
;
1730 US_DEBUGP("SDDR09: %s %d bytes\n",
1731 (srb
->sc_data_direction
== DMA_TO_DEVICE
) ?
1732 "sending" : "receiving",
1735 result
= usb_stor_bulk_srb(us
, pipe
, srb
);
1737 return (result
== USB_STOR_XFER_GOOD
?
1738 USB_STOR_TRANSPORT_GOOD
: USB_STOR_TRANSPORT_ERROR
);
1741 return USB_STOR_TRANSPORT_GOOD
;
1745 * Initialization routine for the sddr09 subdriver
1748 usb_stor_sddr09_init(struct us_data
*us
) {
1749 return sddr09_common_init(us
);
1752 static int sddr09_probe(struct usb_interface
*intf
,
1753 const struct usb_device_id
*id
)
1758 result
= usb_stor_probe1(&us
, intf
, id
,
1759 (id
- sddr09_usb_ids
) + sddr09_unusual_dev_list
);
1763 if (us
->protocol
== USB_PR_DPCM_USB
) {
1764 us
->transport_name
= "Control/Bulk-EUSB/SDDR09";
1765 us
->transport
= dpcm_transport
;
1766 us
->transport_reset
= usb_stor_CB_reset
;
1769 us
->transport_name
= "EUSB/SDDR09";
1770 us
->transport
= sddr09_transport
;
1771 us
->transport_reset
= usb_stor_CB_reset
;
1775 result
= usb_stor_probe2(us
);
1779 static struct usb_driver sddr09_driver
= {
1780 .name
= "ums-sddr09",
1781 .probe
= sddr09_probe
,
1782 .disconnect
= usb_stor_disconnect
,
1783 .suspend
= usb_stor_suspend
,
1784 .resume
= usb_stor_resume
,
1785 .reset_resume
= usb_stor_reset_resume
,
1786 .pre_reset
= usb_stor_pre_reset
,
1787 .post_reset
= usb_stor_post_reset
,
1788 .id_table
= sddr09_usb_ids
,
1792 static int __init
sddr09_init(void)
1794 return usb_register(&sddr09_driver
);
1797 static void __exit
sddr09_exit(void)
1799 usb_deregister(&sddr09_driver
);
1802 module_init(sddr09_init
);
1803 module_exit(sddr09_exit
);