seq_file: fix new kernel-doc warnings
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
bloba8182c89de5920b5eb91809676ee884d89bbfcaf
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 #include "internal.h"
59 * Array of node states.
61 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62 [N_POSSIBLE] = NODE_MASK_ALL,
63 [N_ONLINE] = { { [0] = 1UL } },
64 #ifndef CONFIG_NUMA
65 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
66 #ifdef CONFIG_HIGHMEM
67 [N_HIGH_MEMORY] = { { [0] = 1UL } },
68 #endif
69 [N_CPU] = { { [0] = 1UL } },
70 #endif /* NUMA */
72 EXPORT_SYMBOL(node_states);
74 unsigned long totalram_pages __read_mostly;
75 unsigned long totalreserve_pages __read_mostly;
76 int percpu_pagelist_fraction;
77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79 #ifdef CONFIG_PM_SLEEP
81 * The following functions are used by the suspend/hibernate code to temporarily
82 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
83 * while devices are suspended. To avoid races with the suspend/hibernate code,
84 * they should always be called with pm_mutex held (gfp_allowed_mask also should
85 * only be modified with pm_mutex held, unless the suspend/hibernate code is
86 * guaranteed not to run in parallel with that modification).
88 void set_gfp_allowed_mask(gfp_t mask)
90 WARN_ON(!mutex_is_locked(&pm_mutex));
91 gfp_allowed_mask = mask;
94 gfp_t clear_gfp_allowed_mask(gfp_t mask)
96 gfp_t ret = gfp_allowed_mask;
98 WARN_ON(!mutex_is_locked(&pm_mutex));
99 gfp_allowed_mask &= ~mask;
100 return ret;
102 #endif /* CONFIG_PM_SLEEP */
104 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
105 int pageblock_order __read_mostly;
106 #endif
108 static void __free_pages_ok(struct page *page, unsigned int order);
111 * results with 256, 32 in the lowmem_reserve sysctl:
112 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
113 * 1G machine -> (16M dma, 784M normal, 224M high)
114 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
115 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
116 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
118 * TBD: should special case ZONE_DMA32 machines here - in those we normally
119 * don't need any ZONE_NORMAL reservation
121 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
122 #ifdef CONFIG_ZONE_DMA
123 256,
124 #endif
125 #ifdef CONFIG_ZONE_DMA32
126 256,
127 #endif
128 #ifdef CONFIG_HIGHMEM
130 #endif
134 EXPORT_SYMBOL(totalram_pages);
136 static char * const zone_names[MAX_NR_ZONES] = {
137 #ifdef CONFIG_ZONE_DMA
138 "DMA",
139 #endif
140 #ifdef CONFIG_ZONE_DMA32
141 "DMA32",
142 #endif
143 "Normal",
144 #ifdef CONFIG_HIGHMEM
145 "HighMem",
146 #endif
147 "Movable",
150 int min_free_kbytes = 1024;
152 static unsigned long __meminitdata nr_kernel_pages;
153 static unsigned long __meminitdata nr_all_pages;
154 static unsigned long __meminitdata dma_reserve;
156 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
158 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
159 * ranges of memory (RAM) that may be registered with add_active_range().
160 * Ranges passed to add_active_range() will be merged if possible
161 * so the number of times add_active_range() can be called is
162 * related to the number of nodes and the number of holes
164 #ifdef CONFIG_MAX_ACTIVE_REGIONS
165 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
166 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
167 #else
168 #if MAX_NUMNODES >= 32
169 /* If there can be many nodes, allow up to 50 holes per node */
170 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
171 #else
172 /* By default, allow up to 256 distinct regions */
173 #define MAX_ACTIVE_REGIONS 256
174 #endif
175 #endif
177 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
178 static int __meminitdata nr_nodemap_entries;
179 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
180 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
181 static unsigned long __initdata required_kernelcore;
182 static unsigned long __initdata required_movablecore;
183 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
185 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
186 int movable_zone;
187 EXPORT_SYMBOL(movable_zone);
188 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
190 #if MAX_NUMNODES > 1
191 int nr_node_ids __read_mostly = MAX_NUMNODES;
192 int nr_online_nodes __read_mostly = 1;
193 EXPORT_SYMBOL(nr_node_ids);
194 EXPORT_SYMBOL(nr_online_nodes);
195 #endif
197 int page_group_by_mobility_disabled __read_mostly;
199 static void set_pageblock_migratetype(struct page *page, int migratetype)
202 if (unlikely(page_group_by_mobility_disabled))
203 migratetype = MIGRATE_UNMOVABLE;
205 set_pageblock_flags_group(page, (unsigned long)migratetype,
206 PB_migrate, PB_migrate_end);
209 bool oom_killer_disabled __read_mostly;
211 #ifdef CONFIG_DEBUG_VM
212 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
214 int ret = 0;
215 unsigned seq;
216 unsigned long pfn = page_to_pfn(page);
218 do {
219 seq = zone_span_seqbegin(zone);
220 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
221 ret = 1;
222 else if (pfn < zone->zone_start_pfn)
223 ret = 1;
224 } while (zone_span_seqretry(zone, seq));
226 return ret;
229 static int page_is_consistent(struct zone *zone, struct page *page)
231 if (!pfn_valid_within(page_to_pfn(page)))
232 return 0;
233 if (zone != page_zone(page))
234 return 0;
236 return 1;
239 * Temporary debugging check for pages not lying within a given zone.
241 static int bad_range(struct zone *zone, struct page *page)
243 if (page_outside_zone_boundaries(zone, page))
244 return 1;
245 if (!page_is_consistent(zone, page))
246 return 1;
248 return 0;
250 #else
251 static inline int bad_range(struct zone *zone, struct page *page)
253 return 0;
255 #endif
257 static void bad_page(struct page *page)
259 static unsigned long resume;
260 static unsigned long nr_shown;
261 static unsigned long nr_unshown;
263 /* Don't complain about poisoned pages */
264 if (PageHWPoison(page)) {
265 __ClearPageBuddy(page);
266 return;
270 * Allow a burst of 60 reports, then keep quiet for that minute;
271 * or allow a steady drip of one report per second.
273 if (nr_shown == 60) {
274 if (time_before(jiffies, resume)) {
275 nr_unshown++;
276 goto out;
278 if (nr_unshown) {
279 printk(KERN_ALERT
280 "BUG: Bad page state: %lu messages suppressed\n",
281 nr_unshown);
282 nr_unshown = 0;
284 nr_shown = 0;
286 if (nr_shown++ == 0)
287 resume = jiffies + 60 * HZ;
289 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
290 current->comm, page_to_pfn(page));
291 printk(KERN_ALERT
292 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
293 page, (void *)page->flags, page_count(page),
294 page_mapcount(page), page->mapping, page->index);
296 dump_stack();
297 out:
298 /* Leave bad fields for debug, except PageBuddy could make trouble */
299 __ClearPageBuddy(page);
300 add_taint(TAINT_BAD_PAGE);
304 * Higher-order pages are called "compound pages". They are structured thusly:
306 * The first PAGE_SIZE page is called the "head page".
308 * The remaining PAGE_SIZE pages are called "tail pages".
310 * All pages have PG_compound set. All pages have their ->private pointing at
311 * the head page (even the head page has this).
313 * The first tail page's ->lru.next holds the address of the compound page's
314 * put_page() function. Its ->lru.prev holds the order of allocation.
315 * This usage means that zero-order pages may not be compound.
318 static void free_compound_page(struct page *page)
320 __free_pages_ok(page, compound_order(page));
323 void prep_compound_page(struct page *page, unsigned long order)
325 int i;
326 int nr_pages = 1 << order;
328 set_compound_page_dtor(page, free_compound_page);
329 set_compound_order(page, order);
330 __SetPageHead(page);
331 for (i = 1; i < nr_pages; i++) {
332 struct page *p = page + i;
334 __SetPageTail(p);
335 p->first_page = page;
339 static int destroy_compound_page(struct page *page, unsigned long order)
341 int i;
342 int nr_pages = 1 << order;
343 int bad = 0;
345 if (unlikely(compound_order(page) != order) ||
346 unlikely(!PageHead(page))) {
347 bad_page(page);
348 bad++;
351 __ClearPageHead(page);
353 for (i = 1; i < nr_pages; i++) {
354 struct page *p = page + i;
356 if (unlikely(!PageTail(p) || (p->first_page != page))) {
357 bad_page(page);
358 bad++;
360 __ClearPageTail(p);
363 return bad;
366 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
368 int i;
371 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
372 * and __GFP_HIGHMEM from hard or soft interrupt context.
374 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
375 for (i = 0; i < (1 << order); i++)
376 clear_highpage(page + i);
379 static inline void set_page_order(struct page *page, int order)
381 set_page_private(page, order);
382 __SetPageBuddy(page);
385 static inline void rmv_page_order(struct page *page)
387 __ClearPageBuddy(page);
388 set_page_private(page, 0);
392 * Locate the struct page for both the matching buddy in our
393 * pair (buddy1) and the combined O(n+1) page they form (page).
395 * 1) Any buddy B1 will have an order O twin B2 which satisfies
396 * the following equation:
397 * B2 = B1 ^ (1 << O)
398 * For example, if the starting buddy (buddy2) is #8 its order
399 * 1 buddy is #10:
400 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
402 * 2) Any buddy B will have an order O+1 parent P which
403 * satisfies the following equation:
404 * P = B & ~(1 << O)
406 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
408 static inline struct page *
409 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
411 unsigned long buddy_idx = page_idx ^ (1 << order);
413 return page + (buddy_idx - page_idx);
416 static inline unsigned long
417 __find_combined_index(unsigned long page_idx, unsigned int order)
419 return (page_idx & ~(1 << order));
423 * This function checks whether a page is free && is the buddy
424 * we can do coalesce a page and its buddy if
425 * (a) the buddy is not in a hole &&
426 * (b) the buddy is in the buddy system &&
427 * (c) a page and its buddy have the same order &&
428 * (d) a page and its buddy are in the same zone.
430 * For recording whether a page is in the buddy system, we use PG_buddy.
431 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
433 * For recording page's order, we use page_private(page).
435 static inline int page_is_buddy(struct page *page, struct page *buddy,
436 int order)
438 if (!pfn_valid_within(page_to_pfn(buddy)))
439 return 0;
441 if (page_zone_id(page) != page_zone_id(buddy))
442 return 0;
444 if (PageBuddy(buddy) && page_order(buddy) == order) {
445 VM_BUG_ON(page_count(buddy) != 0);
446 return 1;
448 return 0;
452 * Freeing function for a buddy system allocator.
454 * The concept of a buddy system is to maintain direct-mapped table
455 * (containing bit values) for memory blocks of various "orders".
456 * The bottom level table contains the map for the smallest allocatable
457 * units of memory (here, pages), and each level above it describes
458 * pairs of units from the levels below, hence, "buddies".
459 * At a high level, all that happens here is marking the table entry
460 * at the bottom level available, and propagating the changes upward
461 * as necessary, plus some accounting needed to play nicely with other
462 * parts of the VM system.
463 * At each level, we keep a list of pages, which are heads of continuous
464 * free pages of length of (1 << order) and marked with PG_buddy. Page's
465 * order is recorded in page_private(page) field.
466 * So when we are allocating or freeing one, we can derive the state of the
467 * other. That is, if we allocate a small block, and both were
468 * free, the remainder of the region must be split into blocks.
469 * If a block is freed, and its buddy is also free, then this
470 * triggers coalescing into a block of larger size.
472 * -- wli
475 static inline void __free_one_page(struct page *page,
476 struct zone *zone, unsigned int order,
477 int migratetype)
479 unsigned long page_idx;
481 if (unlikely(PageCompound(page)))
482 if (unlikely(destroy_compound_page(page, order)))
483 return;
485 VM_BUG_ON(migratetype == -1);
487 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
489 VM_BUG_ON(page_idx & ((1 << order) - 1));
490 VM_BUG_ON(bad_range(zone, page));
492 while (order < MAX_ORDER-1) {
493 unsigned long combined_idx;
494 struct page *buddy;
496 buddy = __page_find_buddy(page, page_idx, order);
497 if (!page_is_buddy(page, buddy, order))
498 break;
500 /* Our buddy is free, merge with it and move up one order. */
501 list_del(&buddy->lru);
502 zone->free_area[order].nr_free--;
503 rmv_page_order(buddy);
504 combined_idx = __find_combined_index(page_idx, order);
505 page = page + (combined_idx - page_idx);
506 page_idx = combined_idx;
507 order++;
509 set_page_order(page, order);
510 list_add(&page->lru,
511 &zone->free_area[order].free_list[migratetype]);
512 zone->free_area[order].nr_free++;
516 * free_page_mlock() -- clean up attempts to free and mlocked() page.
517 * Page should not be on lru, so no need to fix that up.
518 * free_pages_check() will verify...
520 static inline void free_page_mlock(struct page *page)
522 __dec_zone_page_state(page, NR_MLOCK);
523 __count_vm_event(UNEVICTABLE_MLOCKFREED);
526 static inline int free_pages_check(struct page *page)
528 if (unlikely(page_mapcount(page) |
529 (page->mapping != NULL) |
530 (atomic_read(&page->_count) != 0) |
531 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
532 bad_page(page);
533 return 1;
535 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
536 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
537 return 0;
541 * Frees a number of pages from the PCP lists
542 * Assumes all pages on list are in same zone, and of same order.
543 * count is the number of pages to free.
545 * If the zone was previously in an "all pages pinned" state then look to
546 * see if this freeing clears that state.
548 * And clear the zone's pages_scanned counter, to hold off the "all pages are
549 * pinned" detection logic.
551 static void free_pcppages_bulk(struct zone *zone, int count,
552 struct per_cpu_pages *pcp)
554 int migratetype = 0;
555 int batch_free = 0;
557 spin_lock(&zone->lock);
558 zone->all_unreclaimable = 0;
559 zone->pages_scanned = 0;
561 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
562 while (count) {
563 struct page *page;
564 struct list_head *list;
567 * Remove pages from lists in a round-robin fashion. A
568 * batch_free count is maintained that is incremented when an
569 * empty list is encountered. This is so more pages are freed
570 * off fuller lists instead of spinning excessively around empty
571 * lists
573 do {
574 batch_free++;
575 if (++migratetype == MIGRATE_PCPTYPES)
576 migratetype = 0;
577 list = &pcp->lists[migratetype];
578 } while (list_empty(list));
580 do {
581 page = list_entry(list->prev, struct page, lru);
582 /* must delete as __free_one_page list manipulates */
583 list_del(&page->lru);
584 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
585 __free_one_page(page, zone, 0, page_private(page));
586 trace_mm_page_pcpu_drain(page, 0, page_private(page));
587 } while (--count && --batch_free && !list_empty(list));
589 spin_unlock(&zone->lock);
592 static void free_one_page(struct zone *zone, struct page *page, int order,
593 int migratetype)
595 spin_lock(&zone->lock);
596 zone->all_unreclaimable = 0;
597 zone->pages_scanned = 0;
599 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
600 __free_one_page(page, zone, order, migratetype);
601 spin_unlock(&zone->lock);
604 static void __free_pages_ok(struct page *page, unsigned int order)
606 unsigned long flags;
607 int i;
608 int bad = 0;
609 int wasMlocked = __TestClearPageMlocked(page);
611 trace_mm_page_free_direct(page, order);
612 kmemcheck_free_shadow(page, order);
614 for (i = 0 ; i < (1 << order) ; ++i)
615 bad += free_pages_check(page + i);
616 if (bad)
617 return;
619 if (!PageHighMem(page)) {
620 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
621 debug_check_no_obj_freed(page_address(page),
622 PAGE_SIZE << order);
624 arch_free_page(page, order);
625 kernel_map_pages(page, 1 << order, 0);
627 local_irq_save(flags);
628 if (unlikely(wasMlocked))
629 free_page_mlock(page);
630 __count_vm_events(PGFREE, 1 << order);
631 free_one_page(page_zone(page), page, order,
632 get_pageblock_migratetype(page));
633 local_irq_restore(flags);
637 * permit the bootmem allocator to evade page validation on high-order frees
639 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
641 if (order == 0) {
642 __ClearPageReserved(page);
643 set_page_count(page, 0);
644 set_page_refcounted(page);
645 __free_page(page);
646 } else {
647 int loop;
649 prefetchw(page);
650 for (loop = 0; loop < BITS_PER_LONG; loop++) {
651 struct page *p = &page[loop];
653 if (loop + 1 < BITS_PER_LONG)
654 prefetchw(p + 1);
655 __ClearPageReserved(p);
656 set_page_count(p, 0);
659 set_page_refcounted(page);
660 __free_pages(page, order);
666 * The order of subdivision here is critical for the IO subsystem.
667 * Please do not alter this order without good reasons and regression
668 * testing. Specifically, as large blocks of memory are subdivided,
669 * the order in which smaller blocks are delivered depends on the order
670 * they're subdivided in this function. This is the primary factor
671 * influencing the order in which pages are delivered to the IO
672 * subsystem according to empirical testing, and this is also justified
673 * by considering the behavior of a buddy system containing a single
674 * large block of memory acted on by a series of small allocations.
675 * This behavior is a critical factor in sglist merging's success.
677 * -- wli
679 static inline void expand(struct zone *zone, struct page *page,
680 int low, int high, struct free_area *area,
681 int migratetype)
683 unsigned long size = 1 << high;
685 while (high > low) {
686 area--;
687 high--;
688 size >>= 1;
689 VM_BUG_ON(bad_range(zone, &page[size]));
690 list_add(&page[size].lru, &area->free_list[migratetype]);
691 area->nr_free++;
692 set_page_order(&page[size], high);
697 * This page is about to be returned from the page allocator
699 static inline int check_new_page(struct page *page)
701 if (unlikely(page_mapcount(page) |
702 (page->mapping != NULL) |
703 (atomic_read(&page->_count) != 0) |
704 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
705 bad_page(page);
706 return 1;
708 return 0;
711 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
713 int i;
715 for (i = 0; i < (1 << order); i++) {
716 struct page *p = page + i;
717 if (unlikely(check_new_page(p)))
718 return 1;
721 set_page_private(page, 0);
722 set_page_refcounted(page);
724 arch_alloc_page(page, order);
725 kernel_map_pages(page, 1 << order, 1);
727 if (gfp_flags & __GFP_ZERO)
728 prep_zero_page(page, order, gfp_flags);
730 if (order && (gfp_flags & __GFP_COMP))
731 prep_compound_page(page, order);
733 return 0;
737 * Go through the free lists for the given migratetype and remove
738 * the smallest available page from the freelists
740 static inline
741 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
742 int migratetype)
744 unsigned int current_order;
745 struct free_area * area;
746 struct page *page;
748 /* Find a page of the appropriate size in the preferred list */
749 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
750 area = &(zone->free_area[current_order]);
751 if (list_empty(&area->free_list[migratetype]))
752 continue;
754 page = list_entry(area->free_list[migratetype].next,
755 struct page, lru);
756 list_del(&page->lru);
757 rmv_page_order(page);
758 area->nr_free--;
759 expand(zone, page, order, current_order, area, migratetype);
760 return page;
763 return NULL;
768 * This array describes the order lists are fallen back to when
769 * the free lists for the desirable migrate type are depleted
771 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
772 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
773 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
774 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
775 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
779 * Move the free pages in a range to the free lists of the requested type.
780 * Note that start_page and end_pages are not aligned on a pageblock
781 * boundary. If alignment is required, use move_freepages_block()
783 static int move_freepages(struct zone *zone,
784 struct page *start_page, struct page *end_page,
785 int migratetype)
787 struct page *page;
788 unsigned long order;
789 int pages_moved = 0;
791 #ifndef CONFIG_HOLES_IN_ZONE
793 * page_zone is not safe to call in this context when
794 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
795 * anyway as we check zone boundaries in move_freepages_block().
796 * Remove at a later date when no bug reports exist related to
797 * grouping pages by mobility
799 BUG_ON(page_zone(start_page) != page_zone(end_page));
800 #endif
802 for (page = start_page; page <= end_page;) {
803 /* Make sure we are not inadvertently changing nodes */
804 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
806 if (!pfn_valid_within(page_to_pfn(page))) {
807 page++;
808 continue;
811 if (!PageBuddy(page)) {
812 page++;
813 continue;
816 order = page_order(page);
817 list_del(&page->lru);
818 list_add(&page->lru,
819 &zone->free_area[order].free_list[migratetype]);
820 page += 1 << order;
821 pages_moved += 1 << order;
824 return pages_moved;
827 static int move_freepages_block(struct zone *zone, struct page *page,
828 int migratetype)
830 unsigned long start_pfn, end_pfn;
831 struct page *start_page, *end_page;
833 start_pfn = page_to_pfn(page);
834 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
835 start_page = pfn_to_page(start_pfn);
836 end_page = start_page + pageblock_nr_pages - 1;
837 end_pfn = start_pfn + pageblock_nr_pages - 1;
839 /* Do not cross zone boundaries */
840 if (start_pfn < zone->zone_start_pfn)
841 start_page = page;
842 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
843 return 0;
845 return move_freepages(zone, start_page, end_page, migratetype);
848 static void change_pageblock_range(struct page *pageblock_page,
849 int start_order, int migratetype)
851 int nr_pageblocks = 1 << (start_order - pageblock_order);
853 while (nr_pageblocks--) {
854 set_pageblock_migratetype(pageblock_page, migratetype);
855 pageblock_page += pageblock_nr_pages;
859 /* Remove an element from the buddy allocator from the fallback list */
860 static inline struct page *
861 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
863 struct free_area * area;
864 int current_order;
865 struct page *page;
866 int migratetype, i;
868 /* Find the largest possible block of pages in the other list */
869 for (current_order = MAX_ORDER-1; current_order >= order;
870 --current_order) {
871 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
872 migratetype = fallbacks[start_migratetype][i];
874 /* MIGRATE_RESERVE handled later if necessary */
875 if (migratetype == MIGRATE_RESERVE)
876 continue;
878 area = &(zone->free_area[current_order]);
879 if (list_empty(&area->free_list[migratetype]))
880 continue;
882 page = list_entry(area->free_list[migratetype].next,
883 struct page, lru);
884 area->nr_free--;
887 * If breaking a large block of pages, move all free
888 * pages to the preferred allocation list. If falling
889 * back for a reclaimable kernel allocation, be more
890 * agressive about taking ownership of free pages
892 if (unlikely(current_order >= (pageblock_order >> 1)) ||
893 start_migratetype == MIGRATE_RECLAIMABLE ||
894 page_group_by_mobility_disabled) {
895 unsigned long pages;
896 pages = move_freepages_block(zone, page,
897 start_migratetype);
899 /* Claim the whole block if over half of it is free */
900 if (pages >= (1 << (pageblock_order-1)) ||
901 page_group_by_mobility_disabled)
902 set_pageblock_migratetype(page,
903 start_migratetype);
905 migratetype = start_migratetype;
908 /* Remove the page from the freelists */
909 list_del(&page->lru);
910 rmv_page_order(page);
912 /* Take ownership for orders >= pageblock_order */
913 if (current_order >= pageblock_order)
914 change_pageblock_range(page, current_order,
915 start_migratetype);
917 expand(zone, page, order, current_order, area, migratetype);
919 trace_mm_page_alloc_extfrag(page, order, current_order,
920 start_migratetype, migratetype);
922 return page;
926 return NULL;
930 * Do the hard work of removing an element from the buddy allocator.
931 * Call me with the zone->lock already held.
933 static struct page *__rmqueue(struct zone *zone, unsigned int order,
934 int migratetype)
936 struct page *page;
938 retry_reserve:
939 page = __rmqueue_smallest(zone, order, migratetype);
941 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
942 page = __rmqueue_fallback(zone, order, migratetype);
945 * Use MIGRATE_RESERVE rather than fail an allocation. goto
946 * is used because __rmqueue_smallest is an inline function
947 * and we want just one call site
949 if (!page) {
950 migratetype = MIGRATE_RESERVE;
951 goto retry_reserve;
955 trace_mm_page_alloc_zone_locked(page, order, migratetype);
956 return page;
960 * Obtain a specified number of elements from the buddy allocator, all under
961 * a single hold of the lock, for efficiency. Add them to the supplied list.
962 * Returns the number of new pages which were placed at *list.
964 static int rmqueue_bulk(struct zone *zone, unsigned int order,
965 unsigned long count, struct list_head *list,
966 int migratetype, int cold)
968 int i;
970 spin_lock(&zone->lock);
971 for (i = 0; i < count; ++i) {
972 struct page *page = __rmqueue(zone, order, migratetype);
973 if (unlikely(page == NULL))
974 break;
977 * Split buddy pages returned by expand() are received here
978 * in physical page order. The page is added to the callers and
979 * list and the list head then moves forward. From the callers
980 * perspective, the linked list is ordered by page number in
981 * some conditions. This is useful for IO devices that can
982 * merge IO requests if the physical pages are ordered
983 * properly.
985 if (likely(cold == 0))
986 list_add(&page->lru, list);
987 else
988 list_add_tail(&page->lru, list);
989 set_page_private(page, migratetype);
990 list = &page->lru;
992 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
993 spin_unlock(&zone->lock);
994 return i;
997 #ifdef CONFIG_NUMA
999 * Called from the vmstat counter updater to drain pagesets of this
1000 * currently executing processor on remote nodes after they have
1001 * expired.
1003 * Note that this function must be called with the thread pinned to
1004 * a single processor.
1006 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1008 unsigned long flags;
1009 int to_drain;
1011 local_irq_save(flags);
1012 if (pcp->count >= pcp->batch)
1013 to_drain = pcp->batch;
1014 else
1015 to_drain = pcp->count;
1016 free_pcppages_bulk(zone, to_drain, pcp);
1017 pcp->count -= to_drain;
1018 local_irq_restore(flags);
1020 #endif
1023 * Drain pages of the indicated processor.
1025 * The processor must either be the current processor and the
1026 * thread pinned to the current processor or a processor that
1027 * is not online.
1029 static void drain_pages(unsigned int cpu)
1031 unsigned long flags;
1032 struct zone *zone;
1034 for_each_populated_zone(zone) {
1035 struct per_cpu_pageset *pset;
1036 struct per_cpu_pages *pcp;
1038 local_irq_save(flags);
1039 pset = per_cpu_ptr(zone->pageset, cpu);
1041 pcp = &pset->pcp;
1042 free_pcppages_bulk(zone, pcp->count, pcp);
1043 pcp->count = 0;
1044 local_irq_restore(flags);
1049 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1051 void drain_local_pages(void *arg)
1053 drain_pages(smp_processor_id());
1057 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1059 void drain_all_pages(void)
1061 on_each_cpu(drain_local_pages, NULL, 1);
1064 #ifdef CONFIG_HIBERNATION
1066 void mark_free_pages(struct zone *zone)
1068 unsigned long pfn, max_zone_pfn;
1069 unsigned long flags;
1070 int order, t;
1071 struct list_head *curr;
1073 if (!zone->spanned_pages)
1074 return;
1076 spin_lock_irqsave(&zone->lock, flags);
1078 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1079 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1080 if (pfn_valid(pfn)) {
1081 struct page *page = pfn_to_page(pfn);
1083 if (!swsusp_page_is_forbidden(page))
1084 swsusp_unset_page_free(page);
1087 for_each_migratetype_order(order, t) {
1088 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1089 unsigned long i;
1091 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1092 for (i = 0; i < (1UL << order); i++)
1093 swsusp_set_page_free(pfn_to_page(pfn + i));
1096 spin_unlock_irqrestore(&zone->lock, flags);
1098 #endif /* CONFIG_PM */
1101 * Free a 0-order page
1102 * cold == 1 ? free a cold page : free a hot page
1104 void free_hot_cold_page(struct page *page, int cold)
1106 struct zone *zone = page_zone(page);
1107 struct per_cpu_pages *pcp;
1108 unsigned long flags;
1109 int migratetype;
1110 int wasMlocked = __TestClearPageMlocked(page);
1112 trace_mm_page_free_direct(page, 0);
1113 kmemcheck_free_shadow(page, 0);
1115 if (PageAnon(page))
1116 page->mapping = NULL;
1117 if (free_pages_check(page))
1118 return;
1120 if (!PageHighMem(page)) {
1121 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1122 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1124 arch_free_page(page, 0);
1125 kernel_map_pages(page, 1, 0);
1127 migratetype = get_pageblock_migratetype(page);
1128 set_page_private(page, migratetype);
1129 local_irq_save(flags);
1130 if (unlikely(wasMlocked))
1131 free_page_mlock(page);
1132 __count_vm_event(PGFREE);
1135 * We only track unmovable, reclaimable and movable on pcp lists.
1136 * Free ISOLATE pages back to the allocator because they are being
1137 * offlined but treat RESERVE as movable pages so we can get those
1138 * areas back if necessary. Otherwise, we may have to free
1139 * excessively into the page allocator
1141 if (migratetype >= MIGRATE_PCPTYPES) {
1142 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1143 free_one_page(zone, page, 0, migratetype);
1144 goto out;
1146 migratetype = MIGRATE_MOVABLE;
1149 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1150 if (cold)
1151 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1152 else
1153 list_add(&page->lru, &pcp->lists[migratetype]);
1154 pcp->count++;
1155 if (pcp->count >= pcp->high) {
1156 free_pcppages_bulk(zone, pcp->batch, pcp);
1157 pcp->count -= pcp->batch;
1160 out:
1161 local_irq_restore(flags);
1165 * split_page takes a non-compound higher-order page, and splits it into
1166 * n (1<<order) sub-pages: page[0..n]
1167 * Each sub-page must be freed individually.
1169 * Note: this is probably too low level an operation for use in drivers.
1170 * Please consult with lkml before using this in your driver.
1172 void split_page(struct page *page, unsigned int order)
1174 int i;
1176 VM_BUG_ON(PageCompound(page));
1177 VM_BUG_ON(!page_count(page));
1179 #ifdef CONFIG_KMEMCHECK
1181 * Split shadow pages too, because free(page[0]) would
1182 * otherwise free the whole shadow.
1184 if (kmemcheck_page_is_tracked(page))
1185 split_page(virt_to_page(page[0].shadow), order);
1186 #endif
1188 for (i = 1; i < (1 << order); i++)
1189 set_page_refcounted(page + i);
1193 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1194 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1195 * or two.
1197 static inline
1198 struct page *buffered_rmqueue(struct zone *preferred_zone,
1199 struct zone *zone, int order, gfp_t gfp_flags,
1200 int migratetype)
1202 unsigned long flags;
1203 struct page *page;
1204 int cold = !!(gfp_flags & __GFP_COLD);
1206 again:
1207 if (likely(order == 0)) {
1208 struct per_cpu_pages *pcp;
1209 struct list_head *list;
1211 local_irq_save(flags);
1212 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1213 list = &pcp->lists[migratetype];
1214 if (list_empty(list)) {
1215 pcp->count += rmqueue_bulk(zone, 0,
1216 pcp->batch, list,
1217 migratetype, cold);
1218 if (unlikely(list_empty(list)))
1219 goto failed;
1222 if (cold)
1223 page = list_entry(list->prev, struct page, lru);
1224 else
1225 page = list_entry(list->next, struct page, lru);
1227 list_del(&page->lru);
1228 pcp->count--;
1229 } else {
1230 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1232 * __GFP_NOFAIL is not to be used in new code.
1234 * All __GFP_NOFAIL callers should be fixed so that they
1235 * properly detect and handle allocation failures.
1237 * We most definitely don't want callers attempting to
1238 * allocate greater than order-1 page units with
1239 * __GFP_NOFAIL.
1241 WARN_ON_ONCE(order > 1);
1243 spin_lock_irqsave(&zone->lock, flags);
1244 page = __rmqueue(zone, order, migratetype);
1245 spin_unlock(&zone->lock);
1246 if (!page)
1247 goto failed;
1248 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1251 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1252 zone_statistics(preferred_zone, zone);
1253 local_irq_restore(flags);
1255 VM_BUG_ON(bad_range(zone, page));
1256 if (prep_new_page(page, order, gfp_flags))
1257 goto again;
1258 return page;
1260 failed:
1261 local_irq_restore(flags);
1262 return NULL;
1265 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1266 #define ALLOC_WMARK_MIN WMARK_MIN
1267 #define ALLOC_WMARK_LOW WMARK_LOW
1268 #define ALLOC_WMARK_HIGH WMARK_HIGH
1269 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1271 /* Mask to get the watermark bits */
1272 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1274 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1275 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1276 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1278 #ifdef CONFIG_FAIL_PAGE_ALLOC
1280 static struct fail_page_alloc_attr {
1281 struct fault_attr attr;
1283 u32 ignore_gfp_highmem;
1284 u32 ignore_gfp_wait;
1285 u32 min_order;
1287 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1289 struct dentry *ignore_gfp_highmem_file;
1290 struct dentry *ignore_gfp_wait_file;
1291 struct dentry *min_order_file;
1293 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1295 } fail_page_alloc = {
1296 .attr = FAULT_ATTR_INITIALIZER,
1297 .ignore_gfp_wait = 1,
1298 .ignore_gfp_highmem = 1,
1299 .min_order = 1,
1302 static int __init setup_fail_page_alloc(char *str)
1304 return setup_fault_attr(&fail_page_alloc.attr, str);
1306 __setup("fail_page_alloc=", setup_fail_page_alloc);
1308 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1310 if (order < fail_page_alloc.min_order)
1311 return 0;
1312 if (gfp_mask & __GFP_NOFAIL)
1313 return 0;
1314 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1315 return 0;
1316 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1317 return 0;
1319 return should_fail(&fail_page_alloc.attr, 1 << order);
1322 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1324 static int __init fail_page_alloc_debugfs(void)
1326 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1327 struct dentry *dir;
1328 int err;
1330 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1331 "fail_page_alloc");
1332 if (err)
1333 return err;
1334 dir = fail_page_alloc.attr.dentries.dir;
1336 fail_page_alloc.ignore_gfp_wait_file =
1337 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1338 &fail_page_alloc.ignore_gfp_wait);
1340 fail_page_alloc.ignore_gfp_highmem_file =
1341 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1342 &fail_page_alloc.ignore_gfp_highmem);
1343 fail_page_alloc.min_order_file =
1344 debugfs_create_u32("min-order", mode, dir,
1345 &fail_page_alloc.min_order);
1347 if (!fail_page_alloc.ignore_gfp_wait_file ||
1348 !fail_page_alloc.ignore_gfp_highmem_file ||
1349 !fail_page_alloc.min_order_file) {
1350 err = -ENOMEM;
1351 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1352 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1353 debugfs_remove(fail_page_alloc.min_order_file);
1354 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1357 return err;
1360 late_initcall(fail_page_alloc_debugfs);
1362 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1364 #else /* CONFIG_FAIL_PAGE_ALLOC */
1366 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1368 return 0;
1371 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1374 * Return 1 if free pages are above 'mark'. This takes into account the order
1375 * of the allocation.
1377 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1378 int classzone_idx, int alloc_flags)
1380 /* free_pages my go negative - that's OK */
1381 long min = mark;
1382 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1383 int o;
1385 if (alloc_flags & ALLOC_HIGH)
1386 min -= min / 2;
1387 if (alloc_flags & ALLOC_HARDER)
1388 min -= min / 4;
1390 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1391 return 0;
1392 for (o = 0; o < order; o++) {
1393 /* At the next order, this order's pages become unavailable */
1394 free_pages -= z->free_area[o].nr_free << o;
1396 /* Require fewer higher order pages to be free */
1397 min >>= 1;
1399 if (free_pages <= min)
1400 return 0;
1402 return 1;
1405 #ifdef CONFIG_NUMA
1407 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1408 * skip over zones that are not allowed by the cpuset, or that have
1409 * been recently (in last second) found to be nearly full. See further
1410 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1411 * that have to skip over a lot of full or unallowed zones.
1413 * If the zonelist cache is present in the passed in zonelist, then
1414 * returns a pointer to the allowed node mask (either the current
1415 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1417 * If the zonelist cache is not available for this zonelist, does
1418 * nothing and returns NULL.
1420 * If the fullzones BITMAP in the zonelist cache is stale (more than
1421 * a second since last zap'd) then we zap it out (clear its bits.)
1423 * We hold off even calling zlc_setup, until after we've checked the
1424 * first zone in the zonelist, on the theory that most allocations will
1425 * be satisfied from that first zone, so best to examine that zone as
1426 * quickly as we can.
1428 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1430 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1431 nodemask_t *allowednodes; /* zonelist_cache approximation */
1433 zlc = zonelist->zlcache_ptr;
1434 if (!zlc)
1435 return NULL;
1437 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1438 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1439 zlc->last_full_zap = jiffies;
1442 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1443 &cpuset_current_mems_allowed :
1444 &node_states[N_HIGH_MEMORY];
1445 return allowednodes;
1449 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1450 * if it is worth looking at further for free memory:
1451 * 1) Check that the zone isn't thought to be full (doesn't have its
1452 * bit set in the zonelist_cache fullzones BITMAP).
1453 * 2) Check that the zones node (obtained from the zonelist_cache
1454 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1455 * Return true (non-zero) if zone is worth looking at further, or
1456 * else return false (zero) if it is not.
1458 * This check -ignores- the distinction between various watermarks,
1459 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1460 * found to be full for any variation of these watermarks, it will
1461 * be considered full for up to one second by all requests, unless
1462 * we are so low on memory on all allowed nodes that we are forced
1463 * into the second scan of the zonelist.
1465 * In the second scan we ignore this zonelist cache and exactly
1466 * apply the watermarks to all zones, even it is slower to do so.
1467 * We are low on memory in the second scan, and should leave no stone
1468 * unturned looking for a free page.
1470 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1471 nodemask_t *allowednodes)
1473 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1474 int i; /* index of *z in zonelist zones */
1475 int n; /* node that zone *z is on */
1477 zlc = zonelist->zlcache_ptr;
1478 if (!zlc)
1479 return 1;
1481 i = z - zonelist->_zonerefs;
1482 n = zlc->z_to_n[i];
1484 /* This zone is worth trying if it is allowed but not full */
1485 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1489 * Given 'z' scanning a zonelist, set the corresponding bit in
1490 * zlc->fullzones, so that subsequent attempts to allocate a page
1491 * from that zone don't waste time re-examining it.
1493 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1495 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1496 int i; /* index of *z in zonelist zones */
1498 zlc = zonelist->zlcache_ptr;
1499 if (!zlc)
1500 return;
1502 i = z - zonelist->_zonerefs;
1504 set_bit(i, zlc->fullzones);
1507 #else /* CONFIG_NUMA */
1509 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1511 return NULL;
1514 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1515 nodemask_t *allowednodes)
1517 return 1;
1520 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1523 #endif /* CONFIG_NUMA */
1526 * get_page_from_freelist goes through the zonelist trying to allocate
1527 * a page.
1529 static struct page *
1530 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1531 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1532 struct zone *preferred_zone, int migratetype)
1534 struct zoneref *z;
1535 struct page *page = NULL;
1536 int classzone_idx;
1537 struct zone *zone;
1538 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1539 int zlc_active = 0; /* set if using zonelist_cache */
1540 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1542 classzone_idx = zone_idx(preferred_zone);
1543 zonelist_scan:
1545 * Scan zonelist, looking for a zone with enough free.
1546 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1548 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1549 high_zoneidx, nodemask) {
1550 if (NUMA_BUILD && zlc_active &&
1551 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1552 continue;
1553 if ((alloc_flags & ALLOC_CPUSET) &&
1554 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1555 goto try_next_zone;
1557 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1558 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1559 unsigned long mark;
1560 int ret;
1562 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1563 if (zone_watermark_ok(zone, order, mark,
1564 classzone_idx, alloc_flags))
1565 goto try_this_zone;
1567 if (zone_reclaim_mode == 0)
1568 goto this_zone_full;
1570 ret = zone_reclaim(zone, gfp_mask, order);
1571 switch (ret) {
1572 case ZONE_RECLAIM_NOSCAN:
1573 /* did not scan */
1574 goto try_next_zone;
1575 case ZONE_RECLAIM_FULL:
1576 /* scanned but unreclaimable */
1577 goto this_zone_full;
1578 default:
1579 /* did we reclaim enough */
1580 if (!zone_watermark_ok(zone, order, mark,
1581 classzone_idx, alloc_flags))
1582 goto this_zone_full;
1586 try_this_zone:
1587 page = buffered_rmqueue(preferred_zone, zone, order,
1588 gfp_mask, migratetype);
1589 if (page)
1590 break;
1591 this_zone_full:
1592 if (NUMA_BUILD)
1593 zlc_mark_zone_full(zonelist, z);
1594 try_next_zone:
1595 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1597 * we do zlc_setup after the first zone is tried but only
1598 * if there are multiple nodes make it worthwhile
1600 allowednodes = zlc_setup(zonelist, alloc_flags);
1601 zlc_active = 1;
1602 did_zlc_setup = 1;
1606 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1607 /* Disable zlc cache for second zonelist scan */
1608 zlc_active = 0;
1609 goto zonelist_scan;
1611 return page;
1614 static inline int
1615 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1616 unsigned long pages_reclaimed)
1618 /* Do not loop if specifically requested */
1619 if (gfp_mask & __GFP_NORETRY)
1620 return 0;
1623 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1624 * means __GFP_NOFAIL, but that may not be true in other
1625 * implementations.
1627 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1628 return 1;
1631 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1632 * specified, then we retry until we no longer reclaim any pages
1633 * (above), or we've reclaimed an order of pages at least as
1634 * large as the allocation's order. In both cases, if the
1635 * allocation still fails, we stop retrying.
1637 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1638 return 1;
1641 * Don't let big-order allocations loop unless the caller
1642 * explicitly requests that.
1644 if (gfp_mask & __GFP_NOFAIL)
1645 return 1;
1647 return 0;
1650 static inline struct page *
1651 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1652 struct zonelist *zonelist, enum zone_type high_zoneidx,
1653 nodemask_t *nodemask, struct zone *preferred_zone,
1654 int migratetype)
1656 struct page *page;
1658 /* Acquire the OOM killer lock for the zones in zonelist */
1659 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1660 schedule_timeout_uninterruptible(1);
1661 return NULL;
1665 * Go through the zonelist yet one more time, keep very high watermark
1666 * here, this is only to catch a parallel oom killing, we must fail if
1667 * we're still under heavy pressure.
1669 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1670 order, zonelist, high_zoneidx,
1671 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1672 preferred_zone, migratetype);
1673 if (page)
1674 goto out;
1676 if (!(gfp_mask & __GFP_NOFAIL)) {
1677 /* The OOM killer will not help higher order allocs */
1678 if (order > PAGE_ALLOC_COSTLY_ORDER)
1679 goto out;
1681 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1682 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1683 * The caller should handle page allocation failure by itself if
1684 * it specifies __GFP_THISNODE.
1685 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1687 if (gfp_mask & __GFP_THISNODE)
1688 goto out;
1690 /* Exhausted what can be done so it's blamo time */
1691 out_of_memory(zonelist, gfp_mask, order, nodemask);
1693 out:
1694 clear_zonelist_oom(zonelist, gfp_mask);
1695 return page;
1698 /* The really slow allocator path where we enter direct reclaim */
1699 static inline struct page *
1700 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1701 struct zonelist *zonelist, enum zone_type high_zoneidx,
1702 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1703 int migratetype, unsigned long *did_some_progress)
1705 struct page *page = NULL;
1706 struct reclaim_state reclaim_state;
1707 struct task_struct *p = current;
1709 cond_resched();
1711 /* We now go into synchronous reclaim */
1712 cpuset_memory_pressure_bump();
1713 p->flags |= PF_MEMALLOC;
1714 lockdep_set_current_reclaim_state(gfp_mask);
1715 reclaim_state.reclaimed_slab = 0;
1716 p->reclaim_state = &reclaim_state;
1718 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1720 p->reclaim_state = NULL;
1721 lockdep_clear_current_reclaim_state();
1722 p->flags &= ~PF_MEMALLOC;
1724 cond_resched();
1726 if (order != 0)
1727 drain_all_pages();
1729 if (likely(*did_some_progress))
1730 page = get_page_from_freelist(gfp_mask, nodemask, order,
1731 zonelist, high_zoneidx,
1732 alloc_flags, preferred_zone,
1733 migratetype);
1734 return page;
1738 * This is called in the allocator slow-path if the allocation request is of
1739 * sufficient urgency to ignore watermarks and take other desperate measures
1741 static inline struct page *
1742 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1743 struct zonelist *zonelist, enum zone_type high_zoneidx,
1744 nodemask_t *nodemask, struct zone *preferred_zone,
1745 int migratetype)
1747 struct page *page;
1749 do {
1750 page = get_page_from_freelist(gfp_mask, nodemask, order,
1751 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1752 preferred_zone, migratetype);
1754 if (!page && gfp_mask & __GFP_NOFAIL)
1755 congestion_wait(BLK_RW_ASYNC, HZ/50);
1756 } while (!page && (gfp_mask & __GFP_NOFAIL));
1758 return page;
1761 static inline
1762 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1763 enum zone_type high_zoneidx)
1765 struct zoneref *z;
1766 struct zone *zone;
1768 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1769 wakeup_kswapd(zone, order);
1772 static inline int
1773 gfp_to_alloc_flags(gfp_t gfp_mask)
1775 struct task_struct *p = current;
1776 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1777 const gfp_t wait = gfp_mask & __GFP_WAIT;
1779 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1780 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1783 * The caller may dip into page reserves a bit more if the caller
1784 * cannot run direct reclaim, or if the caller has realtime scheduling
1785 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1786 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1788 alloc_flags |= (gfp_mask & __GFP_HIGH);
1790 if (!wait) {
1791 alloc_flags |= ALLOC_HARDER;
1793 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1794 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1796 alloc_flags &= ~ALLOC_CPUSET;
1797 } else if (unlikely(rt_task(p)) && !in_interrupt())
1798 alloc_flags |= ALLOC_HARDER;
1800 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1801 if (!in_interrupt() &&
1802 ((p->flags & PF_MEMALLOC) ||
1803 unlikely(test_thread_flag(TIF_MEMDIE))))
1804 alloc_flags |= ALLOC_NO_WATERMARKS;
1807 return alloc_flags;
1810 static inline struct page *
1811 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1812 struct zonelist *zonelist, enum zone_type high_zoneidx,
1813 nodemask_t *nodemask, struct zone *preferred_zone,
1814 int migratetype)
1816 const gfp_t wait = gfp_mask & __GFP_WAIT;
1817 struct page *page = NULL;
1818 int alloc_flags;
1819 unsigned long pages_reclaimed = 0;
1820 unsigned long did_some_progress;
1821 struct task_struct *p = current;
1824 * In the slowpath, we sanity check order to avoid ever trying to
1825 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1826 * be using allocators in order of preference for an area that is
1827 * too large.
1829 if (order >= MAX_ORDER) {
1830 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1831 return NULL;
1835 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1836 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1837 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1838 * using a larger set of nodes after it has established that the
1839 * allowed per node queues are empty and that nodes are
1840 * over allocated.
1842 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1843 goto nopage;
1845 restart:
1846 wake_all_kswapd(order, zonelist, high_zoneidx);
1849 * OK, we're below the kswapd watermark and have kicked background
1850 * reclaim. Now things get more complex, so set up alloc_flags according
1851 * to how we want to proceed.
1853 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1855 /* This is the last chance, in general, before the goto nopage. */
1856 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1857 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1858 preferred_zone, migratetype);
1859 if (page)
1860 goto got_pg;
1862 rebalance:
1863 /* Allocate without watermarks if the context allows */
1864 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1865 page = __alloc_pages_high_priority(gfp_mask, order,
1866 zonelist, high_zoneidx, nodemask,
1867 preferred_zone, migratetype);
1868 if (page)
1869 goto got_pg;
1872 /* Atomic allocations - we can't balance anything */
1873 if (!wait)
1874 goto nopage;
1876 /* Avoid recursion of direct reclaim */
1877 if (p->flags & PF_MEMALLOC)
1878 goto nopage;
1880 /* Avoid allocations with no watermarks from looping endlessly */
1881 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1882 goto nopage;
1884 /* Try direct reclaim and then allocating */
1885 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1886 zonelist, high_zoneidx,
1887 nodemask,
1888 alloc_flags, preferred_zone,
1889 migratetype, &did_some_progress);
1890 if (page)
1891 goto got_pg;
1894 * If we failed to make any progress reclaiming, then we are
1895 * running out of options and have to consider going OOM
1897 if (!did_some_progress) {
1898 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1899 if (oom_killer_disabled)
1900 goto nopage;
1901 page = __alloc_pages_may_oom(gfp_mask, order,
1902 zonelist, high_zoneidx,
1903 nodemask, preferred_zone,
1904 migratetype);
1905 if (page)
1906 goto got_pg;
1909 * The OOM killer does not trigger for high-order
1910 * ~__GFP_NOFAIL allocations so if no progress is being
1911 * made, there are no other options and retrying is
1912 * unlikely to help.
1914 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1915 !(gfp_mask & __GFP_NOFAIL))
1916 goto nopage;
1918 goto restart;
1922 /* Check if we should retry the allocation */
1923 pages_reclaimed += did_some_progress;
1924 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1925 /* Wait for some write requests to complete then retry */
1926 congestion_wait(BLK_RW_ASYNC, HZ/50);
1927 goto rebalance;
1930 nopage:
1931 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1932 printk(KERN_WARNING "%s: page allocation failure."
1933 " order:%d, mode:0x%x\n",
1934 p->comm, order, gfp_mask);
1935 dump_stack();
1936 show_mem();
1938 return page;
1939 got_pg:
1940 if (kmemcheck_enabled)
1941 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1942 return page;
1947 * This is the 'heart' of the zoned buddy allocator.
1949 struct page *
1950 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1951 struct zonelist *zonelist, nodemask_t *nodemask)
1953 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1954 struct zone *preferred_zone;
1955 struct page *page;
1956 int migratetype = allocflags_to_migratetype(gfp_mask);
1958 gfp_mask &= gfp_allowed_mask;
1960 lockdep_trace_alloc(gfp_mask);
1962 might_sleep_if(gfp_mask & __GFP_WAIT);
1964 if (should_fail_alloc_page(gfp_mask, order))
1965 return NULL;
1968 * Check the zones suitable for the gfp_mask contain at least one
1969 * valid zone. It's possible to have an empty zonelist as a result
1970 * of GFP_THISNODE and a memoryless node
1972 if (unlikely(!zonelist->_zonerefs->zone))
1973 return NULL;
1975 /* The preferred zone is used for statistics later */
1976 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1977 if (!preferred_zone)
1978 return NULL;
1980 /* First allocation attempt */
1981 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1982 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1983 preferred_zone, migratetype);
1984 if (unlikely(!page))
1985 page = __alloc_pages_slowpath(gfp_mask, order,
1986 zonelist, high_zoneidx, nodemask,
1987 preferred_zone, migratetype);
1989 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1990 return page;
1992 EXPORT_SYMBOL(__alloc_pages_nodemask);
1995 * Common helper functions.
1997 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1999 struct page *page;
2002 * __get_free_pages() returns a 32-bit address, which cannot represent
2003 * a highmem page
2005 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2007 page = alloc_pages(gfp_mask, order);
2008 if (!page)
2009 return 0;
2010 return (unsigned long) page_address(page);
2012 EXPORT_SYMBOL(__get_free_pages);
2014 unsigned long get_zeroed_page(gfp_t gfp_mask)
2016 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2018 EXPORT_SYMBOL(get_zeroed_page);
2020 void __pagevec_free(struct pagevec *pvec)
2022 int i = pagevec_count(pvec);
2024 while (--i >= 0) {
2025 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2026 free_hot_cold_page(pvec->pages[i], pvec->cold);
2030 void __free_pages(struct page *page, unsigned int order)
2032 if (put_page_testzero(page)) {
2033 if (order == 0)
2034 free_hot_cold_page(page, 0);
2035 else
2036 __free_pages_ok(page, order);
2040 EXPORT_SYMBOL(__free_pages);
2042 void free_pages(unsigned long addr, unsigned int order)
2044 if (addr != 0) {
2045 VM_BUG_ON(!virt_addr_valid((void *)addr));
2046 __free_pages(virt_to_page((void *)addr), order);
2050 EXPORT_SYMBOL(free_pages);
2053 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2054 * @size: the number of bytes to allocate
2055 * @gfp_mask: GFP flags for the allocation
2057 * This function is similar to alloc_pages(), except that it allocates the
2058 * minimum number of pages to satisfy the request. alloc_pages() can only
2059 * allocate memory in power-of-two pages.
2061 * This function is also limited by MAX_ORDER.
2063 * Memory allocated by this function must be released by free_pages_exact().
2065 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2067 unsigned int order = get_order(size);
2068 unsigned long addr;
2070 addr = __get_free_pages(gfp_mask, order);
2071 if (addr) {
2072 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2073 unsigned long used = addr + PAGE_ALIGN(size);
2075 split_page(virt_to_page((void *)addr), order);
2076 while (used < alloc_end) {
2077 free_page(used);
2078 used += PAGE_SIZE;
2082 return (void *)addr;
2084 EXPORT_SYMBOL(alloc_pages_exact);
2087 * free_pages_exact - release memory allocated via alloc_pages_exact()
2088 * @virt: the value returned by alloc_pages_exact.
2089 * @size: size of allocation, same value as passed to alloc_pages_exact().
2091 * Release the memory allocated by a previous call to alloc_pages_exact.
2093 void free_pages_exact(void *virt, size_t size)
2095 unsigned long addr = (unsigned long)virt;
2096 unsigned long end = addr + PAGE_ALIGN(size);
2098 while (addr < end) {
2099 free_page(addr);
2100 addr += PAGE_SIZE;
2103 EXPORT_SYMBOL(free_pages_exact);
2105 static unsigned int nr_free_zone_pages(int offset)
2107 struct zoneref *z;
2108 struct zone *zone;
2110 /* Just pick one node, since fallback list is circular */
2111 unsigned int sum = 0;
2113 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2115 for_each_zone_zonelist(zone, z, zonelist, offset) {
2116 unsigned long size = zone->present_pages;
2117 unsigned long high = high_wmark_pages(zone);
2118 if (size > high)
2119 sum += size - high;
2122 return sum;
2126 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2128 unsigned int nr_free_buffer_pages(void)
2130 return nr_free_zone_pages(gfp_zone(GFP_USER));
2132 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2135 * Amount of free RAM allocatable within all zones
2137 unsigned int nr_free_pagecache_pages(void)
2139 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2142 static inline void show_node(struct zone *zone)
2144 if (NUMA_BUILD)
2145 printk("Node %d ", zone_to_nid(zone));
2148 void si_meminfo(struct sysinfo *val)
2150 val->totalram = totalram_pages;
2151 val->sharedram = 0;
2152 val->freeram = global_page_state(NR_FREE_PAGES);
2153 val->bufferram = nr_blockdev_pages();
2154 val->totalhigh = totalhigh_pages;
2155 val->freehigh = nr_free_highpages();
2156 val->mem_unit = PAGE_SIZE;
2159 EXPORT_SYMBOL(si_meminfo);
2161 #ifdef CONFIG_NUMA
2162 void si_meminfo_node(struct sysinfo *val, int nid)
2164 pg_data_t *pgdat = NODE_DATA(nid);
2166 val->totalram = pgdat->node_present_pages;
2167 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2168 #ifdef CONFIG_HIGHMEM
2169 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2170 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2171 NR_FREE_PAGES);
2172 #else
2173 val->totalhigh = 0;
2174 val->freehigh = 0;
2175 #endif
2176 val->mem_unit = PAGE_SIZE;
2178 #endif
2180 #define K(x) ((x) << (PAGE_SHIFT-10))
2183 * Show free area list (used inside shift_scroll-lock stuff)
2184 * We also calculate the percentage fragmentation. We do this by counting the
2185 * memory on each free list with the exception of the first item on the list.
2187 void show_free_areas(void)
2189 int cpu;
2190 struct zone *zone;
2192 for_each_populated_zone(zone) {
2193 show_node(zone);
2194 printk("%s per-cpu:\n", zone->name);
2196 for_each_online_cpu(cpu) {
2197 struct per_cpu_pageset *pageset;
2199 pageset = per_cpu_ptr(zone->pageset, cpu);
2201 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2202 cpu, pageset->pcp.high,
2203 pageset->pcp.batch, pageset->pcp.count);
2207 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2208 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2209 " unevictable:%lu"
2210 " dirty:%lu writeback:%lu unstable:%lu\n"
2211 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2212 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2213 global_page_state(NR_ACTIVE_ANON),
2214 global_page_state(NR_INACTIVE_ANON),
2215 global_page_state(NR_ISOLATED_ANON),
2216 global_page_state(NR_ACTIVE_FILE),
2217 global_page_state(NR_INACTIVE_FILE),
2218 global_page_state(NR_ISOLATED_FILE),
2219 global_page_state(NR_UNEVICTABLE),
2220 global_page_state(NR_FILE_DIRTY),
2221 global_page_state(NR_WRITEBACK),
2222 global_page_state(NR_UNSTABLE_NFS),
2223 global_page_state(NR_FREE_PAGES),
2224 global_page_state(NR_SLAB_RECLAIMABLE),
2225 global_page_state(NR_SLAB_UNRECLAIMABLE),
2226 global_page_state(NR_FILE_MAPPED),
2227 global_page_state(NR_SHMEM),
2228 global_page_state(NR_PAGETABLE),
2229 global_page_state(NR_BOUNCE));
2231 for_each_populated_zone(zone) {
2232 int i;
2234 show_node(zone);
2235 printk("%s"
2236 " free:%lukB"
2237 " min:%lukB"
2238 " low:%lukB"
2239 " high:%lukB"
2240 " active_anon:%lukB"
2241 " inactive_anon:%lukB"
2242 " active_file:%lukB"
2243 " inactive_file:%lukB"
2244 " unevictable:%lukB"
2245 " isolated(anon):%lukB"
2246 " isolated(file):%lukB"
2247 " present:%lukB"
2248 " mlocked:%lukB"
2249 " dirty:%lukB"
2250 " writeback:%lukB"
2251 " mapped:%lukB"
2252 " shmem:%lukB"
2253 " slab_reclaimable:%lukB"
2254 " slab_unreclaimable:%lukB"
2255 " kernel_stack:%lukB"
2256 " pagetables:%lukB"
2257 " unstable:%lukB"
2258 " bounce:%lukB"
2259 " writeback_tmp:%lukB"
2260 " pages_scanned:%lu"
2261 " all_unreclaimable? %s"
2262 "\n",
2263 zone->name,
2264 K(zone_page_state(zone, NR_FREE_PAGES)),
2265 K(min_wmark_pages(zone)),
2266 K(low_wmark_pages(zone)),
2267 K(high_wmark_pages(zone)),
2268 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2269 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2270 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2271 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2272 K(zone_page_state(zone, NR_UNEVICTABLE)),
2273 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2274 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2275 K(zone->present_pages),
2276 K(zone_page_state(zone, NR_MLOCK)),
2277 K(zone_page_state(zone, NR_FILE_DIRTY)),
2278 K(zone_page_state(zone, NR_WRITEBACK)),
2279 K(zone_page_state(zone, NR_FILE_MAPPED)),
2280 K(zone_page_state(zone, NR_SHMEM)),
2281 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2282 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2283 zone_page_state(zone, NR_KERNEL_STACK) *
2284 THREAD_SIZE / 1024,
2285 K(zone_page_state(zone, NR_PAGETABLE)),
2286 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2287 K(zone_page_state(zone, NR_BOUNCE)),
2288 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2289 zone->pages_scanned,
2290 (zone->all_unreclaimable ? "yes" : "no")
2292 printk("lowmem_reserve[]:");
2293 for (i = 0; i < MAX_NR_ZONES; i++)
2294 printk(" %lu", zone->lowmem_reserve[i]);
2295 printk("\n");
2298 for_each_populated_zone(zone) {
2299 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2301 show_node(zone);
2302 printk("%s: ", zone->name);
2304 spin_lock_irqsave(&zone->lock, flags);
2305 for (order = 0; order < MAX_ORDER; order++) {
2306 nr[order] = zone->free_area[order].nr_free;
2307 total += nr[order] << order;
2309 spin_unlock_irqrestore(&zone->lock, flags);
2310 for (order = 0; order < MAX_ORDER; order++)
2311 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2312 printk("= %lukB\n", K(total));
2315 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2317 show_swap_cache_info();
2320 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2322 zoneref->zone = zone;
2323 zoneref->zone_idx = zone_idx(zone);
2327 * Builds allocation fallback zone lists.
2329 * Add all populated zones of a node to the zonelist.
2331 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2332 int nr_zones, enum zone_type zone_type)
2334 struct zone *zone;
2336 BUG_ON(zone_type >= MAX_NR_ZONES);
2337 zone_type++;
2339 do {
2340 zone_type--;
2341 zone = pgdat->node_zones + zone_type;
2342 if (populated_zone(zone)) {
2343 zoneref_set_zone(zone,
2344 &zonelist->_zonerefs[nr_zones++]);
2345 check_highest_zone(zone_type);
2348 } while (zone_type);
2349 return nr_zones;
2354 * zonelist_order:
2355 * 0 = automatic detection of better ordering.
2356 * 1 = order by ([node] distance, -zonetype)
2357 * 2 = order by (-zonetype, [node] distance)
2359 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2360 * the same zonelist. So only NUMA can configure this param.
2362 #define ZONELIST_ORDER_DEFAULT 0
2363 #define ZONELIST_ORDER_NODE 1
2364 #define ZONELIST_ORDER_ZONE 2
2366 /* zonelist order in the kernel.
2367 * set_zonelist_order() will set this to NODE or ZONE.
2369 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2370 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2373 #ifdef CONFIG_NUMA
2374 /* The value user specified ....changed by config */
2375 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2376 /* string for sysctl */
2377 #define NUMA_ZONELIST_ORDER_LEN 16
2378 char numa_zonelist_order[16] = "default";
2381 * interface for configure zonelist ordering.
2382 * command line option "numa_zonelist_order"
2383 * = "[dD]efault - default, automatic configuration.
2384 * = "[nN]ode - order by node locality, then by zone within node
2385 * = "[zZ]one - order by zone, then by locality within zone
2388 static int __parse_numa_zonelist_order(char *s)
2390 if (*s == 'd' || *s == 'D') {
2391 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2392 } else if (*s == 'n' || *s == 'N') {
2393 user_zonelist_order = ZONELIST_ORDER_NODE;
2394 } else if (*s == 'z' || *s == 'Z') {
2395 user_zonelist_order = ZONELIST_ORDER_ZONE;
2396 } else {
2397 printk(KERN_WARNING
2398 "Ignoring invalid numa_zonelist_order value: "
2399 "%s\n", s);
2400 return -EINVAL;
2402 return 0;
2405 static __init int setup_numa_zonelist_order(char *s)
2407 if (s)
2408 return __parse_numa_zonelist_order(s);
2409 return 0;
2411 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2414 * sysctl handler for numa_zonelist_order
2416 int numa_zonelist_order_handler(ctl_table *table, int write,
2417 void __user *buffer, size_t *length,
2418 loff_t *ppos)
2420 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2421 int ret;
2422 static DEFINE_MUTEX(zl_order_mutex);
2424 mutex_lock(&zl_order_mutex);
2425 if (write)
2426 strcpy(saved_string, (char*)table->data);
2427 ret = proc_dostring(table, write, buffer, length, ppos);
2428 if (ret)
2429 goto out;
2430 if (write) {
2431 int oldval = user_zonelist_order;
2432 if (__parse_numa_zonelist_order((char*)table->data)) {
2434 * bogus value. restore saved string
2436 strncpy((char*)table->data, saved_string,
2437 NUMA_ZONELIST_ORDER_LEN);
2438 user_zonelist_order = oldval;
2439 } else if (oldval != user_zonelist_order)
2440 build_all_zonelists();
2442 out:
2443 mutex_unlock(&zl_order_mutex);
2444 return ret;
2448 #define MAX_NODE_LOAD (nr_online_nodes)
2449 static int node_load[MAX_NUMNODES];
2452 * find_next_best_node - find the next node that should appear in a given node's fallback list
2453 * @node: node whose fallback list we're appending
2454 * @used_node_mask: nodemask_t of already used nodes
2456 * We use a number of factors to determine which is the next node that should
2457 * appear on a given node's fallback list. The node should not have appeared
2458 * already in @node's fallback list, and it should be the next closest node
2459 * according to the distance array (which contains arbitrary distance values
2460 * from each node to each node in the system), and should also prefer nodes
2461 * with no CPUs, since presumably they'll have very little allocation pressure
2462 * on them otherwise.
2463 * It returns -1 if no node is found.
2465 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2467 int n, val;
2468 int min_val = INT_MAX;
2469 int best_node = -1;
2470 const struct cpumask *tmp = cpumask_of_node(0);
2472 /* Use the local node if we haven't already */
2473 if (!node_isset(node, *used_node_mask)) {
2474 node_set(node, *used_node_mask);
2475 return node;
2478 for_each_node_state(n, N_HIGH_MEMORY) {
2480 /* Don't want a node to appear more than once */
2481 if (node_isset(n, *used_node_mask))
2482 continue;
2484 /* Use the distance array to find the distance */
2485 val = node_distance(node, n);
2487 /* Penalize nodes under us ("prefer the next node") */
2488 val += (n < node);
2490 /* Give preference to headless and unused nodes */
2491 tmp = cpumask_of_node(n);
2492 if (!cpumask_empty(tmp))
2493 val += PENALTY_FOR_NODE_WITH_CPUS;
2495 /* Slight preference for less loaded node */
2496 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2497 val += node_load[n];
2499 if (val < min_val) {
2500 min_val = val;
2501 best_node = n;
2505 if (best_node >= 0)
2506 node_set(best_node, *used_node_mask);
2508 return best_node;
2513 * Build zonelists ordered by node and zones within node.
2514 * This results in maximum locality--normal zone overflows into local
2515 * DMA zone, if any--but risks exhausting DMA zone.
2517 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2519 int j;
2520 struct zonelist *zonelist;
2522 zonelist = &pgdat->node_zonelists[0];
2523 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2525 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2526 MAX_NR_ZONES - 1);
2527 zonelist->_zonerefs[j].zone = NULL;
2528 zonelist->_zonerefs[j].zone_idx = 0;
2532 * Build gfp_thisnode zonelists
2534 static void build_thisnode_zonelists(pg_data_t *pgdat)
2536 int j;
2537 struct zonelist *zonelist;
2539 zonelist = &pgdat->node_zonelists[1];
2540 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2541 zonelist->_zonerefs[j].zone = NULL;
2542 zonelist->_zonerefs[j].zone_idx = 0;
2546 * Build zonelists ordered by zone and nodes within zones.
2547 * This results in conserving DMA zone[s] until all Normal memory is
2548 * exhausted, but results in overflowing to remote node while memory
2549 * may still exist in local DMA zone.
2551 static int node_order[MAX_NUMNODES];
2553 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2555 int pos, j, node;
2556 int zone_type; /* needs to be signed */
2557 struct zone *z;
2558 struct zonelist *zonelist;
2560 zonelist = &pgdat->node_zonelists[0];
2561 pos = 0;
2562 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2563 for (j = 0; j < nr_nodes; j++) {
2564 node = node_order[j];
2565 z = &NODE_DATA(node)->node_zones[zone_type];
2566 if (populated_zone(z)) {
2567 zoneref_set_zone(z,
2568 &zonelist->_zonerefs[pos++]);
2569 check_highest_zone(zone_type);
2573 zonelist->_zonerefs[pos].zone = NULL;
2574 zonelist->_zonerefs[pos].zone_idx = 0;
2577 static int default_zonelist_order(void)
2579 int nid, zone_type;
2580 unsigned long low_kmem_size,total_size;
2581 struct zone *z;
2582 int average_size;
2584 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2585 * If they are really small and used heavily, the system can fall
2586 * into OOM very easily.
2587 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2589 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2590 low_kmem_size = 0;
2591 total_size = 0;
2592 for_each_online_node(nid) {
2593 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2594 z = &NODE_DATA(nid)->node_zones[zone_type];
2595 if (populated_zone(z)) {
2596 if (zone_type < ZONE_NORMAL)
2597 low_kmem_size += z->present_pages;
2598 total_size += z->present_pages;
2602 if (!low_kmem_size || /* there are no DMA area. */
2603 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2604 return ZONELIST_ORDER_NODE;
2606 * look into each node's config.
2607 * If there is a node whose DMA/DMA32 memory is very big area on
2608 * local memory, NODE_ORDER may be suitable.
2610 average_size = total_size /
2611 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2612 for_each_online_node(nid) {
2613 low_kmem_size = 0;
2614 total_size = 0;
2615 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2616 z = &NODE_DATA(nid)->node_zones[zone_type];
2617 if (populated_zone(z)) {
2618 if (zone_type < ZONE_NORMAL)
2619 low_kmem_size += z->present_pages;
2620 total_size += z->present_pages;
2623 if (low_kmem_size &&
2624 total_size > average_size && /* ignore small node */
2625 low_kmem_size > total_size * 70/100)
2626 return ZONELIST_ORDER_NODE;
2628 return ZONELIST_ORDER_ZONE;
2631 static void set_zonelist_order(void)
2633 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2634 current_zonelist_order = default_zonelist_order();
2635 else
2636 current_zonelist_order = user_zonelist_order;
2639 static void build_zonelists(pg_data_t *pgdat)
2641 int j, node, load;
2642 enum zone_type i;
2643 nodemask_t used_mask;
2644 int local_node, prev_node;
2645 struct zonelist *zonelist;
2646 int order = current_zonelist_order;
2648 /* initialize zonelists */
2649 for (i = 0; i < MAX_ZONELISTS; i++) {
2650 zonelist = pgdat->node_zonelists + i;
2651 zonelist->_zonerefs[0].zone = NULL;
2652 zonelist->_zonerefs[0].zone_idx = 0;
2655 /* NUMA-aware ordering of nodes */
2656 local_node = pgdat->node_id;
2657 load = nr_online_nodes;
2658 prev_node = local_node;
2659 nodes_clear(used_mask);
2661 memset(node_order, 0, sizeof(node_order));
2662 j = 0;
2664 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2665 int distance = node_distance(local_node, node);
2668 * If another node is sufficiently far away then it is better
2669 * to reclaim pages in a zone before going off node.
2671 if (distance > RECLAIM_DISTANCE)
2672 zone_reclaim_mode = 1;
2675 * We don't want to pressure a particular node.
2676 * So adding penalty to the first node in same
2677 * distance group to make it round-robin.
2679 if (distance != node_distance(local_node, prev_node))
2680 node_load[node] = load;
2682 prev_node = node;
2683 load--;
2684 if (order == ZONELIST_ORDER_NODE)
2685 build_zonelists_in_node_order(pgdat, node);
2686 else
2687 node_order[j++] = node; /* remember order */
2690 if (order == ZONELIST_ORDER_ZONE) {
2691 /* calculate node order -- i.e., DMA last! */
2692 build_zonelists_in_zone_order(pgdat, j);
2695 build_thisnode_zonelists(pgdat);
2698 /* Construct the zonelist performance cache - see further mmzone.h */
2699 static void build_zonelist_cache(pg_data_t *pgdat)
2701 struct zonelist *zonelist;
2702 struct zonelist_cache *zlc;
2703 struct zoneref *z;
2705 zonelist = &pgdat->node_zonelists[0];
2706 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2707 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2708 for (z = zonelist->_zonerefs; z->zone; z++)
2709 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2713 #else /* CONFIG_NUMA */
2715 static void set_zonelist_order(void)
2717 current_zonelist_order = ZONELIST_ORDER_ZONE;
2720 static void build_zonelists(pg_data_t *pgdat)
2722 int node, local_node;
2723 enum zone_type j;
2724 struct zonelist *zonelist;
2726 local_node = pgdat->node_id;
2728 zonelist = &pgdat->node_zonelists[0];
2729 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2732 * Now we build the zonelist so that it contains the zones
2733 * of all the other nodes.
2734 * We don't want to pressure a particular node, so when
2735 * building the zones for node N, we make sure that the
2736 * zones coming right after the local ones are those from
2737 * node N+1 (modulo N)
2739 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2740 if (!node_online(node))
2741 continue;
2742 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2743 MAX_NR_ZONES - 1);
2745 for (node = 0; node < local_node; node++) {
2746 if (!node_online(node))
2747 continue;
2748 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2749 MAX_NR_ZONES - 1);
2752 zonelist->_zonerefs[j].zone = NULL;
2753 zonelist->_zonerefs[j].zone_idx = 0;
2756 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2757 static void build_zonelist_cache(pg_data_t *pgdat)
2759 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2762 #endif /* CONFIG_NUMA */
2765 * Boot pageset table. One per cpu which is going to be used for all
2766 * zones and all nodes. The parameters will be set in such a way
2767 * that an item put on a list will immediately be handed over to
2768 * the buddy list. This is safe since pageset manipulation is done
2769 * with interrupts disabled.
2771 * The boot_pagesets must be kept even after bootup is complete for
2772 * unused processors and/or zones. They do play a role for bootstrapping
2773 * hotplugged processors.
2775 * zoneinfo_show() and maybe other functions do
2776 * not check if the processor is online before following the pageset pointer.
2777 * Other parts of the kernel may not check if the zone is available.
2779 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2780 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2782 /* return values int ....just for stop_machine() */
2783 static int __build_all_zonelists(void *dummy)
2785 int nid;
2786 int cpu;
2788 #ifdef CONFIG_NUMA
2789 memset(node_load, 0, sizeof(node_load));
2790 #endif
2791 for_each_online_node(nid) {
2792 pg_data_t *pgdat = NODE_DATA(nid);
2794 build_zonelists(pgdat);
2795 build_zonelist_cache(pgdat);
2799 * Initialize the boot_pagesets that are going to be used
2800 * for bootstrapping processors. The real pagesets for
2801 * each zone will be allocated later when the per cpu
2802 * allocator is available.
2804 * boot_pagesets are used also for bootstrapping offline
2805 * cpus if the system is already booted because the pagesets
2806 * are needed to initialize allocators on a specific cpu too.
2807 * F.e. the percpu allocator needs the page allocator which
2808 * needs the percpu allocator in order to allocate its pagesets
2809 * (a chicken-egg dilemma).
2811 for_each_possible_cpu(cpu)
2812 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2814 return 0;
2817 void build_all_zonelists(void)
2819 set_zonelist_order();
2821 if (system_state == SYSTEM_BOOTING) {
2822 __build_all_zonelists(NULL);
2823 mminit_verify_zonelist();
2824 cpuset_init_current_mems_allowed();
2825 } else {
2826 /* we have to stop all cpus to guarantee there is no user
2827 of zonelist */
2828 stop_machine(__build_all_zonelists, NULL, NULL);
2829 /* cpuset refresh routine should be here */
2831 vm_total_pages = nr_free_pagecache_pages();
2833 * Disable grouping by mobility if the number of pages in the
2834 * system is too low to allow the mechanism to work. It would be
2835 * more accurate, but expensive to check per-zone. This check is
2836 * made on memory-hotadd so a system can start with mobility
2837 * disabled and enable it later
2839 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2840 page_group_by_mobility_disabled = 1;
2841 else
2842 page_group_by_mobility_disabled = 0;
2844 printk("Built %i zonelists in %s order, mobility grouping %s. "
2845 "Total pages: %ld\n",
2846 nr_online_nodes,
2847 zonelist_order_name[current_zonelist_order],
2848 page_group_by_mobility_disabled ? "off" : "on",
2849 vm_total_pages);
2850 #ifdef CONFIG_NUMA
2851 printk("Policy zone: %s\n", zone_names[policy_zone]);
2852 #endif
2856 * Helper functions to size the waitqueue hash table.
2857 * Essentially these want to choose hash table sizes sufficiently
2858 * large so that collisions trying to wait on pages are rare.
2859 * But in fact, the number of active page waitqueues on typical
2860 * systems is ridiculously low, less than 200. So this is even
2861 * conservative, even though it seems large.
2863 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2864 * waitqueues, i.e. the size of the waitq table given the number of pages.
2866 #define PAGES_PER_WAITQUEUE 256
2868 #ifndef CONFIG_MEMORY_HOTPLUG
2869 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2871 unsigned long size = 1;
2873 pages /= PAGES_PER_WAITQUEUE;
2875 while (size < pages)
2876 size <<= 1;
2879 * Once we have dozens or even hundreds of threads sleeping
2880 * on IO we've got bigger problems than wait queue collision.
2881 * Limit the size of the wait table to a reasonable size.
2883 size = min(size, 4096UL);
2885 return max(size, 4UL);
2887 #else
2889 * A zone's size might be changed by hot-add, so it is not possible to determine
2890 * a suitable size for its wait_table. So we use the maximum size now.
2892 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2894 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2895 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2896 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2898 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2899 * or more by the traditional way. (See above). It equals:
2901 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2902 * ia64(16K page size) : = ( 8G + 4M)byte.
2903 * powerpc (64K page size) : = (32G +16M)byte.
2905 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2907 return 4096UL;
2909 #endif
2912 * This is an integer logarithm so that shifts can be used later
2913 * to extract the more random high bits from the multiplicative
2914 * hash function before the remainder is taken.
2916 static inline unsigned long wait_table_bits(unsigned long size)
2918 return ffz(~size);
2921 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2924 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2925 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2926 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2927 * higher will lead to a bigger reserve which will get freed as contiguous
2928 * blocks as reclaim kicks in
2930 static void setup_zone_migrate_reserve(struct zone *zone)
2932 unsigned long start_pfn, pfn, end_pfn;
2933 struct page *page;
2934 unsigned long block_migratetype;
2935 int reserve;
2937 /* Get the start pfn, end pfn and the number of blocks to reserve */
2938 start_pfn = zone->zone_start_pfn;
2939 end_pfn = start_pfn + zone->spanned_pages;
2940 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2941 pageblock_order;
2944 * Reserve blocks are generally in place to help high-order atomic
2945 * allocations that are short-lived. A min_free_kbytes value that
2946 * would result in more than 2 reserve blocks for atomic allocations
2947 * is assumed to be in place to help anti-fragmentation for the
2948 * future allocation of hugepages at runtime.
2950 reserve = min(2, reserve);
2952 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2953 if (!pfn_valid(pfn))
2954 continue;
2955 page = pfn_to_page(pfn);
2957 /* Watch out for overlapping nodes */
2958 if (page_to_nid(page) != zone_to_nid(zone))
2959 continue;
2961 /* Blocks with reserved pages will never free, skip them. */
2962 if (PageReserved(page))
2963 continue;
2965 block_migratetype = get_pageblock_migratetype(page);
2967 /* If this block is reserved, account for it */
2968 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2969 reserve--;
2970 continue;
2973 /* Suitable for reserving if this block is movable */
2974 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2975 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2976 move_freepages_block(zone, page, MIGRATE_RESERVE);
2977 reserve--;
2978 continue;
2982 * If the reserve is met and this is a previous reserved block,
2983 * take it back
2985 if (block_migratetype == MIGRATE_RESERVE) {
2986 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2987 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2993 * Initially all pages are reserved - free ones are freed
2994 * up by free_all_bootmem() once the early boot process is
2995 * done. Non-atomic initialization, single-pass.
2997 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2998 unsigned long start_pfn, enum memmap_context context)
3000 struct page *page;
3001 unsigned long end_pfn = start_pfn + size;
3002 unsigned long pfn;
3003 struct zone *z;
3005 if (highest_memmap_pfn < end_pfn - 1)
3006 highest_memmap_pfn = end_pfn - 1;
3008 z = &NODE_DATA(nid)->node_zones[zone];
3009 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3011 * There can be holes in boot-time mem_map[]s
3012 * handed to this function. They do not
3013 * exist on hotplugged memory.
3015 if (context == MEMMAP_EARLY) {
3016 if (!early_pfn_valid(pfn))
3017 continue;
3018 if (!early_pfn_in_nid(pfn, nid))
3019 continue;
3021 page = pfn_to_page(pfn);
3022 set_page_links(page, zone, nid, pfn);
3023 mminit_verify_page_links(page, zone, nid, pfn);
3024 init_page_count(page);
3025 reset_page_mapcount(page);
3026 SetPageReserved(page);
3028 * Mark the block movable so that blocks are reserved for
3029 * movable at startup. This will force kernel allocations
3030 * to reserve their blocks rather than leaking throughout
3031 * the address space during boot when many long-lived
3032 * kernel allocations are made. Later some blocks near
3033 * the start are marked MIGRATE_RESERVE by
3034 * setup_zone_migrate_reserve()
3036 * bitmap is created for zone's valid pfn range. but memmap
3037 * can be created for invalid pages (for alignment)
3038 * check here not to call set_pageblock_migratetype() against
3039 * pfn out of zone.
3041 if ((z->zone_start_pfn <= pfn)
3042 && (pfn < z->zone_start_pfn + z->spanned_pages)
3043 && !(pfn & (pageblock_nr_pages - 1)))
3044 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3046 INIT_LIST_HEAD(&page->lru);
3047 #ifdef WANT_PAGE_VIRTUAL
3048 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3049 if (!is_highmem_idx(zone))
3050 set_page_address(page, __va(pfn << PAGE_SHIFT));
3051 #endif
3055 static void __meminit zone_init_free_lists(struct zone *zone)
3057 int order, t;
3058 for_each_migratetype_order(order, t) {
3059 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3060 zone->free_area[order].nr_free = 0;
3064 #ifndef __HAVE_ARCH_MEMMAP_INIT
3065 #define memmap_init(size, nid, zone, start_pfn) \
3066 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3067 #endif
3069 static int zone_batchsize(struct zone *zone)
3071 #ifdef CONFIG_MMU
3072 int batch;
3075 * The per-cpu-pages pools are set to around 1000th of the
3076 * size of the zone. But no more than 1/2 of a meg.
3078 * OK, so we don't know how big the cache is. So guess.
3080 batch = zone->present_pages / 1024;
3081 if (batch * PAGE_SIZE > 512 * 1024)
3082 batch = (512 * 1024) / PAGE_SIZE;
3083 batch /= 4; /* We effectively *= 4 below */
3084 if (batch < 1)
3085 batch = 1;
3088 * Clamp the batch to a 2^n - 1 value. Having a power
3089 * of 2 value was found to be more likely to have
3090 * suboptimal cache aliasing properties in some cases.
3092 * For example if 2 tasks are alternately allocating
3093 * batches of pages, one task can end up with a lot
3094 * of pages of one half of the possible page colors
3095 * and the other with pages of the other colors.
3097 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3099 return batch;
3101 #else
3102 /* The deferral and batching of frees should be suppressed under NOMMU
3103 * conditions.
3105 * The problem is that NOMMU needs to be able to allocate large chunks
3106 * of contiguous memory as there's no hardware page translation to
3107 * assemble apparent contiguous memory from discontiguous pages.
3109 * Queueing large contiguous runs of pages for batching, however,
3110 * causes the pages to actually be freed in smaller chunks. As there
3111 * can be a significant delay between the individual batches being
3112 * recycled, this leads to the once large chunks of space being
3113 * fragmented and becoming unavailable for high-order allocations.
3115 return 0;
3116 #endif
3119 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3121 struct per_cpu_pages *pcp;
3122 int migratetype;
3124 memset(p, 0, sizeof(*p));
3126 pcp = &p->pcp;
3127 pcp->count = 0;
3128 pcp->high = 6 * batch;
3129 pcp->batch = max(1UL, 1 * batch);
3130 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3131 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3135 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3136 * to the value high for the pageset p.
3139 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3140 unsigned long high)
3142 struct per_cpu_pages *pcp;
3144 pcp = &p->pcp;
3145 pcp->high = high;
3146 pcp->batch = max(1UL, high/4);
3147 if ((high/4) > (PAGE_SHIFT * 8))
3148 pcp->batch = PAGE_SHIFT * 8;
3152 * Allocate per cpu pagesets and initialize them.
3153 * Before this call only boot pagesets were available.
3154 * Boot pagesets will no longer be used by this processorr
3155 * after setup_per_cpu_pageset().
3157 void __init setup_per_cpu_pageset(void)
3159 struct zone *zone;
3160 int cpu;
3162 for_each_populated_zone(zone) {
3163 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3165 for_each_possible_cpu(cpu) {
3166 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3168 setup_pageset(pcp, zone_batchsize(zone));
3170 if (percpu_pagelist_fraction)
3171 setup_pagelist_highmark(pcp,
3172 (zone->present_pages /
3173 percpu_pagelist_fraction));
3178 static noinline __init_refok
3179 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3181 int i;
3182 struct pglist_data *pgdat = zone->zone_pgdat;
3183 size_t alloc_size;
3186 * The per-page waitqueue mechanism uses hashed waitqueues
3187 * per zone.
3189 zone->wait_table_hash_nr_entries =
3190 wait_table_hash_nr_entries(zone_size_pages);
3191 zone->wait_table_bits =
3192 wait_table_bits(zone->wait_table_hash_nr_entries);
3193 alloc_size = zone->wait_table_hash_nr_entries
3194 * sizeof(wait_queue_head_t);
3196 if (!slab_is_available()) {
3197 zone->wait_table = (wait_queue_head_t *)
3198 alloc_bootmem_node(pgdat, alloc_size);
3199 } else {
3201 * This case means that a zone whose size was 0 gets new memory
3202 * via memory hot-add.
3203 * But it may be the case that a new node was hot-added. In
3204 * this case vmalloc() will not be able to use this new node's
3205 * memory - this wait_table must be initialized to use this new
3206 * node itself as well.
3207 * To use this new node's memory, further consideration will be
3208 * necessary.
3210 zone->wait_table = vmalloc(alloc_size);
3212 if (!zone->wait_table)
3213 return -ENOMEM;
3215 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3216 init_waitqueue_head(zone->wait_table + i);
3218 return 0;
3221 static int __zone_pcp_update(void *data)
3223 struct zone *zone = data;
3224 int cpu;
3225 unsigned long batch = zone_batchsize(zone), flags;
3227 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3228 struct per_cpu_pageset *pset;
3229 struct per_cpu_pages *pcp;
3231 pset = per_cpu_ptr(zone->pageset, cpu);
3232 pcp = &pset->pcp;
3234 local_irq_save(flags);
3235 free_pcppages_bulk(zone, pcp->count, pcp);
3236 setup_pageset(pset, batch);
3237 local_irq_restore(flags);
3239 return 0;
3242 void zone_pcp_update(struct zone *zone)
3244 stop_machine(__zone_pcp_update, zone, NULL);
3247 static __meminit void zone_pcp_init(struct zone *zone)
3250 * per cpu subsystem is not up at this point. The following code
3251 * relies on the ability of the linker to provide the
3252 * offset of a (static) per cpu variable into the per cpu area.
3254 zone->pageset = &boot_pageset;
3256 if (zone->present_pages)
3257 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3258 zone->name, zone->present_pages,
3259 zone_batchsize(zone));
3262 __meminit int init_currently_empty_zone(struct zone *zone,
3263 unsigned long zone_start_pfn,
3264 unsigned long size,
3265 enum memmap_context context)
3267 struct pglist_data *pgdat = zone->zone_pgdat;
3268 int ret;
3269 ret = zone_wait_table_init(zone, size);
3270 if (ret)
3271 return ret;
3272 pgdat->nr_zones = zone_idx(zone) + 1;
3274 zone->zone_start_pfn = zone_start_pfn;
3276 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3277 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3278 pgdat->node_id,
3279 (unsigned long)zone_idx(zone),
3280 zone_start_pfn, (zone_start_pfn + size));
3282 zone_init_free_lists(zone);
3284 return 0;
3287 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3289 * Basic iterator support. Return the first range of PFNs for a node
3290 * Note: nid == MAX_NUMNODES returns first region regardless of node
3292 static int __meminit first_active_region_index_in_nid(int nid)
3294 int i;
3296 for (i = 0; i < nr_nodemap_entries; i++)
3297 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3298 return i;
3300 return -1;
3304 * Basic iterator support. Return the next active range of PFNs for a node
3305 * Note: nid == MAX_NUMNODES returns next region regardless of node
3307 static int __meminit next_active_region_index_in_nid(int index, int nid)
3309 for (index = index + 1; index < nr_nodemap_entries; index++)
3310 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3311 return index;
3313 return -1;
3316 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3318 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3319 * Architectures may implement their own version but if add_active_range()
3320 * was used and there are no special requirements, this is a convenient
3321 * alternative
3323 int __meminit __early_pfn_to_nid(unsigned long pfn)
3325 int i;
3327 for (i = 0; i < nr_nodemap_entries; i++) {
3328 unsigned long start_pfn = early_node_map[i].start_pfn;
3329 unsigned long end_pfn = early_node_map[i].end_pfn;
3331 if (start_pfn <= pfn && pfn < end_pfn)
3332 return early_node_map[i].nid;
3334 /* This is a memory hole */
3335 return -1;
3337 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3339 int __meminit early_pfn_to_nid(unsigned long pfn)
3341 int nid;
3343 nid = __early_pfn_to_nid(pfn);
3344 if (nid >= 0)
3345 return nid;
3346 /* just returns 0 */
3347 return 0;
3350 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3351 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3353 int nid;
3355 nid = __early_pfn_to_nid(pfn);
3356 if (nid >= 0 && nid != node)
3357 return false;
3358 return true;
3360 #endif
3362 /* Basic iterator support to walk early_node_map[] */
3363 #define for_each_active_range_index_in_nid(i, nid) \
3364 for (i = first_active_region_index_in_nid(nid); i != -1; \
3365 i = next_active_region_index_in_nid(i, nid))
3368 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3369 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3370 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3372 * If an architecture guarantees that all ranges registered with
3373 * add_active_ranges() contain no holes and may be freed, this
3374 * this function may be used instead of calling free_bootmem() manually.
3376 void __init free_bootmem_with_active_regions(int nid,
3377 unsigned long max_low_pfn)
3379 int i;
3381 for_each_active_range_index_in_nid(i, nid) {
3382 unsigned long size_pages = 0;
3383 unsigned long end_pfn = early_node_map[i].end_pfn;
3385 if (early_node_map[i].start_pfn >= max_low_pfn)
3386 continue;
3388 if (end_pfn > max_low_pfn)
3389 end_pfn = max_low_pfn;
3391 size_pages = end_pfn - early_node_map[i].start_pfn;
3392 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3393 PFN_PHYS(early_node_map[i].start_pfn),
3394 size_pages << PAGE_SHIFT);
3398 int __init add_from_early_node_map(struct range *range, int az,
3399 int nr_range, int nid)
3401 int i;
3402 u64 start, end;
3404 /* need to go over early_node_map to find out good range for node */
3405 for_each_active_range_index_in_nid(i, nid) {
3406 start = early_node_map[i].start_pfn;
3407 end = early_node_map[i].end_pfn;
3408 nr_range = add_range(range, az, nr_range, start, end);
3410 return nr_range;
3413 #ifdef CONFIG_NO_BOOTMEM
3414 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3415 u64 goal, u64 limit)
3417 int i;
3418 void *ptr;
3420 /* need to go over early_node_map to find out good range for node */
3421 for_each_active_range_index_in_nid(i, nid) {
3422 u64 addr;
3423 u64 ei_start, ei_last;
3425 ei_last = early_node_map[i].end_pfn;
3426 ei_last <<= PAGE_SHIFT;
3427 ei_start = early_node_map[i].start_pfn;
3428 ei_start <<= PAGE_SHIFT;
3429 addr = find_early_area(ei_start, ei_last,
3430 goal, limit, size, align);
3432 if (addr == -1ULL)
3433 continue;
3435 #if 0
3436 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3437 nid,
3438 ei_start, ei_last, goal, limit, size,
3439 align, addr);
3440 #endif
3442 ptr = phys_to_virt(addr);
3443 memset(ptr, 0, size);
3444 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3445 return ptr;
3448 return NULL;
3450 #endif
3453 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3455 int i;
3456 int ret;
3458 for_each_active_range_index_in_nid(i, nid) {
3459 ret = work_fn(early_node_map[i].start_pfn,
3460 early_node_map[i].end_pfn, data);
3461 if (ret)
3462 break;
3466 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3467 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3469 * If an architecture guarantees that all ranges registered with
3470 * add_active_ranges() contain no holes and may be freed, this
3471 * function may be used instead of calling memory_present() manually.
3473 void __init sparse_memory_present_with_active_regions(int nid)
3475 int i;
3477 for_each_active_range_index_in_nid(i, nid)
3478 memory_present(early_node_map[i].nid,
3479 early_node_map[i].start_pfn,
3480 early_node_map[i].end_pfn);
3484 * get_pfn_range_for_nid - Return the start and end page frames for a node
3485 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3486 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3487 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3489 * It returns the start and end page frame of a node based on information
3490 * provided by an arch calling add_active_range(). If called for a node
3491 * with no available memory, a warning is printed and the start and end
3492 * PFNs will be 0.
3494 void __meminit get_pfn_range_for_nid(unsigned int nid,
3495 unsigned long *start_pfn, unsigned long *end_pfn)
3497 int i;
3498 *start_pfn = -1UL;
3499 *end_pfn = 0;
3501 for_each_active_range_index_in_nid(i, nid) {
3502 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3503 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3506 if (*start_pfn == -1UL)
3507 *start_pfn = 0;
3511 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3512 * assumption is made that zones within a node are ordered in monotonic
3513 * increasing memory addresses so that the "highest" populated zone is used
3515 static void __init find_usable_zone_for_movable(void)
3517 int zone_index;
3518 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3519 if (zone_index == ZONE_MOVABLE)
3520 continue;
3522 if (arch_zone_highest_possible_pfn[zone_index] >
3523 arch_zone_lowest_possible_pfn[zone_index])
3524 break;
3527 VM_BUG_ON(zone_index == -1);
3528 movable_zone = zone_index;
3532 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3533 * because it is sized independant of architecture. Unlike the other zones,
3534 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3535 * in each node depending on the size of each node and how evenly kernelcore
3536 * is distributed. This helper function adjusts the zone ranges
3537 * provided by the architecture for a given node by using the end of the
3538 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3539 * zones within a node are in order of monotonic increases memory addresses
3541 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3542 unsigned long zone_type,
3543 unsigned long node_start_pfn,
3544 unsigned long node_end_pfn,
3545 unsigned long *zone_start_pfn,
3546 unsigned long *zone_end_pfn)
3548 /* Only adjust if ZONE_MOVABLE is on this node */
3549 if (zone_movable_pfn[nid]) {
3550 /* Size ZONE_MOVABLE */
3551 if (zone_type == ZONE_MOVABLE) {
3552 *zone_start_pfn = zone_movable_pfn[nid];
3553 *zone_end_pfn = min(node_end_pfn,
3554 arch_zone_highest_possible_pfn[movable_zone]);
3556 /* Adjust for ZONE_MOVABLE starting within this range */
3557 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3558 *zone_end_pfn > zone_movable_pfn[nid]) {
3559 *zone_end_pfn = zone_movable_pfn[nid];
3561 /* Check if this whole range is within ZONE_MOVABLE */
3562 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3563 *zone_start_pfn = *zone_end_pfn;
3568 * Return the number of pages a zone spans in a node, including holes
3569 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3571 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3572 unsigned long zone_type,
3573 unsigned long *ignored)
3575 unsigned long node_start_pfn, node_end_pfn;
3576 unsigned long zone_start_pfn, zone_end_pfn;
3578 /* Get the start and end of the node and zone */
3579 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3580 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3581 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3582 adjust_zone_range_for_zone_movable(nid, zone_type,
3583 node_start_pfn, node_end_pfn,
3584 &zone_start_pfn, &zone_end_pfn);
3586 /* Check that this node has pages within the zone's required range */
3587 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3588 return 0;
3590 /* Move the zone boundaries inside the node if necessary */
3591 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3592 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3594 /* Return the spanned pages */
3595 return zone_end_pfn - zone_start_pfn;
3599 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3600 * then all holes in the requested range will be accounted for.
3602 unsigned long __meminit __absent_pages_in_range(int nid,
3603 unsigned long range_start_pfn,
3604 unsigned long range_end_pfn)
3606 int i = 0;
3607 unsigned long prev_end_pfn = 0, hole_pages = 0;
3608 unsigned long start_pfn;
3610 /* Find the end_pfn of the first active range of pfns in the node */
3611 i = first_active_region_index_in_nid(nid);
3612 if (i == -1)
3613 return 0;
3615 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3617 /* Account for ranges before physical memory on this node */
3618 if (early_node_map[i].start_pfn > range_start_pfn)
3619 hole_pages = prev_end_pfn - range_start_pfn;
3621 /* Find all holes for the zone within the node */
3622 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3624 /* No need to continue if prev_end_pfn is outside the zone */
3625 if (prev_end_pfn >= range_end_pfn)
3626 break;
3628 /* Make sure the end of the zone is not within the hole */
3629 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3630 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3632 /* Update the hole size cound and move on */
3633 if (start_pfn > range_start_pfn) {
3634 BUG_ON(prev_end_pfn > start_pfn);
3635 hole_pages += start_pfn - prev_end_pfn;
3637 prev_end_pfn = early_node_map[i].end_pfn;
3640 /* Account for ranges past physical memory on this node */
3641 if (range_end_pfn > prev_end_pfn)
3642 hole_pages += range_end_pfn -
3643 max(range_start_pfn, prev_end_pfn);
3645 return hole_pages;
3649 * absent_pages_in_range - Return number of page frames in holes within a range
3650 * @start_pfn: The start PFN to start searching for holes
3651 * @end_pfn: The end PFN to stop searching for holes
3653 * It returns the number of pages frames in memory holes within a range.
3655 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3656 unsigned long end_pfn)
3658 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3661 /* Return the number of page frames in holes in a zone on a node */
3662 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3663 unsigned long zone_type,
3664 unsigned long *ignored)
3666 unsigned long node_start_pfn, node_end_pfn;
3667 unsigned long zone_start_pfn, zone_end_pfn;
3669 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3670 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3671 node_start_pfn);
3672 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3673 node_end_pfn);
3675 adjust_zone_range_for_zone_movable(nid, zone_type,
3676 node_start_pfn, node_end_pfn,
3677 &zone_start_pfn, &zone_end_pfn);
3678 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3681 #else
3682 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3683 unsigned long zone_type,
3684 unsigned long *zones_size)
3686 return zones_size[zone_type];
3689 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3690 unsigned long zone_type,
3691 unsigned long *zholes_size)
3693 if (!zholes_size)
3694 return 0;
3696 return zholes_size[zone_type];
3699 #endif
3701 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3702 unsigned long *zones_size, unsigned long *zholes_size)
3704 unsigned long realtotalpages, totalpages = 0;
3705 enum zone_type i;
3707 for (i = 0; i < MAX_NR_ZONES; i++)
3708 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3709 zones_size);
3710 pgdat->node_spanned_pages = totalpages;
3712 realtotalpages = totalpages;
3713 for (i = 0; i < MAX_NR_ZONES; i++)
3714 realtotalpages -=
3715 zone_absent_pages_in_node(pgdat->node_id, i,
3716 zholes_size);
3717 pgdat->node_present_pages = realtotalpages;
3718 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3719 realtotalpages);
3722 #ifndef CONFIG_SPARSEMEM
3724 * Calculate the size of the zone->blockflags rounded to an unsigned long
3725 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3726 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3727 * round what is now in bits to nearest long in bits, then return it in
3728 * bytes.
3730 static unsigned long __init usemap_size(unsigned long zonesize)
3732 unsigned long usemapsize;
3734 usemapsize = roundup(zonesize, pageblock_nr_pages);
3735 usemapsize = usemapsize >> pageblock_order;
3736 usemapsize *= NR_PAGEBLOCK_BITS;
3737 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3739 return usemapsize / 8;
3742 static void __init setup_usemap(struct pglist_data *pgdat,
3743 struct zone *zone, unsigned long zonesize)
3745 unsigned long usemapsize = usemap_size(zonesize);
3746 zone->pageblock_flags = NULL;
3747 if (usemapsize)
3748 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3750 #else
3751 static void inline setup_usemap(struct pglist_data *pgdat,
3752 struct zone *zone, unsigned long zonesize) {}
3753 #endif /* CONFIG_SPARSEMEM */
3755 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3757 /* Return a sensible default order for the pageblock size. */
3758 static inline int pageblock_default_order(void)
3760 if (HPAGE_SHIFT > PAGE_SHIFT)
3761 return HUGETLB_PAGE_ORDER;
3763 return MAX_ORDER-1;
3766 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3767 static inline void __init set_pageblock_order(unsigned int order)
3769 /* Check that pageblock_nr_pages has not already been setup */
3770 if (pageblock_order)
3771 return;
3774 * Assume the largest contiguous order of interest is a huge page.
3775 * This value may be variable depending on boot parameters on IA64
3777 pageblock_order = order;
3779 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3782 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3783 * and pageblock_default_order() are unused as pageblock_order is set
3784 * at compile-time. See include/linux/pageblock-flags.h for the values of
3785 * pageblock_order based on the kernel config
3787 static inline int pageblock_default_order(unsigned int order)
3789 return MAX_ORDER-1;
3791 #define set_pageblock_order(x) do {} while (0)
3793 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3796 * Set up the zone data structures:
3797 * - mark all pages reserved
3798 * - mark all memory queues empty
3799 * - clear the memory bitmaps
3801 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3802 unsigned long *zones_size, unsigned long *zholes_size)
3804 enum zone_type j;
3805 int nid = pgdat->node_id;
3806 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3807 int ret;
3809 pgdat_resize_init(pgdat);
3810 pgdat->nr_zones = 0;
3811 init_waitqueue_head(&pgdat->kswapd_wait);
3812 pgdat->kswapd_max_order = 0;
3813 pgdat_page_cgroup_init(pgdat);
3815 for (j = 0; j < MAX_NR_ZONES; j++) {
3816 struct zone *zone = pgdat->node_zones + j;
3817 unsigned long size, realsize, memmap_pages;
3818 enum lru_list l;
3820 size = zone_spanned_pages_in_node(nid, j, zones_size);
3821 realsize = size - zone_absent_pages_in_node(nid, j,
3822 zholes_size);
3825 * Adjust realsize so that it accounts for how much memory
3826 * is used by this zone for memmap. This affects the watermark
3827 * and per-cpu initialisations
3829 memmap_pages =
3830 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3831 if (realsize >= memmap_pages) {
3832 realsize -= memmap_pages;
3833 if (memmap_pages)
3834 printk(KERN_DEBUG
3835 " %s zone: %lu pages used for memmap\n",
3836 zone_names[j], memmap_pages);
3837 } else
3838 printk(KERN_WARNING
3839 " %s zone: %lu pages exceeds realsize %lu\n",
3840 zone_names[j], memmap_pages, realsize);
3842 /* Account for reserved pages */
3843 if (j == 0 && realsize > dma_reserve) {
3844 realsize -= dma_reserve;
3845 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3846 zone_names[0], dma_reserve);
3849 if (!is_highmem_idx(j))
3850 nr_kernel_pages += realsize;
3851 nr_all_pages += realsize;
3853 zone->spanned_pages = size;
3854 zone->present_pages = realsize;
3855 #ifdef CONFIG_NUMA
3856 zone->node = nid;
3857 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3858 / 100;
3859 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3860 #endif
3861 zone->name = zone_names[j];
3862 spin_lock_init(&zone->lock);
3863 spin_lock_init(&zone->lru_lock);
3864 zone_seqlock_init(zone);
3865 zone->zone_pgdat = pgdat;
3867 zone->prev_priority = DEF_PRIORITY;
3869 zone_pcp_init(zone);
3870 for_each_lru(l) {
3871 INIT_LIST_HEAD(&zone->lru[l].list);
3872 zone->reclaim_stat.nr_saved_scan[l] = 0;
3874 zone->reclaim_stat.recent_rotated[0] = 0;
3875 zone->reclaim_stat.recent_rotated[1] = 0;
3876 zone->reclaim_stat.recent_scanned[0] = 0;
3877 zone->reclaim_stat.recent_scanned[1] = 0;
3878 zap_zone_vm_stats(zone);
3879 zone->flags = 0;
3880 if (!size)
3881 continue;
3883 set_pageblock_order(pageblock_default_order());
3884 setup_usemap(pgdat, zone, size);
3885 ret = init_currently_empty_zone(zone, zone_start_pfn,
3886 size, MEMMAP_EARLY);
3887 BUG_ON(ret);
3888 memmap_init(size, nid, j, zone_start_pfn);
3889 zone_start_pfn += size;
3893 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3895 /* Skip empty nodes */
3896 if (!pgdat->node_spanned_pages)
3897 return;
3899 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3900 /* ia64 gets its own node_mem_map, before this, without bootmem */
3901 if (!pgdat->node_mem_map) {
3902 unsigned long size, start, end;
3903 struct page *map;
3906 * The zone's endpoints aren't required to be MAX_ORDER
3907 * aligned but the node_mem_map endpoints must be in order
3908 * for the buddy allocator to function correctly.
3910 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3911 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3912 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3913 size = (end - start) * sizeof(struct page);
3914 map = alloc_remap(pgdat->node_id, size);
3915 if (!map)
3916 map = alloc_bootmem_node(pgdat, size);
3917 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3919 #ifndef CONFIG_NEED_MULTIPLE_NODES
3921 * With no DISCONTIG, the global mem_map is just set as node 0's
3923 if (pgdat == NODE_DATA(0)) {
3924 mem_map = NODE_DATA(0)->node_mem_map;
3925 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3926 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3927 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3928 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3930 #endif
3931 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3934 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3935 unsigned long node_start_pfn, unsigned long *zholes_size)
3937 pg_data_t *pgdat = NODE_DATA(nid);
3939 pgdat->node_id = nid;
3940 pgdat->node_start_pfn = node_start_pfn;
3941 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3943 alloc_node_mem_map(pgdat);
3944 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3945 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3946 nid, (unsigned long)pgdat,
3947 (unsigned long)pgdat->node_mem_map);
3948 #endif
3950 free_area_init_core(pgdat, zones_size, zholes_size);
3953 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3955 #if MAX_NUMNODES > 1
3957 * Figure out the number of possible node ids.
3959 static void __init setup_nr_node_ids(void)
3961 unsigned int node;
3962 unsigned int highest = 0;
3964 for_each_node_mask(node, node_possible_map)
3965 highest = node;
3966 nr_node_ids = highest + 1;
3968 #else
3969 static inline void setup_nr_node_ids(void)
3972 #endif
3975 * add_active_range - Register a range of PFNs backed by physical memory
3976 * @nid: The node ID the range resides on
3977 * @start_pfn: The start PFN of the available physical memory
3978 * @end_pfn: The end PFN of the available physical memory
3980 * These ranges are stored in an early_node_map[] and later used by
3981 * free_area_init_nodes() to calculate zone sizes and holes. If the
3982 * range spans a memory hole, it is up to the architecture to ensure
3983 * the memory is not freed by the bootmem allocator. If possible
3984 * the range being registered will be merged with existing ranges.
3986 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3987 unsigned long end_pfn)
3989 int i;
3991 mminit_dprintk(MMINIT_TRACE, "memory_register",
3992 "Entering add_active_range(%d, %#lx, %#lx) "
3993 "%d entries of %d used\n",
3994 nid, start_pfn, end_pfn,
3995 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3997 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3999 /* Merge with existing active regions if possible */
4000 for (i = 0; i < nr_nodemap_entries; i++) {
4001 if (early_node_map[i].nid != nid)
4002 continue;
4004 /* Skip if an existing region covers this new one */
4005 if (start_pfn >= early_node_map[i].start_pfn &&
4006 end_pfn <= early_node_map[i].end_pfn)
4007 return;
4009 /* Merge forward if suitable */
4010 if (start_pfn <= early_node_map[i].end_pfn &&
4011 end_pfn > early_node_map[i].end_pfn) {
4012 early_node_map[i].end_pfn = end_pfn;
4013 return;
4016 /* Merge backward if suitable */
4017 if (start_pfn < early_node_map[i].start_pfn &&
4018 end_pfn >= early_node_map[i].start_pfn) {
4019 early_node_map[i].start_pfn = start_pfn;
4020 return;
4024 /* Check that early_node_map is large enough */
4025 if (i >= MAX_ACTIVE_REGIONS) {
4026 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4027 MAX_ACTIVE_REGIONS);
4028 return;
4031 early_node_map[i].nid = nid;
4032 early_node_map[i].start_pfn = start_pfn;
4033 early_node_map[i].end_pfn = end_pfn;
4034 nr_nodemap_entries = i + 1;
4038 * remove_active_range - Shrink an existing registered range of PFNs
4039 * @nid: The node id the range is on that should be shrunk
4040 * @start_pfn: The new PFN of the range
4041 * @end_pfn: The new PFN of the range
4043 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4044 * The map is kept near the end physical page range that has already been
4045 * registered. This function allows an arch to shrink an existing registered
4046 * range.
4048 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4049 unsigned long end_pfn)
4051 int i, j;
4052 int removed = 0;
4054 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4055 nid, start_pfn, end_pfn);
4057 /* Find the old active region end and shrink */
4058 for_each_active_range_index_in_nid(i, nid) {
4059 if (early_node_map[i].start_pfn >= start_pfn &&
4060 early_node_map[i].end_pfn <= end_pfn) {
4061 /* clear it */
4062 early_node_map[i].start_pfn = 0;
4063 early_node_map[i].end_pfn = 0;
4064 removed = 1;
4065 continue;
4067 if (early_node_map[i].start_pfn < start_pfn &&
4068 early_node_map[i].end_pfn > start_pfn) {
4069 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4070 early_node_map[i].end_pfn = start_pfn;
4071 if (temp_end_pfn > end_pfn)
4072 add_active_range(nid, end_pfn, temp_end_pfn);
4073 continue;
4075 if (early_node_map[i].start_pfn >= start_pfn &&
4076 early_node_map[i].end_pfn > end_pfn &&
4077 early_node_map[i].start_pfn < end_pfn) {
4078 early_node_map[i].start_pfn = end_pfn;
4079 continue;
4083 if (!removed)
4084 return;
4086 /* remove the blank ones */
4087 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4088 if (early_node_map[i].nid != nid)
4089 continue;
4090 if (early_node_map[i].end_pfn)
4091 continue;
4092 /* we found it, get rid of it */
4093 for (j = i; j < nr_nodemap_entries - 1; j++)
4094 memcpy(&early_node_map[j], &early_node_map[j+1],
4095 sizeof(early_node_map[j]));
4096 j = nr_nodemap_entries - 1;
4097 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4098 nr_nodemap_entries--;
4103 * remove_all_active_ranges - Remove all currently registered regions
4105 * During discovery, it may be found that a table like SRAT is invalid
4106 * and an alternative discovery method must be used. This function removes
4107 * all currently registered regions.
4109 void __init remove_all_active_ranges(void)
4111 memset(early_node_map, 0, sizeof(early_node_map));
4112 nr_nodemap_entries = 0;
4115 /* Compare two active node_active_regions */
4116 static int __init cmp_node_active_region(const void *a, const void *b)
4118 struct node_active_region *arange = (struct node_active_region *)a;
4119 struct node_active_region *brange = (struct node_active_region *)b;
4121 /* Done this way to avoid overflows */
4122 if (arange->start_pfn > brange->start_pfn)
4123 return 1;
4124 if (arange->start_pfn < brange->start_pfn)
4125 return -1;
4127 return 0;
4130 /* sort the node_map by start_pfn */
4131 void __init sort_node_map(void)
4133 sort(early_node_map, (size_t)nr_nodemap_entries,
4134 sizeof(struct node_active_region),
4135 cmp_node_active_region, NULL);
4138 /* Find the lowest pfn for a node */
4139 static unsigned long __init find_min_pfn_for_node(int nid)
4141 int i;
4142 unsigned long min_pfn = ULONG_MAX;
4144 /* Assuming a sorted map, the first range found has the starting pfn */
4145 for_each_active_range_index_in_nid(i, nid)
4146 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4148 if (min_pfn == ULONG_MAX) {
4149 printk(KERN_WARNING
4150 "Could not find start_pfn for node %d\n", nid);
4151 return 0;
4154 return min_pfn;
4158 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4160 * It returns the minimum PFN based on information provided via
4161 * add_active_range().
4163 unsigned long __init find_min_pfn_with_active_regions(void)
4165 return find_min_pfn_for_node(MAX_NUMNODES);
4169 * early_calculate_totalpages()
4170 * Sum pages in active regions for movable zone.
4171 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4173 static unsigned long __init early_calculate_totalpages(void)
4175 int i;
4176 unsigned long totalpages = 0;
4178 for (i = 0; i < nr_nodemap_entries; i++) {
4179 unsigned long pages = early_node_map[i].end_pfn -
4180 early_node_map[i].start_pfn;
4181 totalpages += pages;
4182 if (pages)
4183 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4185 return totalpages;
4189 * Find the PFN the Movable zone begins in each node. Kernel memory
4190 * is spread evenly between nodes as long as the nodes have enough
4191 * memory. When they don't, some nodes will have more kernelcore than
4192 * others
4194 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4196 int i, nid;
4197 unsigned long usable_startpfn;
4198 unsigned long kernelcore_node, kernelcore_remaining;
4199 /* save the state before borrow the nodemask */
4200 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4201 unsigned long totalpages = early_calculate_totalpages();
4202 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4205 * If movablecore was specified, calculate what size of
4206 * kernelcore that corresponds so that memory usable for
4207 * any allocation type is evenly spread. If both kernelcore
4208 * and movablecore are specified, then the value of kernelcore
4209 * will be used for required_kernelcore if it's greater than
4210 * what movablecore would have allowed.
4212 if (required_movablecore) {
4213 unsigned long corepages;
4216 * Round-up so that ZONE_MOVABLE is at least as large as what
4217 * was requested by the user
4219 required_movablecore =
4220 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4221 corepages = totalpages - required_movablecore;
4223 required_kernelcore = max(required_kernelcore, corepages);
4226 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4227 if (!required_kernelcore)
4228 goto out;
4230 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4231 find_usable_zone_for_movable();
4232 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4234 restart:
4235 /* Spread kernelcore memory as evenly as possible throughout nodes */
4236 kernelcore_node = required_kernelcore / usable_nodes;
4237 for_each_node_state(nid, N_HIGH_MEMORY) {
4239 * Recalculate kernelcore_node if the division per node
4240 * now exceeds what is necessary to satisfy the requested
4241 * amount of memory for the kernel
4243 if (required_kernelcore < kernelcore_node)
4244 kernelcore_node = required_kernelcore / usable_nodes;
4247 * As the map is walked, we track how much memory is usable
4248 * by the kernel using kernelcore_remaining. When it is
4249 * 0, the rest of the node is usable by ZONE_MOVABLE
4251 kernelcore_remaining = kernelcore_node;
4253 /* Go through each range of PFNs within this node */
4254 for_each_active_range_index_in_nid(i, nid) {
4255 unsigned long start_pfn, end_pfn;
4256 unsigned long size_pages;
4258 start_pfn = max(early_node_map[i].start_pfn,
4259 zone_movable_pfn[nid]);
4260 end_pfn = early_node_map[i].end_pfn;
4261 if (start_pfn >= end_pfn)
4262 continue;
4264 /* Account for what is only usable for kernelcore */
4265 if (start_pfn < usable_startpfn) {
4266 unsigned long kernel_pages;
4267 kernel_pages = min(end_pfn, usable_startpfn)
4268 - start_pfn;
4270 kernelcore_remaining -= min(kernel_pages,
4271 kernelcore_remaining);
4272 required_kernelcore -= min(kernel_pages,
4273 required_kernelcore);
4275 /* Continue if range is now fully accounted */
4276 if (end_pfn <= usable_startpfn) {
4279 * Push zone_movable_pfn to the end so
4280 * that if we have to rebalance
4281 * kernelcore across nodes, we will
4282 * not double account here
4284 zone_movable_pfn[nid] = end_pfn;
4285 continue;
4287 start_pfn = usable_startpfn;
4291 * The usable PFN range for ZONE_MOVABLE is from
4292 * start_pfn->end_pfn. Calculate size_pages as the
4293 * number of pages used as kernelcore
4295 size_pages = end_pfn - start_pfn;
4296 if (size_pages > kernelcore_remaining)
4297 size_pages = kernelcore_remaining;
4298 zone_movable_pfn[nid] = start_pfn + size_pages;
4301 * Some kernelcore has been met, update counts and
4302 * break if the kernelcore for this node has been
4303 * satisified
4305 required_kernelcore -= min(required_kernelcore,
4306 size_pages);
4307 kernelcore_remaining -= size_pages;
4308 if (!kernelcore_remaining)
4309 break;
4314 * If there is still required_kernelcore, we do another pass with one
4315 * less node in the count. This will push zone_movable_pfn[nid] further
4316 * along on the nodes that still have memory until kernelcore is
4317 * satisified
4319 usable_nodes--;
4320 if (usable_nodes && required_kernelcore > usable_nodes)
4321 goto restart;
4323 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4324 for (nid = 0; nid < MAX_NUMNODES; nid++)
4325 zone_movable_pfn[nid] =
4326 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4328 out:
4329 /* restore the node_state */
4330 node_states[N_HIGH_MEMORY] = saved_node_state;
4333 /* Any regular memory on that node ? */
4334 static void check_for_regular_memory(pg_data_t *pgdat)
4336 #ifdef CONFIG_HIGHMEM
4337 enum zone_type zone_type;
4339 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4340 struct zone *zone = &pgdat->node_zones[zone_type];
4341 if (zone->present_pages)
4342 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4344 #endif
4348 * free_area_init_nodes - Initialise all pg_data_t and zone data
4349 * @max_zone_pfn: an array of max PFNs for each zone
4351 * This will call free_area_init_node() for each active node in the system.
4352 * Using the page ranges provided by add_active_range(), the size of each
4353 * zone in each node and their holes is calculated. If the maximum PFN
4354 * between two adjacent zones match, it is assumed that the zone is empty.
4355 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4356 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4357 * starts where the previous one ended. For example, ZONE_DMA32 starts
4358 * at arch_max_dma_pfn.
4360 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4362 unsigned long nid;
4363 int i;
4365 /* Sort early_node_map as initialisation assumes it is sorted */
4366 sort_node_map();
4368 /* Record where the zone boundaries are */
4369 memset(arch_zone_lowest_possible_pfn, 0,
4370 sizeof(arch_zone_lowest_possible_pfn));
4371 memset(arch_zone_highest_possible_pfn, 0,
4372 sizeof(arch_zone_highest_possible_pfn));
4373 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4374 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4375 for (i = 1; i < MAX_NR_ZONES; i++) {
4376 if (i == ZONE_MOVABLE)
4377 continue;
4378 arch_zone_lowest_possible_pfn[i] =
4379 arch_zone_highest_possible_pfn[i-1];
4380 arch_zone_highest_possible_pfn[i] =
4381 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4383 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4384 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4386 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4387 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4388 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4390 /* Print out the zone ranges */
4391 printk("Zone PFN ranges:\n");
4392 for (i = 0; i < MAX_NR_ZONES; i++) {
4393 if (i == ZONE_MOVABLE)
4394 continue;
4395 printk(" %-8s ", zone_names[i]);
4396 if (arch_zone_lowest_possible_pfn[i] ==
4397 arch_zone_highest_possible_pfn[i])
4398 printk("empty\n");
4399 else
4400 printk("%0#10lx -> %0#10lx\n",
4401 arch_zone_lowest_possible_pfn[i],
4402 arch_zone_highest_possible_pfn[i]);
4405 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4406 printk("Movable zone start PFN for each node\n");
4407 for (i = 0; i < MAX_NUMNODES; i++) {
4408 if (zone_movable_pfn[i])
4409 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4412 /* Print out the early_node_map[] */
4413 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4414 for (i = 0; i < nr_nodemap_entries; i++)
4415 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4416 early_node_map[i].start_pfn,
4417 early_node_map[i].end_pfn);
4419 /* Initialise every node */
4420 mminit_verify_pageflags_layout();
4421 setup_nr_node_ids();
4422 for_each_online_node(nid) {
4423 pg_data_t *pgdat = NODE_DATA(nid);
4424 free_area_init_node(nid, NULL,
4425 find_min_pfn_for_node(nid), NULL);
4427 /* Any memory on that node */
4428 if (pgdat->node_present_pages)
4429 node_set_state(nid, N_HIGH_MEMORY);
4430 check_for_regular_memory(pgdat);
4434 static int __init cmdline_parse_core(char *p, unsigned long *core)
4436 unsigned long long coremem;
4437 if (!p)
4438 return -EINVAL;
4440 coremem = memparse(p, &p);
4441 *core = coremem >> PAGE_SHIFT;
4443 /* Paranoid check that UL is enough for the coremem value */
4444 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4446 return 0;
4450 * kernelcore=size sets the amount of memory for use for allocations that
4451 * cannot be reclaimed or migrated.
4453 static int __init cmdline_parse_kernelcore(char *p)
4455 return cmdline_parse_core(p, &required_kernelcore);
4459 * movablecore=size sets the amount of memory for use for allocations that
4460 * can be reclaimed or migrated.
4462 static int __init cmdline_parse_movablecore(char *p)
4464 return cmdline_parse_core(p, &required_movablecore);
4467 early_param("kernelcore", cmdline_parse_kernelcore);
4468 early_param("movablecore", cmdline_parse_movablecore);
4470 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4473 * set_dma_reserve - set the specified number of pages reserved in the first zone
4474 * @new_dma_reserve: The number of pages to mark reserved
4476 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4477 * In the DMA zone, a significant percentage may be consumed by kernel image
4478 * and other unfreeable allocations which can skew the watermarks badly. This
4479 * function may optionally be used to account for unfreeable pages in the
4480 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4481 * smaller per-cpu batchsize.
4483 void __init set_dma_reserve(unsigned long new_dma_reserve)
4485 dma_reserve = new_dma_reserve;
4488 #ifndef CONFIG_NEED_MULTIPLE_NODES
4489 struct pglist_data __refdata contig_page_data = {
4490 #ifndef CONFIG_NO_BOOTMEM
4491 .bdata = &bootmem_node_data[0]
4492 #endif
4494 EXPORT_SYMBOL(contig_page_data);
4495 #endif
4497 void __init free_area_init(unsigned long *zones_size)
4499 free_area_init_node(0, zones_size,
4500 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4503 static int page_alloc_cpu_notify(struct notifier_block *self,
4504 unsigned long action, void *hcpu)
4506 int cpu = (unsigned long)hcpu;
4508 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4509 drain_pages(cpu);
4512 * Spill the event counters of the dead processor
4513 * into the current processors event counters.
4514 * This artificially elevates the count of the current
4515 * processor.
4517 vm_events_fold_cpu(cpu);
4520 * Zero the differential counters of the dead processor
4521 * so that the vm statistics are consistent.
4523 * This is only okay since the processor is dead and cannot
4524 * race with what we are doing.
4526 refresh_cpu_vm_stats(cpu);
4528 return NOTIFY_OK;
4531 void __init page_alloc_init(void)
4533 hotcpu_notifier(page_alloc_cpu_notify, 0);
4537 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4538 * or min_free_kbytes changes.
4540 static void calculate_totalreserve_pages(void)
4542 struct pglist_data *pgdat;
4543 unsigned long reserve_pages = 0;
4544 enum zone_type i, j;
4546 for_each_online_pgdat(pgdat) {
4547 for (i = 0; i < MAX_NR_ZONES; i++) {
4548 struct zone *zone = pgdat->node_zones + i;
4549 unsigned long max = 0;
4551 /* Find valid and maximum lowmem_reserve in the zone */
4552 for (j = i; j < MAX_NR_ZONES; j++) {
4553 if (zone->lowmem_reserve[j] > max)
4554 max = zone->lowmem_reserve[j];
4557 /* we treat the high watermark as reserved pages. */
4558 max += high_wmark_pages(zone);
4560 if (max > zone->present_pages)
4561 max = zone->present_pages;
4562 reserve_pages += max;
4565 totalreserve_pages = reserve_pages;
4569 * setup_per_zone_lowmem_reserve - called whenever
4570 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4571 * has a correct pages reserved value, so an adequate number of
4572 * pages are left in the zone after a successful __alloc_pages().
4574 static void setup_per_zone_lowmem_reserve(void)
4576 struct pglist_data *pgdat;
4577 enum zone_type j, idx;
4579 for_each_online_pgdat(pgdat) {
4580 for (j = 0; j < MAX_NR_ZONES; j++) {
4581 struct zone *zone = pgdat->node_zones + j;
4582 unsigned long present_pages = zone->present_pages;
4584 zone->lowmem_reserve[j] = 0;
4586 idx = j;
4587 while (idx) {
4588 struct zone *lower_zone;
4590 idx--;
4592 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4593 sysctl_lowmem_reserve_ratio[idx] = 1;
4595 lower_zone = pgdat->node_zones + idx;
4596 lower_zone->lowmem_reserve[j] = present_pages /
4597 sysctl_lowmem_reserve_ratio[idx];
4598 present_pages += lower_zone->present_pages;
4603 /* update totalreserve_pages */
4604 calculate_totalreserve_pages();
4608 * setup_per_zone_wmarks - called when min_free_kbytes changes
4609 * or when memory is hot-{added|removed}
4611 * Ensures that the watermark[min,low,high] values for each zone are set
4612 * correctly with respect to min_free_kbytes.
4614 void setup_per_zone_wmarks(void)
4616 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4617 unsigned long lowmem_pages = 0;
4618 struct zone *zone;
4619 unsigned long flags;
4621 /* Calculate total number of !ZONE_HIGHMEM pages */
4622 for_each_zone(zone) {
4623 if (!is_highmem(zone))
4624 lowmem_pages += zone->present_pages;
4627 for_each_zone(zone) {
4628 u64 tmp;
4630 spin_lock_irqsave(&zone->lock, flags);
4631 tmp = (u64)pages_min * zone->present_pages;
4632 do_div(tmp, lowmem_pages);
4633 if (is_highmem(zone)) {
4635 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4636 * need highmem pages, so cap pages_min to a small
4637 * value here.
4639 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4640 * deltas controls asynch page reclaim, and so should
4641 * not be capped for highmem.
4643 int min_pages;
4645 min_pages = zone->present_pages / 1024;
4646 if (min_pages < SWAP_CLUSTER_MAX)
4647 min_pages = SWAP_CLUSTER_MAX;
4648 if (min_pages > 128)
4649 min_pages = 128;
4650 zone->watermark[WMARK_MIN] = min_pages;
4651 } else {
4653 * If it's a lowmem zone, reserve a number of pages
4654 * proportionate to the zone's size.
4656 zone->watermark[WMARK_MIN] = tmp;
4659 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4660 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4661 setup_zone_migrate_reserve(zone);
4662 spin_unlock_irqrestore(&zone->lock, flags);
4665 /* update totalreserve_pages */
4666 calculate_totalreserve_pages();
4670 * The inactive anon list should be small enough that the VM never has to
4671 * do too much work, but large enough that each inactive page has a chance
4672 * to be referenced again before it is swapped out.
4674 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4675 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4676 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4677 * the anonymous pages are kept on the inactive list.
4679 * total target max
4680 * memory ratio inactive anon
4681 * -------------------------------------
4682 * 10MB 1 5MB
4683 * 100MB 1 50MB
4684 * 1GB 3 250MB
4685 * 10GB 10 0.9GB
4686 * 100GB 31 3GB
4687 * 1TB 101 10GB
4688 * 10TB 320 32GB
4690 void calculate_zone_inactive_ratio(struct zone *zone)
4692 unsigned int gb, ratio;
4694 /* Zone size in gigabytes */
4695 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4696 if (gb)
4697 ratio = int_sqrt(10 * gb);
4698 else
4699 ratio = 1;
4701 zone->inactive_ratio = ratio;
4704 static void __init setup_per_zone_inactive_ratio(void)
4706 struct zone *zone;
4708 for_each_zone(zone)
4709 calculate_zone_inactive_ratio(zone);
4713 * Initialise min_free_kbytes.
4715 * For small machines we want it small (128k min). For large machines
4716 * we want it large (64MB max). But it is not linear, because network
4717 * bandwidth does not increase linearly with machine size. We use
4719 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4720 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4722 * which yields
4724 * 16MB: 512k
4725 * 32MB: 724k
4726 * 64MB: 1024k
4727 * 128MB: 1448k
4728 * 256MB: 2048k
4729 * 512MB: 2896k
4730 * 1024MB: 4096k
4731 * 2048MB: 5792k
4732 * 4096MB: 8192k
4733 * 8192MB: 11584k
4734 * 16384MB: 16384k
4736 static int __init init_per_zone_wmark_min(void)
4738 unsigned long lowmem_kbytes;
4740 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4742 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4743 if (min_free_kbytes < 128)
4744 min_free_kbytes = 128;
4745 if (min_free_kbytes > 65536)
4746 min_free_kbytes = 65536;
4747 setup_per_zone_wmarks();
4748 setup_per_zone_lowmem_reserve();
4749 setup_per_zone_inactive_ratio();
4750 return 0;
4752 module_init(init_per_zone_wmark_min)
4755 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4756 * that we can call two helper functions whenever min_free_kbytes
4757 * changes.
4759 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4760 void __user *buffer, size_t *length, loff_t *ppos)
4762 proc_dointvec(table, write, buffer, length, ppos);
4763 if (write)
4764 setup_per_zone_wmarks();
4765 return 0;
4768 #ifdef CONFIG_NUMA
4769 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4770 void __user *buffer, size_t *length, loff_t *ppos)
4772 struct zone *zone;
4773 int rc;
4775 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4776 if (rc)
4777 return rc;
4779 for_each_zone(zone)
4780 zone->min_unmapped_pages = (zone->present_pages *
4781 sysctl_min_unmapped_ratio) / 100;
4782 return 0;
4785 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4786 void __user *buffer, size_t *length, loff_t *ppos)
4788 struct zone *zone;
4789 int rc;
4791 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4792 if (rc)
4793 return rc;
4795 for_each_zone(zone)
4796 zone->min_slab_pages = (zone->present_pages *
4797 sysctl_min_slab_ratio) / 100;
4798 return 0;
4800 #endif
4803 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4804 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4805 * whenever sysctl_lowmem_reserve_ratio changes.
4807 * The reserve ratio obviously has absolutely no relation with the
4808 * minimum watermarks. The lowmem reserve ratio can only make sense
4809 * if in function of the boot time zone sizes.
4811 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4812 void __user *buffer, size_t *length, loff_t *ppos)
4814 proc_dointvec_minmax(table, write, buffer, length, ppos);
4815 setup_per_zone_lowmem_reserve();
4816 return 0;
4820 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4821 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4822 * can have before it gets flushed back to buddy allocator.
4825 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4826 void __user *buffer, size_t *length, loff_t *ppos)
4828 struct zone *zone;
4829 unsigned int cpu;
4830 int ret;
4832 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4833 if (!write || (ret == -EINVAL))
4834 return ret;
4835 for_each_populated_zone(zone) {
4836 for_each_possible_cpu(cpu) {
4837 unsigned long high;
4838 high = zone->present_pages / percpu_pagelist_fraction;
4839 setup_pagelist_highmark(
4840 per_cpu_ptr(zone->pageset, cpu), high);
4843 return 0;
4846 int hashdist = HASHDIST_DEFAULT;
4848 #ifdef CONFIG_NUMA
4849 static int __init set_hashdist(char *str)
4851 if (!str)
4852 return 0;
4853 hashdist = simple_strtoul(str, &str, 0);
4854 return 1;
4856 __setup("hashdist=", set_hashdist);
4857 #endif
4860 * allocate a large system hash table from bootmem
4861 * - it is assumed that the hash table must contain an exact power-of-2
4862 * quantity of entries
4863 * - limit is the number of hash buckets, not the total allocation size
4865 void *__init alloc_large_system_hash(const char *tablename,
4866 unsigned long bucketsize,
4867 unsigned long numentries,
4868 int scale,
4869 int flags,
4870 unsigned int *_hash_shift,
4871 unsigned int *_hash_mask,
4872 unsigned long limit)
4874 unsigned long long max = limit;
4875 unsigned long log2qty, size;
4876 void *table = NULL;
4878 /* allow the kernel cmdline to have a say */
4879 if (!numentries) {
4880 /* round applicable memory size up to nearest megabyte */
4881 numentries = nr_kernel_pages;
4882 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4883 numentries >>= 20 - PAGE_SHIFT;
4884 numentries <<= 20 - PAGE_SHIFT;
4886 /* limit to 1 bucket per 2^scale bytes of low memory */
4887 if (scale > PAGE_SHIFT)
4888 numentries >>= (scale - PAGE_SHIFT);
4889 else
4890 numentries <<= (PAGE_SHIFT - scale);
4892 /* Make sure we've got at least a 0-order allocation.. */
4893 if (unlikely(flags & HASH_SMALL)) {
4894 /* Makes no sense without HASH_EARLY */
4895 WARN_ON(!(flags & HASH_EARLY));
4896 if (!(numentries >> *_hash_shift)) {
4897 numentries = 1UL << *_hash_shift;
4898 BUG_ON(!numentries);
4900 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4901 numentries = PAGE_SIZE / bucketsize;
4903 numentries = roundup_pow_of_two(numentries);
4905 /* limit allocation size to 1/16 total memory by default */
4906 if (max == 0) {
4907 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4908 do_div(max, bucketsize);
4911 if (numentries > max)
4912 numentries = max;
4914 log2qty = ilog2(numentries);
4916 do {
4917 size = bucketsize << log2qty;
4918 if (flags & HASH_EARLY)
4919 table = alloc_bootmem_nopanic(size);
4920 else if (hashdist)
4921 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4922 else {
4924 * If bucketsize is not a power-of-two, we may free
4925 * some pages at the end of hash table which
4926 * alloc_pages_exact() automatically does
4928 if (get_order(size) < MAX_ORDER) {
4929 table = alloc_pages_exact(size, GFP_ATOMIC);
4930 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4933 } while (!table && size > PAGE_SIZE && --log2qty);
4935 if (!table)
4936 panic("Failed to allocate %s hash table\n", tablename);
4938 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4939 tablename,
4940 (1U << log2qty),
4941 ilog2(size) - PAGE_SHIFT,
4942 size);
4944 if (_hash_shift)
4945 *_hash_shift = log2qty;
4946 if (_hash_mask)
4947 *_hash_mask = (1 << log2qty) - 1;
4949 return table;
4952 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4953 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4954 unsigned long pfn)
4956 #ifdef CONFIG_SPARSEMEM
4957 return __pfn_to_section(pfn)->pageblock_flags;
4958 #else
4959 return zone->pageblock_flags;
4960 #endif /* CONFIG_SPARSEMEM */
4963 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4965 #ifdef CONFIG_SPARSEMEM
4966 pfn &= (PAGES_PER_SECTION-1);
4967 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4968 #else
4969 pfn = pfn - zone->zone_start_pfn;
4970 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4971 #endif /* CONFIG_SPARSEMEM */
4975 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4976 * @page: The page within the block of interest
4977 * @start_bitidx: The first bit of interest to retrieve
4978 * @end_bitidx: The last bit of interest
4979 * returns pageblock_bits flags
4981 unsigned long get_pageblock_flags_group(struct page *page,
4982 int start_bitidx, int end_bitidx)
4984 struct zone *zone;
4985 unsigned long *bitmap;
4986 unsigned long pfn, bitidx;
4987 unsigned long flags = 0;
4988 unsigned long value = 1;
4990 zone = page_zone(page);
4991 pfn = page_to_pfn(page);
4992 bitmap = get_pageblock_bitmap(zone, pfn);
4993 bitidx = pfn_to_bitidx(zone, pfn);
4995 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4996 if (test_bit(bitidx + start_bitidx, bitmap))
4997 flags |= value;
4999 return flags;
5003 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5004 * @page: The page within the block of interest
5005 * @start_bitidx: The first bit of interest
5006 * @end_bitidx: The last bit of interest
5007 * @flags: The flags to set
5009 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5010 int start_bitidx, int end_bitidx)
5012 struct zone *zone;
5013 unsigned long *bitmap;
5014 unsigned long pfn, bitidx;
5015 unsigned long value = 1;
5017 zone = page_zone(page);
5018 pfn = page_to_pfn(page);
5019 bitmap = get_pageblock_bitmap(zone, pfn);
5020 bitidx = pfn_to_bitidx(zone, pfn);
5021 VM_BUG_ON(pfn < zone->zone_start_pfn);
5022 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5024 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5025 if (flags & value)
5026 __set_bit(bitidx + start_bitidx, bitmap);
5027 else
5028 __clear_bit(bitidx + start_bitidx, bitmap);
5032 * This is designed as sub function...plz see page_isolation.c also.
5033 * set/clear page block's type to be ISOLATE.
5034 * page allocater never alloc memory from ISOLATE block.
5037 int set_migratetype_isolate(struct page *page)
5039 struct zone *zone;
5040 struct page *curr_page;
5041 unsigned long flags, pfn, iter;
5042 unsigned long immobile = 0;
5043 struct memory_isolate_notify arg;
5044 int notifier_ret;
5045 int ret = -EBUSY;
5046 int zone_idx;
5048 zone = page_zone(page);
5049 zone_idx = zone_idx(zone);
5051 spin_lock_irqsave(&zone->lock, flags);
5052 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5053 zone_idx == ZONE_MOVABLE) {
5054 ret = 0;
5055 goto out;
5058 pfn = page_to_pfn(page);
5059 arg.start_pfn = pfn;
5060 arg.nr_pages = pageblock_nr_pages;
5061 arg.pages_found = 0;
5064 * It may be possible to isolate a pageblock even if the
5065 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5066 * notifier chain is used by balloon drivers to return the
5067 * number of pages in a range that are held by the balloon
5068 * driver to shrink memory. If all the pages are accounted for
5069 * by balloons, are free, or on the LRU, isolation can continue.
5070 * Later, for example, when memory hotplug notifier runs, these
5071 * pages reported as "can be isolated" should be isolated(freed)
5072 * by the balloon driver through the memory notifier chain.
5074 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5075 notifier_ret = notifier_to_errno(notifier_ret);
5076 if (notifier_ret || !arg.pages_found)
5077 goto out;
5079 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5080 if (!pfn_valid_within(pfn))
5081 continue;
5083 curr_page = pfn_to_page(iter);
5084 if (!page_count(curr_page) || PageLRU(curr_page))
5085 continue;
5087 immobile++;
5090 if (arg.pages_found == immobile)
5091 ret = 0;
5093 out:
5094 if (!ret) {
5095 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5096 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5099 spin_unlock_irqrestore(&zone->lock, flags);
5100 if (!ret)
5101 drain_all_pages();
5102 return ret;
5105 void unset_migratetype_isolate(struct page *page)
5107 struct zone *zone;
5108 unsigned long flags;
5109 zone = page_zone(page);
5110 spin_lock_irqsave(&zone->lock, flags);
5111 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5112 goto out;
5113 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5114 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5115 out:
5116 spin_unlock_irqrestore(&zone->lock, flags);
5119 #ifdef CONFIG_MEMORY_HOTREMOVE
5121 * All pages in the range must be isolated before calling this.
5123 void
5124 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5126 struct page *page;
5127 struct zone *zone;
5128 int order, i;
5129 unsigned long pfn;
5130 unsigned long flags;
5131 /* find the first valid pfn */
5132 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5133 if (pfn_valid(pfn))
5134 break;
5135 if (pfn == end_pfn)
5136 return;
5137 zone = page_zone(pfn_to_page(pfn));
5138 spin_lock_irqsave(&zone->lock, flags);
5139 pfn = start_pfn;
5140 while (pfn < end_pfn) {
5141 if (!pfn_valid(pfn)) {
5142 pfn++;
5143 continue;
5145 page = pfn_to_page(pfn);
5146 BUG_ON(page_count(page));
5147 BUG_ON(!PageBuddy(page));
5148 order = page_order(page);
5149 #ifdef CONFIG_DEBUG_VM
5150 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5151 pfn, 1 << order, end_pfn);
5152 #endif
5153 list_del(&page->lru);
5154 rmv_page_order(page);
5155 zone->free_area[order].nr_free--;
5156 __mod_zone_page_state(zone, NR_FREE_PAGES,
5157 - (1UL << order));
5158 for (i = 0; i < (1 << order); i++)
5159 SetPageReserved((page+i));
5160 pfn += (1 << order);
5162 spin_unlock_irqrestore(&zone->lock, flags);
5164 #endif
5166 #ifdef CONFIG_MEMORY_FAILURE
5167 bool is_free_buddy_page(struct page *page)
5169 struct zone *zone = page_zone(page);
5170 unsigned long pfn = page_to_pfn(page);
5171 unsigned long flags;
5172 int order;
5174 spin_lock_irqsave(&zone->lock, flags);
5175 for (order = 0; order < MAX_ORDER; order++) {
5176 struct page *page_head = page - (pfn & ((1 << order) - 1));
5178 if (PageBuddy(page_head) && page_order(page_head) >= order)
5179 break;
5181 spin_unlock_irqrestore(&zone->lock, flags);
5183 return order < MAX_ORDER;
5185 #endif