4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_mutex (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * (code doesn't rely on that order, so you could switch it around)
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 * Delete a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold the mapping's tree_lock.
117 void __delete_from_page_cache(struct page
*page
)
119 struct address_space
*mapping
= page
->mapping
;
121 radix_tree_delete(&mapping
->page_tree
, page
->index
);
122 page
->mapping
= NULL
;
124 __dec_zone_page_state(page
, NR_FILE_PAGES
);
125 if (PageSwapBacked(page
))
126 __dec_zone_page_state(page
, NR_SHMEM
);
127 BUG_ON(page_mapped(page
));
130 * Some filesystems seem to re-dirty the page even after
131 * the VM has canceled the dirty bit (eg ext3 journaling).
133 * Fix it up by doing a final dirty accounting check after
134 * having removed the page entirely.
136 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
137 dec_zone_page_state(page
, NR_FILE_DIRTY
);
138 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
143 * delete_from_page_cache - delete page from page cache
144 * @page: the page which the kernel is trying to remove from page cache
146 * This must be called only on pages that have been verified to be in the page
147 * cache and locked. It will never put the page into the free list, the caller
148 * has a reference on the page.
150 void delete_from_page_cache(struct page
*page
)
152 struct address_space
*mapping
= page
->mapping
;
153 void (*freepage
)(struct page
*);
155 BUG_ON(!PageLocked(page
));
157 freepage
= mapping
->a_ops
->freepage
;
158 spin_lock_irq(&mapping
->tree_lock
);
159 __delete_from_page_cache(page
);
160 spin_unlock_irq(&mapping
->tree_lock
);
161 mem_cgroup_uncharge_cache_page(page
);
165 page_cache_release(page
);
167 EXPORT_SYMBOL(delete_from_page_cache
);
169 static int sleep_on_page(void *word
)
175 static int sleep_on_page_killable(void *word
)
178 return fatal_signal_pending(current
) ? -EINTR
: 0;
182 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
183 * @mapping: address space structure to write
184 * @start: offset in bytes where the range starts
185 * @end: offset in bytes where the range ends (inclusive)
186 * @sync_mode: enable synchronous operation
188 * Start writeback against all of a mapping's dirty pages that lie
189 * within the byte offsets <start, end> inclusive.
191 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
192 * opposed to a regular memory cleansing writeback. The difference between
193 * these two operations is that if a dirty page/buffer is encountered, it must
194 * be waited upon, and not just skipped over.
196 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
197 loff_t end
, int sync_mode
)
200 struct writeback_control wbc
= {
201 .sync_mode
= sync_mode
,
202 .nr_to_write
= LONG_MAX
,
203 .range_start
= start
,
207 if (!mapping_cap_writeback_dirty(mapping
))
210 ret
= do_writepages(mapping
, &wbc
);
214 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
217 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
220 int filemap_fdatawrite(struct address_space
*mapping
)
222 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
224 EXPORT_SYMBOL(filemap_fdatawrite
);
226 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
229 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
231 EXPORT_SYMBOL(filemap_fdatawrite_range
);
234 * filemap_flush - mostly a non-blocking flush
235 * @mapping: target address_space
237 * This is a mostly non-blocking flush. Not suitable for data-integrity
238 * purposes - I/O may not be started against all dirty pages.
240 int filemap_flush(struct address_space
*mapping
)
242 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
244 EXPORT_SYMBOL(filemap_flush
);
247 * filemap_fdatawait_range - wait for writeback to complete
248 * @mapping: address space structure to wait for
249 * @start_byte: offset in bytes where the range starts
250 * @end_byte: offset in bytes where the range ends (inclusive)
252 * Walk the list of under-writeback pages of the given address space
253 * in the given range and wait for all of them.
255 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
258 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
259 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
264 if (end_byte
< start_byte
)
267 pagevec_init(&pvec
, 0);
268 while ((index
<= end
) &&
269 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
270 PAGECACHE_TAG_WRITEBACK
,
271 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
274 for (i
= 0; i
< nr_pages
; i
++) {
275 struct page
*page
= pvec
.pages
[i
];
277 /* until radix tree lookup accepts end_index */
278 if (page
->index
> end
)
281 wait_on_page_writeback(page
);
282 if (TestClearPageError(page
))
285 pagevec_release(&pvec
);
289 /* Check for outstanding write errors */
290 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
292 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
297 EXPORT_SYMBOL(filemap_fdatawait_range
);
300 * filemap_fdatawait - wait for all under-writeback pages to complete
301 * @mapping: address space structure to wait for
303 * Walk the list of under-writeback pages of the given address space
304 * and wait for all of them.
306 int filemap_fdatawait(struct address_space
*mapping
)
308 loff_t i_size
= i_size_read(mapping
->host
);
313 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
315 EXPORT_SYMBOL(filemap_fdatawait
);
317 int filemap_write_and_wait(struct address_space
*mapping
)
321 if (mapping
->nrpages
) {
322 err
= filemap_fdatawrite(mapping
);
324 * Even if the above returned error, the pages may be
325 * written partially (e.g. -ENOSPC), so we wait for it.
326 * But the -EIO is special case, it may indicate the worst
327 * thing (e.g. bug) happened, so we avoid waiting for it.
330 int err2
= filemap_fdatawait(mapping
);
337 EXPORT_SYMBOL(filemap_write_and_wait
);
340 * filemap_write_and_wait_range - write out & wait on a file range
341 * @mapping: the address_space for the pages
342 * @lstart: offset in bytes where the range starts
343 * @lend: offset in bytes where the range ends (inclusive)
345 * Write out and wait upon file offsets lstart->lend, inclusive.
347 * Note that `lend' is inclusive (describes the last byte to be written) so
348 * that this function can be used to write to the very end-of-file (end = -1).
350 int filemap_write_and_wait_range(struct address_space
*mapping
,
351 loff_t lstart
, loff_t lend
)
355 if (mapping
->nrpages
) {
356 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
358 /* See comment of filemap_write_and_wait() */
360 int err2
= filemap_fdatawait_range(mapping
,
368 EXPORT_SYMBOL(filemap_write_and_wait_range
);
371 * replace_page_cache_page - replace a pagecache page with a new one
372 * @old: page to be replaced
373 * @new: page to replace with
374 * @gfp_mask: allocation mode
376 * This function replaces a page in the pagecache with a new one. On
377 * success it acquires the pagecache reference for the new page and
378 * drops it for the old page. Both the old and new pages must be
379 * locked. This function does not add the new page to the LRU, the
380 * caller must do that.
382 * The remove + add is atomic. The only way this function can fail is
383 * memory allocation failure.
385 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
388 struct mem_cgroup
*memcg
= NULL
;
390 VM_BUG_ON(!PageLocked(old
));
391 VM_BUG_ON(!PageLocked(new));
392 VM_BUG_ON(new->mapping
);
395 * This is not page migration, but prepare_migration and
396 * end_migration does enough work for charge replacement.
398 * In the longer term we probably want a specialized function
399 * for moving the charge from old to new in a more efficient
402 error
= mem_cgroup_prepare_migration(old
, new, &memcg
, gfp_mask
);
406 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
408 struct address_space
*mapping
= old
->mapping
;
409 void (*freepage
)(struct page
*);
411 pgoff_t offset
= old
->index
;
412 freepage
= mapping
->a_ops
->freepage
;
415 new->mapping
= mapping
;
418 spin_lock_irq(&mapping
->tree_lock
);
419 __delete_from_page_cache(old
);
420 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
423 __inc_zone_page_state(new, NR_FILE_PAGES
);
424 if (PageSwapBacked(new))
425 __inc_zone_page_state(new, NR_SHMEM
);
426 spin_unlock_irq(&mapping
->tree_lock
);
427 radix_tree_preload_end();
430 page_cache_release(old
);
431 mem_cgroup_end_migration(memcg
, old
, new, true);
433 mem_cgroup_end_migration(memcg
, old
, new, false);
438 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
441 * add_to_page_cache_locked - add a locked page to the pagecache
443 * @mapping: the page's address_space
444 * @offset: page index
445 * @gfp_mask: page allocation mode
447 * This function is used to add a page to the pagecache. It must be locked.
448 * This function does not add the page to the LRU. The caller must do that.
450 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
451 pgoff_t offset
, gfp_t gfp_mask
)
455 VM_BUG_ON(!PageLocked(page
));
457 error
= mem_cgroup_cache_charge(page
, current
->mm
,
458 gfp_mask
& GFP_RECLAIM_MASK
);
462 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
464 page_cache_get(page
);
465 page
->mapping
= mapping
;
466 page
->index
= offset
;
468 spin_lock_irq(&mapping
->tree_lock
);
469 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
470 if (likely(!error
)) {
472 __inc_zone_page_state(page
, NR_FILE_PAGES
);
473 if (PageSwapBacked(page
))
474 __inc_zone_page_state(page
, NR_SHMEM
);
475 spin_unlock_irq(&mapping
->tree_lock
);
477 page
->mapping
= NULL
;
478 spin_unlock_irq(&mapping
->tree_lock
);
479 mem_cgroup_uncharge_cache_page(page
);
480 page_cache_release(page
);
482 radix_tree_preload_end();
484 mem_cgroup_uncharge_cache_page(page
);
488 EXPORT_SYMBOL(add_to_page_cache_locked
);
490 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
491 pgoff_t offset
, gfp_t gfp_mask
)
496 * Splice_read and readahead add shmem/tmpfs pages into the page cache
497 * before shmem_readpage has a chance to mark them as SwapBacked: they
498 * need to go on the anon lru below, and mem_cgroup_cache_charge
499 * (called in add_to_page_cache) needs to know where they're going too.
501 if (mapping_cap_swap_backed(mapping
))
502 SetPageSwapBacked(page
);
504 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
506 if (page_is_file_cache(page
))
507 lru_cache_add_file(page
);
509 lru_cache_add_anon(page
);
513 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
516 struct page
*__page_cache_alloc(gfp_t gfp
)
521 if (cpuset_do_page_mem_spread()) {
523 n
= cpuset_mem_spread_node();
524 page
= alloc_pages_exact_node(n
, gfp
, 0);
528 return alloc_pages(gfp
, 0);
530 EXPORT_SYMBOL(__page_cache_alloc
);
534 * In order to wait for pages to become available there must be
535 * waitqueues associated with pages. By using a hash table of
536 * waitqueues where the bucket discipline is to maintain all
537 * waiters on the same queue and wake all when any of the pages
538 * become available, and for the woken contexts to check to be
539 * sure the appropriate page became available, this saves space
540 * at a cost of "thundering herd" phenomena during rare hash
543 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
545 const struct zone
*zone
= page_zone(page
);
547 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
550 static inline void wake_up_page(struct page
*page
, int bit
)
552 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
555 void wait_on_page_bit(struct page
*page
, int bit_nr
)
557 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
559 if (test_bit(bit_nr
, &page
->flags
))
560 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
561 TASK_UNINTERRUPTIBLE
);
563 EXPORT_SYMBOL(wait_on_page_bit
);
565 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
567 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
569 if (!test_bit(bit_nr
, &page
->flags
))
572 return __wait_on_bit(page_waitqueue(page
), &wait
,
573 sleep_on_page_killable
, TASK_KILLABLE
);
577 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578 * @page: Page defining the wait queue of interest
579 * @waiter: Waiter to add to the queue
581 * Add an arbitrary @waiter to the wait queue for the nominated @page.
583 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
585 wait_queue_head_t
*q
= page_waitqueue(page
);
588 spin_lock_irqsave(&q
->lock
, flags
);
589 __add_wait_queue(q
, waiter
);
590 spin_unlock_irqrestore(&q
->lock
, flags
);
592 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
595 * unlock_page - unlock a locked page
598 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600 * mechananism between PageLocked pages and PageWriteback pages is shared.
601 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
603 * The mb is necessary to enforce ordering between the clear_bit and the read
604 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
606 void unlock_page(struct page
*page
)
608 VM_BUG_ON(!PageLocked(page
));
609 clear_bit_unlock(PG_locked
, &page
->flags
);
610 smp_mb__after_clear_bit();
611 wake_up_page(page
, PG_locked
);
613 EXPORT_SYMBOL(unlock_page
);
616 * end_page_writeback - end writeback against a page
619 void end_page_writeback(struct page
*page
)
621 if (TestClearPageReclaim(page
))
622 rotate_reclaimable_page(page
);
624 if (!test_clear_page_writeback(page
))
627 smp_mb__after_clear_bit();
628 wake_up_page(page
, PG_writeback
);
630 EXPORT_SYMBOL(end_page_writeback
);
633 * __lock_page - get a lock on the page, assuming we need to sleep to get it
634 * @page: the page to lock
636 void __lock_page(struct page
*page
)
638 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
640 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
641 TASK_UNINTERRUPTIBLE
);
643 EXPORT_SYMBOL(__lock_page
);
645 int __lock_page_killable(struct page
*page
)
647 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
649 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
650 sleep_on_page_killable
, TASK_KILLABLE
);
652 EXPORT_SYMBOL_GPL(__lock_page_killable
);
654 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
657 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
659 * CAUTION! In this case, mmap_sem is not released
660 * even though return 0.
662 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
665 up_read(&mm
->mmap_sem
);
666 if (flags
& FAULT_FLAG_KILLABLE
)
667 wait_on_page_locked_killable(page
);
669 wait_on_page_locked(page
);
672 if (flags
& FAULT_FLAG_KILLABLE
) {
675 ret
= __lock_page_killable(page
);
677 up_read(&mm
->mmap_sem
);
687 * find_get_page - find and get a page reference
688 * @mapping: the address_space to search
689 * @offset: the page index
691 * Is there a pagecache struct page at the given (mapping, offset) tuple?
692 * If yes, increment its refcount and return it; if no, return NULL.
694 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
702 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
704 page
= radix_tree_deref_slot(pagep
);
707 if (radix_tree_deref_retry(page
))
710 if (!page_cache_get_speculative(page
))
714 * Has the page moved?
715 * This is part of the lockless pagecache protocol. See
716 * include/linux/pagemap.h for details.
718 if (unlikely(page
!= *pagep
)) {
719 page_cache_release(page
);
728 EXPORT_SYMBOL(find_get_page
);
731 * find_lock_page - locate, pin and lock a pagecache page
732 * @mapping: the address_space to search
733 * @offset: the page index
735 * Locates the desired pagecache page, locks it, increments its reference
736 * count and returns its address.
738 * Returns zero if the page was not present. find_lock_page() may sleep.
740 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
745 page
= find_get_page(mapping
, offset
);
748 /* Has the page been truncated? */
749 if (unlikely(page
->mapping
!= mapping
)) {
751 page_cache_release(page
);
754 VM_BUG_ON(page
->index
!= offset
);
758 EXPORT_SYMBOL(find_lock_page
);
761 * find_or_create_page - locate or add a pagecache page
762 * @mapping: the page's address_space
763 * @index: the page's index into the mapping
764 * @gfp_mask: page allocation mode
766 * Locates a page in the pagecache. If the page is not present, a new page
767 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
768 * LRU list. The returned page is locked and has its reference count
771 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
774 * find_or_create_page() returns the desired page's address, or zero on
777 struct page
*find_or_create_page(struct address_space
*mapping
,
778 pgoff_t index
, gfp_t gfp_mask
)
783 page
= find_lock_page(mapping
, index
);
785 page
= __page_cache_alloc(gfp_mask
);
789 * We want a regular kernel memory (not highmem or DMA etc)
790 * allocation for the radix tree nodes, but we need to honour
791 * the context-specific requirements the caller has asked for.
792 * GFP_RECLAIM_MASK collects those requirements.
794 err
= add_to_page_cache_lru(page
, mapping
, index
,
795 (gfp_mask
& GFP_RECLAIM_MASK
));
797 page_cache_release(page
);
805 EXPORT_SYMBOL(find_or_create_page
);
808 * find_get_pages - gang pagecache lookup
809 * @mapping: The address_space to search
810 * @start: The starting page index
811 * @nr_pages: The maximum number of pages
812 * @pages: Where the resulting pages are placed
814 * find_get_pages() will search for and return a group of up to
815 * @nr_pages pages in the mapping. The pages are placed at @pages.
816 * find_get_pages() takes a reference against the returned pages.
818 * The search returns a group of mapping-contiguous pages with ascending
819 * indexes. There may be holes in the indices due to not-present pages.
821 * find_get_pages() returns the number of pages which were found.
823 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
824 unsigned int nr_pages
, struct page
**pages
)
828 unsigned int nr_found
;
832 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
833 (void ***)pages
, start
, nr_pages
);
835 for (i
= 0; i
< nr_found
; i
++) {
838 page
= radix_tree_deref_slot((void **)pages
[i
]);
843 * This can only trigger when the entry at index 0 moves out
844 * of or back to the root: none yet gotten, safe to restart.
846 if (radix_tree_deref_retry(page
)) {
851 if (!page_cache_get_speculative(page
))
854 /* Has the page moved? */
855 if (unlikely(page
!= *((void **)pages
[i
]))) {
856 page_cache_release(page
);
865 * If all entries were removed before we could secure them,
866 * try again, because callers stop trying once 0 is returned.
868 if (unlikely(!ret
&& nr_found
))
875 * find_get_pages_contig - gang contiguous pagecache lookup
876 * @mapping: The address_space to search
877 * @index: The starting page index
878 * @nr_pages: The maximum number of pages
879 * @pages: Where the resulting pages are placed
881 * find_get_pages_contig() works exactly like find_get_pages(), except
882 * that the returned number of pages are guaranteed to be contiguous.
884 * find_get_pages_contig() returns the number of pages which were found.
886 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
887 unsigned int nr_pages
, struct page
**pages
)
891 unsigned int nr_found
;
895 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
896 (void ***)pages
, index
, nr_pages
);
898 for (i
= 0; i
< nr_found
; i
++) {
901 page
= radix_tree_deref_slot((void **)pages
[i
]);
906 * This can only trigger when the entry at index 0 moves out
907 * of or back to the root: none yet gotten, safe to restart.
909 if (radix_tree_deref_retry(page
))
912 if (!page_cache_get_speculative(page
))
915 /* Has the page moved? */
916 if (unlikely(page
!= *((void **)pages
[i
]))) {
917 page_cache_release(page
);
922 * must check mapping and index after taking the ref.
923 * otherwise we can get both false positives and false
924 * negatives, which is just confusing to the caller.
926 if (page
->mapping
== NULL
|| page
->index
!= index
) {
927 page_cache_release(page
);
938 EXPORT_SYMBOL(find_get_pages_contig
);
941 * find_get_pages_tag - find and return pages that match @tag
942 * @mapping: the address_space to search
943 * @index: the starting page index
944 * @tag: the tag index
945 * @nr_pages: the maximum number of pages
946 * @pages: where the resulting pages are placed
948 * Like find_get_pages, except we only return pages which are tagged with
949 * @tag. We update @index to index the next page for the traversal.
951 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
952 int tag
, unsigned int nr_pages
, struct page
**pages
)
956 unsigned int nr_found
;
960 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
961 (void ***)pages
, *index
, nr_pages
, tag
);
963 for (i
= 0; i
< nr_found
; i
++) {
966 page
= radix_tree_deref_slot((void **)pages
[i
]);
971 * This can only trigger when the entry at index 0 moves out
972 * of or back to the root: none yet gotten, safe to restart.
974 if (radix_tree_deref_retry(page
))
977 if (!page_cache_get_speculative(page
))
980 /* Has the page moved? */
981 if (unlikely(page
!= *((void **)pages
[i
]))) {
982 page_cache_release(page
);
991 * If all entries were removed before we could secure them,
992 * try again, because callers stop trying once 0 is returned.
994 if (unlikely(!ret
&& nr_found
))
999 *index
= pages
[ret
- 1]->index
+ 1;
1003 EXPORT_SYMBOL(find_get_pages_tag
);
1006 * grab_cache_page_nowait - returns locked page at given index in given cache
1007 * @mapping: target address_space
1008 * @index: the page index
1010 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1011 * This is intended for speculative data generators, where the data can
1012 * be regenerated if the page couldn't be grabbed. This routine should
1013 * be safe to call while holding the lock for another page.
1015 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1016 * and deadlock against the caller's locked page.
1019 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
1021 struct page
*page
= find_get_page(mapping
, index
);
1024 if (trylock_page(page
))
1026 page_cache_release(page
);
1029 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
1030 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
1031 page_cache_release(page
);
1036 EXPORT_SYMBOL(grab_cache_page_nowait
);
1039 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1040 * a _large_ part of the i/o request. Imagine the worst scenario:
1042 * ---R__________________________________________B__________
1043 * ^ reading here ^ bad block(assume 4k)
1045 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1046 * => failing the whole request => read(R) => read(R+1) =>
1047 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1048 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1049 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1051 * It is going insane. Fix it by quickly scaling down the readahead size.
1053 static void shrink_readahead_size_eio(struct file
*filp
,
1054 struct file_ra_state
*ra
)
1060 * do_generic_file_read - generic file read routine
1061 * @filp: the file to read
1062 * @ppos: current file position
1063 * @desc: read_descriptor
1064 * @actor: read method
1066 * This is a generic file read routine, and uses the
1067 * mapping->a_ops->readpage() function for the actual low-level stuff.
1069 * This is really ugly. But the goto's actually try to clarify some
1070 * of the logic when it comes to error handling etc.
1072 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1073 read_descriptor_t
*desc
, read_actor_t actor
)
1075 struct address_space
*mapping
= filp
->f_mapping
;
1076 struct inode
*inode
= mapping
->host
;
1077 struct file_ra_state
*ra
= &filp
->f_ra
;
1081 unsigned long offset
; /* offset into pagecache page */
1082 unsigned int prev_offset
;
1085 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1086 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1087 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1088 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1089 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1095 unsigned long nr
, ret
;
1099 page
= find_get_page(mapping
, index
);
1101 page_cache_sync_readahead(mapping
,
1103 index
, last_index
- index
);
1104 page
= find_get_page(mapping
, index
);
1105 if (unlikely(page
== NULL
))
1106 goto no_cached_page
;
1108 if (PageReadahead(page
)) {
1109 page_cache_async_readahead(mapping
,
1111 index
, last_index
- index
);
1113 if (!PageUptodate(page
)) {
1114 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1115 !mapping
->a_ops
->is_partially_uptodate
)
1116 goto page_not_up_to_date
;
1117 if (!trylock_page(page
))
1118 goto page_not_up_to_date
;
1119 /* Did it get truncated before we got the lock? */
1121 goto page_not_up_to_date_locked
;
1122 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1124 goto page_not_up_to_date_locked
;
1129 * i_size must be checked after we know the page is Uptodate.
1131 * Checking i_size after the check allows us to calculate
1132 * the correct value for "nr", which means the zero-filled
1133 * part of the page is not copied back to userspace (unless
1134 * another truncate extends the file - this is desired though).
1137 isize
= i_size_read(inode
);
1138 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1139 if (unlikely(!isize
|| index
> end_index
)) {
1140 page_cache_release(page
);
1144 /* nr is the maximum number of bytes to copy from this page */
1145 nr
= PAGE_CACHE_SIZE
;
1146 if (index
== end_index
) {
1147 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1149 page_cache_release(page
);
1155 /* If users can be writing to this page using arbitrary
1156 * virtual addresses, take care about potential aliasing
1157 * before reading the page on the kernel side.
1159 if (mapping_writably_mapped(mapping
))
1160 flush_dcache_page(page
);
1163 * When a sequential read accesses a page several times,
1164 * only mark it as accessed the first time.
1166 if (prev_index
!= index
|| offset
!= prev_offset
)
1167 mark_page_accessed(page
);
1171 * Ok, we have the page, and it's up-to-date, so
1172 * now we can copy it to user space...
1174 * The actor routine returns how many bytes were actually used..
1175 * NOTE! This may not be the same as how much of a user buffer
1176 * we filled up (we may be padding etc), so we can only update
1177 * "pos" here (the actor routine has to update the user buffer
1178 * pointers and the remaining count).
1180 ret
= actor(desc
, page
, offset
, nr
);
1182 index
+= offset
>> PAGE_CACHE_SHIFT
;
1183 offset
&= ~PAGE_CACHE_MASK
;
1184 prev_offset
= offset
;
1186 page_cache_release(page
);
1187 if (ret
== nr
&& desc
->count
)
1191 page_not_up_to_date
:
1192 /* Get exclusive access to the page ... */
1193 error
= lock_page_killable(page
);
1194 if (unlikely(error
))
1195 goto readpage_error
;
1197 page_not_up_to_date_locked
:
1198 /* Did it get truncated before we got the lock? */
1199 if (!page
->mapping
) {
1201 page_cache_release(page
);
1205 /* Did somebody else fill it already? */
1206 if (PageUptodate(page
)) {
1213 * A previous I/O error may have been due to temporary
1214 * failures, eg. multipath errors.
1215 * PG_error will be set again if readpage fails.
1217 ClearPageError(page
);
1218 /* Start the actual read. The read will unlock the page. */
1219 error
= mapping
->a_ops
->readpage(filp
, page
);
1221 if (unlikely(error
)) {
1222 if (error
== AOP_TRUNCATED_PAGE
) {
1223 page_cache_release(page
);
1226 goto readpage_error
;
1229 if (!PageUptodate(page
)) {
1230 error
= lock_page_killable(page
);
1231 if (unlikely(error
))
1232 goto readpage_error
;
1233 if (!PageUptodate(page
)) {
1234 if (page
->mapping
== NULL
) {
1236 * invalidate_mapping_pages got it
1239 page_cache_release(page
);
1243 shrink_readahead_size_eio(filp
, ra
);
1245 goto readpage_error
;
1253 /* UHHUH! A synchronous read error occurred. Report it */
1254 desc
->error
= error
;
1255 page_cache_release(page
);
1260 * Ok, it wasn't cached, so we need to create a new
1263 page
= page_cache_alloc_cold(mapping
);
1265 desc
->error
= -ENOMEM
;
1268 error
= add_to_page_cache_lru(page
, mapping
,
1271 page_cache_release(page
);
1272 if (error
== -EEXIST
)
1274 desc
->error
= error
;
1281 ra
->prev_pos
= prev_index
;
1282 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1283 ra
->prev_pos
|= prev_offset
;
1285 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1286 file_accessed(filp
);
1289 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1290 unsigned long offset
, unsigned long size
)
1293 unsigned long left
, count
= desc
->count
;
1299 * Faults on the destination of a read are common, so do it before
1302 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1303 kaddr
= kmap_atomic(page
, KM_USER0
);
1304 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1305 kaddr
+ offset
, size
);
1306 kunmap_atomic(kaddr
, KM_USER0
);
1311 /* Do it the slow way */
1313 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1318 desc
->error
= -EFAULT
;
1321 desc
->count
= count
- size
;
1322 desc
->written
+= size
;
1323 desc
->arg
.buf
+= size
;
1328 * Performs necessary checks before doing a write
1329 * @iov: io vector request
1330 * @nr_segs: number of segments in the iovec
1331 * @count: number of bytes to write
1332 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1334 * Adjust number of segments and amount of bytes to write (nr_segs should be
1335 * properly initialized first). Returns appropriate error code that caller
1336 * should return or zero in case that write should be allowed.
1338 int generic_segment_checks(const struct iovec
*iov
,
1339 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1343 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1344 const struct iovec
*iv
= &iov
[seg
];
1347 * If any segment has a negative length, or the cumulative
1348 * length ever wraps negative then return -EINVAL.
1351 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1353 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1358 cnt
-= iv
->iov_len
; /* This segment is no good */
1364 EXPORT_SYMBOL(generic_segment_checks
);
1367 * generic_file_aio_read - generic filesystem read routine
1368 * @iocb: kernel I/O control block
1369 * @iov: io vector request
1370 * @nr_segs: number of segments in the iovec
1371 * @pos: current file position
1373 * This is the "read()" routine for all filesystems
1374 * that can use the page cache directly.
1377 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1378 unsigned long nr_segs
, loff_t pos
)
1380 struct file
*filp
= iocb
->ki_filp
;
1382 unsigned long seg
= 0;
1384 loff_t
*ppos
= &iocb
->ki_pos
;
1385 struct blk_plug plug
;
1388 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1392 blk_start_plug(&plug
);
1394 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1395 if (filp
->f_flags
& O_DIRECT
) {
1397 struct address_space
*mapping
;
1398 struct inode
*inode
;
1400 mapping
= filp
->f_mapping
;
1401 inode
= mapping
->host
;
1403 goto out
; /* skip atime */
1404 size
= i_size_read(inode
);
1406 retval
= filemap_write_and_wait_range(mapping
, pos
,
1407 pos
+ iov_length(iov
, nr_segs
) - 1);
1409 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1413 *ppos
= pos
+ retval
;
1418 * Btrfs can have a short DIO read if we encounter
1419 * compressed extents, so if there was an error, or if
1420 * we've already read everything we wanted to, or if
1421 * there was a short read because we hit EOF, go ahead
1422 * and return. Otherwise fallthrough to buffered io for
1423 * the rest of the read.
1425 if (retval
< 0 || !count
|| *ppos
>= size
) {
1426 file_accessed(filp
);
1433 for (seg
= 0; seg
< nr_segs
; seg
++) {
1434 read_descriptor_t desc
;
1438 * If we did a short DIO read we need to skip the section of the
1439 * iov that we've already read data into.
1442 if (count
> iov
[seg
].iov_len
) {
1443 count
-= iov
[seg
].iov_len
;
1451 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1452 desc
.count
= iov
[seg
].iov_len
- offset
;
1453 if (desc
.count
== 0)
1456 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1457 retval
+= desc
.written
;
1459 retval
= retval
?: desc
.error
;
1466 blk_finish_plug(&plug
);
1469 EXPORT_SYMBOL(generic_file_aio_read
);
1472 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1473 pgoff_t index
, unsigned long nr
)
1475 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1478 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1482 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1490 if (file
->f_mode
& FMODE_READ
) {
1491 struct address_space
*mapping
= file
->f_mapping
;
1492 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1493 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1494 unsigned long len
= end
- start
+ 1;
1495 ret
= do_readahead(mapping
, file
, start
, len
);
1501 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1502 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1504 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1506 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1511 * page_cache_read - adds requested page to the page cache if not already there
1512 * @file: file to read
1513 * @offset: page index
1515 * This adds the requested page to the page cache if it isn't already there,
1516 * and schedules an I/O to read in its contents from disk.
1518 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1520 struct address_space
*mapping
= file
->f_mapping
;
1525 page
= page_cache_alloc_cold(mapping
);
1529 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1531 ret
= mapping
->a_ops
->readpage(file
, page
);
1532 else if (ret
== -EEXIST
)
1533 ret
= 0; /* losing race to add is OK */
1535 page_cache_release(page
);
1537 } while (ret
== AOP_TRUNCATED_PAGE
);
1542 #define MMAP_LOTSAMISS (100)
1545 * Synchronous readahead happens when we don't even find
1546 * a page in the page cache at all.
1548 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1549 struct file_ra_state
*ra
,
1553 unsigned long ra_pages
;
1554 struct address_space
*mapping
= file
->f_mapping
;
1556 /* If we don't want any read-ahead, don't bother */
1557 if (VM_RandomReadHint(vma
))
1562 if (VM_SequentialReadHint(vma
)) {
1563 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1568 /* Avoid banging the cache line if not needed */
1569 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1573 * Do we miss much more than hit in this file? If so,
1574 * stop bothering with read-ahead. It will only hurt.
1576 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1582 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1583 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1584 ra
->size
= ra_pages
;
1585 ra
->async_size
= ra_pages
/ 4;
1586 ra_submit(ra
, mapping
, file
);
1590 * Asynchronous readahead happens when we find the page and PG_readahead,
1591 * so we want to possibly extend the readahead further..
1593 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1594 struct file_ra_state
*ra
,
1599 struct address_space
*mapping
= file
->f_mapping
;
1601 /* If we don't want any read-ahead, don't bother */
1602 if (VM_RandomReadHint(vma
))
1604 if (ra
->mmap_miss
> 0)
1606 if (PageReadahead(page
))
1607 page_cache_async_readahead(mapping
, ra
, file
,
1608 page
, offset
, ra
->ra_pages
);
1612 * filemap_fault - read in file data for page fault handling
1613 * @vma: vma in which the fault was taken
1614 * @vmf: struct vm_fault containing details of the fault
1616 * filemap_fault() is invoked via the vma operations vector for a
1617 * mapped memory region to read in file data during a page fault.
1619 * The goto's are kind of ugly, but this streamlines the normal case of having
1620 * it in the page cache, and handles the special cases reasonably without
1621 * having a lot of duplicated code.
1623 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1626 struct file
*file
= vma
->vm_file
;
1627 struct address_space
*mapping
= file
->f_mapping
;
1628 struct file_ra_state
*ra
= &file
->f_ra
;
1629 struct inode
*inode
= mapping
->host
;
1630 pgoff_t offset
= vmf
->pgoff
;
1635 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1637 return VM_FAULT_SIGBUS
;
1640 * Do we have something in the page cache already?
1642 page
= find_get_page(mapping
, offset
);
1645 * We found the page, so try async readahead before
1646 * waiting for the lock.
1648 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1650 /* No page in the page cache at all */
1651 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1652 count_vm_event(PGMAJFAULT
);
1653 ret
= VM_FAULT_MAJOR
;
1655 page
= find_get_page(mapping
, offset
);
1657 goto no_cached_page
;
1660 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1661 page_cache_release(page
);
1662 return ret
| VM_FAULT_RETRY
;
1665 /* Did it get truncated? */
1666 if (unlikely(page
->mapping
!= mapping
)) {
1671 VM_BUG_ON(page
->index
!= offset
);
1674 * We have a locked page in the page cache, now we need to check
1675 * that it's up-to-date. If not, it is going to be due to an error.
1677 if (unlikely(!PageUptodate(page
)))
1678 goto page_not_uptodate
;
1681 * Found the page and have a reference on it.
1682 * We must recheck i_size under page lock.
1684 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1685 if (unlikely(offset
>= size
)) {
1687 page_cache_release(page
);
1688 return VM_FAULT_SIGBUS
;
1692 return ret
| VM_FAULT_LOCKED
;
1696 * We're only likely to ever get here if MADV_RANDOM is in
1699 error
= page_cache_read(file
, offset
);
1702 * The page we want has now been added to the page cache.
1703 * In the unlikely event that someone removed it in the
1704 * meantime, we'll just come back here and read it again.
1710 * An error return from page_cache_read can result if the
1711 * system is low on memory, or a problem occurs while trying
1714 if (error
== -ENOMEM
)
1715 return VM_FAULT_OOM
;
1716 return VM_FAULT_SIGBUS
;
1720 * Umm, take care of errors if the page isn't up-to-date.
1721 * Try to re-read it _once_. We do this synchronously,
1722 * because there really aren't any performance issues here
1723 * and we need to check for errors.
1725 ClearPageError(page
);
1726 error
= mapping
->a_ops
->readpage(file
, page
);
1728 wait_on_page_locked(page
);
1729 if (!PageUptodate(page
))
1732 page_cache_release(page
);
1734 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1737 /* Things didn't work out. Return zero to tell the mm layer so. */
1738 shrink_readahead_size_eio(file
, ra
);
1739 return VM_FAULT_SIGBUS
;
1741 EXPORT_SYMBOL(filemap_fault
);
1743 const struct vm_operations_struct generic_file_vm_ops
= {
1744 .fault
= filemap_fault
,
1747 /* This is used for a general mmap of a disk file */
1749 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1751 struct address_space
*mapping
= file
->f_mapping
;
1753 if (!mapping
->a_ops
->readpage
)
1755 file_accessed(file
);
1756 vma
->vm_ops
= &generic_file_vm_ops
;
1757 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1762 * This is for filesystems which do not implement ->writepage.
1764 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1766 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1768 return generic_file_mmap(file
, vma
);
1771 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1775 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1779 #endif /* CONFIG_MMU */
1781 EXPORT_SYMBOL(generic_file_mmap
);
1782 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1784 static struct page
*__read_cache_page(struct address_space
*mapping
,
1786 int (*filler
)(void *,struct page
*),
1793 page
= find_get_page(mapping
, index
);
1795 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1797 return ERR_PTR(-ENOMEM
);
1798 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1799 if (unlikely(err
)) {
1800 page_cache_release(page
);
1803 /* Presumably ENOMEM for radix tree node */
1804 return ERR_PTR(err
);
1806 err
= filler(data
, page
);
1808 page_cache_release(page
);
1809 page
= ERR_PTR(err
);
1815 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1817 int (*filler
)(void *,struct page
*),
1826 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1829 if (PageUptodate(page
))
1833 if (!page
->mapping
) {
1835 page_cache_release(page
);
1838 if (PageUptodate(page
)) {
1842 err
= filler(data
, page
);
1844 page_cache_release(page
);
1845 return ERR_PTR(err
);
1848 mark_page_accessed(page
);
1853 * read_cache_page_async - read into page cache, fill it if needed
1854 * @mapping: the page's address_space
1855 * @index: the page index
1856 * @filler: function to perform the read
1857 * @data: destination for read data
1859 * Same as read_cache_page, but don't wait for page to become unlocked
1860 * after submitting it to the filler.
1862 * Read into the page cache. If a page already exists, and PageUptodate() is
1863 * not set, try to fill the page but don't wait for it to become unlocked.
1865 * If the page does not get brought uptodate, return -EIO.
1867 struct page
*read_cache_page_async(struct address_space
*mapping
,
1869 int (*filler
)(void *,struct page
*),
1872 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1874 EXPORT_SYMBOL(read_cache_page_async
);
1876 static struct page
*wait_on_page_read(struct page
*page
)
1878 if (!IS_ERR(page
)) {
1879 wait_on_page_locked(page
);
1880 if (!PageUptodate(page
)) {
1881 page_cache_release(page
);
1882 page
= ERR_PTR(-EIO
);
1889 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1890 * @mapping: the page's address_space
1891 * @index: the page index
1892 * @gfp: the page allocator flags to use if allocating
1894 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1895 * any new page allocations done using the specified allocation flags. Note
1896 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1897 * expect to do this atomically or anything like that - but you can pass in
1898 * other page requirements.
1900 * If the page does not get brought uptodate, return -EIO.
1902 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1906 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1908 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1910 EXPORT_SYMBOL(read_cache_page_gfp
);
1913 * read_cache_page - read into page cache, fill it if needed
1914 * @mapping: the page's address_space
1915 * @index: the page index
1916 * @filler: function to perform the read
1917 * @data: destination for read data
1919 * Read into the page cache. If a page already exists, and PageUptodate() is
1920 * not set, try to fill the page then wait for it to become unlocked.
1922 * If the page does not get brought uptodate, return -EIO.
1924 struct page
*read_cache_page(struct address_space
*mapping
,
1926 int (*filler
)(void *,struct page
*),
1929 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1931 EXPORT_SYMBOL(read_cache_page
);
1934 * The logic we want is
1936 * if suid or (sgid and xgrp)
1939 int should_remove_suid(struct dentry
*dentry
)
1941 mode_t mode
= dentry
->d_inode
->i_mode
;
1944 /* suid always must be killed */
1945 if (unlikely(mode
& S_ISUID
))
1946 kill
= ATTR_KILL_SUID
;
1949 * sgid without any exec bits is just a mandatory locking mark; leave
1950 * it alone. If some exec bits are set, it's a real sgid; kill it.
1952 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1953 kill
|= ATTR_KILL_SGID
;
1955 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1960 EXPORT_SYMBOL(should_remove_suid
);
1962 static int __remove_suid(struct dentry
*dentry
, int kill
)
1964 struct iattr newattrs
;
1966 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1967 return notify_change(dentry
, &newattrs
);
1970 int file_remove_suid(struct file
*file
)
1972 struct dentry
*dentry
= file
->f_path
.dentry
;
1973 int killsuid
= should_remove_suid(dentry
);
1974 int killpriv
= security_inode_need_killpriv(dentry
);
1980 error
= security_inode_killpriv(dentry
);
1981 if (!error
&& killsuid
)
1982 error
= __remove_suid(dentry
, killsuid
);
1986 EXPORT_SYMBOL(file_remove_suid
);
1988 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1989 const struct iovec
*iov
, size_t base
, size_t bytes
)
1991 size_t copied
= 0, left
= 0;
1994 char __user
*buf
= iov
->iov_base
+ base
;
1995 int copy
= min(bytes
, iov
->iov_len
- base
);
1998 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
2007 return copied
- left
;
2011 * Copy as much as we can into the page and return the number of bytes which
2012 * were successfully copied. If a fault is encountered then return the number of
2013 * bytes which were copied.
2015 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
2016 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2021 BUG_ON(!in_atomic());
2022 kaddr
= kmap_atomic(page
, KM_USER0
);
2023 if (likely(i
->nr_segs
== 1)) {
2025 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2026 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
2027 copied
= bytes
- left
;
2029 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2030 i
->iov
, i
->iov_offset
, bytes
);
2032 kunmap_atomic(kaddr
, KM_USER0
);
2036 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
2039 * This has the same sideeffects and return value as
2040 * iov_iter_copy_from_user_atomic().
2041 * The difference is that it attempts to resolve faults.
2042 * Page must not be locked.
2044 size_t iov_iter_copy_from_user(struct page
*page
,
2045 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2051 if (likely(i
->nr_segs
== 1)) {
2053 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2054 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
2055 copied
= bytes
- left
;
2057 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2058 i
->iov
, i
->iov_offset
, bytes
);
2063 EXPORT_SYMBOL(iov_iter_copy_from_user
);
2065 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
2067 BUG_ON(i
->count
< bytes
);
2069 if (likely(i
->nr_segs
== 1)) {
2070 i
->iov_offset
+= bytes
;
2073 const struct iovec
*iov
= i
->iov
;
2074 size_t base
= i
->iov_offset
;
2077 * The !iov->iov_len check ensures we skip over unlikely
2078 * zero-length segments (without overruning the iovec).
2080 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
2083 copy
= min(bytes
, iov
->iov_len
- base
);
2084 BUG_ON(!i
->count
|| i
->count
< copy
);
2088 if (iov
->iov_len
== base
) {
2094 i
->iov_offset
= base
;
2097 EXPORT_SYMBOL(iov_iter_advance
);
2100 * Fault in the first iovec of the given iov_iter, to a maximum length
2101 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2102 * accessed (ie. because it is an invalid address).
2104 * writev-intensive code may want this to prefault several iovecs -- that
2105 * would be possible (callers must not rely on the fact that _only_ the
2106 * first iovec will be faulted with the current implementation).
2108 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2110 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2111 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2112 return fault_in_pages_readable(buf
, bytes
);
2114 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2117 * Return the count of just the current iov_iter segment.
2119 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2121 const struct iovec
*iov
= i
->iov
;
2122 if (i
->nr_segs
== 1)
2125 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2127 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2130 * Performs necessary checks before doing a write
2132 * Can adjust writing position or amount of bytes to write.
2133 * Returns appropriate error code that caller should return or
2134 * zero in case that write should be allowed.
2136 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2138 struct inode
*inode
= file
->f_mapping
->host
;
2139 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2141 if (unlikely(*pos
< 0))
2145 /* FIXME: this is for backwards compatibility with 2.4 */
2146 if (file
->f_flags
& O_APPEND
)
2147 *pos
= i_size_read(inode
);
2149 if (limit
!= RLIM_INFINITY
) {
2150 if (*pos
>= limit
) {
2151 send_sig(SIGXFSZ
, current
, 0);
2154 if (*count
> limit
- (typeof(limit
))*pos
) {
2155 *count
= limit
- (typeof(limit
))*pos
;
2163 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2164 !(file
->f_flags
& O_LARGEFILE
))) {
2165 if (*pos
>= MAX_NON_LFS
) {
2168 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2169 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2174 * Are we about to exceed the fs block limit ?
2176 * If we have written data it becomes a short write. If we have
2177 * exceeded without writing data we send a signal and return EFBIG.
2178 * Linus frestrict idea will clean these up nicely..
2180 if (likely(!isblk
)) {
2181 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2182 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2185 /* zero-length writes at ->s_maxbytes are OK */
2188 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2189 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2193 if (bdev_read_only(I_BDEV(inode
)))
2195 isize
= i_size_read(inode
);
2196 if (*pos
>= isize
) {
2197 if (*count
|| *pos
> isize
)
2201 if (*pos
+ *count
> isize
)
2202 *count
= isize
- *pos
;
2209 EXPORT_SYMBOL(generic_write_checks
);
2211 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2212 loff_t pos
, unsigned len
, unsigned flags
,
2213 struct page
**pagep
, void **fsdata
)
2215 const struct address_space_operations
*aops
= mapping
->a_ops
;
2217 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2220 EXPORT_SYMBOL(pagecache_write_begin
);
2222 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2223 loff_t pos
, unsigned len
, unsigned copied
,
2224 struct page
*page
, void *fsdata
)
2226 const struct address_space_operations
*aops
= mapping
->a_ops
;
2228 mark_page_accessed(page
);
2229 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2231 EXPORT_SYMBOL(pagecache_write_end
);
2234 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2235 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2236 size_t count
, size_t ocount
)
2238 struct file
*file
= iocb
->ki_filp
;
2239 struct address_space
*mapping
= file
->f_mapping
;
2240 struct inode
*inode
= mapping
->host
;
2245 if (count
!= ocount
)
2246 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2248 write_len
= iov_length(iov
, *nr_segs
);
2249 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2251 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2256 * After a write we want buffered reads to be sure to go to disk to get
2257 * the new data. We invalidate clean cached page from the region we're
2258 * about to write. We do this *before* the write so that we can return
2259 * without clobbering -EIOCBQUEUED from ->direct_IO().
2261 if (mapping
->nrpages
) {
2262 written
= invalidate_inode_pages2_range(mapping
,
2263 pos
>> PAGE_CACHE_SHIFT
, end
);
2265 * If a page can not be invalidated, return 0 to fall back
2266 * to buffered write.
2269 if (written
== -EBUSY
)
2275 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2278 * Finally, try again to invalidate clean pages which might have been
2279 * cached by non-direct readahead, or faulted in by get_user_pages()
2280 * if the source of the write was an mmap'ed region of the file
2281 * we're writing. Either one is a pretty crazy thing to do,
2282 * so we don't support it 100%. If this invalidation
2283 * fails, tough, the write still worked...
2285 if (mapping
->nrpages
) {
2286 invalidate_inode_pages2_range(mapping
,
2287 pos
>> PAGE_CACHE_SHIFT
, end
);
2292 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2293 i_size_write(inode
, pos
);
2294 mark_inode_dirty(inode
);
2301 EXPORT_SYMBOL(generic_file_direct_write
);
2304 * Find or create a page at the given pagecache position. Return the locked
2305 * page. This function is specifically for buffered writes.
2307 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2308 pgoff_t index
, unsigned flags
)
2312 gfp_t gfp_notmask
= 0;
2313 if (flags
& AOP_FLAG_NOFS
)
2314 gfp_notmask
= __GFP_FS
;
2316 page
= find_lock_page(mapping
, index
);
2320 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2323 status
= add_to_page_cache_lru(page
, mapping
, index
,
2324 GFP_KERNEL
& ~gfp_notmask
);
2325 if (unlikely(status
)) {
2326 page_cache_release(page
);
2327 if (status
== -EEXIST
)
2333 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2335 static ssize_t
generic_perform_write(struct file
*file
,
2336 struct iov_iter
*i
, loff_t pos
)
2338 struct address_space
*mapping
= file
->f_mapping
;
2339 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2341 ssize_t written
= 0;
2342 unsigned int flags
= 0;
2345 * Copies from kernel address space cannot fail (NFSD is a big user).
2347 if (segment_eq(get_fs(), KERNEL_DS
))
2348 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2352 unsigned long offset
; /* Offset into pagecache page */
2353 unsigned long bytes
; /* Bytes to write to page */
2354 size_t copied
; /* Bytes copied from user */
2357 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2358 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2364 * Bring in the user page that we will copy from _first_.
2365 * Otherwise there's a nasty deadlock on copying from the
2366 * same page as we're writing to, without it being marked
2369 * Not only is this an optimisation, but it is also required
2370 * to check that the address is actually valid, when atomic
2371 * usercopies are used, below.
2373 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2378 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2380 if (unlikely(status
))
2383 if (mapping_writably_mapped(mapping
))
2384 flush_dcache_page(page
);
2386 pagefault_disable();
2387 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2389 flush_dcache_page(page
);
2391 mark_page_accessed(page
);
2392 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2394 if (unlikely(status
< 0))
2400 iov_iter_advance(i
, copied
);
2401 if (unlikely(copied
== 0)) {
2403 * If we were unable to copy any data at all, we must
2404 * fall back to a single segment length write.
2406 * If we didn't fallback here, we could livelock
2407 * because not all segments in the iov can be copied at
2408 * once without a pagefault.
2410 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2411 iov_iter_single_seg_count(i
));
2417 balance_dirty_pages_ratelimited(mapping
);
2419 } while (iov_iter_count(i
));
2421 return written
? written
: status
;
2425 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2426 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2427 size_t count
, ssize_t written
)
2429 struct file
*file
= iocb
->ki_filp
;
2433 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2434 status
= generic_perform_write(file
, &i
, pos
);
2436 if (likely(status
>= 0)) {
2438 *ppos
= pos
+ status
;
2441 return written
? written
: status
;
2443 EXPORT_SYMBOL(generic_file_buffered_write
);
2446 * __generic_file_aio_write - write data to a file
2447 * @iocb: IO state structure (file, offset, etc.)
2448 * @iov: vector with data to write
2449 * @nr_segs: number of segments in the vector
2450 * @ppos: position where to write
2452 * This function does all the work needed for actually writing data to a
2453 * file. It does all basic checks, removes SUID from the file, updates
2454 * modification times and calls proper subroutines depending on whether we
2455 * do direct IO or a standard buffered write.
2457 * It expects i_mutex to be grabbed unless we work on a block device or similar
2458 * object which does not need locking at all.
2460 * This function does *not* take care of syncing data in case of O_SYNC write.
2461 * A caller has to handle it. This is mainly due to the fact that we want to
2462 * avoid syncing under i_mutex.
2464 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2465 unsigned long nr_segs
, loff_t
*ppos
)
2467 struct file
*file
= iocb
->ki_filp
;
2468 struct address_space
* mapping
= file
->f_mapping
;
2469 size_t ocount
; /* original count */
2470 size_t count
; /* after file limit checks */
2471 struct inode
*inode
= mapping
->host
;
2477 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2484 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2486 /* We can write back this queue in page reclaim */
2487 current
->backing_dev_info
= mapping
->backing_dev_info
;
2490 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2497 err
= file_remove_suid(file
);
2501 file_update_time(file
);
2503 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2504 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2506 ssize_t written_buffered
;
2508 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2509 ppos
, count
, ocount
);
2510 if (written
< 0 || written
== count
)
2513 * direct-io write to a hole: fall through to buffered I/O
2514 * for completing the rest of the request.
2518 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2519 nr_segs
, pos
, ppos
, count
,
2522 * If generic_file_buffered_write() retuned a synchronous error
2523 * then we want to return the number of bytes which were
2524 * direct-written, or the error code if that was zero. Note
2525 * that this differs from normal direct-io semantics, which
2526 * will return -EFOO even if some bytes were written.
2528 if (written_buffered
< 0) {
2529 err
= written_buffered
;
2534 * We need to ensure that the page cache pages are written to
2535 * disk and invalidated to preserve the expected O_DIRECT
2538 endbyte
= pos
+ written_buffered
- written
- 1;
2539 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2541 written
= written_buffered
;
2542 invalidate_mapping_pages(mapping
,
2543 pos
>> PAGE_CACHE_SHIFT
,
2544 endbyte
>> PAGE_CACHE_SHIFT
);
2547 * We don't know how much we wrote, so just return
2548 * the number of bytes which were direct-written
2552 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2553 pos
, ppos
, count
, written
);
2556 current
->backing_dev_info
= NULL
;
2557 return written
? written
: err
;
2559 EXPORT_SYMBOL(__generic_file_aio_write
);
2562 * generic_file_aio_write - write data to a file
2563 * @iocb: IO state structure
2564 * @iov: vector with data to write
2565 * @nr_segs: number of segments in the vector
2566 * @pos: position in file where to write
2568 * This is a wrapper around __generic_file_aio_write() to be used by most
2569 * filesystems. It takes care of syncing the file in case of O_SYNC file
2570 * and acquires i_mutex as needed.
2572 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2573 unsigned long nr_segs
, loff_t pos
)
2575 struct file
*file
= iocb
->ki_filp
;
2576 struct inode
*inode
= file
->f_mapping
->host
;
2577 struct blk_plug plug
;
2580 BUG_ON(iocb
->ki_pos
!= pos
);
2582 mutex_lock(&inode
->i_mutex
);
2583 blk_start_plug(&plug
);
2584 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2585 mutex_unlock(&inode
->i_mutex
);
2587 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2590 err
= generic_write_sync(file
, pos
, ret
);
2591 if (err
< 0 && ret
> 0)
2594 blk_finish_plug(&plug
);
2597 EXPORT_SYMBOL(generic_file_aio_write
);
2600 * try_to_release_page() - release old fs-specific metadata on a page
2602 * @page: the page which the kernel is trying to free
2603 * @gfp_mask: memory allocation flags (and I/O mode)
2605 * The address_space is to try to release any data against the page
2606 * (presumably at page->private). If the release was successful, return `1'.
2607 * Otherwise return zero.
2609 * This may also be called if PG_fscache is set on a page, indicating that the
2610 * page is known to the local caching routines.
2612 * The @gfp_mask argument specifies whether I/O may be performed to release
2613 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2616 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2618 struct address_space
* const mapping
= page
->mapping
;
2620 BUG_ON(!PageLocked(page
));
2621 if (PageWriteback(page
))
2624 if (mapping
&& mapping
->a_ops
->releasepage
)
2625 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2626 return try_to_free_buffers(page
);
2629 EXPORT_SYMBOL(try_to_release_page
);