ocfs2: Optimize inode allocation by remembering last group
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / write.c
blobe560a78995a3cf5027a01df5168060183ef49547
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
23 #include <asm/uaccess.h>
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
31 #define MIN_POOL_WRITE (32)
32 #define MIN_POOL_COMMIT (4)
35 * Local function declarations
37 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
38 struct inode *inode, int ioflags);
39 static void nfs_redirty_request(struct nfs_page *req);
40 static const struct rpc_call_ops nfs_write_partial_ops;
41 static const struct rpc_call_ops nfs_write_full_ops;
42 static const struct rpc_call_ops nfs_commit_ops;
44 static struct kmem_cache *nfs_wdata_cachep;
45 static mempool_t *nfs_wdata_mempool;
46 static mempool_t *nfs_commit_mempool;
48 struct nfs_write_data *nfs_commitdata_alloc(void)
50 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
52 if (p) {
53 memset(p, 0, sizeof(*p));
54 INIT_LIST_HEAD(&p->pages);
56 return p;
59 void nfs_commit_free(struct nfs_write_data *p)
61 if (p && (p->pagevec != &p->page_array[0]))
62 kfree(p->pagevec);
63 mempool_free(p, nfs_commit_mempool);
66 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
68 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
70 if (p) {
71 memset(p, 0, sizeof(*p));
72 INIT_LIST_HEAD(&p->pages);
73 p->npages = pagecount;
74 if (pagecount <= ARRAY_SIZE(p->page_array))
75 p->pagevec = p->page_array;
76 else {
77 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
78 if (!p->pagevec) {
79 mempool_free(p, nfs_wdata_mempool);
80 p = NULL;
84 return p;
87 static void nfs_writedata_free(struct nfs_write_data *p)
89 if (p && (p->pagevec != &p->page_array[0]))
90 kfree(p->pagevec);
91 mempool_free(p, nfs_wdata_mempool);
94 void nfs_writedata_release(void *data)
96 struct nfs_write_data *wdata = data;
98 put_nfs_open_context(wdata->args.context);
99 nfs_writedata_free(wdata);
102 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
104 ctx->error = error;
105 smp_wmb();
106 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
109 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
111 struct nfs_page *req = NULL;
113 if (PagePrivate(page)) {
114 req = (struct nfs_page *)page_private(page);
115 if (req != NULL)
116 kref_get(&req->wb_kref);
118 return req;
121 static struct nfs_page *nfs_page_find_request(struct page *page)
123 struct inode *inode = page->mapping->host;
124 struct nfs_page *req = NULL;
126 spin_lock(&inode->i_lock);
127 req = nfs_page_find_request_locked(page);
128 spin_unlock(&inode->i_lock);
129 return req;
132 /* Adjust the file length if we're writing beyond the end */
133 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
135 struct inode *inode = page->mapping->host;
136 loff_t end, i_size;
137 pgoff_t end_index;
139 spin_lock(&inode->i_lock);
140 i_size = i_size_read(inode);
141 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
142 if (i_size > 0 && page->index < end_index)
143 goto out;
144 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
145 if (i_size >= end)
146 goto out;
147 i_size_write(inode, end);
148 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
149 out:
150 spin_unlock(&inode->i_lock);
153 /* A writeback failed: mark the page as bad, and invalidate the page cache */
154 static void nfs_set_pageerror(struct page *page)
156 SetPageError(page);
157 nfs_zap_mapping(page->mapping->host, page->mapping);
160 /* We can set the PG_uptodate flag if we see that a write request
161 * covers the full page.
163 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
165 if (PageUptodate(page))
166 return;
167 if (base != 0)
168 return;
169 if (count != nfs_page_length(page))
170 return;
171 SetPageUptodate(page);
174 static int wb_priority(struct writeback_control *wbc)
176 if (wbc->for_reclaim)
177 return FLUSH_HIGHPRI | FLUSH_STABLE;
178 if (wbc->for_kupdate)
179 return FLUSH_LOWPRI;
180 return 0;
184 * NFS congestion control
187 int nfs_congestion_kb;
189 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
190 #define NFS_CONGESTION_OFF_THRESH \
191 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
193 static int nfs_set_page_writeback(struct page *page)
195 int ret = test_set_page_writeback(page);
197 if (!ret) {
198 struct inode *inode = page->mapping->host;
199 struct nfs_server *nfss = NFS_SERVER(inode);
201 if (atomic_long_inc_return(&nfss->writeback) >
202 NFS_CONGESTION_ON_THRESH)
203 set_bdi_congested(&nfss->backing_dev_info, WRITE);
205 return ret;
208 static void nfs_end_page_writeback(struct page *page)
210 struct inode *inode = page->mapping->host;
211 struct nfs_server *nfss = NFS_SERVER(inode);
213 end_page_writeback(page);
214 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
215 clear_bdi_congested(&nfss->backing_dev_info, WRITE);
219 * Find an associated nfs write request, and prepare to flush it out
220 * May return an error if the user signalled nfs_wait_on_request().
222 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
223 struct page *page)
225 struct inode *inode = page->mapping->host;
226 struct nfs_page *req;
227 int ret;
229 spin_lock(&inode->i_lock);
230 for(;;) {
231 req = nfs_page_find_request_locked(page);
232 if (req == NULL) {
233 spin_unlock(&inode->i_lock);
234 return 0;
236 if (nfs_set_page_tag_locked(req))
237 break;
238 /* Note: If we hold the page lock, as is the case in nfs_writepage,
239 * then the call to nfs_set_page_tag_locked() will always
240 * succeed provided that someone hasn't already marked the
241 * request as dirty (in which case we don't care).
243 spin_unlock(&inode->i_lock);
244 ret = nfs_wait_on_request(req);
245 nfs_release_request(req);
246 if (ret != 0)
247 return ret;
248 spin_lock(&inode->i_lock);
250 if (test_bit(PG_CLEAN, &req->wb_flags)) {
251 spin_unlock(&inode->i_lock);
252 BUG();
254 if (nfs_set_page_writeback(page) != 0) {
255 spin_unlock(&inode->i_lock);
256 BUG();
258 spin_unlock(&inode->i_lock);
259 if (!nfs_pageio_add_request(pgio, req)) {
260 nfs_redirty_request(req);
261 return pgio->pg_error;
263 return 0;
266 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
268 struct inode *inode = page->mapping->host;
270 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
271 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
273 nfs_pageio_cond_complete(pgio, page->index);
274 return nfs_page_async_flush(pgio, page);
278 * Write an mmapped page to the server.
280 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
282 struct nfs_pageio_descriptor pgio;
283 int err;
285 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
286 err = nfs_do_writepage(page, wbc, &pgio);
287 nfs_pageio_complete(&pgio);
288 if (err < 0)
289 return err;
290 if (pgio.pg_error < 0)
291 return pgio.pg_error;
292 return 0;
295 int nfs_writepage(struct page *page, struct writeback_control *wbc)
297 int ret;
299 ret = nfs_writepage_locked(page, wbc);
300 unlock_page(page);
301 return ret;
304 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
306 int ret;
308 ret = nfs_do_writepage(page, wbc, data);
309 unlock_page(page);
310 return ret;
313 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
315 struct inode *inode = mapping->host;
316 unsigned long *bitlock = &NFS_I(inode)->flags;
317 struct nfs_pageio_descriptor pgio;
318 int err;
320 /* Stop dirtying of new pages while we sync */
321 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
322 nfs_wait_bit_killable, TASK_KILLABLE);
323 if (err)
324 goto out_err;
326 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
328 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
329 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
330 nfs_pageio_complete(&pgio);
332 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
333 smp_mb__after_clear_bit();
334 wake_up_bit(bitlock, NFS_INO_FLUSHING);
336 if (err < 0)
337 goto out_err;
338 err = pgio.pg_error;
339 if (err < 0)
340 goto out_err;
341 return 0;
342 out_err:
343 return err;
347 * Insert a write request into an inode
349 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
351 struct nfs_inode *nfsi = NFS_I(inode);
352 int error;
354 error = radix_tree_preload(GFP_NOFS);
355 if (error != 0)
356 goto out;
358 /* Lock the request! */
359 nfs_lock_request_dontget(req);
361 spin_lock(&inode->i_lock);
362 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
363 BUG_ON(error);
364 if (!nfsi->npages) {
365 igrab(inode);
366 if (nfs_have_delegation(inode, FMODE_WRITE))
367 nfsi->change_attr++;
369 SetPagePrivate(req->wb_page);
370 set_page_private(req->wb_page, (unsigned long)req);
371 nfsi->npages++;
372 kref_get(&req->wb_kref);
373 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
374 NFS_PAGE_TAG_LOCKED);
375 spin_unlock(&inode->i_lock);
376 radix_tree_preload_end();
377 out:
378 return error;
382 * Remove a write request from an inode
384 static void nfs_inode_remove_request(struct nfs_page *req)
386 struct inode *inode = req->wb_context->path.dentry->d_inode;
387 struct nfs_inode *nfsi = NFS_I(inode);
389 BUG_ON (!NFS_WBACK_BUSY(req));
391 spin_lock(&inode->i_lock);
392 set_page_private(req->wb_page, 0);
393 ClearPagePrivate(req->wb_page);
394 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
395 nfsi->npages--;
396 if (!nfsi->npages) {
397 spin_unlock(&inode->i_lock);
398 iput(inode);
399 } else
400 spin_unlock(&inode->i_lock);
401 nfs_clear_request(req);
402 nfs_release_request(req);
405 static void
406 nfs_mark_request_dirty(struct nfs_page *req)
408 __set_page_dirty_nobuffers(req->wb_page);
411 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
413 * Add a request to the inode's commit list.
415 static void
416 nfs_mark_request_commit(struct nfs_page *req)
418 struct inode *inode = req->wb_context->path.dentry->d_inode;
419 struct nfs_inode *nfsi = NFS_I(inode);
421 spin_lock(&inode->i_lock);
422 set_bit(PG_CLEAN, &(req)->wb_flags);
423 radix_tree_tag_set(&nfsi->nfs_page_tree,
424 req->wb_index,
425 NFS_PAGE_TAG_COMMIT);
426 spin_unlock(&inode->i_lock);
427 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
428 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
429 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
432 static int
433 nfs_clear_request_commit(struct nfs_page *req)
435 struct page *page = req->wb_page;
437 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
438 dec_zone_page_state(page, NR_UNSTABLE_NFS);
439 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
440 return 1;
442 return 0;
445 static inline
446 int nfs_write_need_commit(struct nfs_write_data *data)
448 return data->verf.committed != NFS_FILE_SYNC;
451 static inline
452 int nfs_reschedule_unstable_write(struct nfs_page *req)
454 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
455 nfs_mark_request_commit(req);
456 return 1;
458 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
459 nfs_mark_request_dirty(req);
460 return 1;
462 return 0;
464 #else
465 static inline void
466 nfs_mark_request_commit(struct nfs_page *req)
470 static inline int
471 nfs_clear_request_commit(struct nfs_page *req)
473 return 0;
476 static inline
477 int nfs_write_need_commit(struct nfs_write_data *data)
479 return 0;
482 static inline
483 int nfs_reschedule_unstable_write(struct nfs_page *req)
485 return 0;
487 #endif
490 * Wait for a request to complete.
492 * Interruptible by fatal signals only.
494 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
496 struct nfs_inode *nfsi = NFS_I(inode);
497 struct nfs_page *req;
498 pgoff_t idx_end, next;
499 unsigned int res = 0;
500 int error;
502 if (npages == 0)
503 idx_end = ~0;
504 else
505 idx_end = idx_start + npages - 1;
507 next = idx_start;
508 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
509 if (req->wb_index > idx_end)
510 break;
512 next = req->wb_index + 1;
513 BUG_ON(!NFS_WBACK_BUSY(req));
515 kref_get(&req->wb_kref);
516 spin_unlock(&inode->i_lock);
517 error = nfs_wait_on_request(req);
518 nfs_release_request(req);
519 spin_lock(&inode->i_lock);
520 if (error < 0)
521 return error;
522 res++;
524 return res;
527 static void nfs_cancel_commit_list(struct list_head *head)
529 struct nfs_page *req;
531 while(!list_empty(head)) {
532 req = nfs_list_entry(head->next);
533 nfs_list_remove_request(req);
534 nfs_clear_request_commit(req);
535 nfs_inode_remove_request(req);
536 nfs_unlock_request(req);
540 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
541 static int
542 nfs_need_commit(struct nfs_inode *nfsi)
544 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
548 * nfs_scan_commit - Scan an inode for commit requests
549 * @inode: NFS inode to scan
550 * @dst: destination list
551 * @idx_start: lower bound of page->index to scan.
552 * @npages: idx_start + npages sets the upper bound to scan.
554 * Moves requests from the inode's 'commit' request list.
555 * The requests are *not* checked to ensure that they form a contiguous set.
557 static int
558 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
560 struct nfs_inode *nfsi = NFS_I(inode);
562 if (!nfs_need_commit(nfsi))
563 return 0;
565 return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
567 #else
568 static inline int nfs_need_commit(struct nfs_inode *nfsi)
570 return 0;
573 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
575 return 0;
577 #endif
580 * Search for an existing write request, and attempt to update
581 * it to reflect a new dirty region on a given page.
583 * If the attempt fails, then the existing request is flushed out
584 * to disk.
586 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
587 struct page *page,
588 unsigned int offset,
589 unsigned int bytes)
591 struct nfs_page *req;
592 unsigned int rqend;
593 unsigned int end;
594 int error;
596 if (!PagePrivate(page))
597 return NULL;
599 end = offset + bytes;
600 spin_lock(&inode->i_lock);
602 for (;;) {
603 req = nfs_page_find_request_locked(page);
604 if (req == NULL)
605 goto out_unlock;
607 rqend = req->wb_offset + req->wb_bytes;
609 * Tell the caller to flush out the request if
610 * the offsets are non-contiguous.
611 * Note: nfs_flush_incompatible() will already
612 * have flushed out requests having wrong owners.
614 if (offset > rqend
615 || end < req->wb_offset)
616 goto out_flushme;
618 if (nfs_set_page_tag_locked(req))
619 break;
621 /* The request is locked, so wait and then retry */
622 spin_unlock(&inode->i_lock);
623 error = nfs_wait_on_request(req);
624 nfs_release_request(req);
625 if (error != 0)
626 goto out_err;
627 spin_lock(&inode->i_lock);
630 if (nfs_clear_request_commit(req))
631 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
632 req->wb_index, NFS_PAGE_TAG_COMMIT);
634 /* Okay, the request matches. Update the region */
635 if (offset < req->wb_offset) {
636 req->wb_offset = offset;
637 req->wb_pgbase = offset;
639 if (end > rqend)
640 req->wb_bytes = end - req->wb_offset;
641 else
642 req->wb_bytes = rqend - req->wb_offset;
643 out_unlock:
644 spin_unlock(&inode->i_lock);
645 return req;
646 out_flushme:
647 spin_unlock(&inode->i_lock);
648 nfs_release_request(req);
649 error = nfs_wb_page(inode, page);
650 out_err:
651 return ERR_PTR(error);
655 * Try to update an existing write request, or create one if there is none.
657 * Note: Should always be called with the Page Lock held to prevent races
658 * if we have to add a new request. Also assumes that the caller has
659 * already called nfs_flush_incompatible() if necessary.
661 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
662 struct page *page, unsigned int offset, unsigned int bytes)
664 struct inode *inode = page->mapping->host;
665 struct nfs_page *req;
666 int error;
668 req = nfs_try_to_update_request(inode, page, offset, bytes);
669 if (req != NULL)
670 goto out;
671 req = nfs_create_request(ctx, inode, page, offset, bytes);
672 if (IS_ERR(req))
673 goto out;
674 error = nfs_inode_add_request(inode, req);
675 if (error != 0) {
676 nfs_release_request(req);
677 req = ERR_PTR(error);
679 out:
680 return req;
683 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
684 unsigned int offset, unsigned int count)
686 struct nfs_page *req;
688 req = nfs_setup_write_request(ctx, page, offset, count);
689 if (IS_ERR(req))
690 return PTR_ERR(req);
691 /* Update file length */
692 nfs_grow_file(page, offset, count);
693 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
694 nfs_clear_page_tag_locked(req);
695 return 0;
698 int nfs_flush_incompatible(struct file *file, struct page *page)
700 struct nfs_open_context *ctx = nfs_file_open_context(file);
701 struct nfs_page *req;
702 int do_flush, status;
704 * Look for a request corresponding to this page. If there
705 * is one, and it belongs to another file, we flush it out
706 * before we try to copy anything into the page. Do this
707 * due to the lack of an ACCESS-type call in NFSv2.
708 * Also do the same if we find a request from an existing
709 * dropped page.
711 do {
712 req = nfs_page_find_request(page);
713 if (req == NULL)
714 return 0;
715 do_flush = req->wb_page != page || req->wb_context != ctx;
716 nfs_release_request(req);
717 if (!do_flush)
718 return 0;
719 status = nfs_wb_page(page->mapping->host, page);
720 } while (status == 0);
721 return status;
725 * If the page cache is marked as unsafe or invalid, then we can't rely on
726 * the PageUptodate() flag. In this case, we will need to turn off
727 * write optimisations that depend on the page contents being correct.
729 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
731 return PageUptodate(page) &&
732 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
736 * Update and possibly write a cached page of an NFS file.
738 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
739 * things with a page scheduled for an RPC call (e.g. invalidate it).
741 int nfs_updatepage(struct file *file, struct page *page,
742 unsigned int offset, unsigned int count)
744 struct nfs_open_context *ctx = nfs_file_open_context(file);
745 struct inode *inode = page->mapping->host;
746 int status = 0;
748 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
750 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
751 file->f_path.dentry->d_parent->d_name.name,
752 file->f_path.dentry->d_name.name, count,
753 (long long)(page_offset(page) + offset));
755 /* If we're not using byte range locks, and we know the page
756 * is up to date, it may be more efficient to extend the write
757 * to cover the entire page in order to avoid fragmentation
758 * inefficiencies.
760 if (nfs_write_pageuptodate(page, inode) &&
761 inode->i_flock == NULL &&
762 !(file->f_flags & O_SYNC)) {
763 count = max(count + offset, nfs_page_length(page));
764 offset = 0;
767 status = nfs_writepage_setup(ctx, page, offset, count);
768 if (status < 0)
769 nfs_set_pageerror(page);
770 else
771 __set_page_dirty_nobuffers(page);
773 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
774 status, (long long)i_size_read(inode));
775 return status;
778 static void nfs_writepage_release(struct nfs_page *req)
781 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
782 nfs_end_page_writeback(req->wb_page);
783 nfs_inode_remove_request(req);
784 } else
785 nfs_end_page_writeback(req->wb_page);
786 nfs_clear_page_tag_locked(req);
789 static int flush_task_priority(int how)
791 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
792 case FLUSH_HIGHPRI:
793 return RPC_PRIORITY_HIGH;
794 case FLUSH_LOWPRI:
795 return RPC_PRIORITY_LOW;
797 return RPC_PRIORITY_NORMAL;
801 * Set up the argument/result storage required for the RPC call.
803 static int nfs_write_rpcsetup(struct nfs_page *req,
804 struct nfs_write_data *data,
805 const struct rpc_call_ops *call_ops,
806 unsigned int count, unsigned int offset,
807 int how)
809 struct inode *inode = req->wb_context->path.dentry->d_inode;
810 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
811 int priority = flush_task_priority(how);
812 struct rpc_task *task;
813 struct rpc_message msg = {
814 .rpc_argp = &data->args,
815 .rpc_resp = &data->res,
816 .rpc_cred = req->wb_context->cred,
818 struct rpc_task_setup task_setup_data = {
819 .rpc_client = NFS_CLIENT(inode),
820 .task = &data->task,
821 .rpc_message = &msg,
822 .callback_ops = call_ops,
823 .callback_data = data,
824 .workqueue = nfsiod_workqueue,
825 .flags = flags,
826 .priority = priority,
829 /* Set up the RPC argument and reply structs
830 * NB: take care not to mess about with data->commit et al. */
832 data->req = req;
833 data->inode = inode = req->wb_context->path.dentry->d_inode;
834 data->cred = msg.rpc_cred;
836 data->args.fh = NFS_FH(inode);
837 data->args.offset = req_offset(req) + offset;
838 data->args.pgbase = req->wb_pgbase + offset;
839 data->args.pages = data->pagevec;
840 data->args.count = count;
841 data->args.context = get_nfs_open_context(req->wb_context);
842 data->args.stable = NFS_UNSTABLE;
843 if (how & FLUSH_STABLE) {
844 data->args.stable = NFS_DATA_SYNC;
845 if (!nfs_need_commit(NFS_I(inode)))
846 data->args.stable = NFS_FILE_SYNC;
849 data->res.fattr = &data->fattr;
850 data->res.count = count;
851 data->res.verf = &data->verf;
852 nfs_fattr_init(&data->fattr);
854 /* Set up the initial task struct. */
855 NFS_PROTO(inode)->write_setup(data, &msg);
857 dprintk("NFS: %5u initiated write call "
858 "(req %s/%lld, %u bytes @ offset %llu)\n",
859 data->task.tk_pid,
860 inode->i_sb->s_id,
861 (long long)NFS_FILEID(inode),
862 count,
863 (unsigned long long)data->args.offset);
865 task = rpc_run_task(&task_setup_data);
866 if (IS_ERR(task))
867 return PTR_ERR(task);
868 rpc_put_task(task);
869 return 0;
872 /* If a nfs_flush_* function fails, it should remove reqs from @head and
873 * call this on each, which will prepare them to be retried on next
874 * writeback using standard nfs.
876 static void nfs_redirty_request(struct nfs_page *req)
878 nfs_mark_request_dirty(req);
879 nfs_end_page_writeback(req->wb_page);
880 nfs_clear_page_tag_locked(req);
884 * Generate multiple small requests to write out a single
885 * contiguous dirty area on one page.
887 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
889 struct nfs_page *req = nfs_list_entry(head->next);
890 struct page *page = req->wb_page;
891 struct nfs_write_data *data;
892 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
893 unsigned int offset;
894 int requests = 0;
895 int ret = 0;
896 LIST_HEAD(list);
898 nfs_list_remove_request(req);
900 nbytes = count;
901 do {
902 size_t len = min(nbytes, wsize);
904 data = nfs_writedata_alloc(1);
905 if (!data)
906 goto out_bad;
907 list_add(&data->pages, &list);
908 requests++;
909 nbytes -= len;
910 } while (nbytes != 0);
911 atomic_set(&req->wb_complete, requests);
913 ClearPageError(page);
914 offset = 0;
915 nbytes = count;
916 do {
917 int ret2;
919 data = list_entry(list.next, struct nfs_write_data, pages);
920 list_del_init(&data->pages);
922 data->pagevec[0] = page;
924 if (nbytes < wsize)
925 wsize = nbytes;
926 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
927 wsize, offset, how);
928 if (ret == 0)
929 ret = ret2;
930 offset += wsize;
931 nbytes -= wsize;
932 } while (nbytes != 0);
934 return ret;
936 out_bad:
937 while (!list_empty(&list)) {
938 data = list_entry(list.next, struct nfs_write_data, pages);
939 list_del(&data->pages);
940 nfs_writedata_release(data);
942 nfs_redirty_request(req);
943 return -ENOMEM;
947 * Create an RPC task for the given write request and kick it.
948 * The page must have been locked by the caller.
950 * It may happen that the page we're passed is not marked dirty.
951 * This is the case if nfs_updatepage detects a conflicting request
952 * that has been written but not committed.
954 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
956 struct nfs_page *req;
957 struct page **pages;
958 struct nfs_write_data *data;
960 data = nfs_writedata_alloc(npages);
961 if (!data)
962 goto out_bad;
964 pages = data->pagevec;
965 while (!list_empty(head)) {
966 req = nfs_list_entry(head->next);
967 nfs_list_remove_request(req);
968 nfs_list_add_request(req, &data->pages);
969 ClearPageError(req->wb_page);
970 *pages++ = req->wb_page;
972 req = nfs_list_entry(data->pages.next);
974 /* Set up the argument struct */
975 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
976 out_bad:
977 while (!list_empty(head)) {
978 req = nfs_list_entry(head->next);
979 nfs_list_remove_request(req);
980 nfs_redirty_request(req);
982 return -ENOMEM;
985 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
986 struct inode *inode, int ioflags)
988 size_t wsize = NFS_SERVER(inode)->wsize;
990 if (wsize < PAGE_CACHE_SIZE)
991 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
992 else
993 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
997 * Handle a write reply that flushed part of a page.
999 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1001 struct nfs_write_data *data = calldata;
1003 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1004 task->tk_pid,
1005 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1006 (long long)
1007 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1008 data->req->wb_bytes, (long long)req_offset(data->req));
1010 nfs_writeback_done(task, data);
1013 static void nfs_writeback_release_partial(void *calldata)
1015 struct nfs_write_data *data = calldata;
1016 struct nfs_page *req = data->req;
1017 struct page *page = req->wb_page;
1018 int status = data->task.tk_status;
1020 if (status < 0) {
1021 nfs_set_pageerror(page);
1022 nfs_context_set_write_error(req->wb_context, status);
1023 dprintk(", error = %d\n", status);
1024 goto out;
1027 if (nfs_write_need_commit(data)) {
1028 struct inode *inode = page->mapping->host;
1030 spin_lock(&inode->i_lock);
1031 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1032 /* Do nothing we need to resend the writes */
1033 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1034 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1035 dprintk(" defer commit\n");
1036 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1037 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1038 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1039 dprintk(" server reboot detected\n");
1041 spin_unlock(&inode->i_lock);
1042 } else
1043 dprintk(" OK\n");
1045 out:
1046 if (atomic_dec_and_test(&req->wb_complete))
1047 nfs_writepage_release(req);
1048 nfs_writedata_release(calldata);
1051 static const struct rpc_call_ops nfs_write_partial_ops = {
1052 .rpc_call_done = nfs_writeback_done_partial,
1053 .rpc_release = nfs_writeback_release_partial,
1057 * Handle a write reply that flushes a whole page.
1059 * FIXME: There is an inherent race with invalidate_inode_pages and
1060 * writebacks since the page->count is kept > 1 for as long
1061 * as the page has a write request pending.
1063 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1065 struct nfs_write_data *data = calldata;
1067 nfs_writeback_done(task, data);
1070 static void nfs_writeback_release_full(void *calldata)
1072 struct nfs_write_data *data = calldata;
1073 int status = data->task.tk_status;
1075 /* Update attributes as result of writeback. */
1076 while (!list_empty(&data->pages)) {
1077 struct nfs_page *req = nfs_list_entry(data->pages.next);
1078 struct page *page = req->wb_page;
1080 nfs_list_remove_request(req);
1082 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1083 data->task.tk_pid,
1084 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1085 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1086 req->wb_bytes,
1087 (long long)req_offset(req));
1089 if (status < 0) {
1090 nfs_set_pageerror(page);
1091 nfs_context_set_write_error(req->wb_context, status);
1092 dprintk(", error = %d\n", status);
1093 goto remove_request;
1096 if (nfs_write_need_commit(data)) {
1097 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1098 nfs_mark_request_commit(req);
1099 nfs_end_page_writeback(page);
1100 dprintk(" marked for commit\n");
1101 goto next;
1103 dprintk(" OK\n");
1104 remove_request:
1105 nfs_end_page_writeback(page);
1106 nfs_inode_remove_request(req);
1107 next:
1108 nfs_clear_page_tag_locked(req);
1110 nfs_writedata_release(calldata);
1113 static const struct rpc_call_ops nfs_write_full_ops = {
1114 .rpc_call_done = nfs_writeback_done_full,
1115 .rpc_release = nfs_writeback_release_full,
1120 * This function is called when the WRITE call is complete.
1122 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1124 struct nfs_writeargs *argp = &data->args;
1125 struct nfs_writeres *resp = &data->res;
1126 int status;
1128 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1129 task->tk_pid, task->tk_status);
1132 * ->write_done will attempt to use post-op attributes to detect
1133 * conflicting writes by other clients. A strict interpretation
1134 * of close-to-open would allow us to continue caching even if
1135 * another writer had changed the file, but some applications
1136 * depend on tighter cache coherency when writing.
1138 status = NFS_PROTO(data->inode)->write_done(task, data);
1139 if (status != 0)
1140 return status;
1141 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1143 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1144 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1145 /* We tried a write call, but the server did not
1146 * commit data to stable storage even though we
1147 * requested it.
1148 * Note: There is a known bug in Tru64 < 5.0 in which
1149 * the server reports NFS_DATA_SYNC, but performs
1150 * NFS_FILE_SYNC. We therefore implement this checking
1151 * as a dprintk() in order to avoid filling syslog.
1153 static unsigned long complain;
1155 if (time_before(complain, jiffies)) {
1156 dprintk("NFS: faulty NFS server %s:"
1157 " (committed = %d) != (stable = %d)\n",
1158 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1159 resp->verf->committed, argp->stable);
1160 complain = jiffies + 300 * HZ;
1163 #endif
1164 /* Is this a short write? */
1165 if (task->tk_status >= 0 && resp->count < argp->count) {
1166 static unsigned long complain;
1168 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1170 /* Has the server at least made some progress? */
1171 if (resp->count != 0) {
1172 /* Was this an NFSv2 write or an NFSv3 stable write? */
1173 if (resp->verf->committed != NFS_UNSTABLE) {
1174 /* Resend from where the server left off */
1175 argp->offset += resp->count;
1176 argp->pgbase += resp->count;
1177 argp->count -= resp->count;
1178 } else {
1179 /* Resend as a stable write in order to avoid
1180 * headaches in the case of a server crash.
1182 argp->stable = NFS_FILE_SYNC;
1184 rpc_restart_call(task);
1185 return -EAGAIN;
1187 if (time_before(complain, jiffies)) {
1188 printk(KERN_WARNING
1189 "NFS: Server wrote zero bytes, expected %u.\n",
1190 argp->count);
1191 complain = jiffies + 300 * HZ;
1193 /* Can't do anything about it except throw an error. */
1194 task->tk_status = -EIO;
1196 return 0;
1200 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1201 void nfs_commitdata_release(void *data)
1203 struct nfs_write_data *wdata = data;
1205 put_nfs_open_context(wdata->args.context);
1206 nfs_commit_free(wdata);
1210 * Set up the argument/result storage required for the RPC call.
1212 static int nfs_commit_rpcsetup(struct list_head *head,
1213 struct nfs_write_data *data,
1214 int how)
1216 struct nfs_page *first = nfs_list_entry(head->next);
1217 struct inode *inode = first->wb_context->path.dentry->d_inode;
1218 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1219 int priority = flush_task_priority(how);
1220 struct rpc_task *task;
1221 struct rpc_message msg = {
1222 .rpc_argp = &data->args,
1223 .rpc_resp = &data->res,
1224 .rpc_cred = first->wb_context->cred,
1226 struct rpc_task_setup task_setup_data = {
1227 .task = &data->task,
1228 .rpc_client = NFS_CLIENT(inode),
1229 .rpc_message = &msg,
1230 .callback_ops = &nfs_commit_ops,
1231 .callback_data = data,
1232 .workqueue = nfsiod_workqueue,
1233 .flags = flags,
1234 .priority = priority,
1237 /* Set up the RPC argument and reply structs
1238 * NB: take care not to mess about with data->commit et al. */
1240 list_splice_init(head, &data->pages);
1242 data->inode = inode;
1243 data->cred = msg.rpc_cred;
1245 data->args.fh = NFS_FH(data->inode);
1246 /* Note: we always request a commit of the entire inode */
1247 data->args.offset = 0;
1248 data->args.count = 0;
1249 data->args.context = get_nfs_open_context(first->wb_context);
1250 data->res.count = 0;
1251 data->res.fattr = &data->fattr;
1252 data->res.verf = &data->verf;
1253 nfs_fattr_init(&data->fattr);
1255 /* Set up the initial task struct. */
1256 NFS_PROTO(inode)->commit_setup(data, &msg);
1258 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1260 task = rpc_run_task(&task_setup_data);
1261 if (IS_ERR(task))
1262 return PTR_ERR(task);
1263 rpc_put_task(task);
1264 return 0;
1268 * Commit dirty pages
1270 static int
1271 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1273 struct nfs_write_data *data;
1274 struct nfs_page *req;
1276 data = nfs_commitdata_alloc();
1278 if (!data)
1279 goto out_bad;
1281 /* Set up the argument struct */
1282 return nfs_commit_rpcsetup(head, data, how);
1283 out_bad:
1284 while (!list_empty(head)) {
1285 req = nfs_list_entry(head->next);
1286 nfs_list_remove_request(req);
1287 nfs_mark_request_commit(req);
1288 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1289 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1290 BDI_RECLAIMABLE);
1291 nfs_clear_page_tag_locked(req);
1293 return -ENOMEM;
1297 * COMMIT call returned
1299 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1301 struct nfs_write_data *data = calldata;
1303 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1304 task->tk_pid, task->tk_status);
1306 /* Call the NFS version-specific code */
1307 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1308 return;
1311 static void nfs_commit_release(void *calldata)
1313 struct nfs_write_data *data = calldata;
1314 struct nfs_page *req;
1315 int status = data->task.tk_status;
1317 while (!list_empty(&data->pages)) {
1318 req = nfs_list_entry(data->pages.next);
1319 nfs_list_remove_request(req);
1320 nfs_clear_request_commit(req);
1322 dprintk("NFS: commit (%s/%lld %d@%lld)",
1323 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1324 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1325 req->wb_bytes,
1326 (long long)req_offset(req));
1327 if (status < 0) {
1328 nfs_context_set_write_error(req->wb_context, status);
1329 nfs_inode_remove_request(req);
1330 dprintk(", error = %d\n", status);
1331 goto next;
1334 /* Okay, COMMIT succeeded, apparently. Check the verifier
1335 * returned by the server against all stored verfs. */
1336 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1337 /* We have a match */
1338 nfs_inode_remove_request(req);
1339 dprintk(" OK\n");
1340 goto next;
1342 /* We have a mismatch. Write the page again */
1343 dprintk(" mismatch\n");
1344 nfs_mark_request_dirty(req);
1345 next:
1346 nfs_clear_page_tag_locked(req);
1348 nfs_commitdata_release(calldata);
1351 static const struct rpc_call_ops nfs_commit_ops = {
1352 .rpc_call_done = nfs_commit_done,
1353 .rpc_release = nfs_commit_release,
1356 int nfs_commit_inode(struct inode *inode, int how)
1358 LIST_HEAD(head);
1359 int res;
1361 spin_lock(&inode->i_lock);
1362 res = nfs_scan_commit(inode, &head, 0, 0);
1363 spin_unlock(&inode->i_lock);
1364 if (res) {
1365 int error = nfs_commit_list(inode, &head, how);
1366 if (error < 0)
1367 return error;
1369 return res;
1371 #else
1372 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1374 return 0;
1376 #endif
1378 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1380 struct inode *inode = mapping->host;
1381 pgoff_t idx_start, idx_end;
1382 unsigned int npages = 0;
1383 LIST_HEAD(head);
1384 int nocommit = how & FLUSH_NOCOMMIT;
1385 long pages, ret;
1387 /* FIXME */
1388 if (wbc->range_cyclic)
1389 idx_start = 0;
1390 else {
1391 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1392 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1393 if (idx_end > idx_start) {
1394 pgoff_t l_npages = 1 + idx_end - idx_start;
1395 npages = l_npages;
1396 if (sizeof(npages) != sizeof(l_npages) &&
1397 (pgoff_t)npages != l_npages)
1398 npages = 0;
1401 how &= ~FLUSH_NOCOMMIT;
1402 spin_lock(&inode->i_lock);
1403 do {
1404 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1405 if (ret != 0)
1406 continue;
1407 if (nocommit)
1408 break;
1409 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1410 if (pages == 0)
1411 break;
1412 if (how & FLUSH_INVALIDATE) {
1413 spin_unlock(&inode->i_lock);
1414 nfs_cancel_commit_list(&head);
1415 ret = pages;
1416 spin_lock(&inode->i_lock);
1417 continue;
1419 pages += nfs_scan_commit(inode, &head, 0, 0);
1420 spin_unlock(&inode->i_lock);
1421 ret = nfs_commit_list(inode, &head, how);
1422 spin_lock(&inode->i_lock);
1424 } while (ret >= 0);
1425 spin_unlock(&inode->i_lock);
1426 return ret;
1429 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1431 int ret;
1433 ret = nfs_writepages(mapping, wbc);
1434 if (ret < 0)
1435 goto out;
1436 ret = nfs_sync_mapping_wait(mapping, wbc, how);
1437 if (ret < 0)
1438 goto out;
1439 return 0;
1440 out:
1441 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1442 return ret;
1445 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1446 static int nfs_write_mapping(struct address_space *mapping, int how)
1448 struct writeback_control wbc = {
1449 .bdi = mapping->backing_dev_info,
1450 .sync_mode = WB_SYNC_ALL,
1451 .nr_to_write = LONG_MAX,
1452 .range_start = 0,
1453 .range_end = LLONG_MAX,
1454 .for_writepages = 1,
1457 return __nfs_write_mapping(mapping, &wbc, how);
1461 * flush the inode to disk.
1463 int nfs_wb_all(struct inode *inode)
1465 return nfs_write_mapping(inode->i_mapping, 0);
1468 int nfs_wb_nocommit(struct inode *inode)
1470 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1473 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1475 struct nfs_page *req;
1476 loff_t range_start = page_offset(page);
1477 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1478 struct writeback_control wbc = {
1479 .bdi = page->mapping->backing_dev_info,
1480 .sync_mode = WB_SYNC_ALL,
1481 .nr_to_write = LONG_MAX,
1482 .range_start = range_start,
1483 .range_end = range_end,
1485 int ret = 0;
1487 BUG_ON(!PageLocked(page));
1488 for (;;) {
1489 req = nfs_page_find_request(page);
1490 if (req == NULL)
1491 goto out;
1492 if (test_bit(PG_CLEAN, &req->wb_flags)) {
1493 nfs_release_request(req);
1494 break;
1496 if (nfs_lock_request_dontget(req)) {
1497 nfs_inode_remove_request(req);
1499 * In case nfs_inode_remove_request has marked the
1500 * page as being dirty
1502 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1503 nfs_unlock_request(req);
1504 break;
1506 ret = nfs_wait_on_request(req);
1507 if (ret < 0)
1508 goto out;
1510 if (!PagePrivate(page))
1511 return 0;
1512 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1513 out:
1514 return ret;
1517 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1518 int how)
1520 loff_t range_start = page_offset(page);
1521 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1522 struct writeback_control wbc = {
1523 .bdi = page->mapping->backing_dev_info,
1524 .sync_mode = WB_SYNC_ALL,
1525 .nr_to_write = LONG_MAX,
1526 .range_start = range_start,
1527 .range_end = range_end,
1529 int ret;
1531 do {
1532 if (clear_page_dirty_for_io(page)) {
1533 ret = nfs_writepage_locked(page, &wbc);
1534 if (ret < 0)
1535 goto out_error;
1536 } else if (!PagePrivate(page))
1537 break;
1538 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1539 if (ret < 0)
1540 goto out_error;
1541 } while (PagePrivate(page));
1542 return 0;
1543 out_error:
1544 __mark_inode_dirty(inode, I_DIRTY_PAGES);
1545 return ret;
1549 * Write back all requests on one page - we do this before reading it.
1551 int nfs_wb_page(struct inode *inode, struct page* page)
1553 return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1556 int __init nfs_init_writepagecache(void)
1558 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1559 sizeof(struct nfs_write_data),
1560 0, SLAB_HWCACHE_ALIGN,
1561 NULL);
1562 if (nfs_wdata_cachep == NULL)
1563 return -ENOMEM;
1565 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1566 nfs_wdata_cachep);
1567 if (nfs_wdata_mempool == NULL)
1568 return -ENOMEM;
1570 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1571 nfs_wdata_cachep);
1572 if (nfs_commit_mempool == NULL)
1573 return -ENOMEM;
1576 * NFS congestion size, scale with available memory.
1578 * 64MB: 8192k
1579 * 128MB: 11585k
1580 * 256MB: 16384k
1581 * 512MB: 23170k
1582 * 1GB: 32768k
1583 * 2GB: 46340k
1584 * 4GB: 65536k
1585 * 8GB: 92681k
1586 * 16GB: 131072k
1588 * This allows larger machines to have larger/more transfers.
1589 * Limit the default to 256M
1591 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1592 if (nfs_congestion_kb > 256*1024)
1593 nfs_congestion_kb = 256*1024;
1595 return 0;
1598 void nfs_destroy_writepagecache(void)
1600 mempool_destroy(nfs_commit_mempool);
1601 mempool_destroy(nfs_wdata_mempool);
1602 kmem_cache_destroy(nfs_wdata_cachep);