2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock
);
76 static cpumask_var_t cpus_hardware_enabled
;
77 static int kvm_usage_count
= 0;
78 static atomic_t hardware_enable_failed
;
80 struct kmem_cache
*kvm_vcpu_cache
;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
83 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
85 struct dentry
*kvm_debugfs_dir
;
87 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
90 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
99 EXPORT_SYMBOL_GPL(kvm_rebooting
);
101 static bool largepages_enabled
= true;
103 static struct page
*hwpoison_page
;
104 static pfn_t hwpoison_pfn
;
106 struct page
*fault_page
;
109 inline int kvm_is_mmio_pfn(pfn_t pfn
)
111 if (pfn_valid(pfn
)) {
113 struct page
*tail
= pfn_to_page(pfn
);
114 struct page
*head
= compound_trans_head(tail
);
115 reserved
= PageReserved(head
);
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
131 return PageReserved(tail
);
138 * Switches to specified vcpu, until a matching vcpu_put()
140 void vcpu_load(struct kvm_vcpu
*vcpu
)
144 mutex_lock(&vcpu
->mutex
);
145 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
146 /* The thread running this VCPU changed. */
147 struct pid
*oldpid
= vcpu
->pid
;
148 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
149 rcu_assign_pointer(vcpu
->pid
, newpid
);
154 preempt_notifier_register(&vcpu
->preempt_notifier
);
155 kvm_arch_vcpu_load(vcpu
, cpu
);
159 void vcpu_put(struct kvm_vcpu
*vcpu
)
162 kvm_arch_vcpu_put(vcpu
);
163 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
165 mutex_unlock(&vcpu
->mutex
);
168 static void ack_flush(void *_completed
)
172 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
177 struct kvm_vcpu
*vcpu
;
179 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
182 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
183 kvm_make_request(req
, vcpu
);
186 /* Set ->requests bit before we read ->mode */
189 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
190 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
191 cpumask_set_cpu(cpu
, cpus
);
193 if (unlikely(cpus
== NULL
))
194 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
195 else if (!cpumask_empty(cpus
))
196 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
200 free_cpumask_var(cpus
);
204 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
206 int dirty_count
= kvm
->tlbs_dirty
;
209 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
210 ++kvm
->stat
.remote_tlb_flush
;
211 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
214 void kvm_reload_remote_mmus(struct kvm
*kvm
)
216 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
219 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
224 mutex_init(&vcpu
->mutex
);
229 init_waitqueue_head(&vcpu
->wq
);
230 kvm_async_pf_vcpu_init(vcpu
);
232 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
237 vcpu
->run
= page_address(page
);
239 r
= kvm_arch_vcpu_init(vcpu
);
245 free_page((unsigned long)vcpu
->run
);
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
251 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
254 kvm_arch_vcpu_uninit(vcpu
);
255 free_page((unsigned long)vcpu
->run
);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
262 return container_of(mn
, struct kvm
, mmu_notifier
);
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
266 struct mm_struct
*mm
,
267 unsigned long address
)
269 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
270 int need_tlb_flush
, idx
;
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
290 idx
= srcu_read_lock(&kvm
->srcu
);
291 spin_lock(&kvm
->mmu_lock
);
292 kvm
->mmu_notifier_seq
++;
293 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
294 spin_unlock(&kvm
->mmu_lock
);
295 srcu_read_unlock(&kvm
->srcu
, idx
);
297 /* we've to flush the tlb before the pages can be freed */
299 kvm_flush_remote_tlbs(kvm
);
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
304 struct mm_struct
*mm
,
305 unsigned long address
,
308 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
311 idx
= srcu_read_lock(&kvm
->srcu
);
312 spin_lock(&kvm
->mmu_lock
);
313 kvm
->mmu_notifier_seq
++;
314 kvm_set_spte_hva(kvm
, address
, pte
);
315 spin_unlock(&kvm
->mmu_lock
);
316 srcu_read_unlock(&kvm
->srcu
, idx
);
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
320 struct mm_struct
*mm
,
324 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
325 int need_tlb_flush
= 0, idx
;
327 idx
= srcu_read_lock(&kvm
->srcu
);
328 spin_lock(&kvm
->mmu_lock
);
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
334 kvm
->mmu_notifier_count
++;
335 for (; start
< end
; start
+= PAGE_SIZE
)
336 need_tlb_flush
|= kvm_unmap_hva(kvm
, start
);
337 need_tlb_flush
|= kvm
->tlbs_dirty
;
338 spin_unlock(&kvm
->mmu_lock
);
339 srcu_read_unlock(&kvm
->srcu
, idx
);
341 /* we've to flush the tlb before the pages can be freed */
343 kvm_flush_remote_tlbs(kvm
);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
347 struct mm_struct
*mm
,
351 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
353 spin_lock(&kvm
->mmu_lock
);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
359 kvm
->mmu_notifier_seq
++;
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
366 kvm
->mmu_notifier_count
--;
367 spin_unlock(&kvm
->mmu_lock
);
369 BUG_ON(kvm
->mmu_notifier_count
< 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
373 struct mm_struct
*mm
,
374 unsigned long address
)
376 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
379 idx
= srcu_read_lock(&kvm
->srcu
);
380 spin_lock(&kvm
->mmu_lock
);
381 young
= kvm_age_hva(kvm
, address
);
382 spin_unlock(&kvm
->mmu_lock
);
383 srcu_read_unlock(&kvm
->srcu
, idx
);
386 kvm_flush_remote_tlbs(kvm
);
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
392 struct mm_struct
*mm
,
393 unsigned long address
)
395 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
398 idx
= srcu_read_lock(&kvm
->srcu
);
399 spin_lock(&kvm
->mmu_lock
);
400 young
= kvm_test_age_hva(kvm
, address
);
401 spin_unlock(&kvm
->mmu_lock
);
402 srcu_read_unlock(&kvm
->srcu
, idx
);
407 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
408 struct mm_struct
*mm
)
410 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
413 idx
= srcu_read_lock(&kvm
->srcu
);
414 kvm_arch_flush_shadow(kvm
);
415 srcu_read_unlock(&kvm
->srcu
, idx
);
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
419 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
420 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
421 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
422 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
423 .test_young
= kvm_mmu_notifier_test_young
,
424 .change_pte
= kvm_mmu_notifier_change_pte
,
425 .release
= kvm_mmu_notifier_release
,
428 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
430 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
431 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443 static struct kvm
*kvm_create_vm(void)
446 struct kvm
*kvm
= kvm_arch_alloc_vm();
449 return ERR_PTR(-ENOMEM
);
451 r
= kvm_arch_init_vm(kvm
);
453 goto out_err_nodisable
;
455 r
= hardware_enable_all();
457 goto out_err_nodisable
;
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460 INIT_HLIST_HEAD(&kvm
->mask_notifier_list
);
461 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
465 kvm
->memslots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
468 if (init_srcu_struct(&kvm
->srcu
))
470 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
471 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
477 spin_lock_init(&kvm
->mmu_lock
);
478 kvm
->mm
= current
->mm
;
479 atomic_inc(&kvm
->mm
->mm_count
);
480 kvm_eventfd_init(kvm
);
481 mutex_init(&kvm
->lock
);
482 mutex_init(&kvm
->irq_lock
);
483 mutex_init(&kvm
->slots_lock
);
484 atomic_set(&kvm
->users_count
, 1);
486 r
= kvm_init_mmu_notifier(kvm
);
490 raw_spin_lock(&kvm_lock
);
491 list_add(&kvm
->vm_list
, &vm_list
);
492 raw_spin_unlock(&kvm_lock
);
497 cleanup_srcu_struct(&kvm
->srcu
);
499 hardware_disable_all();
501 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
502 kfree(kvm
->buses
[i
]);
503 kfree(kvm
->memslots
);
504 kvm_arch_free_vm(kvm
);
508 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
510 if (!memslot
->dirty_bitmap
)
513 if (2 * kvm_dirty_bitmap_bytes(memslot
) > PAGE_SIZE
)
514 vfree(memslot
->dirty_bitmap_head
);
516 kfree(memslot
->dirty_bitmap_head
);
518 memslot
->dirty_bitmap
= NULL
;
519 memslot
->dirty_bitmap_head
= NULL
;
523 * Free any memory in @free but not in @dont.
525 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
526 struct kvm_memory_slot
*dont
)
530 if (!dont
|| free
->rmap
!= dont
->rmap
)
533 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
534 kvm_destroy_dirty_bitmap(free
);
537 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
) {
538 if (!dont
|| free
->lpage_info
[i
] != dont
->lpage_info
[i
]) {
539 vfree(free
->lpage_info
[i
]);
540 free
->lpage_info
[i
] = NULL
;
548 void kvm_free_physmem(struct kvm
*kvm
)
551 struct kvm_memslots
*slots
= kvm
->memslots
;
553 for (i
= 0; i
< slots
->nmemslots
; ++i
)
554 kvm_free_physmem_slot(&slots
->memslots
[i
], NULL
);
556 kfree(kvm
->memslots
);
559 static void kvm_destroy_vm(struct kvm
*kvm
)
562 struct mm_struct
*mm
= kvm
->mm
;
564 kvm_arch_sync_events(kvm
);
565 raw_spin_lock(&kvm_lock
);
566 list_del(&kvm
->vm_list
);
567 raw_spin_unlock(&kvm_lock
);
568 kvm_free_irq_routing(kvm
);
569 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
570 kvm_io_bus_destroy(kvm
->buses
[i
]);
571 kvm_coalesced_mmio_free(kvm
);
572 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
573 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
575 kvm_arch_flush_shadow(kvm
);
577 kvm_arch_destroy_vm(kvm
);
578 kvm_free_physmem(kvm
);
579 cleanup_srcu_struct(&kvm
->srcu
);
580 kvm_arch_free_vm(kvm
);
581 hardware_disable_all();
585 void kvm_get_kvm(struct kvm
*kvm
)
587 atomic_inc(&kvm
->users_count
);
589 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
591 void kvm_put_kvm(struct kvm
*kvm
)
593 if (atomic_dec_and_test(&kvm
->users_count
))
596 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
599 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
601 struct kvm
*kvm
= filp
->private_data
;
603 kvm_irqfd_release(kvm
);
611 * Allocation size is twice as large as the actual dirty bitmap size.
612 * This makes it possible to do double buffering: see x86's
613 * kvm_vm_ioctl_get_dirty_log().
615 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
617 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
619 if (dirty_bytes
> PAGE_SIZE
)
620 memslot
->dirty_bitmap
= vzalloc(dirty_bytes
);
622 memslot
->dirty_bitmap
= kzalloc(dirty_bytes
, GFP_KERNEL
);
624 if (!memslot
->dirty_bitmap
)
627 memslot
->dirty_bitmap_head
= memslot
->dirty_bitmap
;
630 #endif /* !CONFIG_S390 */
633 * Allocate some memory and give it an address in the guest physical address
636 * Discontiguous memory is allowed, mostly for framebuffers.
638 * Must be called holding mmap_sem for write.
640 int __kvm_set_memory_region(struct kvm
*kvm
,
641 struct kvm_userspace_memory_region
*mem
,
646 unsigned long npages
;
648 struct kvm_memory_slot
*memslot
;
649 struct kvm_memory_slot old
, new;
650 struct kvm_memslots
*slots
, *old_memslots
;
653 /* General sanity checks */
654 if (mem
->memory_size
& (PAGE_SIZE
- 1))
656 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
658 /* We can read the guest memory with __xxx_user() later on. */
660 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
661 !access_ok(VERIFY_WRITE
,
662 (void __user
*)(unsigned long)mem
->userspace_addr
,
665 if (mem
->slot
>= KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
)
667 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
670 memslot
= &kvm
->memslots
->memslots
[mem
->slot
];
671 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
672 npages
= mem
->memory_size
>> PAGE_SHIFT
;
675 if (npages
> KVM_MEM_MAX_NR_PAGES
)
679 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
681 new = old
= *memslot
;
684 new.base_gfn
= base_gfn
;
686 new.flags
= mem
->flags
;
688 /* Disallow changing a memory slot's size. */
690 if (npages
&& old
.npages
&& npages
!= old
.npages
)
693 /* Check for overlaps */
695 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
696 struct kvm_memory_slot
*s
= &kvm
->memslots
->memslots
[i
];
698 if (s
== memslot
|| !s
->npages
)
700 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
701 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
705 /* Free page dirty bitmap if unneeded */
706 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
707 new.dirty_bitmap
= NULL
;
711 /* Allocate if a slot is being created */
713 if (npages
&& !new.rmap
) {
714 new.rmap
= vzalloc(npages
* sizeof(*new.rmap
));
719 new.user_alloc
= user_alloc
;
720 new.userspace_addr
= mem
->userspace_addr
;
725 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
) {
731 /* Avoid unused variable warning if no large pages */
734 if (new.lpage_info
[i
])
737 lpages
= 1 + ((base_gfn
+ npages
- 1)
738 >> KVM_HPAGE_GFN_SHIFT(level
));
739 lpages
-= base_gfn
>> KVM_HPAGE_GFN_SHIFT(level
);
741 new.lpage_info
[i
] = vzalloc(lpages
* sizeof(*new.lpage_info
[i
]));
743 if (!new.lpage_info
[i
])
746 if (base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
747 new.lpage_info
[i
][0].write_count
= 1;
748 if ((base_gfn
+npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
749 new.lpage_info
[i
][lpages
- 1].write_count
= 1;
750 ugfn
= new.userspace_addr
>> PAGE_SHIFT
;
752 * If the gfn and userspace address are not aligned wrt each
753 * other, or if explicitly asked to, disable large page
754 * support for this slot
756 if ((base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
758 for (j
= 0; j
< lpages
; ++j
)
759 new.lpage_info
[i
][j
].write_count
= 1;
764 /* Allocate page dirty bitmap if needed */
765 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
766 if (kvm_create_dirty_bitmap(&new) < 0)
768 /* destroy any largepage mappings for dirty tracking */
770 #else /* not defined CONFIG_S390 */
771 new.user_alloc
= user_alloc
;
773 new.userspace_addr
= mem
->userspace_addr
;
774 #endif /* not defined CONFIG_S390 */
778 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
781 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
782 if (mem
->slot
>= slots
->nmemslots
)
783 slots
->nmemslots
= mem
->slot
+ 1;
785 slots
->memslots
[mem
->slot
].flags
|= KVM_MEMSLOT_INVALID
;
787 old_memslots
= kvm
->memslots
;
788 rcu_assign_pointer(kvm
->memslots
, slots
);
789 synchronize_srcu_expedited(&kvm
->srcu
);
790 /* From this point no new shadow pages pointing to a deleted
791 * memslot will be created.
793 * validation of sp->gfn happens in:
794 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
795 * - kvm_is_visible_gfn (mmu_check_roots)
797 kvm_arch_flush_shadow(kvm
);
801 r
= kvm_arch_prepare_memory_region(kvm
, &new, old
, mem
, user_alloc
);
805 /* map the pages in iommu page table */
807 r
= kvm_iommu_map_pages(kvm
, &new);
813 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
816 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
817 if (mem
->slot
>= slots
->nmemslots
)
818 slots
->nmemslots
= mem
->slot
+ 1;
821 /* actual memory is freed via old in kvm_free_physmem_slot below */
824 new.dirty_bitmap
= NULL
;
825 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
)
826 new.lpage_info
[i
] = NULL
;
829 slots
->memslots
[mem
->slot
] = new;
830 old_memslots
= kvm
->memslots
;
831 rcu_assign_pointer(kvm
->memslots
, slots
);
832 synchronize_srcu_expedited(&kvm
->srcu
);
834 kvm_arch_commit_memory_region(kvm
, mem
, old
, user_alloc
);
837 * If the new memory slot is created, we need to clear all
840 if (npages
&& old
.base_gfn
!= mem
->guest_phys_addr
>> PAGE_SHIFT
)
841 kvm_arch_flush_shadow(kvm
);
843 kvm_free_physmem_slot(&old
, &new);
849 kvm_free_physmem_slot(&new, &old
);
854 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
856 int kvm_set_memory_region(struct kvm
*kvm
,
857 struct kvm_userspace_memory_region
*mem
,
862 mutex_lock(&kvm
->slots_lock
);
863 r
= __kvm_set_memory_region(kvm
, mem
, user_alloc
);
864 mutex_unlock(&kvm
->slots_lock
);
867 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
869 int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
871 kvm_userspace_memory_region
*mem
,
874 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
876 return kvm_set_memory_region(kvm
, mem
, user_alloc
);
879 int kvm_get_dirty_log(struct kvm
*kvm
,
880 struct kvm_dirty_log
*log
, int *is_dirty
)
882 struct kvm_memory_slot
*memslot
;
885 unsigned long any
= 0;
888 if (log
->slot
>= KVM_MEMORY_SLOTS
)
891 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
893 if (!memslot
->dirty_bitmap
)
896 n
= kvm_dirty_bitmap_bytes(memslot
);
898 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
899 any
= memslot
->dirty_bitmap
[i
];
902 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
913 void kvm_disable_largepages(void)
915 largepages_enabled
= false;
917 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
919 int is_error_page(struct page
*page
)
921 return page
== bad_page
|| page
== hwpoison_page
|| page
== fault_page
;
923 EXPORT_SYMBOL_GPL(is_error_page
);
925 int is_error_pfn(pfn_t pfn
)
927 return pfn
== bad_pfn
|| pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
929 EXPORT_SYMBOL_GPL(is_error_pfn
);
931 int is_hwpoison_pfn(pfn_t pfn
)
933 return pfn
== hwpoison_pfn
;
935 EXPORT_SYMBOL_GPL(is_hwpoison_pfn
);
937 int is_fault_pfn(pfn_t pfn
)
939 return pfn
== fault_pfn
;
941 EXPORT_SYMBOL_GPL(is_fault_pfn
);
943 int is_noslot_pfn(pfn_t pfn
)
945 return pfn
== bad_pfn
;
947 EXPORT_SYMBOL_GPL(is_noslot_pfn
);
949 int is_invalid_pfn(pfn_t pfn
)
951 return pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
953 EXPORT_SYMBOL_GPL(is_invalid_pfn
);
955 static inline unsigned long bad_hva(void)
960 int kvm_is_error_hva(unsigned long addr
)
962 return addr
== bad_hva();
964 EXPORT_SYMBOL_GPL(kvm_is_error_hva
);
966 static struct kvm_memory_slot
*__gfn_to_memslot(struct kvm_memslots
*slots
,
971 for (i
= 0; i
< slots
->nmemslots
; ++i
) {
972 struct kvm_memory_slot
*memslot
= &slots
->memslots
[i
];
974 if (gfn
>= memslot
->base_gfn
975 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
981 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
983 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
985 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
987 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
990 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
992 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
993 struct kvm_memory_slot
*memslot
= &slots
->memslots
[i
];
995 if (memslot
->flags
& KVM_MEMSLOT_INVALID
)
998 if (gfn
>= memslot
->base_gfn
999 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
1004 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1006 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1008 struct vm_area_struct
*vma
;
1009 unsigned long addr
, size
;
1013 addr
= gfn_to_hva(kvm
, gfn
);
1014 if (kvm_is_error_hva(addr
))
1017 down_read(¤t
->mm
->mmap_sem
);
1018 vma
= find_vma(current
->mm
, addr
);
1022 size
= vma_kernel_pagesize(vma
);
1025 up_read(¤t
->mm
->mmap_sem
);
1030 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1033 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1037 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1039 return gfn_to_hva_memslot(slot
, gfn
);
1042 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1044 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1046 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1048 static pfn_t
get_fault_pfn(void)
1050 get_page(fault_page
);
1054 int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1055 unsigned long start
, int write
, struct page
**page
)
1057 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1060 flags
|= FOLL_WRITE
;
1062 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1065 static inline int check_user_page_hwpoison(unsigned long addr
)
1067 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1069 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1070 flags
, NULL
, NULL
, NULL
);
1071 return rc
== -EHWPOISON
;
1074 static pfn_t
hva_to_pfn(struct kvm
*kvm
, unsigned long addr
, bool atomic
,
1075 bool *async
, bool write_fault
, bool *writable
)
1077 struct page
*page
[1];
1081 /* we can do it either atomically or asynchronously, not both */
1082 BUG_ON(atomic
&& async
);
1084 BUG_ON(!write_fault
&& !writable
);
1089 if (atomic
|| async
)
1090 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1092 if (unlikely(npages
!= 1) && !atomic
) {
1096 *writable
= write_fault
;
1099 down_read(¤t
->mm
->mmap_sem
);
1100 npages
= get_user_page_nowait(current
, current
->mm
,
1101 addr
, write_fault
, page
);
1102 up_read(¤t
->mm
->mmap_sem
);
1104 npages
= get_user_pages_fast(addr
, 1, write_fault
,
1107 /* map read fault as writable if possible */
1108 if (unlikely(!write_fault
) && npages
== 1) {
1109 struct page
*wpage
[1];
1111 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1121 if (unlikely(npages
!= 1)) {
1122 struct vm_area_struct
*vma
;
1125 return get_fault_pfn();
1127 down_read(¤t
->mm
->mmap_sem
);
1128 if (npages
== -EHWPOISON
||
1129 (!async
&& check_user_page_hwpoison(addr
))) {
1130 up_read(¤t
->mm
->mmap_sem
);
1131 get_page(hwpoison_page
);
1132 return page_to_pfn(hwpoison_page
);
1135 vma
= find_vma_intersection(current
->mm
, addr
, addr
+1);
1138 pfn
= get_fault_pfn();
1139 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1140 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1142 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1144 if (async
&& (vma
->vm_flags
& VM_WRITE
))
1146 pfn
= get_fault_pfn();
1148 up_read(¤t
->mm
->mmap_sem
);
1150 pfn
= page_to_pfn(page
[0]);
1155 pfn_t
hva_to_pfn_atomic(struct kvm
*kvm
, unsigned long addr
)
1157 return hva_to_pfn(kvm
, addr
, true, NULL
, true, NULL
);
1159 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic
);
1161 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1162 bool write_fault
, bool *writable
)
1169 addr
= gfn_to_hva(kvm
, gfn
);
1170 if (kvm_is_error_hva(addr
)) {
1172 return page_to_pfn(bad_page
);
1175 return hva_to_pfn(kvm
, addr
, atomic
, async
, write_fault
, writable
);
1178 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1180 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1182 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1184 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1185 bool write_fault
, bool *writable
)
1187 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1189 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1191 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1193 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1195 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1197 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1200 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1202 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1204 pfn_t
gfn_to_pfn_memslot(struct kvm
*kvm
,
1205 struct kvm_memory_slot
*slot
, gfn_t gfn
)
1207 unsigned long addr
= gfn_to_hva_memslot(slot
, gfn
);
1208 return hva_to_pfn(kvm
, addr
, false, NULL
, true, NULL
);
1211 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1217 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1218 if (kvm_is_error_hva(addr
))
1221 if (entry
< nr_pages
)
1224 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1226 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1228 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1232 pfn
= gfn_to_pfn(kvm
, gfn
);
1233 if (!kvm_is_mmio_pfn(pfn
))
1234 return pfn_to_page(pfn
);
1236 WARN_ON(kvm_is_mmio_pfn(pfn
));
1242 EXPORT_SYMBOL_GPL(gfn_to_page
);
1244 void kvm_release_page_clean(struct page
*page
)
1246 kvm_release_pfn_clean(page_to_pfn(page
));
1248 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1250 void kvm_release_pfn_clean(pfn_t pfn
)
1252 if (!kvm_is_mmio_pfn(pfn
))
1253 put_page(pfn_to_page(pfn
));
1255 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1257 void kvm_release_page_dirty(struct page
*page
)
1259 kvm_release_pfn_dirty(page_to_pfn(page
));
1261 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1263 void kvm_release_pfn_dirty(pfn_t pfn
)
1265 kvm_set_pfn_dirty(pfn
);
1266 kvm_release_pfn_clean(pfn
);
1268 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1270 void kvm_set_page_dirty(struct page
*page
)
1272 kvm_set_pfn_dirty(page_to_pfn(page
));
1274 EXPORT_SYMBOL_GPL(kvm_set_page_dirty
);
1276 void kvm_set_pfn_dirty(pfn_t pfn
)
1278 if (!kvm_is_mmio_pfn(pfn
)) {
1279 struct page
*page
= pfn_to_page(pfn
);
1280 if (!PageReserved(page
))
1284 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1286 void kvm_set_pfn_accessed(pfn_t pfn
)
1288 if (!kvm_is_mmio_pfn(pfn
))
1289 mark_page_accessed(pfn_to_page(pfn
));
1291 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1293 void kvm_get_pfn(pfn_t pfn
)
1295 if (!kvm_is_mmio_pfn(pfn
))
1296 get_page(pfn_to_page(pfn
));
1298 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1300 static int next_segment(unsigned long len
, int offset
)
1302 if (len
> PAGE_SIZE
- offset
)
1303 return PAGE_SIZE
- offset
;
1308 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1314 addr
= gfn_to_hva(kvm
, gfn
);
1315 if (kvm_is_error_hva(addr
))
1317 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1322 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1324 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1326 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1328 int offset
= offset_in_page(gpa
);
1331 while ((seg
= next_segment(len
, offset
)) != 0) {
1332 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1342 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1344 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1349 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1350 int offset
= offset_in_page(gpa
);
1352 addr
= gfn_to_hva(kvm
, gfn
);
1353 if (kvm_is_error_hva(addr
))
1355 pagefault_disable();
1356 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1362 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1364 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1365 int offset
, int len
)
1370 addr
= gfn_to_hva(kvm
, gfn
);
1371 if (kvm_is_error_hva(addr
))
1373 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1376 mark_page_dirty(kvm
, gfn
);
1379 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1381 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1384 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1386 int offset
= offset_in_page(gpa
);
1389 while ((seg
= next_segment(len
, offset
)) != 0) {
1390 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1401 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1404 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1405 int offset
= offset_in_page(gpa
);
1406 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1409 ghc
->generation
= slots
->generation
;
1410 ghc
->memslot
= __gfn_to_memslot(slots
, gfn
);
1411 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, gfn
, NULL
);
1412 if (!kvm_is_error_hva(ghc
->hva
))
1419 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1421 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1422 void *data
, unsigned long len
)
1424 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1427 if (slots
->generation
!= ghc
->generation
)
1428 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1430 if (kvm_is_error_hva(ghc
->hva
))
1433 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1436 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1440 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1442 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1443 void *data
, unsigned long len
)
1445 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1448 if (slots
->generation
!= ghc
->generation
)
1449 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1451 if (kvm_is_error_hva(ghc
->hva
))
1454 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1460 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1462 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1464 return kvm_write_guest_page(kvm
, gfn
, (const void *) empty_zero_page
,
1467 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1469 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1471 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1473 int offset
= offset_in_page(gpa
);
1476 while ((seg
= next_segment(len
, offset
)) != 0) {
1477 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1486 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1488 void mark_page_dirty_in_slot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1491 if (memslot
&& memslot
->dirty_bitmap
) {
1492 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1494 __set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1498 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1500 struct kvm_memory_slot
*memslot
;
1502 memslot
= gfn_to_memslot(kvm
, gfn
);
1503 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1507 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1509 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1514 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1516 if (kvm_arch_vcpu_runnable(vcpu
)) {
1517 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1520 if (kvm_cpu_has_pending_timer(vcpu
))
1522 if (signal_pending(current
))
1528 finish_wait(&vcpu
->wq
, &wait
);
1531 void kvm_resched(struct kvm_vcpu
*vcpu
)
1533 if (!need_resched())
1537 EXPORT_SYMBOL_GPL(kvm_resched
);
1539 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1541 struct kvm
*kvm
= me
->kvm
;
1542 struct kvm_vcpu
*vcpu
;
1543 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1549 * We boost the priority of a VCPU that is runnable but not
1550 * currently running, because it got preempted by something
1551 * else and called schedule in __vcpu_run. Hopefully that
1552 * VCPU is holding the lock that we need and will release it.
1553 * We approximate round-robin by starting at the last boosted VCPU.
1555 for (pass
= 0; pass
< 2 && !yielded
; pass
++) {
1556 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1557 struct task_struct
*task
= NULL
;
1559 if (!pass
&& i
< last_boosted_vcpu
) {
1560 i
= last_boosted_vcpu
;
1562 } else if (pass
&& i
> last_boosted_vcpu
)
1566 if (waitqueue_active(&vcpu
->wq
))
1569 pid
= rcu_dereference(vcpu
->pid
);
1571 task
= get_pid_task(vcpu
->pid
, PIDTYPE_PID
);
1575 if (task
->flags
& PF_VCPU
) {
1576 put_task_struct(task
);
1579 if (yield_to(task
, 1)) {
1580 put_task_struct(task
);
1581 kvm
->last_boosted_vcpu
= i
;
1585 put_task_struct(task
);
1589 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1591 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1593 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1596 if (vmf
->pgoff
== 0)
1597 page
= virt_to_page(vcpu
->run
);
1599 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1600 page
= virt_to_page(vcpu
->arch
.pio_data
);
1602 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1603 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1604 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1607 return VM_FAULT_SIGBUS
;
1613 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1614 .fault
= kvm_vcpu_fault
,
1617 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1619 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1623 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1625 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1627 kvm_put_kvm(vcpu
->kvm
);
1631 static struct file_operations kvm_vcpu_fops
= {
1632 .release
= kvm_vcpu_release
,
1633 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1634 #ifdef CONFIG_COMPAT
1635 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
1637 .mmap
= kvm_vcpu_mmap
,
1638 .llseek
= noop_llseek
,
1642 * Allocates an inode for the vcpu.
1644 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1646 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
);
1650 * Creates some virtual cpus. Good luck creating more than one.
1652 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
1655 struct kvm_vcpu
*vcpu
, *v
;
1657 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
1659 return PTR_ERR(vcpu
);
1661 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1663 r
= kvm_arch_vcpu_setup(vcpu
);
1667 mutex_lock(&kvm
->lock
);
1668 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
1670 goto unlock_vcpu_destroy
;
1673 kvm_for_each_vcpu(r
, v
, kvm
)
1674 if (v
->vcpu_id
== id
) {
1676 goto unlock_vcpu_destroy
;
1679 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
1681 /* Now it's all set up, let userspace reach it */
1683 r
= create_vcpu_fd(vcpu
);
1686 goto unlock_vcpu_destroy
;
1689 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
1691 atomic_inc(&kvm
->online_vcpus
);
1693 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1694 if (kvm
->bsp_vcpu_id
== id
)
1695 kvm
->bsp_vcpu
= vcpu
;
1697 mutex_unlock(&kvm
->lock
);
1700 unlock_vcpu_destroy
:
1701 mutex_unlock(&kvm
->lock
);
1703 kvm_arch_vcpu_destroy(vcpu
);
1707 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1710 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1711 vcpu
->sigset_active
= 1;
1712 vcpu
->sigset
= *sigset
;
1714 vcpu
->sigset_active
= 0;
1718 static long kvm_vcpu_ioctl(struct file
*filp
,
1719 unsigned int ioctl
, unsigned long arg
)
1721 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1722 void __user
*argp
= (void __user
*)arg
;
1724 struct kvm_fpu
*fpu
= NULL
;
1725 struct kvm_sregs
*kvm_sregs
= NULL
;
1727 if (vcpu
->kvm
->mm
!= current
->mm
)
1730 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1732 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1733 * so vcpu_load() would break it.
1735 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_INTERRUPT
)
1736 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1746 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
1747 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
1749 case KVM_GET_REGS
: {
1750 struct kvm_regs
*kvm_regs
;
1753 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1756 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
1760 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
1767 case KVM_SET_REGS
: {
1768 struct kvm_regs
*kvm_regs
;
1771 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1775 if (copy_from_user(kvm_regs
, argp
, sizeof(struct kvm_regs
)))
1777 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
1785 case KVM_GET_SREGS
: {
1786 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1790 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
1794 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
1799 case KVM_SET_SREGS
: {
1800 kvm_sregs
= kmalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1805 if (copy_from_user(kvm_sregs
, argp
, sizeof(struct kvm_sregs
)))
1807 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
1813 case KVM_GET_MP_STATE
: {
1814 struct kvm_mp_state mp_state
;
1816 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
1820 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
1825 case KVM_SET_MP_STATE
: {
1826 struct kvm_mp_state mp_state
;
1829 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
1831 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
1837 case KVM_TRANSLATE
: {
1838 struct kvm_translation tr
;
1841 if (copy_from_user(&tr
, argp
, sizeof tr
))
1843 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
1847 if (copy_to_user(argp
, &tr
, sizeof tr
))
1852 case KVM_SET_GUEST_DEBUG
: {
1853 struct kvm_guest_debug dbg
;
1856 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
1858 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
1864 case KVM_SET_SIGNAL_MASK
: {
1865 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1866 struct kvm_signal_mask kvm_sigmask
;
1867 sigset_t sigset
, *p
;
1872 if (copy_from_user(&kvm_sigmask
, argp
,
1873 sizeof kvm_sigmask
))
1876 if (kvm_sigmask
.len
!= sizeof sigset
)
1879 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
1884 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
1888 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1892 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
1896 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
1902 fpu
= kmalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1907 if (copy_from_user(fpu
, argp
, sizeof(struct kvm_fpu
)))
1909 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
1916 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1925 #ifdef CONFIG_COMPAT
1926 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
1927 unsigned int ioctl
, unsigned long arg
)
1929 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1930 void __user
*argp
= compat_ptr(arg
);
1933 if (vcpu
->kvm
->mm
!= current
->mm
)
1937 case KVM_SET_SIGNAL_MASK
: {
1938 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1939 struct kvm_signal_mask kvm_sigmask
;
1940 compat_sigset_t csigset
;
1945 if (copy_from_user(&kvm_sigmask
, argp
,
1946 sizeof kvm_sigmask
))
1949 if (kvm_sigmask
.len
!= sizeof csigset
)
1952 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
1956 sigset_from_compat(&sigset
, &csigset
);
1957 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
1961 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
1969 static long kvm_vm_ioctl(struct file
*filp
,
1970 unsigned int ioctl
, unsigned long arg
)
1972 struct kvm
*kvm
= filp
->private_data
;
1973 void __user
*argp
= (void __user
*)arg
;
1976 if (kvm
->mm
!= current
->mm
)
1979 case KVM_CREATE_VCPU
:
1980 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
1984 case KVM_SET_USER_MEMORY_REGION
: {
1985 struct kvm_userspace_memory_region kvm_userspace_mem
;
1988 if (copy_from_user(&kvm_userspace_mem
, argp
,
1989 sizeof kvm_userspace_mem
))
1992 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 1);
1997 case KVM_GET_DIRTY_LOG
: {
1998 struct kvm_dirty_log log
;
2001 if (copy_from_user(&log
, argp
, sizeof log
))
2003 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2008 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2009 case KVM_REGISTER_COALESCED_MMIO
: {
2010 struct kvm_coalesced_mmio_zone zone
;
2012 if (copy_from_user(&zone
, argp
, sizeof zone
))
2014 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2020 case KVM_UNREGISTER_COALESCED_MMIO
: {
2021 struct kvm_coalesced_mmio_zone zone
;
2023 if (copy_from_user(&zone
, argp
, sizeof zone
))
2025 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2033 struct kvm_irqfd data
;
2036 if (copy_from_user(&data
, argp
, sizeof data
))
2038 r
= kvm_irqfd(kvm
, data
.fd
, data
.gsi
, data
.flags
);
2041 case KVM_IOEVENTFD
: {
2042 struct kvm_ioeventfd data
;
2045 if (copy_from_user(&data
, argp
, sizeof data
))
2047 r
= kvm_ioeventfd(kvm
, &data
);
2050 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2051 case KVM_SET_BOOT_CPU_ID
:
2053 mutex_lock(&kvm
->lock
);
2054 if (atomic_read(&kvm
->online_vcpus
) != 0)
2057 kvm
->bsp_vcpu_id
= arg
;
2058 mutex_unlock(&kvm
->lock
);
2062 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2064 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
2070 #ifdef CONFIG_COMPAT
2071 struct compat_kvm_dirty_log
{
2075 compat_uptr_t dirty_bitmap
; /* one bit per page */
2080 static long kvm_vm_compat_ioctl(struct file
*filp
,
2081 unsigned int ioctl
, unsigned long arg
)
2083 struct kvm
*kvm
= filp
->private_data
;
2086 if (kvm
->mm
!= current
->mm
)
2089 case KVM_GET_DIRTY_LOG
: {
2090 struct compat_kvm_dirty_log compat_log
;
2091 struct kvm_dirty_log log
;
2094 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2095 sizeof(compat_log
)))
2097 log
.slot
= compat_log
.slot
;
2098 log
.padding1
= compat_log
.padding1
;
2099 log
.padding2
= compat_log
.padding2
;
2100 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2102 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2108 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2116 static int kvm_vm_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2118 struct page
*page
[1];
2121 gfn_t gfn
= vmf
->pgoff
;
2122 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2124 addr
= gfn_to_hva(kvm
, gfn
);
2125 if (kvm_is_error_hva(addr
))
2126 return VM_FAULT_SIGBUS
;
2128 npages
= get_user_pages(current
, current
->mm
, addr
, 1, 1, 0, page
,
2130 if (unlikely(npages
!= 1))
2131 return VM_FAULT_SIGBUS
;
2133 vmf
->page
= page
[0];
2137 static const struct vm_operations_struct kvm_vm_vm_ops
= {
2138 .fault
= kvm_vm_fault
,
2141 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2143 vma
->vm_ops
= &kvm_vm_vm_ops
;
2147 static struct file_operations kvm_vm_fops
= {
2148 .release
= kvm_vm_release
,
2149 .unlocked_ioctl
= kvm_vm_ioctl
,
2150 #ifdef CONFIG_COMPAT
2151 .compat_ioctl
= kvm_vm_compat_ioctl
,
2153 .mmap
= kvm_vm_mmap
,
2154 .llseek
= noop_llseek
,
2157 static int kvm_dev_ioctl_create_vm(void)
2162 kvm
= kvm_create_vm();
2164 return PTR_ERR(kvm
);
2165 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2166 r
= kvm_coalesced_mmio_init(kvm
);
2172 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
2179 static long kvm_dev_ioctl_check_extension_generic(long arg
)
2182 case KVM_CAP_USER_MEMORY
:
2183 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2184 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2185 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2186 case KVM_CAP_SET_BOOT_CPU_ID
:
2188 case KVM_CAP_INTERNAL_ERROR_DATA
:
2190 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2191 case KVM_CAP_IRQ_ROUTING
:
2192 return KVM_MAX_IRQ_ROUTES
;
2197 return kvm_dev_ioctl_check_extension(arg
);
2200 static long kvm_dev_ioctl(struct file
*filp
,
2201 unsigned int ioctl
, unsigned long arg
)
2206 case KVM_GET_API_VERSION
:
2210 r
= KVM_API_VERSION
;
2216 r
= kvm_dev_ioctl_create_vm();
2218 case KVM_CHECK_EXTENSION
:
2219 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2221 case KVM_GET_VCPU_MMAP_SIZE
:
2225 r
= PAGE_SIZE
; /* struct kvm_run */
2227 r
+= PAGE_SIZE
; /* pio data page */
2229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2230 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2233 case KVM_TRACE_ENABLE
:
2234 case KVM_TRACE_PAUSE
:
2235 case KVM_TRACE_DISABLE
:
2239 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2245 static struct file_operations kvm_chardev_ops
= {
2246 .unlocked_ioctl
= kvm_dev_ioctl
,
2247 .compat_ioctl
= kvm_dev_ioctl
,
2248 .llseek
= noop_llseek
,
2251 static struct miscdevice kvm_dev
= {
2257 static void hardware_enable_nolock(void *junk
)
2259 int cpu
= raw_smp_processor_id();
2262 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2265 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2267 r
= kvm_arch_hardware_enable(NULL
);
2270 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2271 atomic_inc(&hardware_enable_failed
);
2272 printk(KERN_INFO
"kvm: enabling virtualization on "
2273 "CPU%d failed\n", cpu
);
2277 static void hardware_enable(void *junk
)
2279 raw_spin_lock(&kvm_lock
);
2280 hardware_enable_nolock(junk
);
2281 raw_spin_unlock(&kvm_lock
);
2284 static void hardware_disable_nolock(void *junk
)
2286 int cpu
= raw_smp_processor_id();
2288 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2290 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2291 kvm_arch_hardware_disable(NULL
);
2294 static void hardware_disable(void *junk
)
2296 raw_spin_lock(&kvm_lock
);
2297 hardware_disable_nolock(junk
);
2298 raw_spin_unlock(&kvm_lock
);
2301 static void hardware_disable_all_nolock(void)
2303 BUG_ON(!kvm_usage_count
);
2306 if (!kvm_usage_count
)
2307 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2310 static void hardware_disable_all(void)
2312 raw_spin_lock(&kvm_lock
);
2313 hardware_disable_all_nolock();
2314 raw_spin_unlock(&kvm_lock
);
2317 static int hardware_enable_all(void)
2321 raw_spin_lock(&kvm_lock
);
2324 if (kvm_usage_count
== 1) {
2325 atomic_set(&hardware_enable_failed
, 0);
2326 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2328 if (atomic_read(&hardware_enable_failed
)) {
2329 hardware_disable_all_nolock();
2334 raw_spin_unlock(&kvm_lock
);
2339 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2344 if (!kvm_usage_count
)
2347 val
&= ~CPU_TASKS_FROZEN
;
2350 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2352 hardware_disable(NULL
);
2355 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2357 hardware_enable(NULL
);
2364 asmlinkage
void kvm_spurious_fault(void)
2366 /* Fault while not rebooting. We want the trace. */
2369 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
2371 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2375 * Some (well, at least mine) BIOSes hang on reboot if
2378 * And Intel TXT required VMX off for all cpu when system shutdown.
2380 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2381 kvm_rebooting
= true;
2382 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2386 static struct notifier_block kvm_reboot_notifier
= {
2387 .notifier_call
= kvm_reboot
,
2391 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2395 for (i
= 0; i
< bus
->dev_count
; i
++) {
2396 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2398 kvm_iodevice_destructor(pos
);
2403 int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2405 const struct kvm_io_range
*r1
= p1
;
2406 const struct kvm_io_range
*r2
= p2
;
2408 if (r1
->addr
< r2
->addr
)
2410 if (r1
->addr
+ r1
->len
> r2
->addr
+ r2
->len
)
2415 int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2416 gpa_t addr
, int len
)
2418 if (bus
->dev_count
== NR_IOBUS_DEVS
)
2421 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2427 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2428 kvm_io_bus_sort_cmp
, NULL
);
2433 int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2434 gpa_t addr
, int len
)
2436 struct kvm_io_range
*range
, key
;
2439 key
= (struct kvm_io_range
) {
2444 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2445 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2449 off
= range
- bus
->range
;
2451 while (off
> 0 && kvm_io_bus_sort_cmp(&key
, &bus
->range
[off
-1]) == 0)
2457 /* kvm_io_bus_write - called under kvm->slots_lock */
2458 int kvm_io_bus_write(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2459 int len
, const void *val
)
2462 struct kvm_io_bus
*bus
;
2463 struct kvm_io_range range
;
2465 range
= (struct kvm_io_range
) {
2470 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2471 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2475 while (idx
< bus
->dev_count
&&
2476 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2477 if (!kvm_iodevice_write(bus
->range
[idx
].dev
, addr
, len
, val
))
2485 /* kvm_io_bus_read - called under kvm->slots_lock */
2486 int kvm_io_bus_read(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2490 struct kvm_io_bus
*bus
;
2491 struct kvm_io_range range
;
2493 range
= (struct kvm_io_range
) {
2498 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2499 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2503 while (idx
< bus
->dev_count
&&
2504 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2505 if (!kvm_iodevice_read(bus
->range
[idx
].dev
, addr
, len
, val
))
2513 /* Caller must hold slots_lock. */
2514 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2515 int len
, struct kvm_io_device
*dev
)
2517 struct kvm_io_bus
*new_bus
, *bus
;
2519 bus
= kvm
->buses
[bus_idx
];
2520 if (bus
->dev_count
> NR_IOBUS_DEVS
-1)
2523 new_bus
= kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
);
2526 memcpy(new_bus
, bus
, sizeof(struct kvm_io_bus
));
2527 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
2528 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2529 synchronize_srcu_expedited(&kvm
->srcu
);
2535 /* Caller must hold slots_lock. */
2536 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
2537 struct kvm_io_device
*dev
)
2540 struct kvm_io_bus
*new_bus
, *bus
;
2542 new_bus
= kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
);
2546 bus
= kvm
->buses
[bus_idx
];
2547 memcpy(new_bus
, bus
, sizeof(struct kvm_io_bus
));
2550 for (i
= 0; i
< new_bus
->dev_count
; i
++)
2551 if (new_bus
->range
[i
].dev
== dev
) {
2553 new_bus
->dev_count
--;
2554 new_bus
->range
[i
] = new_bus
->range
[new_bus
->dev_count
];
2555 sort(new_bus
->range
, new_bus
->dev_count
,
2556 sizeof(struct kvm_io_range
),
2557 kvm_io_bus_sort_cmp
, NULL
);
2566 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2567 synchronize_srcu_expedited(&kvm
->srcu
);
2572 static struct notifier_block kvm_cpu_notifier
= {
2573 .notifier_call
= kvm_cpu_hotplug
,
2576 static int vm_stat_get(void *_offset
, u64
*val
)
2578 unsigned offset
= (long)_offset
;
2582 raw_spin_lock(&kvm_lock
);
2583 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2584 *val
+= *(u32
*)((void *)kvm
+ offset
);
2585 raw_spin_unlock(&kvm_lock
);
2589 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
2591 static int vcpu_stat_get(void *_offset
, u64
*val
)
2593 unsigned offset
= (long)_offset
;
2595 struct kvm_vcpu
*vcpu
;
2599 raw_spin_lock(&kvm_lock
);
2600 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2601 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2602 *val
+= *(u32
*)((void *)vcpu
+ offset
);
2604 raw_spin_unlock(&kvm_lock
);
2608 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
2610 static const struct file_operations
*stat_fops
[] = {
2611 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
2612 [KVM_STAT_VM
] = &vm_stat_fops
,
2615 static void kvm_init_debug(void)
2617 struct kvm_stats_debugfs_item
*p
;
2619 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
2620 for (p
= debugfs_entries
; p
->name
; ++p
)
2621 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
2622 (void *)(long)p
->offset
,
2623 stat_fops
[p
->kind
]);
2626 static void kvm_exit_debug(void)
2628 struct kvm_stats_debugfs_item
*p
;
2630 for (p
= debugfs_entries
; p
->name
; ++p
)
2631 debugfs_remove(p
->dentry
);
2632 debugfs_remove(kvm_debugfs_dir
);
2635 static int kvm_suspend(void)
2637 if (kvm_usage_count
)
2638 hardware_disable_nolock(NULL
);
2642 static void kvm_resume(void)
2644 if (kvm_usage_count
) {
2645 WARN_ON(raw_spin_is_locked(&kvm_lock
));
2646 hardware_enable_nolock(NULL
);
2650 static struct syscore_ops kvm_syscore_ops
= {
2651 .suspend
= kvm_suspend
,
2652 .resume
= kvm_resume
,
2655 struct page
*bad_page
;
2659 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
2661 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
2664 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
2666 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2668 kvm_arch_vcpu_load(vcpu
, cpu
);
2671 static void kvm_sched_out(struct preempt_notifier
*pn
,
2672 struct task_struct
*next
)
2674 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2676 kvm_arch_vcpu_put(vcpu
);
2679 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
2680 struct module
*module
)
2685 r
= kvm_arch_init(opaque
);
2689 bad_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2691 if (bad_page
== NULL
) {
2696 bad_pfn
= page_to_pfn(bad_page
);
2698 hwpoison_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2700 if (hwpoison_page
== NULL
) {
2705 hwpoison_pfn
= page_to_pfn(hwpoison_page
);
2707 fault_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2709 if (fault_page
== NULL
) {
2714 fault_pfn
= page_to_pfn(fault_page
);
2716 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
2721 r
= kvm_arch_hardware_setup();
2725 for_each_online_cpu(cpu
) {
2726 smp_call_function_single(cpu
,
2727 kvm_arch_check_processor_compat
,
2733 r
= register_cpu_notifier(&kvm_cpu_notifier
);
2736 register_reboot_notifier(&kvm_reboot_notifier
);
2738 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2740 vcpu_align
= __alignof__(struct kvm_vcpu
);
2741 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
2743 if (!kvm_vcpu_cache
) {
2748 r
= kvm_async_pf_init();
2752 kvm_chardev_ops
.owner
= module
;
2753 kvm_vm_fops
.owner
= module
;
2754 kvm_vcpu_fops
.owner
= module
;
2756 r
= misc_register(&kvm_dev
);
2758 printk(KERN_ERR
"kvm: misc device register failed\n");
2762 register_syscore_ops(&kvm_syscore_ops
);
2764 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
2765 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
2772 kvm_async_pf_deinit();
2774 kmem_cache_destroy(kvm_vcpu_cache
);
2776 unregister_reboot_notifier(&kvm_reboot_notifier
);
2777 unregister_cpu_notifier(&kvm_cpu_notifier
);
2780 kvm_arch_hardware_unsetup();
2782 free_cpumask_var(cpus_hardware_enabled
);
2785 __free_page(fault_page
);
2787 __free_page(hwpoison_page
);
2788 __free_page(bad_page
);
2794 EXPORT_SYMBOL_GPL(kvm_init
);
2799 misc_deregister(&kvm_dev
);
2800 kmem_cache_destroy(kvm_vcpu_cache
);
2801 kvm_async_pf_deinit();
2802 unregister_syscore_ops(&kvm_syscore_ops
);
2803 unregister_reboot_notifier(&kvm_reboot_notifier
);
2804 unregister_cpu_notifier(&kvm_cpu_notifier
);
2805 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2806 kvm_arch_hardware_unsetup();
2808 free_cpumask_var(cpus_hardware_enabled
);
2809 __free_page(hwpoison_page
);
2810 __free_page(bad_page
);
2812 EXPORT_SYMBOL_GPL(kvm_exit
);