2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
8 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/rbtree.h>
18 #include <linux/interrupt.h>
24 * See Documentation/block/as-iosched.txt
28 * max time before a read is submitted.
30 #define default_read_expire (HZ / 8)
33 * ditto for writes, these limits are not hard, even
34 * if the disk is capable of satisfying them.
36 #define default_write_expire (HZ / 4)
39 * read_batch_expire describes how long we will allow a stream of reads to
40 * persist before looking to see whether it is time to switch over to writes.
42 #define default_read_batch_expire (HZ / 2)
45 * write_batch_expire describes how long we want a stream of writes to run for.
46 * This is not a hard limit, but a target we set for the auto-tuning thingy.
47 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
48 * a short amount of time...
50 #define default_write_batch_expire (HZ / 8)
53 * max time we may wait to anticipate a read (default around 6ms)
55 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
58 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
59 * however huge values tend to interfere and not decay fast enough. A program
60 * might be in a non-io phase of operation. Waiting on user input for example,
61 * or doing a lengthy computation. A small penalty can be justified there, and
62 * will still catch out those processes that constantly have large thinktimes.
64 #define MAX_THINKTIME (HZ/50UL)
66 /* Bits in as_io_context.state */
68 AS_TASK_RUNNING
=0, /* Process has not exited */
69 AS_TASK_IOSTARTED
, /* Process has started some IO */
70 AS_TASK_IORUNNING
, /* Process has completed some IO */
73 enum anticipation_status
{
74 ANTIC_OFF
=0, /* Not anticipating (normal operation) */
75 ANTIC_WAIT_REQ
, /* The last read has not yet completed */
76 ANTIC_WAIT_NEXT
, /* Currently anticipating a request vs
77 last read (which has completed) */
78 ANTIC_FINISHED
, /* Anticipating but have found a candidate
87 struct request_queue
*q
; /* the "owner" queue */
90 * requests (as_rq s) are present on both sort_list and fifo_list
92 struct rb_root sort_list
[2];
93 struct list_head fifo_list
[2];
95 struct request
*next_rq
[2]; /* next in sort order */
96 sector_t last_sector
[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
98 unsigned long exit_prob
; /* probability a task will exit while
100 unsigned long exit_no_coop
; /* probablility an exited task will
101 not be part of a later cooperating
103 unsigned long new_ttime_total
; /* mean thinktime on new proc */
104 unsigned long new_ttime_mean
;
105 u64 new_seek_total
; /* mean seek on new proc */
106 sector_t new_seek_mean
;
108 unsigned long current_batch_expires
;
109 unsigned long last_check_fifo
[2];
110 int changed_batch
; /* 1: waiting for old batch to end */
111 int new_batch
; /* 1: waiting on first read complete */
112 int batch_data_dir
; /* current batch REQ_SYNC / REQ_ASYNC */
113 int write_batch_count
; /* max # of reqs in a write batch */
114 int current_write_count
; /* how many requests left this batch */
115 int write_batch_idled
; /* has the write batch gone idle? */
117 enum anticipation_status antic_status
;
118 unsigned long antic_start
; /* jiffies: when it started */
119 struct timer_list antic_timer
; /* anticipatory scheduling timer */
120 struct work_struct antic_work
; /* Deferred unplugging */
121 struct io_context
*io_context
; /* Identify the expected process */
122 int ioc_finished
; /* IO associated with io_context is finished */
126 * settings that change how the i/o scheduler behaves
128 unsigned long fifo_expire
[2];
129 unsigned long batch_expire
[2];
130 unsigned long antic_expire
;
137 AS_RQ_NEW
=0, /* New - not referenced and not on any lists */
138 AS_RQ_QUEUED
, /* In the request queue. It belongs to the
140 AS_RQ_DISPATCHED
, /* On the dispatch list. It belongs to the
142 AS_RQ_PRESCHED
, /* Debug poisoning for requests being used */
145 AS_RQ_POSTSCHED
, /* when they shouldn't be */
148 #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private)
149 #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2)
150 #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
152 static DEFINE_PER_CPU(unsigned long, ioc_count
);
153 static struct completion
*ioc_gone
;
154 static DEFINE_SPINLOCK(ioc_gone_lock
);
156 static void as_move_to_dispatch(struct as_data
*ad
, struct request
*rq
);
157 static void as_antic_stop(struct as_data
*ad
);
160 * IO Context helper functions
163 /* Called to deallocate the as_io_context */
164 static void free_as_io_context(struct as_io_context
*aic
)
167 elv_ioc_count_dec(ioc_count
);
170 * AS scheduler is exiting, grab exit lock and check
171 * the pending io context count. If it hits zero,
172 * complete ioc_gone and set it back to NULL.
174 spin_lock(&ioc_gone_lock
);
175 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
179 spin_unlock(&ioc_gone_lock
);
183 static void as_trim(struct io_context
*ioc
)
185 spin_lock_irq(&ioc
->lock
);
187 free_as_io_context(ioc
->aic
);
189 spin_unlock_irq(&ioc
->lock
);
192 /* Called when the task exits */
193 static void exit_as_io_context(struct as_io_context
*aic
)
195 WARN_ON(!test_bit(AS_TASK_RUNNING
, &aic
->state
));
196 clear_bit(AS_TASK_RUNNING
, &aic
->state
);
199 static struct as_io_context
*alloc_as_io_context(void)
201 struct as_io_context
*ret
;
203 ret
= kmalloc(sizeof(*ret
), GFP_ATOMIC
);
205 ret
->dtor
= free_as_io_context
;
206 ret
->exit
= exit_as_io_context
;
207 ret
->state
= 1 << AS_TASK_RUNNING
;
208 atomic_set(&ret
->nr_queued
, 0);
209 atomic_set(&ret
->nr_dispatched
, 0);
210 spin_lock_init(&ret
->lock
);
211 ret
->ttime_total
= 0;
212 ret
->ttime_samples
= 0;
215 ret
->seek_samples
= 0;
217 elv_ioc_count_inc(ioc_count
);
224 * If the current task has no AS IO context then create one and initialise it.
225 * Then take a ref on the task's io context and return it.
227 static struct io_context
*as_get_io_context(int node
)
229 struct io_context
*ioc
= get_io_context(GFP_ATOMIC
, node
);
230 if (ioc
&& !ioc
->aic
) {
231 ioc
->aic
= alloc_as_io_context();
240 static void as_put_io_context(struct request
*rq
)
242 struct as_io_context
*aic
;
244 if (unlikely(!RQ_IOC(rq
)))
247 aic
= RQ_IOC(rq
)->aic
;
249 if (rq_is_sync(rq
) && aic
) {
252 spin_lock_irqsave(&aic
->lock
, flags
);
253 set_bit(AS_TASK_IORUNNING
, &aic
->state
);
254 aic
->last_end_request
= jiffies
;
255 spin_unlock_irqrestore(&aic
->lock
, flags
);
258 put_io_context(RQ_IOC(rq
));
262 * rb tree support functions
264 #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))])
266 static void as_add_rq_rb(struct as_data
*ad
, struct request
*rq
)
268 struct request
*alias
;
270 while ((unlikely(alias
= elv_rb_add(RQ_RB_ROOT(ad
, rq
), rq
)))) {
271 as_move_to_dispatch(ad
, alias
);
276 static inline void as_del_rq_rb(struct as_data
*ad
, struct request
*rq
)
278 elv_rb_del(RQ_RB_ROOT(ad
, rq
), rq
);
282 * IO Scheduler proper
285 #define MAXBACK (1024 * 1024) /*
286 * Maximum distance the disk will go backward
290 #define BACK_PENALTY 2
293 * as_choose_req selects the preferred one of two requests of the same data_dir
294 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
296 static struct request
*
297 as_choose_req(struct as_data
*ad
, struct request
*rq1
, struct request
*rq2
)
300 sector_t last
, s1
, s2
, d1
, d2
;
301 int r1_wrap
=0, r2_wrap
=0; /* requests are behind the disk head */
302 const sector_t maxback
= MAXBACK
;
304 if (rq1
== NULL
|| rq1
== rq2
)
309 data_dir
= rq_is_sync(rq1
);
311 last
= ad
->last_sector
[data_dir
];
315 BUG_ON(data_dir
!= rq_is_sync(rq2
));
318 * Strict one way elevator _except_ in the case where we allow
319 * short backward seeks which are biased as twice the cost of a
320 * similar forward seek.
324 else if (s1
+maxback
>= last
)
325 d1
= (last
- s1
)*BACK_PENALTY
;
328 d1
= 0; /* shut up, gcc */
333 else if (s2
+maxback
>= last
)
334 d2
= (last
- s2
)*BACK_PENALTY
;
340 /* Found required data */
341 if (!r1_wrap
&& r2_wrap
)
343 else if (!r2_wrap
&& r1_wrap
)
345 else if (r1_wrap
&& r2_wrap
) {
346 /* both behind the head */
353 /* Both requests in front of the head */
367 * as_find_next_rq finds the next request after @prev in elevator order.
368 * this with as_choose_req form the basis for how the scheduler chooses
369 * what request to process next. Anticipation works on top of this.
371 static struct request
*
372 as_find_next_rq(struct as_data
*ad
, struct request
*last
)
374 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
375 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
376 struct request
*next
= NULL
, *prev
= NULL
;
378 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
381 prev
= rb_entry_rq(rbprev
);
384 next
= rb_entry_rq(rbnext
);
386 const int data_dir
= rq_is_sync(last
);
388 rbnext
= rb_first(&ad
->sort_list
[data_dir
]);
389 if (rbnext
&& rbnext
!= &last
->rb_node
)
390 next
= rb_entry_rq(rbnext
);
393 return as_choose_req(ad
, next
, prev
);
397 * anticipatory scheduling functions follow
401 * as_antic_expired tells us when we have anticipated too long.
402 * The funny "absolute difference" math on the elapsed time is to handle
403 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
405 static int as_antic_expired(struct as_data
*ad
)
409 delta_jif
= jiffies
- ad
->antic_start
;
410 if (unlikely(delta_jif
< 0))
411 delta_jif
= -delta_jif
;
412 if (delta_jif
< ad
->antic_expire
)
419 * as_antic_waitnext starts anticipating that a nice request will soon be
420 * submitted. See also as_antic_waitreq
422 static void as_antic_waitnext(struct as_data
*ad
)
424 unsigned long timeout
;
426 BUG_ON(ad
->antic_status
!= ANTIC_OFF
427 && ad
->antic_status
!= ANTIC_WAIT_REQ
);
429 timeout
= ad
->antic_start
+ ad
->antic_expire
;
431 mod_timer(&ad
->antic_timer
, timeout
);
433 ad
->antic_status
= ANTIC_WAIT_NEXT
;
437 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
438 * until the request that we're anticipating on has finished. This means we
439 * are timing from when the candidate process wakes up hopefully.
441 static void as_antic_waitreq(struct as_data
*ad
)
443 BUG_ON(ad
->antic_status
== ANTIC_FINISHED
);
444 if (ad
->antic_status
== ANTIC_OFF
) {
445 if (!ad
->io_context
|| ad
->ioc_finished
)
446 as_antic_waitnext(ad
);
448 ad
->antic_status
= ANTIC_WAIT_REQ
;
453 * This is called directly by the functions in this file to stop anticipation.
454 * We kill the timer and schedule a call to the request_fn asap.
456 static void as_antic_stop(struct as_data
*ad
)
458 int status
= ad
->antic_status
;
460 if (status
== ANTIC_WAIT_REQ
|| status
== ANTIC_WAIT_NEXT
) {
461 if (status
== ANTIC_WAIT_NEXT
)
462 del_timer(&ad
->antic_timer
);
463 ad
->antic_status
= ANTIC_FINISHED
;
464 /* see as_work_handler */
465 kblockd_schedule_work(ad
->q
, &ad
->antic_work
);
470 * as_antic_timeout is the timer function set by as_antic_waitnext.
472 static void as_antic_timeout(unsigned long data
)
474 struct request_queue
*q
= (struct request_queue
*)data
;
475 struct as_data
*ad
= q
->elevator
->elevator_data
;
478 spin_lock_irqsave(q
->queue_lock
, flags
);
479 if (ad
->antic_status
== ANTIC_WAIT_REQ
480 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
481 struct as_io_context
*aic
;
482 spin_lock(&ad
->io_context
->lock
);
483 aic
= ad
->io_context
->aic
;
485 ad
->antic_status
= ANTIC_FINISHED
;
486 kblockd_schedule_work(q
, &ad
->antic_work
);
488 if (aic
->ttime_samples
== 0) {
489 /* process anticipated on has exited or timed out*/
490 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
492 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
493 /* process not "saved" by a cooperating request */
494 ad
->exit_no_coop
= (7*ad
->exit_no_coop
+ 256)/8;
496 spin_unlock(&ad
->io_context
->lock
);
498 spin_unlock_irqrestore(q
->queue_lock
, flags
);
501 static void as_update_thinktime(struct as_data
*ad
, struct as_io_context
*aic
,
504 /* fixed point: 1.0 == 1<<8 */
505 if (aic
->ttime_samples
== 0) {
506 ad
->new_ttime_total
= (7*ad
->new_ttime_total
+ 256*ttime
) / 8;
507 ad
->new_ttime_mean
= ad
->new_ttime_total
/ 256;
509 ad
->exit_prob
= (7*ad
->exit_prob
)/8;
511 aic
->ttime_samples
= (7*aic
->ttime_samples
+ 256) / 8;
512 aic
->ttime_total
= (7*aic
->ttime_total
+ 256*ttime
) / 8;
513 aic
->ttime_mean
= (aic
->ttime_total
+ 128) / aic
->ttime_samples
;
516 static void as_update_seekdist(struct as_data
*ad
, struct as_io_context
*aic
,
521 if (aic
->seek_samples
== 0) {
522 ad
->new_seek_total
= (7*ad
->new_seek_total
+ 256*(u64
)sdist
)/8;
523 ad
->new_seek_mean
= ad
->new_seek_total
/ 256;
527 * Don't allow the seek distance to get too large from the
528 * odd fragment, pagein, etc
530 if (aic
->seek_samples
<= 60) /* second&third seek */
531 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*1024);
533 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*64);
535 aic
->seek_samples
= (7*aic
->seek_samples
+ 256) / 8;
536 aic
->seek_total
= (7*aic
->seek_total
+ (u64
)256*sdist
) / 8;
537 total
= aic
->seek_total
+ (aic
->seek_samples
/2);
538 do_div(total
, aic
->seek_samples
);
539 aic
->seek_mean
= (sector_t
)total
;
543 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
544 * updates @aic->ttime_mean based on that. It is called when a new
547 static void as_update_iohist(struct as_data
*ad
, struct as_io_context
*aic
,
550 int data_dir
= rq_is_sync(rq
);
551 unsigned long thinktime
= 0;
557 if (data_dir
== REQ_SYNC
) {
558 unsigned long in_flight
= atomic_read(&aic
->nr_queued
)
559 + atomic_read(&aic
->nr_dispatched
);
560 spin_lock(&aic
->lock
);
561 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
) ||
562 test_bit(AS_TASK_IOSTARTED
, &aic
->state
)) {
563 /* Calculate read -> read thinktime */
564 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
)
566 thinktime
= jiffies
- aic
->last_end_request
;
567 thinktime
= min(thinktime
, MAX_THINKTIME
-1);
569 as_update_thinktime(ad
, aic
, thinktime
);
571 /* Calculate read -> read seek distance */
572 if (aic
->last_request_pos
< rq
->sector
)
573 seek_dist
= rq
->sector
- aic
->last_request_pos
;
575 seek_dist
= aic
->last_request_pos
- rq
->sector
;
576 as_update_seekdist(ad
, aic
, seek_dist
);
578 aic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
579 set_bit(AS_TASK_IOSTARTED
, &aic
->state
);
580 spin_unlock(&aic
->lock
);
585 * as_close_req decides if one request is considered "close" to the
586 * previous one issued.
588 static int as_close_req(struct as_data
*ad
, struct as_io_context
*aic
,
591 unsigned long delay
; /* jiffies */
592 sector_t last
= ad
->last_sector
[ad
->batch_data_dir
];
593 sector_t next
= rq
->sector
;
594 sector_t delta
; /* acceptable close offset (in sectors) */
597 if (ad
->antic_status
== ANTIC_OFF
|| !ad
->ioc_finished
)
600 delay
= jiffies
- ad
->antic_start
;
604 else if (delay
<= (20 * HZ
/ 1000) && delay
<= ad
->antic_expire
)
605 delta
= 8192 << delay
;
609 if ((last
<= next
+ (delta
>>1)) && (next
<= last
+ delta
))
617 if (aic
->seek_samples
== 0) {
619 * Process has just started IO. Use past statistics to
620 * gauge success possibility
622 if (ad
->new_seek_mean
> s
) {
623 /* this request is better than what we're expecting */
628 if (aic
->seek_mean
> s
) {
629 /* this request is better than what we're expecting */
638 * as_can_break_anticipation returns true if we have been anticipating this
641 * It also returns true if the process against which we are anticipating
642 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
643 * dispatch it ASAP, because we know that application will not be submitting
646 * If the task which has submitted the request has exited, break anticipation.
648 * If this task has queued some other IO, do not enter enticipation.
650 static int as_can_break_anticipation(struct as_data
*ad
, struct request
*rq
)
652 struct io_context
*ioc
;
653 struct as_io_context
*aic
;
655 ioc
= ad
->io_context
;
657 spin_lock(&ioc
->lock
);
659 if (rq
&& ioc
== RQ_IOC(rq
)) {
660 /* request from same process */
661 spin_unlock(&ioc
->lock
);
665 if (ad
->ioc_finished
&& as_antic_expired(ad
)) {
667 * In this situation status should really be FINISHED,
668 * however the timer hasn't had the chance to run yet.
670 spin_unlock(&ioc
->lock
);
676 spin_unlock(&ioc
->lock
);
680 if (atomic_read(&aic
->nr_queued
) > 0) {
681 /* process has more requests queued */
682 spin_unlock(&ioc
->lock
);
686 if (atomic_read(&aic
->nr_dispatched
) > 0) {
687 /* process has more requests dispatched */
688 spin_unlock(&ioc
->lock
);
692 if (rq
&& rq_is_sync(rq
) && as_close_req(ad
, aic
, rq
)) {
694 * Found a close request that is not one of ours.
696 * This makes close requests from another process update
697 * our IO history. Is generally useful when there are
698 * two or more cooperating processes working in the same
701 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
702 if (aic
->ttime_samples
== 0)
703 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
705 ad
->exit_no_coop
= (7*ad
->exit_no_coop
)/8;
708 as_update_iohist(ad
, aic
, rq
);
709 spin_unlock(&ioc
->lock
);
713 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
714 /* process anticipated on has exited */
715 if (aic
->ttime_samples
== 0)
716 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
718 if (ad
->exit_no_coop
> 128) {
719 spin_unlock(&ioc
->lock
);
724 if (aic
->ttime_samples
== 0) {
725 if (ad
->new_ttime_mean
> ad
->antic_expire
) {
726 spin_unlock(&ioc
->lock
);
729 if (ad
->exit_prob
* ad
->exit_no_coop
> 128*256) {
730 spin_unlock(&ioc
->lock
);
733 } else if (aic
->ttime_mean
> ad
->antic_expire
) {
734 /* the process thinks too much between requests */
735 spin_unlock(&ioc
->lock
);
738 spin_unlock(&ioc
->lock
);
743 * as_can_anticipate indicates whether we should either run rq
744 * or keep anticipating a better request.
746 static int as_can_anticipate(struct as_data
*ad
, struct request
*rq
)
748 #if 0 /* disable for now, we need to check tag level as well */
750 * SSD device without seek penalty, disable idling
752 if (blk_queue_nonrot(ad
->q
)) axman
758 * Last request submitted was a write
762 if (ad
->antic_status
== ANTIC_FINISHED
)
764 * Don't restart if we have just finished. Run the next request
768 if (as_can_break_anticipation(ad
, rq
))
770 * This request is a good candidate. Don't keep anticipating,
776 * OK from here, we haven't finished, and don't have a decent request!
777 * Status is either ANTIC_OFF so start waiting,
778 * ANTIC_WAIT_REQ so continue waiting for request to finish
779 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
786 * as_update_rq must be called whenever a request (rq) is added to
787 * the sort_list. This function keeps caches up to date, and checks if the
788 * request might be one we are "anticipating"
790 static void as_update_rq(struct as_data
*ad
, struct request
*rq
)
792 const int data_dir
= rq_is_sync(rq
);
794 /* keep the next_rq cache up to date */
795 ad
->next_rq
[data_dir
] = as_choose_req(ad
, rq
, ad
->next_rq
[data_dir
]);
798 * have we been anticipating this request?
799 * or does it come from the same process as the one we are anticipating
802 if (ad
->antic_status
== ANTIC_WAIT_REQ
803 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
804 if (as_can_break_anticipation(ad
, rq
))
810 * Gathers timings and resizes the write batch automatically
812 static void update_write_batch(struct as_data
*ad
)
814 unsigned long batch
= ad
->batch_expire
[REQ_ASYNC
];
817 write_time
= (jiffies
- ad
->current_batch_expires
) + batch
;
821 if (write_time
> batch
&& !ad
->write_batch_idled
) {
822 if (write_time
> batch
* 3)
823 ad
->write_batch_count
/= 2;
825 ad
->write_batch_count
--;
826 } else if (write_time
< batch
&& ad
->current_write_count
== 0) {
827 if (batch
> write_time
* 3)
828 ad
->write_batch_count
*= 2;
830 ad
->write_batch_count
++;
833 if (ad
->write_batch_count
< 1)
834 ad
->write_batch_count
= 1;
838 * as_completed_request is to be called when a request has completed and
839 * returned something to the requesting process, be it an error or data.
841 static void as_completed_request(struct request_queue
*q
, struct request
*rq
)
843 struct as_data
*ad
= q
->elevator
->elevator_data
;
845 WARN_ON(!list_empty(&rq
->queuelist
));
847 if (RQ_STATE(rq
) != AS_RQ_REMOVED
) {
848 WARN(1, "rq->state %d\n", RQ_STATE(rq
));
852 if (ad
->changed_batch
&& ad
->nr_dispatched
== 1) {
853 ad
->current_batch_expires
= jiffies
+
854 ad
->batch_expire
[ad
->batch_data_dir
];
855 kblockd_schedule_work(q
, &ad
->antic_work
);
856 ad
->changed_batch
= 0;
858 if (ad
->batch_data_dir
== REQ_SYNC
)
861 WARN_ON(ad
->nr_dispatched
== 0);
865 * Start counting the batch from when a request of that direction is
866 * actually serviced. This should help devices with big TCQ windows
867 * and writeback caches
869 if (ad
->new_batch
&& ad
->batch_data_dir
== rq_is_sync(rq
)) {
870 update_write_batch(ad
);
871 ad
->current_batch_expires
= jiffies
+
872 ad
->batch_expire
[REQ_SYNC
];
876 if (ad
->io_context
== RQ_IOC(rq
) && ad
->io_context
) {
877 ad
->antic_start
= jiffies
;
878 ad
->ioc_finished
= 1;
879 if (ad
->antic_status
== ANTIC_WAIT_REQ
) {
881 * We were waiting on this request, now anticipate
884 as_antic_waitnext(ad
);
888 as_put_io_context(rq
);
890 RQ_SET_STATE(rq
, AS_RQ_POSTSCHED
);
894 * as_remove_queued_request removes a request from the pre dispatch queue
895 * without updating refcounts. It is expected the caller will drop the
896 * reference unless it replaces the request at somepart of the elevator
897 * (ie. the dispatch queue)
899 static void as_remove_queued_request(struct request_queue
*q
,
902 const int data_dir
= rq_is_sync(rq
);
903 struct as_data
*ad
= q
->elevator
->elevator_data
;
904 struct io_context
*ioc
;
906 WARN_ON(RQ_STATE(rq
) != AS_RQ_QUEUED
);
909 if (ioc
&& ioc
->aic
) {
910 BUG_ON(!atomic_read(&ioc
->aic
->nr_queued
));
911 atomic_dec(&ioc
->aic
->nr_queued
);
915 * Update the "next_rq" cache if we are about to remove its
918 if (ad
->next_rq
[data_dir
] == rq
)
919 ad
->next_rq
[data_dir
] = as_find_next_rq(ad
, rq
);
922 as_del_rq_rb(ad
, rq
);
926 * as_fifo_expired returns 0 if there are no expired requests on the fifo,
927 * 1 otherwise. It is ratelimited so that we only perform the check once per
928 * `fifo_expire' interval. Otherwise a large number of expired requests
929 * would create a hopeless seekstorm.
931 * See as_antic_expired comment.
933 static int as_fifo_expired(struct as_data
*ad
, int adir
)
938 delta_jif
= jiffies
- ad
->last_check_fifo
[adir
];
939 if (unlikely(delta_jif
< 0))
940 delta_jif
= -delta_jif
;
941 if (delta_jif
< ad
->fifo_expire
[adir
])
944 ad
->last_check_fifo
[adir
] = jiffies
;
946 if (list_empty(&ad
->fifo_list
[adir
]))
949 rq
= rq_entry_fifo(ad
->fifo_list
[adir
].next
);
951 return time_after(jiffies
, rq_fifo_time(rq
));
955 * as_batch_expired returns true if the current batch has expired. A batch
956 * is a set of reads or a set of writes.
958 static inline int as_batch_expired(struct as_data
*ad
)
960 if (ad
->changed_batch
|| ad
->new_batch
)
963 if (ad
->batch_data_dir
== REQ_SYNC
)
964 /* TODO! add a check so a complete fifo gets written? */
965 return time_after(jiffies
, ad
->current_batch_expires
);
967 return time_after(jiffies
, ad
->current_batch_expires
)
968 || ad
->current_write_count
== 0;
972 * move an entry to dispatch queue
974 static void as_move_to_dispatch(struct as_data
*ad
, struct request
*rq
)
976 const int data_dir
= rq_is_sync(rq
);
978 BUG_ON(RB_EMPTY_NODE(&rq
->rb_node
));
981 ad
->antic_status
= ANTIC_OFF
;
984 * This has to be set in order to be correctly updated by
987 ad
->last_sector
[data_dir
] = rq
->sector
+ rq
->nr_sectors
;
989 if (data_dir
== REQ_SYNC
) {
990 struct io_context
*ioc
= RQ_IOC(rq
);
991 /* In case we have to anticipate after this */
992 copy_io_context(&ad
->io_context
, &ioc
);
994 if (ad
->io_context
) {
995 put_io_context(ad
->io_context
);
996 ad
->io_context
= NULL
;
999 if (ad
->current_write_count
!= 0)
1000 ad
->current_write_count
--;
1002 ad
->ioc_finished
= 0;
1004 ad
->next_rq
[data_dir
] = as_find_next_rq(ad
, rq
);
1007 * take it off the sort and fifo list, add to dispatch queue
1009 as_remove_queued_request(ad
->q
, rq
);
1010 WARN_ON(RQ_STATE(rq
) != AS_RQ_QUEUED
);
1012 elv_dispatch_sort(ad
->q
, rq
);
1014 RQ_SET_STATE(rq
, AS_RQ_DISPATCHED
);
1015 if (RQ_IOC(rq
) && RQ_IOC(rq
)->aic
)
1016 atomic_inc(&RQ_IOC(rq
)->aic
->nr_dispatched
);
1017 ad
->nr_dispatched
++;
1021 * as_dispatch_request selects the best request according to
1022 * read/write expire, batch expire, etc, and moves it to the dispatch
1023 * queue. Returns 1 if a request was found, 0 otherwise.
1025 static int as_dispatch_request(struct request_queue
*q
, int force
)
1027 struct as_data
*ad
= q
->elevator
->elevator_data
;
1028 const int reads
= !list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1029 const int writes
= !list_empty(&ad
->fifo_list
[REQ_ASYNC
]);
1032 if (unlikely(force
)) {
1034 * Forced dispatch, accounting is useless. Reset
1035 * accounting states and dump fifo_lists. Note that
1036 * batch_data_dir is reset to REQ_SYNC to avoid
1037 * screwing write batch accounting as write batch
1038 * accounting occurs on W->R transition.
1042 ad
->batch_data_dir
= REQ_SYNC
;
1043 ad
->changed_batch
= 0;
1046 while (ad
->next_rq
[REQ_SYNC
]) {
1047 as_move_to_dispatch(ad
, ad
->next_rq
[REQ_SYNC
]);
1050 ad
->last_check_fifo
[REQ_SYNC
] = jiffies
;
1052 while (ad
->next_rq
[REQ_ASYNC
]) {
1053 as_move_to_dispatch(ad
, ad
->next_rq
[REQ_ASYNC
]);
1056 ad
->last_check_fifo
[REQ_ASYNC
] = jiffies
;
1061 /* Signal that the write batch was uncontended, so we can't time it */
1062 if (ad
->batch_data_dir
== REQ_ASYNC
&& !reads
) {
1063 if (ad
->current_write_count
== 0 || !writes
)
1064 ad
->write_batch_idled
= 1;
1067 if (!(reads
|| writes
)
1068 || ad
->antic_status
== ANTIC_WAIT_REQ
1069 || ad
->antic_status
== ANTIC_WAIT_NEXT
1070 || ad
->changed_batch
)
1073 if (!(reads
&& writes
&& as_batch_expired(ad
))) {
1075 * batch is still running or no reads or no writes
1077 rq
= ad
->next_rq
[ad
->batch_data_dir
];
1079 if (ad
->batch_data_dir
== REQ_SYNC
&& ad
->antic_expire
) {
1080 if (as_fifo_expired(ad
, REQ_SYNC
))
1083 if (as_can_anticipate(ad
, rq
)) {
1084 as_antic_waitreq(ad
);
1090 /* we have a "next request" */
1091 if (reads
&& !writes
)
1092 ad
->current_batch_expires
=
1093 jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1094 goto dispatch_request
;
1099 * at this point we are not running a batch. select the appropriate
1100 * data direction (read / write)
1104 BUG_ON(RB_EMPTY_ROOT(&ad
->sort_list
[REQ_SYNC
]));
1106 if (writes
&& ad
->batch_data_dir
== REQ_SYNC
)
1108 * Last batch was a read, switch to writes
1110 goto dispatch_writes
;
1112 if (ad
->batch_data_dir
== REQ_ASYNC
) {
1113 WARN_ON(ad
->new_batch
);
1114 ad
->changed_batch
= 1;
1116 ad
->batch_data_dir
= REQ_SYNC
;
1117 rq
= rq_entry_fifo(ad
->fifo_list
[REQ_SYNC
].next
);
1118 ad
->last_check_fifo
[ad
->batch_data_dir
] = jiffies
;
1119 goto dispatch_request
;
1123 * the last batch was a read
1128 BUG_ON(RB_EMPTY_ROOT(&ad
->sort_list
[REQ_ASYNC
]));
1130 if (ad
->batch_data_dir
== REQ_SYNC
) {
1131 ad
->changed_batch
= 1;
1134 * new_batch might be 1 when the queue runs out of
1135 * reads. A subsequent submission of a write might
1136 * cause a change of batch before the read is finished.
1140 ad
->batch_data_dir
= REQ_ASYNC
;
1141 ad
->current_write_count
= ad
->write_batch_count
;
1142 ad
->write_batch_idled
= 0;
1143 rq
= rq_entry_fifo(ad
->fifo_list
[REQ_ASYNC
].next
);
1144 ad
->last_check_fifo
[REQ_ASYNC
] = jiffies
;
1145 goto dispatch_request
;
1153 * If a request has expired, service it.
1156 if (as_fifo_expired(ad
, ad
->batch_data_dir
)) {
1158 rq
= rq_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1161 if (ad
->changed_batch
) {
1162 WARN_ON(ad
->new_batch
);
1164 if (ad
->nr_dispatched
)
1167 if (ad
->batch_data_dir
== REQ_ASYNC
)
1168 ad
->current_batch_expires
= jiffies
+
1169 ad
->batch_expire
[REQ_ASYNC
];
1173 ad
->changed_batch
= 0;
1177 * rq is the selected appropriate request.
1179 as_move_to_dispatch(ad
, rq
);
1185 * add rq to rbtree and fifo
1187 static void as_add_request(struct request_queue
*q
, struct request
*rq
)
1189 struct as_data
*ad
= q
->elevator
->elevator_data
;
1192 RQ_SET_STATE(rq
, AS_RQ_NEW
);
1194 data_dir
= rq_is_sync(rq
);
1196 rq
->elevator_private
= as_get_io_context(q
->node
);
1199 as_update_iohist(ad
, RQ_IOC(rq
)->aic
, rq
);
1200 atomic_inc(&RQ_IOC(rq
)->aic
->nr_queued
);
1203 as_add_rq_rb(ad
, rq
);
1206 * set expire time and add to fifo list
1208 rq_set_fifo_time(rq
, jiffies
+ ad
->fifo_expire
[data_dir
]);
1209 list_add_tail(&rq
->queuelist
, &ad
->fifo_list
[data_dir
]);
1211 as_update_rq(ad
, rq
); /* keep state machine up to date */
1212 RQ_SET_STATE(rq
, AS_RQ_QUEUED
);
1215 static void as_activate_request(struct request_queue
*q
, struct request
*rq
)
1217 WARN_ON(RQ_STATE(rq
) != AS_RQ_DISPATCHED
);
1218 RQ_SET_STATE(rq
, AS_RQ_REMOVED
);
1219 if (RQ_IOC(rq
) && RQ_IOC(rq
)->aic
)
1220 atomic_dec(&RQ_IOC(rq
)->aic
->nr_dispatched
);
1223 static void as_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1225 WARN_ON(RQ_STATE(rq
) != AS_RQ_REMOVED
);
1226 RQ_SET_STATE(rq
, AS_RQ_DISPATCHED
);
1227 if (RQ_IOC(rq
) && RQ_IOC(rq
)->aic
)
1228 atomic_inc(&RQ_IOC(rq
)->aic
->nr_dispatched
);
1232 * as_queue_empty tells us if there are requests left in the device. It may
1233 * not be the case that a driver can get the next request even if the queue
1234 * is not empty - it is used in the block layer to check for plugging and
1235 * merging opportunities
1237 static int as_queue_empty(struct request_queue
*q
)
1239 struct as_data
*ad
= q
->elevator
->elevator_data
;
1241 return list_empty(&ad
->fifo_list
[REQ_ASYNC
])
1242 && list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1246 as_merge(struct request_queue
*q
, struct request
**req
, struct bio
*bio
)
1248 struct as_data
*ad
= q
->elevator
->elevator_data
;
1249 sector_t rb_key
= bio
->bi_sector
+ bio_sectors(bio
);
1250 struct request
*__rq
;
1253 * check for front merge
1255 __rq
= elv_rb_find(&ad
->sort_list
[bio_data_dir(bio
)], rb_key
);
1256 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1258 return ELEVATOR_FRONT_MERGE
;
1261 return ELEVATOR_NO_MERGE
;
1264 static void as_merged_request(struct request_queue
*q
, struct request
*req
,
1267 struct as_data
*ad
= q
->elevator
->elevator_data
;
1270 * if the merge was a front merge, we need to reposition request
1272 if (type
== ELEVATOR_FRONT_MERGE
) {
1273 as_del_rq_rb(ad
, req
);
1274 as_add_rq_rb(ad
, req
);
1276 * Note! At this stage of this and the next function, our next
1277 * request may not be optimal - eg the request may have "grown"
1278 * behind the disk head. We currently don't bother adjusting.
1283 static void as_merged_requests(struct request_queue
*q
, struct request
*req
,
1284 struct request
*next
)
1287 * if next expires before rq, assign its expire time to arq
1288 * and move into next position (next will be deleted) in fifo
1290 if (!list_empty(&req
->queuelist
) && !list_empty(&next
->queuelist
)) {
1291 if (time_before(rq_fifo_time(next
), rq_fifo_time(req
))) {
1292 list_move(&req
->queuelist
, &next
->queuelist
);
1293 rq_set_fifo_time(req
, rq_fifo_time(next
));
1298 * kill knowledge of next, this one is a goner
1300 as_remove_queued_request(q
, next
);
1301 as_put_io_context(next
);
1303 RQ_SET_STATE(next
, AS_RQ_MERGED
);
1307 * This is executed in a "deferred" process context, by kblockd. It calls the
1308 * driver's request_fn so the driver can submit that request.
1310 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1311 * state before calling, and don't rely on any state over calls.
1313 * FIXME! dispatch queue is not a queue at all!
1315 static void as_work_handler(struct work_struct
*work
)
1317 struct as_data
*ad
= container_of(work
, struct as_data
, antic_work
);
1318 struct request_queue
*q
= ad
->q
;
1319 unsigned long flags
;
1321 spin_lock_irqsave(q
->queue_lock
, flags
);
1322 blk_start_queueing(q
);
1323 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1326 static int as_may_queue(struct request_queue
*q
, int rw
)
1328 int ret
= ELV_MQUEUE_MAY
;
1329 struct as_data
*ad
= q
->elevator
->elevator_data
;
1330 struct io_context
*ioc
;
1331 if (ad
->antic_status
== ANTIC_WAIT_REQ
||
1332 ad
->antic_status
== ANTIC_WAIT_NEXT
) {
1333 ioc
= as_get_io_context(q
->node
);
1334 if (ad
->io_context
== ioc
)
1335 ret
= ELV_MQUEUE_MUST
;
1336 put_io_context(ioc
);
1342 static void as_exit_queue(elevator_t
*e
)
1344 struct as_data
*ad
= e
->elevator_data
;
1346 del_timer_sync(&ad
->antic_timer
);
1347 kblockd_flush_work(&ad
->antic_work
);
1349 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_SYNC
]));
1350 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_ASYNC
]));
1352 put_io_context(ad
->io_context
);
1357 * initialize elevator private data (as_data).
1359 static void *as_init_queue(struct request_queue
*q
)
1363 ad
= kmalloc_node(sizeof(*ad
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
1367 ad
->q
= q
; /* Identify what queue the data belongs to */
1369 /* anticipatory scheduling helpers */
1370 ad
->antic_timer
.function
= as_antic_timeout
;
1371 ad
->antic_timer
.data
= (unsigned long)q
;
1372 init_timer(&ad
->antic_timer
);
1373 INIT_WORK(&ad
->antic_work
, as_work_handler
);
1375 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_SYNC
]);
1376 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_ASYNC
]);
1377 ad
->sort_list
[REQ_SYNC
] = RB_ROOT
;
1378 ad
->sort_list
[REQ_ASYNC
] = RB_ROOT
;
1379 ad
->fifo_expire
[REQ_SYNC
] = default_read_expire
;
1380 ad
->fifo_expire
[REQ_ASYNC
] = default_write_expire
;
1381 ad
->antic_expire
= default_antic_expire
;
1382 ad
->batch_expire
[REQ_SYNC
] = default_read_batch_expire
;
1383 ad
->batch_expire
[REQ_ASYNC
] = default_write_batch_expire
;
1385 ad
->current_batch_expires
= jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1386 ad
->write_batch_count
= ad
->batch_expire
[REQ_ASYNC
] / 10;
1387 if (ad
->write_batch_count
< 2)
1388 ad
->write_batch_count
= 2;
1398 as_var_show(unsigned int var
, char *page
)
1400 return sprintf(page
, "%d\n", var
);
1404 as_var_store(unsigned long *var
, const char *page
, size_t count
)
1406 char *p
= (char *) page
;
1408 *var
= simple_strtoul(p
, &p
, 10);
1412 static ssize_t
est_time_show(elevator_t
*e
, char *page
)
1414 struct as_data
*ad
= e
->elevator_data
;
1417 pos
+= sprintf(page
+pos
, "%lu %% exit probability\n",
1418 100*ad
->exit_prob
/256);
1419 pos
+= sprintf(page
+pos
, "%lu %% probability of exiting without a "
1420 "cooperating process submitting IO\n",
1421 100*ad
->exit_no_coop
/256);
1422 pos
+= sprintf(page
+pos
, "%lu ms new thinktime\n", ad
->new_ttime_mean
);
1423 pos
+= sprintf(page
+pos
, "%llu sectors new seek distance\n",
1424 (unsigned long long)ad
->new_seek_mean
);
1429 #define SHOW_FUNCTION(__FUNC, __VAR) \
1430 static ssize_t __FUNC(elevator_t *e, char *page) \
1432 struct as_data *ad = e->elevator_data; \
1433 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1435 SHOW_FUNCTION(as_read_expire_show
, ad
->fifo_expire
[REQ_SYNC
]);
1436 SHOW_FUNCTION(as_write_expire_show
, ad
->fifo_expire
[REQ_ASYNC
]);
1437 SHOW_FUNCTION(as_antic_expire_show
, ad
->antic_expire
);
1438 SHOW_FUNCTION(as_read_batch_expire_show
, ad
->batch_expire
[REQ_SYNC
]);
1439 SHOW_FUNCTION(as_write_batch_expire_show
, ad
->batch_expire
[REQ_ASYNC
]);
1440 #undef SHOW_FUNCTION
1442 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1443 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1445 struct as_data *ad = e->elevator_data; \
1446 int ret = as_var_store(__PTR, (page), count); \
1447 if (*(__PTR) < (MIN)) \
1449 else if (*(__PTR) > (MAX)) \
1451 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1454 STORE_FUNCTION(as_read_expire_store
, &ad
->fifo_expire
[REQ_SYNC
], 0, INT_MAX
);
1455 STORE_FUNCTION(as_write_expire_store
, &ad
->fifo_expire
[REQ_ASYNC
], 0, INT_MAX
);
1456 STORE_FUNCTION(as_antic_expire_store
, &ad
->antic_expire
, 0, INT_MAX
);
1457 STORE_FUNCTION(as_read_batch_expire_store
,
1458 &ad
->batch_expire
[REQ_SYNC
], 0, INT_MAX
);
1459 STORE_FUNCTION(as_write_batch_expire_store
,
1460 &ad
->batch_expire
[REQ_ASYNC
], 0, INT_MAX
);
1461 #undef STORE_FUNCTION
1463 #define AS_ATTR(name) \
1464 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1466 static struct elv_fs_entry as_attrs
[] = {
1467 __ATTR_RO(est_time
),
1468 AS_ATTR(read_expire
),
1469 AS_ATTR(write_expire
),
1470 AS_ATTR(antic_expire
),
1471 AS_ATTR(read_batch_expire
),
1472 AS_ATTR(write_batch_expire
),
1476 static struct elevator_type iosched_as
= {
1478 .elevator_merge_fn
= as_merge
,
1479 .elevator_merged_fn
= as_merged_request
,
1480 .elevator_merge_req_fn
= as_merged_requests
,
1481 .elevator_dispatch_fn
= as_dispatch_request
,
1482 .elevator_add_req_fn
= as_add_request
,
1483 .elevator_activate_req_fn
= as_activate_request
,
1484 .elevator_deactivate_req_fn
= as_deactivate_request
,
1485 .elevator_queue_empty_fn
= as_queue_empty
,
1486 .elevator_completed_req_fn
= as_completed_request
,
1487 .elevator_former_req_fn
= elv_rb_former_request
,
1488 .elevator_latter_req_fn
= elv_rb_latter_request
,
1489 .elevator_may_queue_fn
= as_may_queue
,
1490 .elevator_init_fn
= as_init_queue
,
1491 .elevator_exit_fn
= as_exit_queue
,
1495 .elevator_attrs
= as_attrs
,
1496 .elevator_name
= "anticipatory",
1497 .elevator_owner
= THIS_MODULE
,
1500 static int __init
as_init(void)
1502 elv_register(&iosched_as
);
1507 static void __exit
as_exit(void)
1509 DECLARE_COMPLETION_ONSTACK(all_gone
);
1510 elv_unregister(&iosched_as
);
1511 ioc_gone
= &all_gone
;
1512 /* ioc_gone's update must be visible before reading ioc_count */
1514 if (elv_ioc_count_read(ioc_count
))
1515 wait_for_completion(&all_gone
);
1519 module_init(as_init
);
1520 module_exit(as_exit
);
1522 MODULE_AUTHOR("Nick Piggin");
1523 MODULE_LICENSE("GPL");
1524 MODULE_DESCRIPTION("anticipatory IO scheduler");