ext4: avoid potential hang in mpage_submit_io() when blocksize < pagesize
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobcf20e1fe7782d485264101d64f3dea4d5a38bb20
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 trace_ext4_begin_ordered_truncate(inode, new_size);
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
77 * Test whether an inode is a fast symlink.
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 (inode->i_sb->s_blocksize >> 9) : 0;
84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
90 * this transaction.
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93 int nblocks)
95 int ret;
98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
103 BUG_ON(EXT4_JOURNAL(inode) == NULL);
104 jbd_debug(2, "restarting handle %p\n", handle);
105 up_write(&EXT4_I(inode)->i_data_sem);
106 ret = ext4_journal_restart(handle, nblocks);
107 down_write(&EXT4_I(inode)->i_data_sem);
108 ext4_discard_preallocations(inode);
110 return ret;
114 * Called at the last iput() if i_nlink is zero.
116 void ext4_evict_inode(struct inode *inode)
118 handle_t *handle;
119 int err;
121 trace_ext4_evict_inode(inode);
123 ext4_ioend_wait(inode);
125 if (inode->i_nlink) {
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
141 * Note that directories do not have this problem because they
142 * don't use page cache.
144 if (ext4_should_journal_data(inode) &&
145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
149 jbd2_log_start_commit(journal, commit_tid);
150 jbd2_log_wait_commit(journal, commit_tid);
151 filemap_write_and_wait(&inode->i_data);
153 truncate_inode_pages(&inode->i_data, 0);
154 goto no_delete;
157 if (!is_bad_inode(inode))
158 dquot_initialize(inode);
160 if (ext4_should_order_data(inode))
161 ext4_begin_ordered_truncate(inode, 0);
162 truncate_inode_pages(&inode->i_data, 0);
164 if (is_bad_inode(inode))
165 goto no_delete;
167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168 if (IS_ERR(handle)) {
169 ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
173 * cleaned up.
175 ext4_orphan_del(NULL, inode);
176 goto no_delete;
179 if (IS_SYNC(inode))
180 ext4_handle_sync(handle);
181 inode->i_size = 0;
182 err = ext4_mark_inode_dirty(handle, inode);
183 if (err) {
184 ext4_warning(inode->i_sb,
185 "couldn't mark inode dirty (err %d)", err);
186 goto stop_handle;
188 if (inode->i_blocks)
189 ext4_truncate(inode);
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
197 if (!ext4_handle_has_enough_credits(handle, 3)) {
198 err = ext4_journal_extend(handle, 3);
199 if (err > 0)
200 err = ext4_journal_restart(handle, 3);
201 if (err != 0) {
202 ext4_warning(inode->i_sb,
203 "couldn't extend journal (err %d)", err);
204 stop_handle:
205 ext4_journal_stop(handle);
206 ext4_orphan_del(NULL, inode);
207 goto no_delete;
212 * Kill off the orphan record which ext4_truncate created.
213 * AKPM: I think this can be inside the above `if'.
214 * Note that ext4_orphan_del() has to be able to cope with the
215 * deletion of a non-existent orphan - this is because we don't
216 * know if ext4_truncate() actually created an orphan record.
217 * (Well, we could do this if we need to, but heck - it works)
219 ext4_orphan_del(handle, inode);
220 EXT4_I(inode)->i_dtime = get_seconds();
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
227 * fails.
229 if (ext4_mark_inode_dirty(handle, inode))
230 /* If that failed, just do the required in-core inode clear. */
231 ext4_clear_inode(inode);
232 else
233 ext4_free_inode(handle, inode);
234 ext4_journal_stop(handle);
235 return;
236 no_delete:
237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
243 return &EXT4_I(inode)->i_reserved_quota;
245 #endif
248 * Calculate the number of metadata blocks need to reserve
249 * to allocate a block located at @lblock
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254 return ext4_ext_calc_metadata_amount(inode, lblock);
256 return ext4_ind_calc_metadata_amount(inode, lblock);
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
263 void ext4_da_update_reserve_space(struct inode *inode,
264 int used, int quota_claim)
266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 struct ext4_inode_info *ei = EXT4_I(inode);
269 spin_lock(&ei->i_block_reservation_lock);
270 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 if (unlikely(used > ei->i_reserved_data_blocks)) {
272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__, inode->i_ino, used,
275 ei->i_reserved_data_blocks);
276 WARN_ON(1);
277 used = ei->i_reserved_data_blocks;
280 /* Update per-inode reservations */
281 ei->i_reserved_data_blocks -= used;
282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284 used + ei->i_allocated_meta_blocks);
285 ei->i_allocated_meta_blocks = 0;
287 if (ei->i_reserved_data_blocks == 0) {
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
291 * allocation blocks.
293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 ei->i_reserved_meta_blocks);
295 ei->i_reserved_meta_blocks = 0;
296 ei->i_da_metadata_calc_len = 0;
298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300 /* Update quota subsystem for data blocks */
301 if (quota_claim)
302 dquot_claim_block(inode, EXT4_C2B(sbi, used));
303 else {
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
307 * not re-claim the quota for fallocated blocks.
309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
317 if ((ei->i_reserved_data_blocks == 0) &&
318 (atomic_read(&inode->i_writecount) == 0))
319 ext4_discard_preallocations(inode);
322 static int __check_block_validity(struct inode *inode, const char *func,
323 unsigned int line,
324 struct ext4_map_blocks *map)
326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 map->m_len)) {
328 ext4_error_inode(inode, func, line, map->m_pblk,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map->m_lblk,
331 map->m_len);
332 return -EIO;
334 return 0;
337 #define check_block_validity(inode, map) \
338 __check_block_validity((inode), __func__, __LINE__, (map))
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 unsigned int max_pages)
347 struct address_space *mapping = inode->i_mapping;
348 pgoff_t index;
349 struct pagevec pvec;
350 pgoff_t num = 0;
351 int i, nr_pages, done = 0;
353 if (max_pages == 0)
354 return 0;
355 pagevec_init(&pvec, 0);
356 while (!done) {
357 index = idx;
358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 (pgoff_t)PAGEVEC_SIZE);
361 if (nr_pages == 0)
362 break;
363 for (i = 0; i < nr_pages; i++) {
364 struct page *page = pvec.pages[i];
365 struct buffer_head *bh, *head;
367 lock_page(page);
368 if (unlikely(page->mapping != mapping) ||
369 !PageDirty(page) ||
370 PageWriteback(page) ||
371 page->index != idx) {
372 done = 1;
373 unlock_page(page);
374 break;
376 if (page_has_buffers(page)) {
377 bh = head = page_buffers(page);
378 do {
379 if (!buffer_delay(bh) &&
380 !buffer_unwritten(bh))
381 done = 1;
382 bh = bh->b_this_page;
383 } while (!done && (bh != head));
385 unlock_page(page);
386 if (done)
387 break;
388 idx++;
389 num++;
390 if (num >= max_pages) {
391 done = 1;
392 break;
395 pagevec_release(&pvec);
397 return num;
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
403 static void set_buffers_da_mapped(struct inode *inode,
404 struct ext4_map_blocks *map)
406 struct address_space *mapping = inode->i_mapping;
407 struct pagevec pvec;
408 int i, nr_pages;
409 pgoff_t index, end;
411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 end = (map->m_lblk + map->m_len - 1) >>
413 (PAGE_CACHE_SHIFT - inode->i_blkbits);
415 pagevec_init(&pvec, 0);
416 while (index <= end) {
417 nr_pages = pagevec_lookup(&pvec, mapping, index,
418 min(end - index + 1,
419 (pgoff_t)PAGEVEC_SIZE));
420 if (nr_pages == 0)
421 break;
422 for (i = 0; i < nr_pages; i++) {
423 struct page *page = pvec.pages[i];
424 struct buffer_head *bh, *head;
426 if (unlikely(page->mapping != mapping) ||
427 !PageDirty(page))
428 break;
430 if (page_has_buffers(page)) {
431 bh = head = page_buffers(page);
432 do {
433 set_buffer_da_mapped(bh);
434 bh = bh->b_this_page;
435 } while (bh != head);
437 index++;
439 pagevec_release(&pvec);
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 * based files
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
463 * It returns the error in case of allocation failure.
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
468 int retval;
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
475 * Try to see if we can get the block without requesting a new
476 * file system block.
478 down_read((&EXT4_I(inode)->i_data_sem));
479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480 retval = ext4_ext_map_blocks(handle, inode, map, flags &
481 EXT4_GET_BLOCKS_KEEP_SIZE);
482 } else {
483 retval = ext4_ind_map_blocks(handle, inode, map, flags &
484 EXT4_GET_BLOCKS_KEEP_SIZE);
486 up_read((&EXT4_I(inode)->i_data_sem));
488 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
489 int ret = check_block_validity(inode, map);
490 if (ret != 0)
491 return ret;
494 /* If it is only a block(s) look up */
495 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
496 return retval;
499 * Returns if the blocks have already allocated
501 * Note that if blocks have been preallocated
502 * ext4_ext_get_block() returns the create = 0
503 * with buffer head unmapped.
505 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
506 return retval;
509 * When we call get_blocks without the create flag, the
510 * BH_Unwritten flag could have gotten set if the blocks
511 * requested were part of a uninitialized extent. We need to
512 * clear this flag now that we are committed to convert all or
513 * part of the uninitialized extent to be an initialized
514 * extent. This is because we need to avoid the combination
515 * of BH_Unwritten and BH_Mapped flags being simultaneously
516 * set on the buffer_head.
518 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
521 * New blocks allocate and/or writing to uninitialized extent
522 * will possibly result in updating i_data, so we take
523 * the write lock of i_data_sem, and call get_blocks()
524 * with create == 1 flag.
526 down_write((&EXT4_I(inode)->i_data_sem));
529 * if the caller is from delayed allocation writeout path
530 * we have already reserved fs blocks for allocation
531 * let the underlying get_block() function know to
532 * avoid double accounting
534 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
535 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
537 * We need to check for EXT4 here because migrate
538 * could have changed the inode type in between
540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
541 retval = ext4_ext_map_blocks(handle, inode, map, flags);
542 } else {
543 retval = ext4_ind_map_blocks(handle, inode, map, flags);
545 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
547 * We allocated new blocks which will result in
548 * i_data's format changing. Force the migrate
549 * to fail by clearing migrate flags
551 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
555 * Update reserved blocks/metadata blocks after successful
556 * block allocation which had been deferred till now. We don't
557 * support fallocate for non extent files. So we can update
558 * reserve space here.
560 if ((retval > 0) &&
561 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
562 ext4_da_update_reserve_space(inode, retval, 1);
564 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
565 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
567 /* If we have successfully mapped the delayed allocated blocks,
568 * set the BH_Da_Mapped bit on them. Its important to do this
569 * under the protection of i_data_sem.
571 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572 set_buffers_da_mapped(inode, map);
575 up_write((&EXT4_I(inode)->i_data_sem));
576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 int ret = check_block_validity(inode, map);
578 if (ret != 0)
579 return ret;
581 return retval;
584 /* Maximum number of blocks we map for direct IO at once. */
585 #define DIO_MAX_BLOCKS 4096
587 static int _ext4_get_block(struct inode *inode, sector_t iblock,
588 struct buffer_head *bh, int flags)
590 handle_t *handle = ext4_journal_current_handle();
591 struct ext4_map_blocks map;
592 int ret = 0, started = 0;
593 int dio_credits;
595 map.m_lblk = iblock;
596 map.m_len = bh->b_size >> inode->i_blkbits;
598 if (flags && !handle) {
599 /* Direct IO write... */
600 if (map.m_len > DIO_MAX_BLOCKS)
601 map.m_len = DIO_MAX_BLOCKS;
602 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
603 handle = ext4_journal_start(inode, dio_credits);
604 if (IS_ERR(handle)) {
605 ret = PTR_ERR(handle);
606 return ret;
608 started = 1;
611 ret = ext4_map_blocks(handle, inode, &map, flags);
612 if (ret > 0) {
613 map_bh(bh, inode->i_sb, map.m_pblk);
614 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
615 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
616 ret = 0;
618 if (started)
619 ext4_journal_stop(handle);
620 return ret;
623 int ext4_get_block(struct inode *inode, sector_t iblock,
624 struct buffer_head *bh, int create)
626 return _ext4_get_block(inode, iblock, bh,
627 create ? EXT4_GET_BLOCKS_CREATE : 0);
631 * `handle' can be NULL if create is zero
633 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
634 ext4_lblk_t block, int create, int *errp)
636 struct ext4_map_blocks map;
637 struct buffer_head *bh;
638 int fatal = 0, err;
640 J_ASSERT(handle != NULL || create == 0);
642 map.m_lblk = block;
643 map.m_len = 1;
644 err = ext4_map_blocks(handle, inode, &map,
645 create ? EXT4_GET_BLOCKS_CREATE : 0);
647 if (err < 0)
648 *errp = err;
649 if (err <= 0)
650 return NULL;
651 *errp = 0;
653 bh = sb_getblk(inode->i_sb, map.m_pblk);
654 if (!bh) {
655 *errp = -EIO;
656 return NULL;
658 if (map.m_flags & EXT4_MAP_NEW) {
659 J_ASSERT(create != 0);
660 J_ASSERT(handle != NULL);
663 * Now that we do not always journal data, we should
664 * keep in mind whether this should always journal the
665 * new buffer as metadata. For now, regular file
666 * writes use ext4_get_block instead, so it's not a
667 * problem.
669 lock_buffer(bh);
670 BUFFER_TRACE(bh, "call get_create_access");
671 fatal = ext4_journal_get_create_access(handle, bh);
672 if (!fatal && !buffer_uptodate(bh)) {
673 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
674 set_buffer_uptodate(bh);
676 unlock_buffer(bh);
677 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
678 err = ext4_handle_dirty_metadata(handle, inode, bh);
679 if (!fatal)
680 fatal = err;
681 } else {
682 BUFFER_TRACE(bh, "not a new buffer");
684 if (fatal) {
685 *errp = fatal;
686 brelse(bh);
687 bh = NULL;
689 return bh;
692 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
693 ext4_lblk_t block, int create, int *err)
695 struct buffer_head *bh;
697 bh = ext4_getblk(handle, inode, block, create, err);
698 if (!bh)
699 return bh;
700 if (buffer_uptodate(bh))
701 return bh;
702 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
703 wait_on_buffer(bh);
704 if (buffer_uptodate(bh))
705 return bh;
706 put_bh(bh);
707 *err = -EIO;
708 return NULL;
711 static int walk_page_buffers(handle_t *handle,
712 struct buffer_head *head,
713 unsigned from,
714 unsigned to,
715 int *partial,
716 int (*fn)(handle_t *handle,
717 struct buffer_head *bh))
719 struct buffer_head *bh;
720 unsigned block_start, block_end;
721 unsigned blocksize = head->b_size;
722 int err, ret = 0;
723 struct buffer_head *next;
725 for (bh = head, block_start = 0;
726 ret == 0 && (bh != head || !block_start);
727 block_start = block_end, bh = next) {
728 next = bh->b_this_page;
729 block_end = block_start + blocksize;
730 if (block_end <= from || block_start >= to) {
731 if (partial && !buffer_uptodate(bh))
732 *partial = 1;
733 continue;
735 err = (*fn)(handle, bh);
736 if (!ret)
737 ret = err;
739 return ret;
743 * To preserve ordering, it is essential that the hole instantiation and
744 * the data write be encapsulated in a single transaction. We cannot
745 * close off a transaction and start a new one between the ext4_get_block()
746 * and the commit_write(). So doing the jbd2_journal_start at the start of
747 * prepare_write() is the right place.
749 * Also, this function can nest inside ext4_writepage() ->
750 * block_write_full_page(). In that case, we *know* that ext4_writepage()
751 * has generated enough buffer credits to do the whole page. So we won't
752 * block on the journal in that case, which is good, because the caller may
753 * be PF_MEMALLOC.
755 * By accident, ext4 can be reentered when a transaction is open via
756 * quota file writes. If we were to commit the transaction while thus
757 * reentered, there can be a deadlock - we would be holding a quota
758 * lock, and the commit would never complete if another thread had a
759 * transaction open and was blocking on the quota lock - a ranking
760 * violation.
762 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
763 * will _not_ run commit under these circumstances because handle->h_ref
764 * is elevated. We'll still have enough credits for the tiny quotafile
765 * write.
767 static int do_journal_get_write_access(handle_t *handle,
768 struct buffer_head *bh)
770 int dirty = buffer_dirty(bh);
771 int ret;
773 if (!buffer_mapped(bh) || buffer_freed(bh))
774 return 0;
776 * __block_write_begin() could have dirtied some buffers. Clean
777 * the dirty bit as jbd2_journal_get_write_access() could complain
778 * otherwise about fs integrity issues. Setting of the dirty bit
779 * by __block_write_begin() isn't a real problem here as we clear
780 * the bit before releasing a page lock and thus writeback cannot
781 * ever write the buffer.
783 if (dirty)
784 clear_buffer_dirty(bh);
785 ret = ext4_journal_get_write_access(handle, bh);
786 if (!ret && dirty)
787 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
788 return ret;
791 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
792 struct buffer_head *bh_result, int create);
793 static int ext4_write_begin(struct file *file, struct address_space *mapping,
794 loff_t pos, unsigned len, unsigned flags,
795 struct page **pagep, void **fsdata)
797 struct inode *inode = mapping->host;
798 int ret, needed_blocks;
799 handle_t *handle;
800 int retries = 0;
801 struct page *page;
802 pgoff_t index;
803 unsigned from, to;
805 trace_ext4_write_begin(inode, pos, len, flags);
807 * Reserve one block more for addition to orphan list in case
808 * we allocate blocks but write fails for some reason
810 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
811 index = pos >> PAGE_CACHE_SHIFT;
812 from = pos & (PAGE_CACHE_SIZE - 1);
813 to = from + len;
815 retry:
816 handle = ext4_journal_start(inode, needed_blocks);
817 if (IS_ERR(handle)) {
818 ret = PTR_ERR(handle);
819 goto out;
822 /* We cannot recurse into the filesystem as the transaction is already
823 * started */
824 flags |= AOP_FLAG_NOFS;
826 page = grab_cache_page_write_begin(mapping, index, flags);
827 if (!page) {
828 ext4_journal_stop(handle);
829 ret = -ENOMEM;
830 goto out;
832 *pagep = page;
834 if (ext4_should_dioread_nolock(inode))
835 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
836 else
837 ret = __block_write_begin(page, pos, len, ext4_get_block);
839 if (!ret && ext4_should_journal_data(inode)) {
840 ret = walk_page_buffers(handle, page_buffers(page),
841 from, to, NULL, do_journal_get_write_access);
844 if (ret) {
845 unlock_page(page);
846 page_cache_release(page);
848 * __block_write_begin may have instantiated a few blocks
849 * outside i_size. Trim these off again. Don't need
850 * i_size_read because we hold i_mutex.
852 * Add inode to orphan list in case we crash before
853 * truncate finishes
855 if (pos + len > inode->i_size && ext4_can_truncate(inode))
856 ext4_orphan_add(handle, inode);
858 ext4_journal_stop(handle);
859 if (pos + len > inode->i_size) {
860 ext4_truncate_failed_write(inode);
862 * If truncate failed early the inode might
863 * still be on the orphan list; we need to
864 * make sure the inode is removed from the
865 * orphan list in that case.
867 if (inode->i_nlink)
868 ext4_orphan_del(NULL, inode);
872 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
873 goto retry;
874 out:
875 return ret;
878 /* For write_end() in data=journal mode */
879 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
881 if (!buffer_mapped(bh) || buffer_freed(bh))
882 return 0;
883 set_buffer_uptodate(bh);
884 return ext4_handle_dirty_metadata(handle, NULL, bh);
887 static int ext4_generic_write_end(struct file *file,
888 struct address_space *mapping,
889 loff_t pos, unsigned len, unsigned copied,
890 struct page *page, void *fsdata)
892 int i_size_changed = 0;
893 struct inode *inode = mapping->host;
894 handle_t *handle = ext4_journal_current_handle();
896 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
899 * No need to use i_size_read() here, the i_size
900 * cannot change under us because we hold i_mutex.
902 * But it's important to update i_size while still holding page lock:
903 * page writeout could otherwise come in and zero beyond i_size.
905 if (pos + copied > inode->i_size) {
906 i_size_write(inode, pos + copied);
907 i_size_changed = 1;
910 if (pos + copied > EXT4_I(inode)->i_disksize) {
911 /* We need to mark inode dirty even if
912 * new_i_size is less that inode->i_size
913 * bu greater than i_disksize.(hint delalloc)
915 ext4_update_i_disksize(inode, (pos + copied));
916 i_size_changed = 1;
918 unlock_page(page);
919 page_cache_release(page);
922 * Don't mark the inode dirty under page lock. First, it unnecessarily
923 * makes the holding time of page lock longer. Second, it forces lock
924 * ordering of page lock and transaction start for journaling
925 * filesystems.
927 if (i_size_changed)
928 ext4_mark_inode_dirty(handle, inode);
930 return copied;
934 * We need to pick up the new inode size which generic_commit_write gave us
935 * `file' can be NULL - eg, when called from page_symlink().
937 * ext4 never places buffers on inode->i_mapping->private_list. metadata
938 * buffers are managed internally.
940 static int ext4_ordered_write_end(struct file *file,
941 struct address_space *mapping,
942 loff_t pos, unsigned len, unsigned copied,
943 struct page *page, void *fsdata)
945 handle_t *handle = ext4_journal_current_handle();
946 struct inode *inode = mapping->host;
947 int ret = 0, ret2;
949 trace_ext4_ordered_write_end(inode, pos, len, copied);
950 ret = ext4_jbd2_file_inode(handle, inode);
952 if (ret == 0) {
953 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
954 page, fsdata);
955 copied = ret2;
956 if (pos + len > inode->i_size && ext4_can_truncate(inode))
957 /* if we have allocated more blocks and copied
958 * less. We will have blocks allocated outside
959 * inode->i_size. So truncate them
961 ext4_orphan_add(handle, inode);
962 if (ret2 < 0)
963 ret = ret2;
964 } else {
965 unlock_page(page);
966 page_cache_release(page);
969 ret2 = ext4_journal_stop(handle);
970 if (!ret)
971 ret = ret2;
973 if (pos + len > inode->i_size) {
974 ext4_truncate_failed_write(inode);
976 * If truncate failed early the inode might still be
977 * on the orphan list; we need to make sure the inode
978 * is removed from the orphan list in that case.
980 if (inode->i_nlink)
981 ext4_orphan_del(NULL, inode);
985 return ret ? ret : copied;
988 static int ext4_writeback_write_end(struct file *file,
989 struct address_space *mapping,
990 loff_t pos, unsigned len, unsigned copied,
991 struct page *page, void *fsdata)
993 handle_t *handle = ext4_journal_current_handle();
994 struct inode *inode = mapping->host;
995 int ret = 0, ret2;
997 trace_ext4_writeback_write_end(inode, pos, len, copied);
998 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
999 page, fsdata);
1000 copied = ret2;
1001 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1002 /* if we have allocated more blocks and copied
1003 * less. We will have blocks allocated outside
1004 * inode->i_size. So truncate them
1006 ext4_orphan_add(handle, inode);
1008 if (ret2 < 0)
1009 ret = ret2;
1011 ret2 = ext4_journal_stop(handle);
1012 if (!ret)
1013 ret = ret2;
1015 if (pos + len > inode->i_size) {
1016 ext4_truncate_failed_write(inode);
1018 * If truncate failed early the inode might still be
1019 * on the orphan list; we need to make sure the inode
1020 * is removed from the orphan list in that case.
1022 if (inode->i_nlink)
1023 ext4_orphan_del(NULL, inode);
1026 return ret ? ret : copied;
1029 static int ext4_journalled_write_end(struct file *file,
1030 struct address_space *mapping,
1031 loff_t pos, unsigned len, unsigned copied,
1032 struct page *page, void *fsdata)
1034 handle_t *handle = ext4_journal_current_handle();
1035 struct inode *inode = mapping->host;
1036 int ret = 0, ret2;
1037 int partial = 0;
1038 unsigned from, to;
1039 loff_t new_i_size;
1041 trace_ext4_journalled_write_end(inode, pos, len, copied);
1042 from = pos & (PAGE_CACHE_SIZE - 1);
1043 to = from + len;
1045 BUG_ON(!ext4_handle_valid(handle));
1047 if (copied < len) {
1048 if (!PageUptodate(page))
1049 copied = 0;
1050 page_zero_new_buffers(page, from+copied, to);
1053 ret = walk_page_buffers(handle, page_buffers(page), from,
1054 to, &partial, write_end_fn);
1055 if (!partial)
1056 SetPageUptodate(page);
1057 new_i_size = pos + copied;
1058 if (new_i_size > inode->i_size)
1059 i_size_write(inode, pos+copied);
1060 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1061 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1062 if (new_i_size > EXT4_I(inode)->i_disksize) {
1063 ext4_update_i_disksize(inode, new_i_size);
1064 ret2 = ext4_mark_inode_dirty(handle, inode);
1065 if (!ret)
1066 ret = ret2;
1069 unlock_page(page);
1070 page_cache_release(page);
1071 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1072 /* if we have allocated more blocks and copied
1073 * less. We will have blocks allocated outside
1074 * inode->i_size. So truncate them
1076 ext4_orphan_add(handle, inode);
1078 ret2 = ext4_journal_stop(handle);
1079 if (!ret)
1080 ret = ret2;
1081 if (pos + len > inode->i_size) {
1082 ext4_truncate_failed_write(inode);
1084 * If truncate failed early the inode might still be
1085 * on the orphan list; we need to make sure the inode
1086 * is removed from the orphan list in that case.
1088 if (inode->i_nlink)
1089 ext4_orphan_del(NULL, inode);
1092 return ret ? ret : copied;
1096 * Reserve a single cluster located at lblock
1098 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1100 int retries = 0;
1101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102 struct ext4_inode_info *ei = EXT4_I(inode);
1103 unsigned int md_needed;
1104 int ret;
1107 * recalculate the amount of metadata blocks to reserve
1108 * in order to allocate nrblocks
1109 * worse case is one extent per block
1111 repeat:
1112 spin_lock(&ei->i_block_reservation_lock);
1113 md_needed = EXT4_NUM_B2C(sbi,
1114 ext4_calc_metadata_amount(inode, lblock));
1115 trace_ext4_da_reserve_space(inode, md_needed);
1116 spin_unlock(&ei->i_block_reservation_lock);
1119 * We will charge metadata quota at writeout time; this saves
1120 * us from metadata over-estimation, though we may go over by
1121 * a small amount in the end. Here we just reserve for data.
1123 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1124 if (ret)
1125 return ret;
1127 * We do still charge estimated metadata to the sb though;
1128 * we cannot afford to run out of free blocks.
1130 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1131 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1132 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1133 yield();
1134 goto repeat;
1136 return -ENOSPC;
1138 spin_lock(&ei->i_block_reservation_lock);
1139 ei->i_reserved_data_blocks++;
1140 ei->i_reserved_meta_blocks += md_needed;
1141 spin_unlock(&ei->i_block_reservation_lock);
1143 return 0; /* success */
1146 static void ext4_da_release_space(struct inode *inode, int to_free)
1148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149 struct ext4_inode_info *ei = EXT4_I(inode);
1151 if (!to_free)
1152 return; /* Nothing to release, exit */
1154 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1156 trace_ext4_da_release_space(inode, to_free);
1157 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1159 * if there aren't enough reserved blocks, then the
1160 * counter is messed up somewhere. Since this
1161 * function is called from invalidate page, it's
1162 * harmless to return without any action.
1164 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1165 "ino %lu, to_free %d with only %d reserved "
1166 "data blocks\n", inode->i_ino, to_free,
1167 ei->i_reserved_data_blocks);
1168 WARN_ON(1);
1169 to_free = ei->i_reserved_data_blocks;
1171 ei->i_reserved_data_blocks -= to_free;
1173 if (ei->i_reserved_data_blocks == 0) {
1175 * We can release all of the reserved metadata blocks
1176 * only when we have written all of the delayed
1177 * allocation blocks.
1178 * Note that in case of bigalloc, i_reserved_meta_blocks,
1179 * i_reserved_data_blocks, etc. refer to number of clusters.
1181 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1182 ei->i_reserved_meta_blocks);
1183 ei->i_reserved_meta_blocks = 0;
1184 ei->i_da_metadata_calc_len = 0;
1187 /* update fs dirty data blocks counter */
1188 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1190 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1192 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1195 static void ext4_da_page_release_reservation(struct page *page,
1196 unsigned long offset)
1198 int to_release = 0;
1199 struct buffer_head *head, *bh;
1200 unsigned int curr_off = 0;
1201 struct inode *inode = page->mapping->host;
1202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203 int num_clusters;
1205 head = page_buffers(page);
1206 bh = head;
1207 do {
1208 unsigned int next_off = curr_off + bh->b_size;
1210 if ((offset <= curr_off) && (buffer_delay(bh))) {
1211 to_release++;
1212 clear_buffer_delay(bh);
1213 clear_buffer_da_mapped(bh);
1215 curr_off = next_off;
1216 } while ((bh = bh->b_this_page) != head);
1218 /* If we have released all the blocks belonging to a cluster, then we
1219 * need to release the reserved space for that cluster. */
1220 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1221 while (num_clusters > 0) {
1222 ext4_fsblk_t lblk;
1223 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1224 ((num_clusters - 1) << sbi->s_cluster_bits);
1225 if (sbi->s_cluster_ratio == 1 ||
1226 !ext4_find_delalloc_cluster(inode, lblk, 1))
1227 ext4_da_release_space(inode, 1);
1229 num_clusters--;
1234 * Delayed allocation stuff
1238 * mpage_da_submit_io - walks through extent of pages and try to write
1239 * them with writepage() call back
1241 * @mpd->inode: inode
1242 * @mpd->first_page: first page of the extent
1243 * @mpd->next_page: page after the last page of the extent
1245 * By the time mpage_da_submit_io() is called we expect all blocks
1246 * to be allocated. this may be wrong if allocation failed.
1248 * As pages are already locked by write_cache_pages(), we can't use it
1250 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1251 struct ext4_map_blocks *map)
1253 struct pagevec pvec;
1254 unsigned long index, end;
1255 int ret = 0, err, nr_pages, i;
1256 struct inode *inode = mpd->inode;
1257 struct address_space *mapping = inode->i_mapping;
1258 loff_t size = i_size_read(inode);
1259 unsigned int len, block_start;
1260 struct buffer_head *bh, *page_bufs = NULL;
1261 int journal_data = ext4_should_journal_data(inode);
1262 sector_t pblock = 0, cur_logical = 0;
1263 struct ext4_io_submit io_submit;
1265 BUG_ON(mpd->next_page <= mpd->first_page);
1266 memset(&io_submit, 0, sizeof(io_submit));
1268 * We need to start from the first_page to the next_page - 1
1269 * to make sure we also write the mapped dirty buffer_heads.
1270 * If we look at mpd->b_blocknr we would only be looking
1271 * at the currently mapped buffer_heads.
1273 index = mpd->first_page;
1274 end = mpd->next_page - 1;
1276 pagevec_init(&pvec, 0);
1277 while (index <= end) {
1278 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1279 if (nr_pages == 0)
1280 break;
1281 for (i = 0; i < nr_pages; i++) {
1282 int commit_write = 0, skip_page = 0;
1283 struct page *page = pvec.pages[i];
1285 index = page->index;
1286 if (index > end)
1287 break;
1289 if (index == size >> PAGE_CACHE_SHIFT)
1290 len = size & ~PAGE_CACHE_MASK;
1291 else
1292 len = PAGE_CACHE_SIZE;
1293 if (map) {
1294 cur_logical = index << (PAGE_CACHE_SHIFT -
1295 inode->i_blkbits);
1296 pblock = map->m_pblk + (cur_logical -
1297 map->m_lblk);
1299 index++;
1301 BUG_ON(!PageLocked(page));
1302 BUG_ON(PageWriteback(page));
1305 * If the page does not have buffers (for
1306 * whatever reason), try to create them using
1307 * __block_write_begin. If this fails,
1308 * skip the page and move on.
1310 if (!page_has_buffers(page)) {
1311 if (__block_write_begin(page, 0, len,
1312 noalloc_get_block_write)) {
1313 skip_page:
1314 unlock_page(page);
1315 continue;
1317 commit_write = 1;
1320 bh = page_bufs = page_buffers(page);
1321 block_start = 0;
1322 do {
1323 if (!bh)
1324 goto skip_page;
1325 if (map && (cur_logical >= map->m_lblk) &&
1326 (cur_logical <= (map->m_lblk +
1327 (map->m_len - 1)))) {
1328 if (buffer_delay(bh)) {
1329 clear_buffer_delay(bh);
1330 bh->b_blocknr = pblock;
1332 if (buffer_da_mapped(bh))
1333 clear_buffer_da_mapped(bh);
1334 if (buffer_unwritten(bh) ||
1335 buffer_mapped(bh))
1336 BUG_ON(bh->b_blocknr != pblock);
1337 if (map->m_flags & EXT4_MAP_UNINIT)
1338 set_buffer_uninit(bh);
1339 clear_buffer_unwritten(bh);
1343 * skip page if block allocation undone and
1344 * block is dirty
1346 if (ext4_bh_delay_or_unwritten(NULL, bh))
1347 skip_page = 1;
1348 bh = bh->b_this_page;
1349 block_start += bh->b_size;
1350 cur_logical++;
1351 pblock++;
1352 } while (bh != page_bufs);
1354 if (skip_page)
1355 goto skip_page;
1357 if (commit_write)
1358 /* mark the buffer_heads as dirty & uptodate */
1359 block_commit_write(page, 0, len);
1361 clear_page_dirty_for_io(page);
1363 * Delalloc doesn't support data journalling,
1364 * but eventually maybe we'll lift this
1365 * restriction.
1367 if (unlikely(journal_data && PageChecked(page)))
1368 err = __ext4_journalled_writepage(page, len);
1369 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1370 err = ext4_bio_write_page(&io_submit, page,
1371 len, mpd->wbc);
1372 else if (buffer_uninit(page_bufs)) {
1373 ext4_set_bh_endio(page_bufs, inode);
1374 err = block_write_full_page_endio(page,
1375 noalloc_get_block_write,
1376 mpd->wbc, ext4_end_io_buffer_write);
1377 } else
1378 err = block_write_full_page(page,
1379 noalloc_get_block_write, mpd->wbc);
1381 if (!err)
1382 mpd->pages_written++;
1384 * In error case, we have to continue because
1385 * remaining pages are still locked
1387 if (ret == 0)
1388 ret = err;
1390 pagevec_release(&pvec);
1392 ext4_io_submit(&io_submit);
1393 return ret;
1396 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1398 int nr_pages, i;
1399 pgoff_t index, end;
1400 struct pagevec pvec;
1401 struct inode *inode = mpd->inode;
1402 struct address_space *mapping = inode->i_mapping;
1404 index = mpd->first_page;
1405 end = mpd->next_page - 1;
1406 while (index <= end) {
1407 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1408 if (nr_pages == 0)
1409 break;
1410 for (i = 0; i < nr_pages; i++) {
1411 struct page *page = pvec.pages[i];
1412 if (page->index > end)
1413 break;
1414 BUG_ON(!PageLocked(page));
1415 BUG_ON(PageWriteback(page));
1416 block_invalidatepage(page, 0);
1417 ClearPageUptodate(page);
1418 unlock_page(page);
1420 index = pvec.pages[nr_pages - 1]->index + 1;
1421 pagevec_release(&pvec);
1423 return;
1426 static void ext4_print_free_blocks(struct inode *inode)
1428 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1429 printk(KERN_CRIT "Total free blocks count %lld\n",
1430 EXT4_C2B(EXT4_SB(inode->i_sb),
1431 ext4_count_free_clusters(inode->i_sb)));
1432 printk(KERN_CRIT "Free/Dirty block details\n");
1433 printk(KERN_CRIT "free_blocks=%lld\n",
1434 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1435 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1436 printk(KERN_CRIT "dirty_blocks=%lld\n",
1437 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1438 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1439 printk(KERN_CRIT "Block reservation details\n");
1440 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1441 EXT4_I(inode)->i_reserved_data_blocks);
1442 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1443 EXT4_I(inode)->i_reserved_meta_blocks);
1444 return;
1448 * mpage_da_map_and_submit - go through given space, map them
1449 * if necessary, and then submit them for I/O
1451 * @mpd - bh describing space
1453 * The function skips space we know is already mapped to disk blocks.
1456 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1458 int err, blks, get_blocks_flags;
1459 struct ext4_map_blocks map, *mapp = NULL;
1460 sector_t next = mpd->b_blocknr;
1461 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1462 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1463 handle_t *handle = NULL;
1466 * If the blocks are mapped already, or we couldn't accumulate
1467 * any blocks, then proceed immediately to the submission stage.
1469 if ((mpd->b_size == 0) ||
1470 ((mpd->b_state & (1 << BH_Mapped)) &&
1471 !(mpd->b_state & (1 << BH_Delay)) &&
1472 !(mpd->b_state & (1 << BH_Unwritten))))
1473 goto submit_io;
1475 handle = ext4_journal_current_handle();
1476 BUG_ON(!handle);
1479 * Call ext4_map_blocks() to allocate any delayed allocation
1480 * blocks, or to convert an uninitialized extent to be
1481 * initialized (in the case where we have written into
1482 * one or more preallocated blocks).
1484 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1485 * indicate that we are on the delayed allocation path. This
1486 * affects functions in many different parts of the allocation
1487 * call path. This flag exists primarily because we don't
1488 * want to change *many* call functions, so ext4_map_blocks()
1489 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1490 * inode's allocation semaphore is taken.
1492 * If the blocks in questions were delalloc blocks, set
1493 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1494 * variables are updated after the blocks have been allocated.
1496 map.m_lblk = next;
1497 map.m_len = max_blocks;
1498 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1499 if (ext4_should_dioread_nolock(mpd->inode))
1500 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1501 if (mpd->b_state & (1 << BH_Delay))
1502 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1504 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1505 if (blks < 0) {
1506 struct super_block *sb = mpd->inode->i_sb;
1508 err = blks;
1510 * If get block returns EAGAIN or ENOSPC and there
1511 * appears to be free blocks we will just let
1512 * mpage_da_submit_io() unlock all of the pages.
1514 if (err == -EAGAIN)
1515 goto submit_io;
1517 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1518 mpd->retval = err;
1519 goto submit_io;
1523 * get block failure will cause us to loop in
1524 * writepages, because a_ops->writepage won't be able
1525 * to make progress. The page will be redirtied by
1526 * writepage and writepages will again try to write
1527 * the same.
1529 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1530 ext4_msg(sb, KERN_CRIT,
1531 "delayed block allocation failed for inode %lu "
1532 "at logical offset %llu with max blocks %zd "
1533 "with error %d", mpd->inode->i_ino,
1534 (unsigned long long) next,
1535 mpd->b_size >> mpd->inode->i_blkbits, err);
1536 ext4_msg(sb, KERN_CRIT,
1537 "This should not happen!! Data will be lost\n");
1538 if (err == -ENOSPC)
1539 ext4_print_free_blocks(mpd->inode);
1541 /* invalidate all the pages */
1542 ext4_da_block_invalidatepages(mpd);
1544 /* Mark this page range as having been completed */
1545 mpd->io_done = 1;
1546 return;
1548 BUG_ON(blks == 0);
1550 mapp = &map;
1551 if (map.m_flags & EXT4_MAP_NEW) {
1552 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1553 int i;
1555 for (i = 0; i < map.m_len; i++)
1556 unmap_underlying_metadata(bdev, map.m_pblk + i);
1558 if (ext4_should_order_data(mpd->inode)) {
1559 err = ext4_jbd2_file_inode(handle, mpd->inode);
1560 if (err) {
1561 /* Only if the journal is aborted */
1562 mpd->retval = err;
1563 goto submit_io;
1569 * Update on-disk size along with block allocation.
1571 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1572 if (disksize > i_size_read(mpd->inode))
1573 disksize = i_size_read(mpd->inode);
1574 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1575 ext4_update_i_disksize(mpd->inode, disksize);
1576 err = ext4_mark_inode_dirty(handle, mpd->inode);
1577 if (err)
1578 ext4_error(mpd->inode->i_sb,
1579 "Failed to mark inode %lu dirty",
1580 mpd->inode->i_ino);
1583 submit_io:
1584 mpage_da_submit_io(mpd, mapp);
1585 mpd->io_done = 1;
1588 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1589 (1 << BH_Delay) | (1 << BH_Unwritten))
1592 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1594 * @mpd->lbh - extent of blocks
1595 * @logical - logical number of the block in the file
1596 * @bh - bh of the block (used to access block's state)
1598 * the function is used to collect contig. blocks in same state
1600 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1601 sector_t logical, size_t b_size,
1602 unsigned long b_state)
1604 sector_t next;
1605 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1608 * XXX Don't go larger than mballoc is willing to allocate
1609 * This is a stopgap solution. We eventually need to fold
1610 * mpage_da_submit_io() into this function and then call
1611 * ext4_map_blocks() multiple times in a loop
1613 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1614 goto flush_it;
1616 /* check if thereserved journal credits might overflow */
1617 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1618 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1620 * With non-extent format we are limited by the journal
1621 * credit available. Total credit needed to insert
1622 * nrblocks contiguous blocks is dependent on the
1623 * nrblocks. So limit nrblocks.
1625 goto flush_it;
1626 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1627 EXT4_MAX_TRANS_DATA) {
1629 * Adding the new buffer_head would make it cross the
1630 * allowed limit for which we have journal credit
1631 * reserved. So limit the new bh->b_size
1633 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1634 mpd->inode->i_blkbits;
1635 /* we will do mpage_da_submit_io in the next loop */
1639 * First block in the extent
1641 if (mpd->b_size == 0) {
1642 mpd->b_blocknr = logical;
1643 mpd->b_size = b_size;
1644 mpd->b_state = b_state & BH_FLAGS;
1645 return;
1648 next = mpd->b_blocknr + nrblocks;
1650 * Can we merge the block to our big extent?
1652 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1653 mpd->b_size += b_size;
1654 return;
1657 flush_it:
1659 * We couldn't merge the block to our extent, so we
1660 * need to flush current extent and start new one
1662 mpage_da_map_and_submit(mpd);
1663 return;
1666 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1668 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1672 * This function is grabs code from the very beginning of
1673 * ext4_map_blocks, but assumes that the caller is from delayed write
1674 * time. This function looks up the requested blocks and sets the
1675 * buffer delay bit under the protection of i_data_sem.
1677 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1678 struct ext4_map_blocks *map,
1679 struct buffer_head *bh)
1681 int retval;
1682 sector_t invalid_block = ~((sector_t) 0xffff);
1684 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1685 invalid_block = ~0;
1687 map->m_flags = 0;
1688 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1689 "logical block %lu\n", inode->i_ino, map->m_len,
1690 (unsigned long) map->m_lblk);
1692 * Try to see if we can get the block without requesting a new
1693 * file system block.
1695 down_read((&EXT4_I(inode)->i_data_sem));
1696 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1697 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1698 else
1699 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1701 if (retval == 0) {
1703 * XXX: __block_prepare_write() unmaps passed block,
1704 * is it OK?
1706 /* If the block was allocated from previously allocated cluster,
1707 * then we dont need to reserve it again. */
1708 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1709 retval = ext4_da_reserve_space(inode, iblock);
1710 if (retval)
1711 /* not enough space to reserve */
1712 goto out_unlock;
1715 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1716 * and it should not appear on the bh->b_state.
1718 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1720 map_bh(bh, inode->i_sb, invalid_block);
1721 set_buffer_new(bh);
1722 set_buffer_delay(bh);
1725 out_unlock:
1726 up_read((&EXT4_I(inode)->i_data_sem));
1728 return retval;
1732 * This is a special get_blocks_t callback which is used by
1733 * ext4_da_write_begin(). It will either return mapped block or
1734 * reserve space for a single block.
1736 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1737 * We also have b_blocknr = -1 and b_bdev initialized properly
1739 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1740 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1741 * initialized properly.
1743 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1744 struct buffer_head *bh, int create)
1746 struct ext4_map_blocks map;
1747 int ret = 0;
1749 BUG_ON(create == 0);
1750 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1752 map.m_lblk = iblock;
1753 map.m_len = 1;
1756 * first, we need to know whether the block is allocated already
1757 * preallocated blocks are unmapped but should treated
1758 * the same as allocated blocks.
1760 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1761 if (ret <= 0)
1762 return ret;
1764 map_bh(bh, inode->i_sb, map.m_pblk);
1765 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1767 if (buffer_unwritten(bh)) {
1768 /* A delayed write to unwritten bh should be marked
1769 * new and mapped. Mapped ensures that we don't do
1770 * get_block multiple times when we write to the same
1771 * offset and new ensures that we do proper zero out
1772 * for partial write.
1774 set_buffer_new(bh);
1775 set_buffer_mapped(bh);
1777 return 0;
1781 * This function is used as a standard get_block_t calback function
1782 * when there is no desire to allocate any blocks. It is used as a
1783 * callback function for block_write_begin() and block_write_full_page().
1784 * These functions should only try to map a single block at a time.
1786 * Since this function doesn't do block allocations even if the caller
1787 * requests it by passing in create=1, it is critically important that
1788 * any caller checks to make sure that any buffer heads are returned
1789 * by this function are either all already mapped or marked for
1790 * delayed allocation before calling block_write_full_page(). Otherwise,
1791 * b_blocknr could be left unitialized, and the page write functions will
1792 * be taken by surprise.
1794 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1795 struct buffer_head *bh_result, int create)
1797 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1798 return _ext4_get_block(inode, iblock, bh_result, 0);
1801 static int bget_one(handle_t *handle, struct buffer_head *bh)
1803 get_bh(bh);
1804 return 0;
1807 static int bput_one(handle_t *handle, struct buffer_head *bh)
1809 put_bh(bh);
1810 return 0;
1813 static int __ext4_journalled_writepage(struct page *page,
1814 unsigned int len)
1816 struct address_space *mapping = page->mapping;
1817 struct inode *inode = mapping->host;
1818 struct buffer_head *page_bufs;
1819 handle_t *handle = NULL;
1820 int ret = 0;
1821 int err;
1823 ClearPageChecked(page);
1824 page_bufs = page_buffers(page);
1825 BUG_ON(!page_bufs);
1826 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1827 /* As soon as we unlock the page, it can go away, but we have
1828 * references to buffers so we are safe */
1829 unlock_page(page);
1831 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1832 if (IS_ERR(handle)) {
1833 ret = PTR_ERR(handle);
1834 goto out;
1837 BUG_ON(!ext4_handle_valid(handle));
1839 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1840 do_journal_get_write_access);
1842 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1843 write_end_fn);
1844 if (ret == 0)
1845 ret = err;
1846 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1847 err = ext4_journal_stop(handle);
1848 if (!ret)
1849 ret = err;
1851 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1852 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1853 out:
1854 return ret;
1857 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1858 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1861 * Note that we don't need to start a transaction unless we're journaling data
1862 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1863 * need to file the inode to the transaction's list in ordered mode because if
1864 * we are writing back data added by write(), the inode is already there and if
1865 * we are writing back data modified via mmap(), no one guarantees in which
1866 * transaction the data will hit the disk. In case we are journaling data, we
1867 * cannot start transaction directly because transaction start ranks above page
1868 * lock so we have to do some magic.
1870 * This function can get called via...
1871 * - ext4_da_writepages after taking page lock (have journal handle)
1872 * - journal_submit_inode_data_buffers (no journal handle)
1873 * - shrink_page_list via pdflush (no journal handle)
1874 * - grab_page_cache when doing write_begin (have journal handle)
1876 * We don't do any block allocation in this function. If we have page with
1877 * multiple blocks we need to write those buffer_heads that are mapped. This
1878 * is important for mmaped based write. So if we do with blocksize 1K
1879 * truncate(f, 1024);
1880 * a = mmap(f, 0, 4096);
1881 * a[0] = 'a';
1882 * truncate(f, 4096);
1883 * we have in the page first buffer_head mapped via page_mkwrite call back
1884 * but other bufer_heads would be unmapped but dirty(dirty done via the
1885 * do_wp_page). So writepage should write the first block. If we modify
1886 * the mmap area beyond 1024 we will again get a page_fault and the
1887 * page_mkwrite callback will do the block allocation and mark the
1888 * buffer_heads mapped.
1890 * We redirty the page if we have any buffer_heads that is either delay or
1891 * unwritten in the page.
1893 * We can get recursively called as show below.
1895 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1896 * ext4_writepage()
1898 * But since we don't do any block allocation we should not deadlock.
1899 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1901 static int ext4_writepage(struct page *page,
1902 struct writeback_control *wbc)
1904 int ret = 0, commit_write = 0;
1905 loff_t size;
1906 unsigned int len;
1907 struct buffer_head *page_bufs = NULL;
1908 struct inode *inode = page->mapping->host;
1910 trace_ext4_writepage(page);
1911 size = i_size_read(inode);
1912 if (page->index == size >> PAGE_CACHE_SHIFT)
1913 len = size & ~PAGE_CACHE_MASK;
1914 else
1915 len = PAGE_CACHE_SIZE;
1918 * If the page does not have buffers (for whatever reason),
1919 * try to create them using __block_write_begin. If this
1920 * fails, redirty the page and move on.
1922 if (!page_has_buffers(page)) {
1923 if (__block_write_begin(page, 0, len,
1924 noalloc_get_block_write)) {
1925 redirty_page:
1926 redirty_page_for_writepage(wbc, page);
1927 unlock_page(page);
1928 return 0;
1930 commit_write = 1;
1932 page_bufs = page_buffers(page);
1933 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1934 ext4_bh_delay_or_unwritten)) {
1936 * We don't want to do block allocation, so redirty
1937 * the page and return. We may reach here when we do
1938 * a journal commit via journal_submit_inode_data_buffers.
1939 * We can also reach here via shrink_page_list but it
1940 * should never be for direct reclaim so warn if that
1941 * happens
1943 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1944 PF_MEMALLOC);
1945 goto redirty_page;
1947 if (commit_write)
1948 /* now mark the buffer_heads as dirty and uptodate */
1949 block_commit_write(page, 0, len);
1951 if (PageChecked(page) && ext4_should_journal_data(inode))
1953 * It's mmapped pagecache. Add buffers and journal it. There
1954 * doesn't seem much point in redirtying the page here.
1956 return __ext4_journalled_writepage(page, len);
1958 if (buffer_uninit(page_bufs)) {
1959 ext4_set_bh_endio(page_bufs, inode);
1960 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1961 wbc, ext4_end_io_buffer_write);
1962 } else
1963 ret = block_write_full_page(page, noalloc_get_block_write,
1964 wbc);
1966 return ret;
1970 * This is called via ext4_da_writepages() to
1971 * calculate the total number of credits to reserve to fit
1972 * a single extent allocation into a single transaction,
1973 * ext4_da_writpeages() will loop calling this before
1974 * the block allocation.
1977 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1979 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1982 * With non-extent format the journal credit needed to
1983 * insert nrblocks contiguous block is dependent on
1984 * number of contiguous block. So we will limit
1985 * number of contiguous block to a sane value
1987 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1988 (max_blocks > EXT4_MAX_TRANS_DATA))
1989 max_blocks = EXT4_MAX_TRANS_DATA;
1991 return ext4_chunk_trans_blocks(inode, max_blocks);
1995 * write_cache_pages_da - walk the list of dirty pages of the given
1996 * address space and accumulate pages that need writing, and call
1997 * mpage_da_map_and_submit to map a single contiguous memory region
1998 * and then write them.
2000 static int write_cache_pages_da(struct address_space *mapping,
2001 struct writeback_control *wbc,
2002 struct mpage_da_data *mpd,
2003 pgoff_t *done_index)
2005 struct buffer_head *bh, *head;
2006 struct inode *inode = mapping->host;
2007 struct pagevec pvec;
2008 unsigned int nr_pages;
2009 sector_t logical;
2010 pgoff_t index, end;
2011 long nr_to_write = wbc->nr_to_write;
2012 int i, tag, ret = 0;
2014 memset(mpd, 0, sizeof(struct mpage_da_data));
2015 mpd->wbc = wbc;
2016 mpd->inode = inode;
2017 pagevec_init(&pvec, 0);
2018 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2019 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2021 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2022 tag = PAGECACHE_TAG_TOWRITE;
2023 else
2024 tag = PAGECACHE_TAG_DIRTY;
2026 *done_index = index;
2027 while (index <= end) {
2028 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2029 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2030 if (nr_pages == 0)
2031 return 0;
2033 for (i = 0; i < nr_pages; i++) {
2034 struct page *page = pvec.pages[i];
2037 * At this point, the page may be truncated or
2038 * invalidated (changing page->mapping to NULL), or
2039 * even swizzled back from swapper_space to tmpfs file
2040 * mapping. However, page->index will not change
2041 * because we have a reference on the page.
2043 if (page->index > end)
2044 goto out;
2046 *done_index = page->index + 1;
2049 * If we can't merge this page, and we have
2050 * accumulated an contiguous region, write it
2052 if ((mpd->next_page != page->index) &&
2053 (mpd->next_page != mpd->first_page)) {
2054 mpage_da_map_and_submit(mpd);
2055 goto ret_extent_tail;
2058 lock_page(page);
2061 * If the page is no longer dirty, or its
2062 * mapping no longer corresponds to inode we
2063 * are writing (which means it has been
2064 * truncated or invalidated), or the page is
2065 * already under writeback and we are not
2066 * doing a data integrity writeback, skip the page
2068 if (!PageDirty(page) ||
2069 (PageWriteback(page) &&
2070 (wbc->sync_mode == WB_SYNC_NONE)) ||
2071 unlikely(page->mapping != mapping)) {
2072 unlock_page(page);
2073 continue;
2076 wait_on_page_writeback(page);
2077 BUG_ON(PageWriteback(page));
2079 if (mpd->next_page != page->index)
2080 mpd->first_page = page->index;
2081 mpd->next_page = page->index + 1;
2082 logical = (sector_t) page->index <<
2083 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2085 if (!page_has_buffers(page)) {
2086 mpage_add_bh_to_extent(mpd, logical,
2087 PAGE_CACHE_SIZE,
2088 (1 << BH_Dirty) | (1 << BH_Uptodate));
2089 if (mpd->io_done)
2090 goto ret_extent_tail;
2091 } else {
2093 * Page with regular buffer heads,
2094 * just add all dirty ones
2096 head = page_buffers(page);
2097 bh = head;
2098 do {
2099 BUG_ON(buffer_locked(bh));
2101 * We need to try to allocate
2102 * unmapped blocks in the same page.
2103 * Otherwise we won't make progress
2104 * with the page in ext4_writepage
2106 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2107 mpage_add_bh_to_extent(mpd, logical,
2108 bh->b_size,
2109 bh->b_state);
2110 if (mpd->io_done)
2111 goto ret_extent_tail;
2112 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2114 * mapped dirty buffer. We need
2115 * to update the b_state
2116 * because we look at b_state
2117 * in mpage_da_map_blocks. We
2118 * don't update b_size because
2119 * if we find an unmapped
2120 * buffer_head later we need to
2121 * use the b_state flag of that
2122 * buffer_head.
2124 if (mpd->b_size == 0)
2125 mpd->b_state = bh->b_state & BH_FLAGS;
2127 logical++;
2128 } while ((bh = bh->b_this_page) != head);
2131 if (nr_to_write > 0) {
2132 nr_to_write--;
2133 if (nr_to_write == 0 &&
2134 wbc->sync_mode == WB_SYNC_NONE)
2136 * We stop writing back only if we are
2137 * not doing integrity sync. In case of
2138 * integrity sync we have to keep going
2139 * because someone may be concurrently
2140 * dirtying pages, and we might have
2141 * synced a lot of newly appeared dirty
2142 * pages, but have not synced all of the
2143 * old dirty pages.
2145 goto out;
2148 pagevec_release(&pvec);
2149 cond_resched();
2151 return 0;
2152 ret_extent_tail:
2153 ret = MPAGE_DA_EXTENT_TAIL;
2154 out:
2155 pagevec_release(&pvec);
2156 cond_resched();
2157 return ret;
2161 static int ext4_da_writepages(struct address_space *mapping,
2162 struct writeback_control *wbc)
2164 pgoff_t index;
2165 int range_whole = 0;
2166 handle_t *handle = NULL;
2167 struct mpage_da_data mpd;
2168 struct inode *inode = mapping->host;
2169 int pages_written = 0;
2170 unsigned int max_pages;
2171 int range_cyclic, cycled = 1, io_done = 0;
2172 int needed_blocks, ret = 0;
2173 long desired_nr_to_write, nr_to_writebump = 0;
2174 loff_t range_start = wbc->range_start;
2175 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2176 pgoff_t done_index = 0;
2177 pgoff_t end;
2178 struct blk_plug plug;
2180 trace_ext4_da_writepages(inode, wbc);
2183 * No pages to write? This is mainly a kludge to avoid starting
2184 * a transaction for special inodes like journal inode on last iput()
2185 * because that could violate lock ordering on umount
2187 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2188 return 0;
2191 * If the filesystem has aborted, it is read-only, so return
2192 * right away instead of dumping stack traces later on that
2193 * will obscure the real source of the problem. We test
2194 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2195 * the latter could be true if the filesystem is mounted
2196 * read-only, and in that case, ext4_da_writepages should
2197 * *never* be called, so if that ever happens, we would want
2198 * the stack trace.
2200 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2201 return -EROFS;
2203 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2204 range_whole = 1;
2206 range_cyclic = wbc->range_cyclic;
2207 if (wbc->range_cyclic) {
2208 index = mapping->writeback_index;
2209 if (index)
2210 cycled = 0;
2211 wbc->range_start = index << PAGE_CACHE_SHIFT;
2212 wbc->range_end = LLONG_MAX;
2213 wbc->range_cyclic = 0;
2214 end = -1;
2215 } else {
2216 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2217 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2221 * This works around two forms of stupidity. The first is in
2222 * the writeback code, which caps the maximum number of pages
2223 * written to be 1024 pages. This is wrong on multiple
2224 * levels; different architectues have a different page size,
2225 * which changes the maximum amount of data which gets
2226 * written. Secondly, 4 megabytes is way too small. XFS
2227 * forces this value to be 16 megabytes by multiplying
2228 * nr_to_write parameter by four, and then relies on its
2229 * allocator to allocate larger extents to make them
2230 * contiguous. Unfortunately this brings us to the second
2231 * stupidity, which is that ext4's mballoc code only allocates
2232 * at most 2048 blocks. So we force contiguous writes up to
2233 * the number of dirty blocks in the inode, or
2234 * sbi->max_writeback_mb_bump whichever is smaller.
2236 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2237 if (!range_cyclic && range_whole) {
2238 if (wbc->nr_to_write == LONG_MAX)
2239 desired_nr_to_write = wbc->nr_to_write;
2240 else
2241 desired_nr_to_write = wbc->nr_to_write * 8;
2242 } else
2243 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2244 max_pages);
2245 if (desired_nr_to_write > max_pages)
2246 desired_nr_to_write = max_pages;
2248 if (wbc->nr_to_write < desired_nr_to_write) {
2249 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2250 wbc->nr_to_write = desired_nr_to_write;
2253 retry:
2254 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2255 tag_pages_for_writeback(mapping, index, end);
2257 blk_start_plug(&plug);
2258 while (!ret && wbc->nr_to_write > 0) {
2261 * we insert one extent at a time. So we need
2262 * credit needed for single extent allocation.
2263 * journalled mode is currently not supported
2264 * by delalloc
2266 BUG_ON(ext4_should_journal_data(inode));
2267 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2269 /* start a new transaction*/
2270 handle = ext4_journal_start(inode, needed_blocks);
2271 if (IS_ERR(handle)) {
2272 ret = PTR_ERR(handle);
2273 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2274 "%ld pages, ino %lu; err %d", __func__,
2275 wbc->nr_to_write, inode->i_ino, ret);
2276 blk_finish_plug(&plug);
2277 goto out_writepages;
2281 * Now call write_cache_pages_da() to find the next
2282 * contiguous region of logical blocks that need
2283 * blocks to be allocated by ext4 and submit them.
2285 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2287 * If we have a contiguous extent of pages and we
2288 * haven't done the I/O yet, map the blocks and submit
2289 * them for I/O.
2291 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2292 mpage_da_map_and_submit(&mpd);
2293 ret = MPAGE_DA_EXTENT_TAIL;
2295 trace_ext4_da_write_pages(inode, &mpd);
2296 wbc->nr_to_write -= mpd.pages_written;
2298 ext4_journal_stop(handle);
2300 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2301 /* commit the transaction which would
2302 * free blocks released in the transaction
2303 * and try again
2305 jbd2_journal_force_commit_nested(sbi->s_journal);
2306 ret = 0;
2307 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2309 * Got one extent now try with rest of the pages.
2310 * If mpd.retval is set -EIO, journal is aborted.
2311 * So we don't need to write any more.
2313 pages_written += mpd.pages_written;
2314 ret = mpd.retval;
2315 io_done = 1;
2316 } else if (wbc->nr_to_write)
2318 * There is no more writeout needed
2319 * or we requested for a noblocking writeout
2320 * and we found the device congested
2322 break;
2324 blk_finish_plug(&plug);
2325 if (!io_done && !cycled) {
2326 cycled = 1;
2327 index = 0;
2328 wbc->range_start = index << PAGE_CACHE_SHIFT;
2329 wbc->range_end = mapping->writeback_index - 1;
2330 goto retry;
2333 /* Update index */
2334 wbc->range_cyclic = range_cyclic;
2335 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2337 * set the writeback_index so that range_cyclic
2338 * mode will write it back later
2340 mapping->writeback_index = done_index;
2342 out_writepages:
2343 wbc->nr_to_write -= nr_to_writebump;
2344 wbc->range_start = range_start;
2345 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2346 return ret;
2349 #define FALL_BACK_TO_NONDELALLOC 1
2350 static int ext4_nonda_switch(struct super_block *sb)
2352 s64 free_blocks, dirty_blocks;
2353 struct ext4_sb_info *sbi = EXT4_SB(sb);
2356 * switch to non delalloc mode if we are running low
2357 * on free block. The free block accounting via percpu
2358 * counters can get slightly wrong with percpu_counter_batch getting
2359 * accumulated on each CPU without updating global counters
2360 * Delalloc need an accurate free block accounting. So switch
2361 * to non delalloc when we are near to error range.
2363 free_blocks = EXT4_C2B(sbi,
2364 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2365 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2366 if (2 * free_blocks < 3 * dirty_blocks ||
2367 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2369 * free block count is less than 150% of dirty blocks
2370 * or free blocks is less than watermark
2372 return 1;
2375 * Even if we don't switch but are nearing capacity,
2376 * start pushing delalloc when 1/2 of free blocks are dirty.
2378 if (free_blocks < 2 * dirty_blocks)
2379 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2381 return 0;
2384 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2385 loff_t pos, unsigned len, unsigned flags,
2386 struct page **pagep, void **fsdata)
2388 int ret, retries = 0;
2389 struct page *page;
2390 pgoff_t index;
2391 struct inode *inode = mapping->host;
2392 handle_t *handle;
2393 loff_t page_len;
2395 index = pos >> PAGE_CACHE_SHIFT;
2397 if (ext4_nonda_switch(inode->i_sb)) {
2398 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2399 return ext4_write_begin(file, mapping, pos,
2400 len, flags, pagep, fsdata);
2402 *fsdata = (void *)0;
2403 trace_ext4_da_write_begin(inode, pos, len, flags);
2404 retry:
2406 * With delayed allocation, we don't log the i_disksize update
2407 * if there is delayed block allocation. But we still need
2408 * to journalling the i_disksize update if writes to the end
2409 * of file which has an already mapped buffer.
2411 handle = ext4_journal_start(inode, 1);
2412 if (IS_ERR(handle)) {
2413 ret = PTR_ERR(handle);
2414 goto out;
2416 /* We cannot recurse into the filesystem as the transaction is already
2417 * started */
2418 flags |= AOP_FLAG_NOFS;
2420 page = grab_cache_page_write_begin(mapping, index, flags);
2421 if (!page) {
2422 ext4_journal_stop(handle);
2423 ret = -ENOMEM;
2424 goto out;
2426 *pagep = page;
2428 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2429 if (ret < 0) {
2430 unlock_page(page);
2431 ext4_journal_stop(handle);
2432 page_cache_release(page);
2434 * block_write_begin may have instantiated a few blocks
2435 * outside i_size. Trim these off again. Don't need
2436 * i_size_read because we hold i_mutex.
2438 if (pos + len > inode->i_size)
2439 ext4_truncate_failed_write(inode);
2440 } else {
2441 page_len = pos & (PAGE_CACHE_SIZE - 1);
2442 if (page_len > 0) {
2443 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2444 inode, page, pos - page_len, page_len,
2445 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2449 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2450 goto retry;
2451 out:
2452 return ret;
2456 * Check if we should update i_disksize
2457 * when write to the end of file but not require block allocation
2459 static int ext4_da_should_update_i_disksize(struct page *page,
2460 unsigned long offset)
2462 struct buffer_head *bh;
2463 struct inode *inode = page->mapping->host;
2464 unsigned int idx;
2465 int i;
2467 bh = page_buffers(page);
2468 idx = offset >> inode->i_blkbits;
2470 for (i = 0; i < idx; i++)
2471 bh = bh->b_this_page;
2473 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2474 return 0;
2475 return 1;
2478 static int ext4_da_write_end(struct file *file,
2479 struct address_space *mapping,
2480 loff_t pos, unsigned len, unsigned copied,
2481 struct page *page, void *fsdata)
2483 struct inode *inode = mapping->host;
2484 int ret = 0, ret2;
2485 handle_t *handle = ext4_journal_current_handle();
2486 loff_t new_i_size;
2487 unsigned long start, end;
2488 int write_mode = (int)(unsigned long)fsdata;
2489 loff_t page_len;
2491 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2492 if (ext4_should_order_data(inode)) {
2493 return ext4_ordered_write_end(file, mapping, pos,
2494 len, copied, page, fsdata);
2495 } else if (ext4_should_writeback_data(inode)) {
2496 return ext4_writeback_write_end(file, mapping, pos,
2497 len, copied, page, fsdata);
2498 } else {
2499 BUG();
2503 trace_ext4_da_write_end(inode, pos, len, copied);
2504 start = pos & (PAGE_CACHE_SIZE - 1);
2505 end = start + copied - 1;
2508 * generic_write_end() will run mark_inode_dirty() if i_size
2509 * changes. So let's piggyback the i_disksize mark_inode_dirty
2510 * into that.
2513 new_i_size = pos + copied;
2514 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2515 if (ext4_da_should_update_i_disksize(page, end)) {
2516 down_write(&EXT4_I(inode)->i_data_sem);
2517 if (new_i_size > EXT4_I(inode)->i_disksize) {
2519 * Updating i_disksize when extending file
2520 * without needing block allocation
2522 if (ext4_should_order_data(inode))
2523 ret = ext4_jbd2_file_inode(handle,
2524 inode);
2526 EXT4_I(inode)->i_disksize = new_i_size;
2528 up_write(&EXT4_I(inode)->i_data_sem);
2529 /* We need to mark inode dirty even if
2530 * new_i_size is less that inode->i_size
2531 * bu greater than i_disksize.(hint delalloc)
2533 ext4_mark_inode_dirty(handle, inode);
2536 ret2 = generic_write_end(file, mapping, pos, len, copied,
2537 page, fsdata);
2539 page_len = PAGE_CACHE_SIZE -
2540 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2542 if (page_len > 0) {
2543 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2544 inode, page, pos + copied - 1, page_len,
2545 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2548 copied = ret2;
2549 if (ret2 < 0)
2550 ret = ret2;
2551 ret2 = ext4_journal_stop(handle);
2552 if (!ret)
2553 ret = ret2;
2555 return ret ? ret : copied;
2558 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2561 * Drop reserved blocks
2563 BUG_ON(!PageLocked(page));
2564 if (!page_has_buffers(page))
2565 goto out;
2567 ext4_da_page_release_reservation(page, offset);
2569 out:
2570 ext4_invalidatepage(page, offset);
2572 return;
2576 * Force all delayed allocation blocks to be allocated for a given inode.
2578 int ext4_alloc_da_blocks(struct inode *inode)
2580 trace_ext4_alloc_da_blocks(inode);
2582 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2583 !EXT4_I(inode)->i_reserved_meta_blocks)
2584 return 0;
2587 * We do something simple for now. The filemap_flush() will
2588 * also start triggering a write of the data blocks, which is
2589 * not strictly speaking necessary (and for users of
2590 * laptop_mode, not even desirable). However, to do otherwise
2591 * would require replicating code paths in:
2593 * ext4_da_writepages() ->
2594 * write_cache_pages() ---> (via passed in callback function)
2595 * __mpage_da_writepage() -->
2596 * mpage_add_bh_to_extent()
2597 * mpage_da_map_blocks()
2599 * The problem is that write_cache_pages(), located in
2600 * mm/page-writeback.c, marks pages clean in preparation for
2601 * doing I/O, which is not desirable if we're not planning on
2602 * doing I/O at all.
2604 * We could call write_cache_pages(), and then redirty all of
2605 * the pages by calling redirty_page_for_writepage() but that
2606 * would be ugly in the extreme. So instead we would need to
2607 * replicate parts of the code in the above functions,
2608 * simplifying them because we wouldn't actually intend to
2609 * write out the pages, but rather only collect contiguous
2610 * logical block extents, call the multi-block allocator, and
2611 * then update the buffer heads with the block allocations.
2613 * For now, though, we'll cheat by calling filemap_flush(),
2614 * which will map the blocks, and start the I/O, but not
2615 * actually wait for the I/O to complete.
2617 return filemap_flush(inode->i_mapping);
2621 * bmap() is special. It gets used by applications such as lilo and by
2622 * the swapper to find the on-disk block of a specific piece of data.
2624 * Naturally, this is dangerous if the block concerned is still in the
2625 * journal. If somebody makes a swapfile on an ext4 data-journaling
2626 * filesystem and enables swap, then they may get a nasty shock when the
2627 * data getting swapped to that swapfile suddenly gets overwritten by
2628 * the original zero's written out previously to the journal and
2629 * awaiting writeback in the kernel's buffer cache.
2631 * So, if we see any bmap calls here on a modified, data-journaled file,
2632 * take extra steps to flush any blocks which might be in the cache.
2634 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2636 struct inode *inode = mapping->host;
2637 journal_t *journal;
2638 int err;
2640 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2641 test_opt(inode->i_sb, DELALLOC)) {
2643 * With delalloc we want to sync the file
2644 * so that we can make sure we allocate
2645 * blocks for file
2647 filemap_write_and_wait(mapping);
2650 if (EXT4_JOURNAL(inode) &&
2651 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2653 * This is a REALLY heavyweight approach, but the use of
2654 * bmap on dirty files is expected to be extremely rare:
2655 * only if we run lilo or swapon on a freshly made file
2656 * do we expect this to happen.
2658 * (bmap requires CAP_SYS_RAWIO so this does not
2659 * represent an unprivileged user DOS attack --- we'd be
2660 * in trouble if mortal users could trigger this path at
2661 * will.)
2663 * NB. EXT4_STATE_JDATA is not set on files other than
2664 * regular files. If somebody wants to bmap a directory
2665 * or symlink and gets confused because the buffer
2666 * hasn't yet been flushed to disk, they deserve
2667 * everything they get.
2670 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2671 journal = EXT4_JOURNAL(inode);
2672 jbd2_journal_lock_updates(journal);
2673 err = jbd2_journal_flush(journal);
2674 jbd2_journal_unlock_updates(journal);
2676 if (err)
2677 return 0;
2680 return generic_block_bmap(mapping, block, ext4_get_block);
2683 static int ext4_readpage(struct file *file, struct page *page)
2685 trace_ext4_readpage(page);
2686 return mpage_readpage(page, ext4_get_block);
2689 static int
2690 ext4_readpages(struct file *file, struct address_space *mapping,
2691 struct list_head *pages, unsigned nr_pages)
2693 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2696 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2698 struct buffer_head *head, *bh;
2699 unsigned int curr_off = 0;
2701 if (!page_has_buffers(page))
2702 return;
2703 head = bh = page_buffers(page);
2704 do {
2705 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2706 && bh->b_private) {
2707 ext4_free_io_end(bh->b_private);
2708 bh->b_private = NULL;
2709 bh->b_end_io = NULL;
2711 curr_off = curr_off + bh->b_size;
2712 bh = bh->b_this_page;
2713 } while (bh != head);
2716 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2718 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2720 trace_ext4_invalidatepage(page, offset);
2723 * free any io_end structure allocated for buffers to be discarded
2725 if (ext4_should_dioread_nolock(page->mapping->host))
2726 ext4_invalidatepage_free_endio(page, offset);
2728 * If it's a full truncate we just forget about the pending dirtying
2730 if (offset == 0)
2731 ClearPageChecked(page);
2733 if (journal)
2734 jbd2_journal_invalidatepage(journal, page, offset);
2735 else
2736 block_invalidatepage(page, offset);
2739 static int ext4_releasepage(struct page *page, gfp_t wait)
2741 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2743 trace_ext4_releasepage(page);
2745 WARN_ON(PageChecked(page));
2746 if (!page_has_buffers(page))
2747 return 0;
2748 if (journal)
2749 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2750 else
2751 return try_to_free_buffers(page);
2755 * ext4_get_block used when preparing for a DIO write or buffer write.
2756 * We allocate an uinitialized extent if blocks haven't been allocated.
2757 * The extent will be converted to initialized after the IO is complete.
2759 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2760 struct buffer_head *bh_result, int create)
2762 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2763 inode->i_ino, create);
2764 return _ext4_get_block(inode, iblock, bh_result,
2765 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2768 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2769 ssize_t size, void *private, int ret,
2770 bool is_async)
2772 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2773 ext4_io_end_t *io_end = iocb->private;
2774 struct workqueue_struct *wq;
2775 unsigned long flags;
2776 struct ext4_inode_info *ei;
2778 /* if not async direct IO or dio with 0 bytes write, just return */
2779 if (!io_end || !size)
2780 goto out;
2782 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2783 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2784 iocb->private, io_end->inode->i_ino, iocb, offset,
2785 size);
2787 iocb->private = NULL;
2789 /* if not aio dio with unwritten extents, just free io and return */
2790 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2791 ext4_free_io_end(io_end);
2792 out:
2793 if (is_async)
2794 aio_complete(iocb, ret, 0);
2795 inode_dio_done(inode);
2796 return;
2799 io_end->offset = offset;
2800 io_end->size = size;
2801 if (is_async) {
2802 io_end->iocb = iocb;
2803 io_end->result = ret;
2805 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2807 /* Add the io_end to per-inode completed aio dio list*/
2808 ei = EXT4_I(io_end->inode);
2809 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2810 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2811 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2813 /* queue the work to convert unwritten extents to written */
2814 queue_work(wq, &io_end->work);
2816 /* XXX: probably should move into the real I/O completion handler */
2817 inode_dio_done(inode);
2820 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2822 ext4_io_end_t *io_end = bh->b_private;
2823 struct workqueue_struct *wq;
2824 struct inode *inode;
2825 unsigned long flags;
2827 if (!test_clear_buffer_uninit(bh) || !io_end)
2828 goto out;
2830 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2831 printk("sb umounted, discard end_io request for inode %lu\n",
2832 io_end->inode->i_ino);
2833 ext4_free_io_end(io_end);
2834 goto out;
2838 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2839 * but being more careful is always safe for the future change.
2841 inode = io_end->inode;
2842 ext4_set_io_unwritten_flag(inode, io_end);
2844 /* Add the io_end to per-inode completed io list*/
2845 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2846 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2847 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2849 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2850 /* queue the work to convert unwritten extents to written */
2851 queue_work(wq, &io_end->work);
2852 out:
2853 bh->b_private = NULL;
2854 bh->b_end_io = NULL;
2855 clear_buffer_uninit(bh);
2856 end_buffer_async_write(bh, uptodate);
2859 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2861 ext4_io_end_t *io_end;
2862 struct page *page = bh->b_page;
2863 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2864 size_t size = bh->b_size;
2866 retry:
2867 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2868 if (!io_end) {
2869 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2870 schedule();
2871 goto retry;
2873 io_end->offset = offset;
2874 io_end->size = size;
2876 * We need to hold a reference to the page to make sure it
2877 * doesn't get evicted before ext4_end_io_work() has a chance
2878 * to convert the extent from written to unwritten.
2880 io_end->page = page;
2881 get_page(io_end->page);
2883 bh->b_private = io_end;
2884 bh->b_end_io = ext4_end_io_buffer_write;
2885 return 0;
2889 * For ext4 extent files, ext4 will do direct-io write to holes,
2890 * preallocated extents, and those write extend the file, no need to
2891 * fall back to buffered IO.
2893 * For holes, we fallocate those blocks, mark them as uninitialized
2894 * If those blocks were preallocated, we mark sure they are splited, but
2895 * still keep the range to write as uninitialized.
2897 * The unwrritten extents will be converted to written when DIO is completed.
2898 * For async direct IO, since the IO may still pending when return, we
2899 * set up an end_io call back function, which will do the conversion
2900 * when async direct IO completed.
2902 * If the O_DIRECT write will extend the file then add this inode to the
2903 * orphan list. So recovery will truncate it back to the original size
2904 * if the machine crashes during the write.
2907 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2908 const struct iovec *iov, loff_t offset,
2909 unsigned long nr_segs)
2911 struct file *file = iocb->ki_filp;
2912 struct inode *inode = file->f_mapping->host;
2913 ssize_t ret;
2914 size_t count = iov_length(iov, nr_segs);
2916 loff_t final_size = offset + count;
2917 if (rw == WRITE && final_size <= inode->i_size) {
2919 * We could direct write to holes and fallocate.
2921 * Allocated blocks to fill the hole are marked as uninitialized
2922 * to prevent parallel buffered read to expose the stale data
2923 * before DIO complete the data IO.
2925 * As to previously fallocated extents, ext4 get_block
2926 * will just simply mark the buffer mapped but still
2927 * keep the extents uninitialized.
2929 * for non AIO case, we will convert those unwritten extents
2930 * to written after return back from blockdev_direct_IO.
2932 * for async DIO, the conversion needs to be defered when
2933 * the IO is completed. The ext4 end_io callback function
2934 * will be called to take care of the conversion work.
2935 * Here for async case, we allocate an io_end structure to
2936 * hook to the iocb.
2938 iocb->private = NULL;
2939 EXT4_I(inode)->cur_aio_dio = NULL;
2940 if (!is_sync_kiocb(iocb)) {
2941 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2942 if (!iocb->private)
2943 return -ENOMEM;
2945 * we save the io structure for current async
2946 * direct IO, so that later ext4_map_blocks()
2947 * could flag the io structure whether there
2948 * is a unwritten extents needs to be converted
2949 * when IO is completed.
2951 EXT4_I(inode)->cur_aio_dio = iocb->private;
2954 ret = __blockdev_direct_IO(rw, iocb, inode,
2955 inode->i_sb->s_bdev, iov,
2956 offset, nr_segs,
2957 ext4_get_block_write,
2958 ext4_end_io_dio,
2959 NULL,
2960 DIO_LOCKING | DIO_SKIP_HOLES);
2961 if (iocb->private)
2962 EXT4_I(inode)->cur_aio_dio = NULL;
2964 * The io_end structure takes a reference to the inode,
2965 * that structure needs to be destroyed and the
2966 * reference to the inode need to be dropped, when IO is
2967 * complete, even with 0 byte write, or failed.
2969 * In the successful AIO DIO case, the io_end structure will be
2970 * desctroyed and the reference to the inode will be dropped
2971 * after the end_io call back function is called.
2973 * In the case there is 0 byte write, or error case, since
2974 * VFS direct IO won't invoke the end_io call back function,
2975 * we need to free the end_io structure here.
2977 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2978 ext4_free_io_end(iocb->private);
2979 iocb->private = NULL;
2980 } else if (ret > 0 && ext4_test_inode_state(inode,
2981 EXT4_STATE_DIO_UNWRITTEN)) {
2982 int err;
2984 * for non AIO case, since the IO is already
2985 * completed, we could do the conversion right here
2987 err = ext4_convert_unwritten_extents(inode,
2988 offset, ret);
2989 if (err < 0)
2990 ret = err;
2991 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2993 return ret;
2996 /* for write the the end of file case, we fall back to old way */
2997 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3000 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3001 const struct iovec *iov, loff_t offset,
3002 unsigned long nr_segs)
3004 struct file *file = iocb->ki_filp;
3005 struct inode *inode = file->f_mapping->host;
3006 ssize_t ret;
3009 * If we are doing data journalling we don't support O_DIRECT
3011 if (ext4_should_journal_data(inode))
3012 return 0;
3014 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3015 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3016 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3017 else
3018 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3019 trace_ext4_direct_IO_exit(inode, offset,
3020 iov_length(iov, nr_segs), rw, ret);
3021 return ret;
3025 * Pages can be marked dirty completely asynchronously from ext4's journalling
3026 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3027 * much here because ->set_page_dirty is called under VFS locks. The page is
3028 * not necessarily locked.
3030 * We cannot just dirty the page and leave attached buffers clean, because the
3031 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3032 * or jbddirty because all the journalling code will explode.
3034 * So what we do is to mark the page "pending dirty" and next time writepage
3035 * is called, propagate that into the buffers appropriately.
3037 static int ext4_journalled_set_page_dirty(struct page *page)
3039 SetPageChecked(page);
3040 return __set_page_dirty_nobuffers(page);
3043 static const struct address_space_operations ext4_ordered_aops = {
3044 .readpage = ext4_readpage,
3045 .readpages = ext4_readpages,
3046 .writepage = ext4_writepage,
3047 .write_begin = ext4_write_begin,
3048 .write_end = ext4_ordered_write_end,
3049 .bmap = ext4_bmap,
3050 .invalidatepage = ext4_invalidatepage,
3051 .releasepage = ext4_releasepage,
3052 .direct_IO = ext4_direct_IO,
3053 .migratepage = buffer_migrate_page,
3054 .is_partially_uptodate = block_is_partially_uptodate,
3055 .error_remove_page = generic_error_remove_page,
3058 static const struct address_space_operations ext4_writeback_aops = {
3059 .readpage = ext4_readpage,
3060 .readpages = ext4_readpages,
3061 .writepage = ext4_writepage,
3062 .write_begin = ext4_write_begin,
3063 .write_end = ext4_writeback_write_end,
3064 .bmap = ext4_bmap,
3065 .invalidatepage = ext4_invalidatepage,
3066 .releasepage = ext4_releasepage,
3067 .direct_IO = ext4_direct_IO,
3068 .migratepage = buffer_migrate_page,
3069 .is_partially_uptodate = block_is_partially_uptodate,
3070 .error_remove_page = generic_error_remove_page,
3073 static const struct address_space_operations ext4_journalled_aops = {
3074 .readpage = ext4_readpage,
3075 .readpages = ext4_readpages,
3076 .writepage = ext4_writepage,
3077 .write_begin = ext4_write_begin,
3078 .write_end = ext4_journalled_write_end,
3079 .set_page_dirty = ext4_journalled_set_page_dirty,
3080 .bmap = ext4_bmap,
3081 .invalidatepage = ext4_invalidatepage,
3082 .releasepage = ext4_releasepage,
3083 .direct_IO = ext4_direct_IO,
3084 .is_partially_uptodate = block_is_partially_uptodate,
3085 .error_remove_page = generic_error_remove_page,
3088 static const struct address_space_operations ext4_da_aops = {
3089 .readpage = ext4_readpage,
3090 .readpages = ext4_readpages,
3091 .writepage = ext4_writepage,
3092 .writepages = ext4_da_writepages,
3093 .write_begin = ext4_da_write_begin,
3094 .write_end = ext4_da_write_end,
3095 .bmap = ext4_bmap,
3096 .invalidatepage = ext4_da_invalidatepage,
3097 .releasepage = ext4_releasepage,
3098 .direct_IO = ext4_direct_IO,
3099 .migratepage = buffer_migrate_page,
3100 .is_partially_uptodate = block_is_partially_uptodate,
3101 .error_remove_page = generic_error_remove_page,
3104 void ext4_set_aops(struct inode *inode)
3106 if (ext4_should_order_data(inode) &&
3107 test_opt(inode->i_sb, DELALLOC))
3108 inode->i_mapping->a_ops = &ext4_da_aops;
3109 else if (ext4_should_order_data(inode))
3110 inode->i_mapping->a_ops = &ext4_ordered_aops;
3111 else if (ext4_should_writeback_data(inode) &&
3112 test_opt(inode->i_sb, DELALLOC))
3113 inode->i_mapping->a_ops = &ext4_da_aops;
3114 else if (ext4_should_writeback_data(inode))
3115 inode->i_mapping->a_ops = &ext4_writeback_aops;
3116 else
3117 inode->i_mapping->a_ops = &ext4_journalled_aops;
3122 * ext4_discard_partial_page_buffers()
3123 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3124 * This function finds and locks the page containing the offset
3125 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3126 * Calling functions that already have the page locked should call
3127 * ext4_discard_partial_page_buffers_no_lock directly.
3129 int ext4_discard_partial_page_buffers(handle_t *handle,
3130 struct address_space *mapping, loff_t from,
3131 loff_t length, int flags)
3133 struct inode *inode = mapping->host;
3134 struct page *page;
3135 int err = 0;
3137 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3138 mapping_gfp_mask(mapping) & ~__GFP_FS);
3139 if (!page)
3140 return -ENOMEM;
3142 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3143 from, length, flags);
3145 unlock_page(page);
3146 page_cache_release(page);
3147 return err;
3151 * ext4_discard_partial_page_buffers_no_lock()
3152 * Zeros a page range of length 'length' starting from offset 'from'.
3153 * Buffer heads that correspond to the block aligned regions of the
3154 * zeroed range will be unmapped. Unblock aligned regions
3155 * will have the corresponding buffer head mapped if needed so that
3156 * that region of the page can be updated with the partial zero out.
3158 * This function assumes that the page has already been locked. The
3159 * The range to be discarded must be contained with in the given page.
3160 * If the specified range exceeds the end of the page it will be shortened
3161 * to the end of the page that corresponds to 'from'. This function is
3162 * appropriate for updating a page and it buffer heads to be unmapped and
3163 * zeroed for blocks that have been either released, or are going to be
3164 * released.
3166 * handle: The journal handle
3167 * inode: The files inode
3168 * page: A locked page that contains the offset "from"
3169 * from: The starting byte offset (from the begining of the file)
3170 * to begin discarding
3171 * len: The length of bytes to discard
3172 * flags: Optional flags that may be used:
3174 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3175 * Only zero the regions of the page whose buffer heads
3176 * have already been unmapped. This flag is appropriate
3177 * for updateing the contents of a page whose blocks may
3178 * have already been released, and we only want to zero
3179 * out the regions that correspond to those released blocks.
3181 * Returns zero on sucess or negative on failure.
3183 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3184 struct inode *inode, struct page *page, loff_t from,
3185 loff_t length, int flags)
3187 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3188 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3189 unsigned int blocksize, max, pos;
3190 ext4_lblk_t iblock;
3191 struct buffer_head *bh;
3192 int err = 0;
3194 blocksize = inode->i_sb->s_blocksize;
3195 max = PAGE_CACHE_SIZE - offset;
3197 if (index != page->index)
3198 return -EINVAL;
3201 * correct length if it does not fall between
3202 * 'from' and the end of the page
3204 if (length > max || length < 0)
3205 length = max;
3207 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3209 if (!page_has_buffers(page)) {
3211 * If the range to be discarded covers a partial block
3212 * we need to get the page buffers. This is because
3213 * partial blocks cannot be released and the page needs
3214 * to be updated with the contents of the block before
3215 * we write the zeros on top of it.
3217 if ((from & (blocksize - 1)) ||
3218 ((from + length) & (blocksize - 1))) {
3219 create_empty_buffers(page, blocksize, 0);
3220 } else {
3222 * If there are no partial blocks,
3223 * there is nothing to update,
3224 * so we can return now
3226 return 0;
3230 /* Find the buffer that contains "offset" */
3231 bh = page_buffers(page);
3232 pos = blocksize;
3233 while (offset >= pos) {
3234 bh = bh->b_this_page;
3235 iblock++;
3236 pos += blocksize;
3239 pos = offset;
3240 while (pos < offset + length) {
3241 unsigned int end_of_block, range_to_discard;
3243 err = 0;
3245 /* The length of space left to zero and unmap */
3246 range_to_discard = offset + length - pos;
3248 /* The length of space until the end of the block */
3249 end_of_block = blocksize - (pos & (blocksize-1));
3252 * Do not unmap or zero past end of block
3253 * for this buffer head
3255 if (range_to_discard > end_of_block)
3256 range_to_discard = end_of_block;
3260 * Skip this buffer head if we are only zeroing unampped
3261 * regions of the page
3263 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3264 buffer_mapped(bh))
3265 goto next;
3267 /* If the range is block aligned, unmap */
3268 if (range_to_discard == blocksize) {
3269 clear_buffer_dirty(bh);
3270 bh->b_bdev = NULL;
3271 clear_buffer_mapped(bh);
3272 clear_buffer_req(bh);
3273 clear_buffer_new(bh);
3274 clear_buffer_delay(bh);
3275 clear_buffer_unwritten(bh);
3276 clear_buffer_uptodate(bh);
3277 zero_user(page, pos, range_to_discard);
3278 BUFFER_TRACE(bh, "Buffer discarded");
3279 goto next;
3283 * If this block is not completely contained in the range
3284 * to be discarded, then it is not going to be released. Because
3285 * we need to keep this block, we need to make sure this part
3286 * of the page is uptodate before we modify it by writeing
3287 * partial zeros on it.
3289 if (!buffer_mapped(bh)) {
3291 * Buffer head must be mapped before we can read
3292 * from the block
3294 BUFFER_TRACE(bh, "unmapped");
3295 ext4_get_block(inode, iblock, bh, 0);
3296 /* unmapped? It's a hole - nothing to do */
3297 if (!buffer_mapped(bh)) {
3298 BUFFER_TRACE(bh, "still unmapped");
3299 goto next;
3303 /* Ok, it's mapped. Make sure it's up-to-date */
3304 if (PageUptodate(page))
3305 set_buffer_uptodate(bh);
3307 if (!buffer_uptodate(bh)) {
3308 err = -EIO;
3309 ll_rw_block(READ, 1, &bh);
3310 wait_on_buffer(bh);
3311 /* Uhhuh. Read error. Complain and punt.*/
3312 if (!buffer_uptodate(bh))
3313 goto next;
3316 if (ext4_should_journal_data(inode)) {
3317 BUFFER_TRACE(bh, "get write access");
3318 err = ext4_journal_get_write_access(handle, bh);
3319 if (err)
3320 goto next;
3323 zero_user(page, pos, range_to_discard);
3325 err = 0;
3326 if (ext4_should_journal_data(inode)) {
3327 err = ext4_handle_dirty_metadata(handle, inode, bh);
3328 } else
3329 mark_buffer_dirty(bh);
3331 BUFFER_TRACE(bh, "Partial buffer zeroed");
3332 next:
3333 bh = bh->b_this_page;
3334 iblock++;
3335 pos += range_to_discard;
3338 return err;
3342 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3343 * up to the end of the block which corresponds to `from'.
3344 * This required during truncate. We need to physically zero the tail end
3345 * of that block so it doesn't yield old data if the file is later grown.
3347 int ext4_block_truncate_page(handle_t *handle,
3348 struct address_space *mapping, loff_t from)
3350 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3351 unsigned length;
3352 unsigned blocksize;
3353 struct inode *inode = mapping->host;
3355 blocksize = inode->i_sb->s_blocksize;
3356 length = blocksize - (offset & (blocksize - 1));
3358 return ext4_block_zero_page_range(handle, mapping, from, length);
3362 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3363 * starting from file offset 'from'. The range to be zero'd must
3364 * be contained with in one block. If the specified range exceeds
3365 * the end of the block it will be shortened to end of the block
3366 * that cooresponds to 'from'
3368 int ext4_block_zero_page_range(handle_t *handle,
3369 struct address_space *mapping, loff_t from, loff_t length)
3371 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3372 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3373 unsigned blocksize, max, pos;
3374 ext4_lblk_t iblock;
3375 struct inode *inode = mapping->host;
3376 struct buffer_head *bh;
3377 struct page *page;
3378 int err = 0;
3380 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3381 mapping_gfp_mask(mapping) & ~__GFP_FS);
3382 if (!page)
3383 return -ENOMEM;
3385 blocksize = inode->i_sb->s_blocksize;
3386 max = blocksize - (offset & (blocksize - 1));
3389 * correct length if it does not fall between
3390 * 'from' and the end of the block
3392 if (length > max || length < 0)
3393 length = max;
3395 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3397 if (!page_has_buffers(page))
3398 create_empty_buffers(page, blocksize, 0);
3400 /* Find the buffer that contains "offset" */
3401 bh = page_buffers(page);
3402 pos = blocksize;
3403 while (offset >= pos) {
3404 bh = bh->b_this_page;
3405 iblock++;
3406 pos += blocksize;
3409 err = 0;
3410 if (buffer_freed(bh)) {
3411 BUFFER_TRACE(bh, "freed: skip");
3412 goto unlock;
3415 if (!buffer_mapped(bh)) {
3416 BUFFER_TRACE(bh, "unmapped");
3417 ext4_get_block(inode, iblock, bh, 0);
3418 /* unmapped? It's a hole - nothing to do */
3419 if (!buffer_mapped(bh)) {
3420 BUFFER_TRACE(bh, "still unmapped");
3421 goto unlock;
3425 /* Ok, it's mapped. Make sure it's up-to-date */
3426 if (PageUptodate(page))
3427 set_buffer_uptodate(bh);
3429 if (!buffer_uptodate(bh)) {
3430 err = -EIO;
3431 ll_rw_block(READ, 1, &bh);
3432 wait_on_buffer(bh);
3433 /* Uhhuh. Read error. Complain and punt. */
3434 if (!buffer_uptodate(bh))
3435 goto unlock;
3438 if (ext4_should_journal_data(inode)) {
3439 BUFFER_TRACE(bh, "get write access");
3440 err = ext4_journal_get_write_access(handle, bh);
3441 if (err)
3442 goto unlock;
3445 zero_user(page, offset, length);
3447 BUFFER_TRACE(bh, "zeroed end of block");
3449 err = 0;
3450 if (ext4_should_journal_data(inode)) {
3451 err = ext4_handle_dirty_metadata(handle, inode, bh);
3452 } else
3453 mark_buffer_dirty(bh);
3455 unlock:
3456 unlock_page(page);
3457 page_cache_release(page);
3458 return err;
3461 int ext4_can_truncate(struct inode *inode)
3463 if (S_ISREG(inode->i_mode))
3464 return 1;
3465 if (S_ISDIR(inode->i_mode))
3466 return 1;
3467 if (S_ISLNK(inode->i_mode))
3468 return !ext4_inode_is_fast_symlink(inode);
3469 return 0;
3473 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3474 * associated with the given offset and length
3476 * @inode: File inode
3477 * @offset: The offset where the hole will begin
3478 * @len: The length of the hole
3480 * Returns: 0 on sucess or negative on failure
3483 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3485 struct inode *inode = file->f_path.dentry->d_inode;
3486 if (!S_ISREG(inode->i_mode))
3487 return -ENOTSUPP;
3489 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3490 /* TODO: Add support for non extent hole punching */
3491 return -ENOTSUPP;
3494 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3495 /* TODO: Add support for bigalloc file systems */
3496 return -ENOTSUPP;
3499 return ext4_ext_punch_hole(file, offset, length);
3503 * ext4_truncate()
3505 * We block out ext4_get_block() block instantiations across the entire
3506 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3507 * simultaneously on behalf of the same inode.
3509 * As we work through the truncate and commmit bits of it to the journal there
3510 * is one core, guiding principle: the file's tree must always be consistent on
3511 * disk. We must be able to restart the truncate after a crash.
3513 * The file's tree may be transiently inconsistent in memory (although it
3514 * probably isn't), but whenever we close off and commit a journal transaction,
3515 * the contents of (the filesystem + the journal) must be consistent and
3516 * restartable. It's pretty simple, really: bottom up, right to left (although
3517 * left-to-right works OK too).
3519 * Note that at recovery time, journal replay occurs *before* the restart of
3520 * truncate against the orphan inode list.
3522 * The committed inode has the new, desired i_size (which is the same as
3523 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3524 * that this inode's truncate did not complete and it will again call
3525 * ext4_truncate() to have another go. So there will be instantiated blocks
3526 * to the right of the truncation point in a crashed ext4 filesystem. But
3527 * that's fine - as long as they are linked from the inode, the post-crash
3528 * ext4_truncate() run will find them and release them.
3530 void ext4_truncate(struct inode *inode)
3532 trace_ext4_truncate_enter(inode);
3534 if (!ext4_can_truncate(inode))
3535 return;
3537 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3539 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3540 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3542 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3543 ext4_ext_truncate(inode);
3544 else
3545 ext4_ind_truncate(inode);
3547 trace_ext4_truncate_exit(inode);
3551 * ext4_get_inode_loc returns with an extra refcount against the inode's
3552 * underlying buffer_head on success. If 'in_mem' is true, we have all
3553 * data in memory that is needed to recreate the on-disk version of this
3554 * inode.
3556 static int __ext4_get_inode_loc(struct inode *inode,
3557 struct ext4_iloc *iloc, int in_mem)
3559 struct ext4_group_desc *gdp;
3560 struct buffer_head *bh;
3561 struct super_block *sb = inode->i_sb;
3562 ext4_fsblk_t block;
3563 int inodes_per_block, inode_offset;
3565 iloc->bh = NULL;
3566 if (!ext4_valid_inum(sb, inode->i_ino))
3567 return -EIO;
3569 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3570 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3571 if (!gdp)
3572 return -EIO;
3575 * Figure out the offset within the block group inode table
3577 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3578 inode_offset = ((inode->i_ino - 1) %
3579 EXT4_INODES_PER_GROUP(sb));
3580 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3581 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3583 bh = sb_getblk(sb, block);
3584 if (!bh) {
3585 EXT4_ERROR_INODE_BLOCK(inode, block,
3586 "unable to read itable block");
3587 return -EIO;
3589 if (!buffer_uptodate(bh)) {
3590 lock_buffer(bh);
3593 * If the buffer has the write error flag, we have failed
3594 * to write out another inode in the same block. In this
3595 * case, we don't have to read the block because we may
3596 * read the old inode data successfully.
3598 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3599 set_buffer_uptodate(bh);
3601 if (buffer_uptodate(bh)) {
3602 /* someone brought it uptodate while we waited */
3603 unlock_buffer(bh);
3604 goto has_buffer;
3608 * If we have all information of the inode in memory and this
3609 * is the only valid inode in the block, we need not read the
3610 * block.
3612 if (in_mem) {
3613 struct buffer_head *bitmap_bh;
3614 int i, start;
3616 start = inode_offset & ~(inodes_per_block - 1);
3618 /* Is the inode bitmap in cache? */
3619 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3620 if (!bitmap_bh)
3621 goto make_io;
3624 * If the inode bitmap isn't in cache then the
3625 * optimisation may end up performing two reads instead
3626 * of one, so skip it.
3628 if (!buffer_uptodate(bitmap_bh)) {
3629 brelse(bitmap_bh);
3630 goto make_io;
3632 for (i = start; i < start + inodes_per_block; i++) {
3633 if (i == inode_offset)
3634 continue;
3635 if (ext4_test_bit(i, bitmap_bh->b_data))
3636 break;
3638 brelse(bitmap_bh);
3639 if (i == start + inodes_per_block) {
3640 /* all other inodes are free, so skip I/O */
3641 memset(bh->b_data, 0, bh->b_size);
3642 set_buffer_uptodate(bh);
3643 unlock_buffer(bh);
3644 goto has_buffer;
3648 make_io:
3650 * If we need to do any I/O, try to pre-readahead extra
3651 * blocks from the inode table.
3653 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3654 ext4_fsblk_t b, end, table;
3655 unsigned num;
3657 table = ext4_inode_table(sb, gdp);
3658 /* s_inode_readahead_blks is always a power of 2 */
3659 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3660 if (table > b)
3661 b = table;
3662 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3663 num = EXT4_INODES_PER_GROUP(sb);
3664 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3665 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3666 num -= ext4_itable_unused_count(sb, gdp);
3667 table += num / inodes_per_block;
3668 if (end > table)
3669 end = table;
3670 while (b <= end)
3671 sb_breadahead(sb, b++);
3675 * There are other valid inodes in the buffer, this inode
3676 * has in-inode xattrs, or we don't have this inode in memory.
3677 * Read the block from disk.
3679 trace_ext4_load_inode(inode);
3680 get_bh(bh);
3681 bh->b_end_io = end_buffer_read_sync;
3682 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3683 wait_on_buffer(bh);
3684 if (!buffer_uptodate(bh)) {
3685 EXT4_ERROR_INODE_BLOCK(inode, block,
3686 "unable to read itable block");
3687 brelse(bh);
3688 return -EIO;
3691 has_buffer:
3692 iloc->bh = bh;
3693 return 0;
3696 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3698 /* We have all inode data except xattrs in memory here. */
3699 return __ext4_get_inode_loc(inode, iloc,
3700 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3703 void ext4_set_inode_flags(struct inode *inode)
3705 unsigned int flags = EXT4_I(inode)->i_flags;
3707 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3708 if (flags & EXT4_SYNC_FL)
3709 inode->i_flags |= S_SYNC;
3710 if (flags & EXT4_APPEND_FL)
3711 inode->i_flags |= S_APPEND;
3712 if (flags & EXT4_IMMUTABLE_FL)
3713 inode->i_flags |= S_IMMUTABLE;
3714 if (flags & EXT4_NOATIME_FL)
3715 inode->i_flags |= S_NOATIME;
3716 if (flags & EXT4_DIRSYNC_FL)
3717 inode->i_flags |= S_DIRSYNC;
3720 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3721 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3723 unsigned int vfs_fl;
3724 unsigned long old_fl, new_fl;
3726 do {
3727 vfs_fl = ei->vfs_inode.i_flags;
3728 old_fl = ei->i_flags;
3729 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3730 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3731 EXT4_DIRSYNC_FL);
3732 if (vfs_fl & S_SYNC)
3733 new_fl |= EXT4_SYNC_FL;
3734 if (vfs_fl & S_APPEND)
3735 new_fl |= EXT4_APPEND_FL;
3736 if (vfs_fl & S_IMMUTABLE)
3737 new_fl |= EXT4_IMMUTABLE_FL;
3738 if (vfs_fl & S_NOATIME)
3739 new_fl |= EXT4_NOATIME_FL;
3740 if (vfs_fl & S_DIRSYNC)
3741 new_fl |= EXT4_DIRSYNC_FL;
3742 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3745 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3746 struct ext4_inode_info *ei)
3748 blkcnt_t i_blocks ;
3749 struct inode *inode = &(ei->vfs_inode);
3750 struct super_block *sb = inode->i_sb;
3752 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3753 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3754 /* we are using combined 48 bit field */
3755 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3756 le32_to_cpu(raw_inode->i_blocks_lo);
3757 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3758 /* i_blocks represent file system block size */
3759 return i_blocks << (inode->i_blkbits - 9);
3760 } else {
3761 return i_blocks;
3763 } else {
3764 return le32_to_cpu(raw_inode->i_blocks_lo);
3768 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3770 struct ext4_iloc iloc;
3771 struct ext4_inode *raw_inode;
3772 struct ext4_inode_info *ei;
3773 struct inode *inode;
3774 journal_t *journal = EXT4_SB(sb)->s_journal;
3775 long ret;
3776 int block;
3778 inode = iget_locked(sb, ino);
3779 if (!inode)
3780 return ERR_PTR(-ENOMEM);
3781 if (!(inode->i_state & I_NEW))
3782 return inode;
3784 ei = EXT4_I(inode);
3785 iloc.bh = NULL;
3787 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3788 if (ret < 0)
3789 goto bad_inode;
3790 raw_inode = ext4_raw_inode(&iloc);
3791 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3792 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3793 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3794 if (!(test_opt(inode->i_sb, NO_UID32))) {
3795 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3796 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3798 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3800 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3801 ei->i_dir_start_lookup = 0;
3802 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3803 /* We now have enough fields to check if the inode was active or not.
3804 * This is needed because nfsd might try to access dead inodes
3805 * the test is that same one that e2fsck uses
3806 * NeilBrown 1999oct15
3808 if (inode->i_nlink == 0) {
3809 if (inode->i_mode == 0 ||
3810 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3811 /* this inode is deleted */
3812 ret = -ESTALE;
3813 goto bad_inode;
3815 /* The only unlinked inodes we let through here have
3816 * valid i_mode and are being read by the orphan
3817 * recovery code: that's fine, we're about to complete
3818 * the process of deleting those. */
3820 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3821 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3822 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3823 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3824 ei->i_file_acl |=
3825 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3826 inode->i_size = ext4_isize(raw_inode);
3827 ei->i_disksize = inode->i_size;
3828 #ifdef CONFIG_QUOTA
3829 ei->i_reserved_quota = 0;
3830 #endif
3831 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3832 ei->i_block_group = iloc.block_group;
3833 ei->i_last_alloc_group = ~0;
3835 * NOTE! The in-memory inode i_data array is in little-endian order
3836 * even on big-endian machines: we do NOT byteswap the block numbers!
3838 for (block = 0; block < EXT4_N_BLOCKS; block++)
3839 ei->i_data[block] = raw_inode->i_block[block];
3840 INIT_LIST_HEAD(&ei->i_orphan);
3843 * Set transaction id's of transactions that have to be committed
3844 * to finish f[data]sync. We set them to currently running transaction
3845 * as we cannot be sure that the inode or some of its metadata isn't
3846 * part of the transaction - the inode could have been reclaimed and
3847 * now it is reread from disk.
3849 if (journal) {
3850 transaction_t *transaction;
3851 tid_t tid;
3853 read_lock(&journal->j_state_lock);
3854 if (journal->j_running_transaction)
3855 transaction = journal->j_running_transaction;
3856 else
3857 transaction = journal->j_committing_transaction;
3858 if (transaction)
3859 tid = transaction->t_tid;
3860 else
3861 tid = journal->j_commit_sequence;
3862 read_unlock(&journal->j_state_lock);
3863 ei->i_sync_tid = tid;
3864 ei->i_datasync_tid = tid;
3867 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3868 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3869 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3870 EXT4_INODE_SIZE(inode->i_sb)) {
3871 ret = -EIO;
3872 goto bad_inode;
3874 if (ei->i_extra_isize == 0) {
3875 /* The extra space is currently unused. Use it. */
3876 ei->i_extra_isize = sizeof(struct ext4_inode) -
3877 EXT4_GOOD_OLD_INODE_SIZE;
3878 } else {
3879 __le32 *magic = (void *)raw_inode +
3880 EXT4_GOOD_OLD_INODE_SIZE +
3881 ei->i_extra_isize;
3882 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3883 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3885 } else
3886 ei->i_extra_isize = 0;
3888 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3889 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3890 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3891 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3893 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3894 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3895 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3896 inode->i_version |=
3897 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3900 ret = 0;
3901 if (ei->i_file_acl &&
3902 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3903 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3904 ei->i_file_acl);
3905 ret = -EIO;
3906 goto bad_inode;
3907 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3908 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3909 (S_ISLNK(inode->i_mode) &&
3910 !ext4_inode_is_fast_symlink(inode)))
3911 /* Validate extent which is part of inode */
3912 ret = ext4_ext_check_inode(inode);
3913 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3914 (S_ISLNK(inode->i_mode) &&
3915 !ext4_inode_is_fast_symlink(inode))) {
3916 /* Validate block references which are part of inode */
3917 ret = ext4_ind_check_inode(inode);
3919 if (ret)
3920 goto bad_inode;
3922 if (S_ISREG(inode->i_mode)) {
3923 inode->i_op = &ext4_file_inode_operations;
3924 inode->i_fop = &ext4_file_operations;
3925 ext4_set_aops(inode);
3926 } else if (S_ISDIR(inode->i_mode)) {
3927 inode->i_op = &ext4_dir_inode_operations;
3928 inode->i_fop = &ext4_dir_operations;
3929 } else if (S_ISLNK(inode->i_mode)) {
3930 if (ext4_inode_is_fast_symlink(inode)) {
3931 inode->i_op = &ext4_fast_symlink_inode_operations;
3932 nd_terminate_link(ei->i_data, inode->i_size,
3933 sizeof(ei->i_data) - 1);
3934 } else {
3935 inode->i_op = &ext4_symlink_inode_operations;
3936 ext4_set_aops(inode);
3938 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3939 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3940 inode->i_op = &ext4_special_inode_operations;
3941 if (raw_inode->i_block[0])
3942 init_special_inode(inode, inode->i_mode,
3943 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3944 else
3945 init_special_inode(inode, inode->i_mode,
3946 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3947 } else {
3948 ret = -EIO;
3949 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3950 goto bad_inode;
3952 brelse(iloc.bh);
3953 ext4_set_inode_flags(inode);
3954 unlock_new_inode(inode);
3955 return inode;
3957 bad_inode:
3958 brelse(iloc.bh);
3959 iget_failed(inode);
3960 return ERR_PTR(ret);
3963 static int ext4_inode_blocks_set(handle_t *handle,
3964 struct ext4_inode *raw_inode,
3965 struct ext4_inode_info *ei)
3967 struct inode *inode = &(ei->vfs_inode);
3968 u64 i_blocks = inode->i_blocks;
3969 struct super_block *sb = inode->i_sb;
3971 if (i_blocks <= ~0U) {
3973 * i_blocks can be represnted in a 32 bit variable
3974 * as multiple of 512 bytes
3976 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3977 raw_inode->i_blocks_high = 0;
3978 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3979 return 0;
3981 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3982 return -EFBIG;
3984 if (i_blocks <= 0xffffffffffffULL) {
3986 * i_blocks can be represented in a 48 bit variable
3987 * as multiple of 512 bytes
3989 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3990 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3991 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3992 } else {
3993 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3994 /* i_block is stored in file system block size */
3995 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3996 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3997 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3999 return 0;
4003 * Post the struct inode info into an on-disk inode location in the
4004 * buffer-cache. This gobbles the caller's reference to the
4005 * buffer_head in the inode location struct.
4007 * The caller must have write access to iloc->bh.
4009 static int ext4_do_update_inode(handle_t *handle,
4010 struct inode *inode,
4011 struct ext4_iloc *iloc)
4013 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4014 struct ext4_inode_info *ei = EXT4_I(inode);
4015 struct buffer_head *bh = iloc->bh;
4016 int err = 0, rc, block;
4018 /* For fields not not tracking in the in-memory inode,
4019 * initialise them to zero for new inodes. */
4020 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4021 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4023 ext4_get_inode_flags(ei);
4024 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4025 if (!(test_opt(inode->i_sb, NO_UID32))) {
4026 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4027 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4029 * Fix up interoperability with old kernels. Otherwise, old inodes get
4030 * re-used with the upper 16 bits of the uid/gid intact
4032 if (!ei->i_dtime) {
4033 raw_inode->i_uid_high =
4034 cpu_to_le16(high_16_bits(inode->i_uid));
4035 raw_inode->i_gid_high =
4036 cpu_to_le16(high_16_bits(inode->i_gid));
4037 } else {
4038 raw_inode->i_uid_high = 0;
4039 raw_inode->i_gid_high = 0;
4041 } else {
4042 raw_inode->i_uid_low =
4043 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4044 raw_inode->i_gid_low =
4045 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4046 raw_inode->i_uid_high = 0;
4047 raw_inode->i_gid_high = 0;
4049 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4051 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4052 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4053 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4054 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4056 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4057 goto out_brelse;
4058 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4059 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4060 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4061 cpu_to_le32(EXT4_OS_HURD))
4062 raw_inode->i_file_acl_high =
4063 cpu_to_le16(ei->i_file_acl >> 32);
4064 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4065 ext4_isize_set(raw_inode, ei->i_disksize);
4066 if (ei->i_disksize > 0x7fffffffULL) {
4067 struct super_block *sb = inode->i_sb;
4068 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4069 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4070 EXT4_SB(sb)->s_es->s_rev_level ==
4071 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4072 /* If this is the first large file
4073 * created, add a flag to the superblock.
4075 err = ext4_journal_get_write_access(handle,
4076 EXT4_SB(sb)->s_sbh);
4077 if (err)
4078 goto out_brelse;
4079 ext4_update_dynamic_rev(sb);
4080 EXT4_SET_RO_COMPAT_FEATURE(sb,
4081 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4082 sb->s_dirt = 1;
4083 ext4_handle_sync(handle);
4084 err = ext4_handle_dirty_metadata(handle, NULL,
4085 EXT4_SB(sb)->s_sbh);
4088 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4089 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4090 if (old_valid_dev(inode->i_rdev)) {
4091 raw_inode->i_block[0] =
4092 cpu_to_le32(old_encode_dev(inode->i_rdev));
4093 raw_inode->i_block[1] = 0;
4094 } else {
4095 raw_inode->i_block[0] = 0;
4096 raw_inode->i_block[1] =
4097 cpu_to_le32(new_encode_dev(inode->i_rdev));
4098 raw_inode->i_block[2] = 0;
4100 } else
4101 for (block = 0; block < EXT4_N_BLOCKS; block++)
4102 raw_inode->i_block[block] = ei->i_data[block];
4104 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4105 if (ei->i_extra_isize) {
4106 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4107 raw_inode->i_version_hi =
4108 cpu_to_le32(inode->i_version >> 32);
4109 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4112 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4113 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4114 if (!err)
4115 err = rc;
4116 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4118 ext4_update_inode_fsync_trans(handle, inode, 0);
4119 out_brelse:
4120 brelse(bh);
4121 ext4_std_error(inode->i_sb, err);
4122 return err;
4126 * ext4_write_inode()
4128 * We are called from a few places:
4130 * - Within generic_file_write() for O_SYNC files.
4131 * Here, there will be no transaction running. We wait for any running
4132 * trasnaction to commit.
4134 * - Within sys_sync(), kupdate and such.
4135 * We wait on commit, if tol to.
4137 * - Within prune_icache() (PF_MEMALLOC == true)
4138 * Here we simply return. We can't afford to block kswapd on the
4139 * journal commit.
4141 * In all cases it is actually safe for us to return without doing anything,
4142 * because the inode has been copied into a raw inode buffer in
4143 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4144 * knfsd.
4146 * Note that we are absolutely dependent upon all inode dirtiers doing the
4147 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4148 * which we are interested.
4150 * It would be a bug for them to not do this. The code:
4152 * mark_inode_dirty(inode)
4153 * stuff();
4154 * inode->i_size = expr;
4156 * is in error because a kswapd-driven write_inode() could occur while
4157 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4158 * will no longer be on the superblock's dirty inode list.
4160 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4162 int err;
4164 if (current->flags & PF_MEMALLOC)
4165 return 0;
4167 if (EXT4_SB(inode->i_sb)->s_journal) {
4168 if (ext4_journal_current_handle()) {
4169 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4170 dump_stack();
4171 return -EIO;
4174 if (wbc->sync_mode != WB_SYNC_ALL)
4175 return 0;
4177 err = ext4_force_commit(inode->i_sb);
4178 } else {
4179 struct ext4_iloc iloc;
4181 err = __ext4_get_inode_loc(inode, &iloc, 0);
4182 if (err)
4183 return err;
4184 if (wbc->sync_mode == WB_SYNC_ALL)
4185 sync_dirty_buffer(iloc.bh);
4186 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4187 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4188 "IO error syncing inode");
4189 err = -EIO;
4191 brelse(iloc.bh);
4193 return err;
4197 * ext4_setattr()
4199 * Called from notify_change.
4201 * We want to trap VFS attempts to truncate the file as soon as
4202 * possible. In particular, we want to make sure that when the VFS
4203 * shrinks i_size, we put the inode on the orphan list and modify
4204 * i_disksize immediately, so that during the subsequent flushing of
4205 * dirty pages and freeing of disk blocks, we can guarantee that any
4206 * commit will leave the blocks being flushed in an unused state on
4207 * disk. (On recovery, the inode will get truncated and the blocks will
4208 * be freed, so we have a strong guarantee that no future commit will
4209 * leave these blocks visible to the user.)
4211 * Another thing we have to assure is that if we are in ordered mode
4212 * and inode is still attached to the committing transaction, we must
4213 * we start writeout of all the dirty pages which are being truncated.
4214 * This way we are sure that all the data written in the previous
4215 * transaction are already on disk (truncate waits for pages under
4216 * writeback).
4218 * Called with inode->i_mutex down.
4220 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4222 struct inode *inode = dentry->d_inode;
4223 int error, rc = 0;
4224 int orphan = 0;
4225 const unsigned int ia_valid = attr->ia_valid;
4227 error = inode_change_ok(inode, attr);
4228 if (error)
4229 return error;
4231 if (is_quota_modification(inode, attr))
4232 dquot_initialize(inode);
4233 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4234 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4235 handle_t *handle;
4237 /* (user+group)*(old+new) structure, inode write (sb,
4238 * inode block, ? - but truncate inode update has it) */
4239 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4240 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4241 if (IS_ERR(handle)) {
4242 error = PTR_ERR(handle);
4243 goto err_out;
4245 error = dquot_transfer(inode, attr);
4246 if (error) {
4247 ext4_journal_stop(handle);
4248 return error;
4250 /* Update corresponding info in inode so that everything is in
4251 * one transaction */
4252 if (attr->ia_valid & ATTR_UID)
4253 inode->i_uid = attr->ia_uid;
4254 if (attr->ia_valid & ATTR_GID)
4255 inode->i_gid = attr->ia_gid;
4256 error = ext4_mark_inode_dirty(handle, inode);
4257 ext4_journal_stop(handle);
4260 if (attr->ia_valid & ATTR_SIZE) {
4261 inode_dio_wait(inode);
4263 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4266 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4267 return -EFBIG;
4271 if (S_ISREG(inode->i_mode) &&
4272 attr->ia_valid & ATTR_SIZE &&
4273 (attr->ia_size < inode->i_size)) {
4274 handle_t *handle;
4276 handle = ext4_journal_start(inode, 3);
4277 if (IS_ERR(handle)) {
4278 error = PTR_ERR(handle);
4279 goto err_out;
4281 if (ext4_handle_valid(handle)) {
4282 error = ext4_orphan_add(handle, inode);
4283 orphan = 1;
4285 EXT4_I(inode)->i_disksize = attr->ia_size;
4286 rc = ext4_mark_inode_dirty(handle, inode);
4287 if (!error)
4288 error = rc;
4289 ext4_journal_stop(handle);
4291 if (ext4_should_order_data(inode)) {
4292 error = ext4_begin_ordered_truncate(inode,
4293 attr->ia_size);
4294 if (error) {
4295 /* Do as much error cleanup as possible */
4296 handle = ext4_journal_start(inode, 3);
4297 if (IS_ERR(handle)) {
4298 ext4_orphan_del(NULL, inode);
4299 goto err_out;
4301 ext4_orphan_del(handle, inode);
4302 orphan = 0;
4303 ext4_journal_stop(handle);
4304 goto err_out;
4309 if (attr->ia_valid & ATTR_SIZE) {
4310 if (attr->ia_size != i_size_read(inode)) {
4311 truncate_setsize(inode, attr->ia_size);
4312 ext4_truncate(inode);
4313 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4314 ext4_truncate(inode);
4317 if (!rc) {
4318 setattr_copy(inode, attr);
4319 mark_inode_dirty(inode);
4323 * If the call to ext4_truncate failed to get a transaction handle at
4324 * all, we need to clean up the in-core orphan list manually.
4326 if (orphan && inode->i_nlink)
4327 ext4_orphan_del(NULL, inode);
4329 if (!rc && (ia_valid & ATTR_MODE))
4330 rc = ext4_acl_chmod(inode);
4332 err_out:
4333 ext4_std_error(inode->i_sb, error);
4334 if (!error)
4335 error = rc;
4336 return error;
4339 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4340 struct kstat *stat)
4342 struct inode *inode;
4343 unsigned long delalloc_blocks;
4345 inode = dentry->d_inode;
4346 generic_fillattr(inode, stat);
4349 * We can't update i_blocks if the block allocation is delayed
4350 * otherwise in the case of system crash before the real block
4351 * allocation is done, we will have i_blocks inconsistent with
4352 * on-disk file blocks.
4353 * We always keep i_blocks updated together with real
4354 * allocation. But to not confuse with user, stat
4355 * will return the blocks that include the delayed allocation
4356 * blocks for this file.
4358 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4360 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4361 return 0;
4364 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4366 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4367 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4368 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4372 * Account for index blocks, block groups bitmaps and block group
4373 * descriptor blocks if modify datablocks and index blocks
4374 * worse case, the indexs blocks spread over different block groups
4376 * If datablocks are discontiguous, they are possible to spread over
4377 * different block groups too. If they are contiuguous, with flexbg,
4378 * they could still across block group boundary.
4380 * Also account for superblock, inode, quota and xattr blocks
4382 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4384 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4385 int gdpblocks;
4386 int idxblocks;
4387 int ret = 0;
4390 * How many index blocks need to touch to modify nrblocks?
4391 * The "Chunk" flag indicating whether the nrblocks is
4392 * physically contiguous on disk
4394 * For Direct IO and fallocate, they calls get_block to allocate
4395 * one single extent at a time, so they could set the "Chunk" flag
4397 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4399 ret = idxblocks;
4402 * Now let's see how many group bitmaps and group descriptors need
4403 * to account
4405 groups = idxblocks;
4406 if (chunk)
4407 groups += 1;
4408 else
4409 groups += nrblocks;
4411 gdpblocks = groups;
4412 if (groups > ngroups)
4413 groups = ngroups;
4414 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4415 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4417 /* bitmaps and block group descriptor blocks */
4418 ret += groups + gdpblocks;
4420 /* Blocks for super block, inode, quota and xattr blocks */
4421 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4423 return ret;
4427 * Calculate the total number of credits to reserve to fit
4428 * the modification of a single pages into a single transaction,
4429 * which may include multiple chunks of block allocations.
4431 * This could be called via ext4_write_begin()
4433 * We need to consider the worse case, when
4434 * one new block per extent.
4436 int ext4_writepage_trans_blocks(struct inode *inode)
4438 int bpp = ext4_journal_blocks_per_page(inode);
4439 int ret;
4441 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4443 /* Account for data blocks for journalled mode */
4444 if (ext4_should_journal_data(inode))
4445 ret += bpp;
4446 return ret;
4450 * Calculate the journal credits for a chunk of data modification.
4452 * This is called from DIO, fallocate or whoever calling
4453 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4455 * journal buffers for data blocks are not included here, as DIO
4456 * and fallocate do no need to journal data buffers.
4458 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4460 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4464 * The caller must have previously called ext4_reserve_inode_write().
4465 * Give this, we know that the caller already has write access to iloc->bh.
4467 int ext4_mark_iloc_dirty(handle_t *handle,
4468 struct inode *inode, struct ext4_iloc *iloc)
4470 int err = 0;
4472 if (test_opt(inode->i_sb, I_VERSION))
4473 inode_inc_iversion(inode);
4475 /* the do_update_inode consumes one bh->b_count */
4476 get_bh(iloc->bh);
4478 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4479 err = ext4_do_update_inode(handle, inode, iloc);
4480 put_bh(iloc->bh);
4481 return err;
4485 * On success, We end up with an outstanding reference count against
4486 * iloc->bh. This _must_ be cleaned up later.
4490 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4491 struct ext4_iloc *iloc)
4493 int err;
4495 err = ext4_get_inode_loc(inode, iloc);
4496 if (!err) {
4497 BUFFER_TRACE(iloc->bh, "get_write_access");
4498 err = ext4_journal_get_write_access(handle, iloc->bh);
4499 if (err) {
4500 brelse(iloc->bh);
4501 iloc->bh = NULL;
4504 ext4_std_error(inode->i_sb, err);
4505 return err;
4509 * Expand an inode by new_extra_isize bytes.
4510 * Returns 0 on success or negative error number on failure.
4512 static int ext4_expand_extra_isize(struct inode *inode,
4513 unsigned int new_extra_isize,
4514 struct ext4_iloc iloc,
4515 handle_t *handle)
4517 struct ext4_inode *raw_inode;
4518 struct ext4_xattr_ibody_header *header;
4520 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4521 return 0;
4523 raw_inode = ext4_raw_inode(&iloc);
4525 header = IHDR(inode, raw_inode);
4527 /* No extended attributes present */
4528 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4529 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4530 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4531 new_extra_isize);
4532 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4533 return 0;
4536 /* try to expand with EAs present */
4537 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4538 raw_inode, handle);
4542 * What we do here is to mark the in-core inode as clean with respect to inode
4543 * dirtiness (it may still be data-dirty).
4544 * This means that the in-core inode may be reaped by prune_icache
4545 * without having to perform any I/O. This is a very good thing,
4546 * because *any* task may call prune_icache - even ones which
4547 * have a transaction open against a different journal.
4549 * Is this cheating? Not really. Sure, we haven't written the
4550 * inode out, but prune_icache isn't a user-visible syncing function.
4551 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4552 * we start and wait on commits.
4554 * Is this efficient/effective? Well, we're being nice to the system
4555 * by cleaning up our inodes proactively so they can be reaped
4556 * without I/O. But we are potentially leaving up to five seconds'
4557 * worth of inodes floating about which prune_icache wants us to
4558 * write out. One way to fix that would be to get prune_icache()
4559 * to do a write_super() to free up some memory. It has the desired
4560 * effect.
4562 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4564 struct ext4_iloc iloc;
4565 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4566 static unsigned int mnt_count;
4567 int err, ret;
4569 might_sleep();
4570 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4571 err = ext4_reserve_inode_write(handle, inode, &iloc);
4572 if (ext4_handle_valid(handle) &&
4573 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4574 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4576 * We need extra buffer credits since we may write into EA block
4577 * with this same handle. If journal_extend fails, then it will
4578 * only result in a minor loss of functionality for that inode.
4579 * If this is felt to be critical, then e2fsck should be run to
4580 * force a large enough s_min_extra_isize.
4582 if ((jbd2_journal_extend(handle,
4583 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4584 ret = ext4_expand_extra_isize(inode,
4585 sbi->s_want_extra_isize,
4586 iloc, handle);
4587 if (ret) {
4588 ext4_set_inode_state(inode,
4589 EXT4_STATE_NO_EXPAND);
4590 if (mnt_count !=
4591 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4592 ext4_warning(inode->i_sb,
4593 "Unable to expand inode %lu. Delete"
4594 " some EAs or run e2fsck.",
4595 inode->i_ino);
4596 mnt_count =
4597 le16_to_cpu(sbi->s_es->s_mnt_count);
4602 if (!err)
4603 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4604 return err;
4608 * ext4_dirty_inode() is called from __mark_inode_dirty()
4610 * We're really interested in the case where a file is being extended.
4611 * i_size has been changed by generic_commit_write() and we thus need
4612 * to include the updated inode in the current transaction.
4614 * Also, dquot_alloc_block() will always dirty the inode when blocks
4615 * are allocated to the file.
4617 * If the inode is marked synchronous, we don't honour that here - doing
4618 * so would cause a commit on atime updates, which we don't bother doing.
4619 * We handle synchronous inodes at the highest possible level.
4621 void ext4_dirty_inode(struct inode *inode, int flags)
4623 handle_t *handle;
4625 handle = ext4_journal_start(inode, 2);
4626 if (IS_ERR(handle))
4627 goto out;
4629 ext4_mark_inode_dirty(handle, inode);
4631 ext4_journal_stop(handle);
4632 out:
4633 return;
4636 #if 0
4638 * Bind an inode's backing buffer_head into this transaction, to prevent
4639 * it from being flushed to disk early. Unlike
4640 * ext4_reserve_inode_write, this leaves behind no bh reference and
4641 * returns no iloc structure, so the caller needs to repeat the iloc
4642 * lookup to mark the inode dirty later.
4644 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4646 struct ext4_iloc iloc;
4648 int err = 0;
4649 if (handle) {
4650 err = ext4_get_inode_loc(inode, &iloc);
4651 if (!err) {
4652 BUFFER_TRACE(iloc.bh, "get_write_access");
4653 err = jbd2_journal_get_write_access(handle, iloc.bh);
4654 if (!err)
4655 err = ext4_handle_dirty_metadata(handle,
4656 NULL,
4657 iloc.bh);
4658 brelse(iloc.bh);
4661 ext4_std_error(inode->i_sb, err);
4662 return err;
4664 #endif
4666 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4668 journal_t *journal;
4669 handle_t *handle;
4670 int err;
4673 * We have to be very careful here: changing a data block's
4674 * journaling status dynamically is dangerous. If we write a
4675 * data block to the journal, change the status and then delete
4676 * that block, we risk forgetting to revoke the old log record
4677 * from the journal and so a subsequent replay can corrupt data.
4678 * So, first we make sure that the journal is empty and that
4679 * nobody is changing anything.
4682 journal = EXT4_JOURNAL(inode);
4683 if (!journal)
4684 return 0;
4685 if (is_journal_aborted(journal))
4686 return -EROFS;
4688 jbd2_journal_lock_updates(journal);
4689 jbd2_journal_flush(journal);
4692 * OK, there are no updates running now, and all cached data is
4693 * synced to disk. We are now in a completely consistent state
4694 * which doesn't have anything in the journal, and we know that
4695 * no filesystem updates are running, so it is safe to modify
4696 * the inode's in-core data-journaling state flag now.
4699 if (val)
4700 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4701 else
4702 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4703 ext4_set_aops(inode);
4705 jbd2_journal_unlock_updates(journal);
4707 /* Finally we can mark the inode as dirty. */
4709 handle = ext4_journal_start(inode, 1);
4710 if (IS_ERR(handle))
4711 return PTR_ERR(handle);
4713 err = ext4_mark_inode_dirty(handle, inode);
4714 ext4_handle_sync(handle);
4715 ext4_journal_stop(handle);
4716 ext4_std_error(inode->i_sb, err);
4718 return err;
4721 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4723 return !buffer_mapped(bh);
4726 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4728 struct page *page = vmf->page;
4729 loff_t size;
4730 unsigned long len;
4731 int ret;
4732 struct file *file = vma->vm_file;
4733 struct inode *inode = file->f_path.dentry->d_inode;
4734 struct address_space *mapping = inode->i_mapping;
4735 handle_t *handle;
4736 get_block_t *get_block;
4737 int retries = 0;
4740 * This check is racy but catches the common case. We rely on
4741 * __block_page_mkwrite() to do a reliable check.
4743 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4744 /* Delalloc case is easy... */
4745 if (test_opt(inode->i_sb, DELALLOC) &&
4746 !ext4_should_journal_data(inode) &&
4747 !ext4_nonda_switch(inode->i_sb)) {
4748 do {
4749 ret = __block_page_mkwrite(vma, vmf,
4750 ext4_da_get_block_prep);
4751 } while (ret == -ENOSPC &&
4752 ext4_should_retry_alloc(inode->i_sb, &retries));
4753 goto out_ret;
4756 lock_page(page);
4757 size = i_size_read(inode);
4758 /* Page got truncated from under us? */
4759 if (page->mapping != mapping || page_offset(page) > size) {
4760 unlock_page(page);
4761 ret = VM_FAULT_NOPAGE;
4762 goto out;
4765 if (page->index == size >> PAGE_CACHE_SHIFT)
4766 len = size & ~PAGE_CACHE_MASK;
4767 else
4768 len = PAGE_CACHE_SIZE;
4770 * Return if we have all the buffers mapped. This avoids the need to do
4771 * journal_start/journal_stop which can block and take a long time
4773 if (page_has_buffers(page)) {
4774 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4775 ext4_bh_unmapped)) {
4776 /* Wait so that we don't change page under IO */
4777 wait_on_page_writeback(page);
4778 ret = VM_FAULT_LOCKED;
4779 goto out;
4782 unlock_page(page);
4783 /* OK, we need to fill the hole... */
4784 if (ext4_should_dioread_nolock(inode))
4785 get_block = ext4_get_block_write;
4786 else
4787 get_block = ext4_get_block;
4788 retry_alloc:
4789 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4790 if (IS_ERR(handle)) {
4791 ret = VM_FAULT_SIGBUS;
4792 goto out;
4794 ret = __block_page_mkwrite(vma, vmf, get_block);
4795 if (!ret && ext4_should_journal_data(inode)) {
4796 if (walk_page_buffers(handle, page_buffers(page), 0,
4797 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4798 unlock_page(page);
4799 ret = VM_FAULT_SIGBUS;
4800 ext4_journal_stop(handle);
4801 goto out;
4803 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4805 ext4_journal_stop(handle);
4806 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4807 goto retry_alloc;
4808 out_ret:
4809 ret = block_page_mkwrite_return(ret);
4810 out:
4811 return ret;