USB: ehci minor SOC bus glue fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blob89fe414645e9b76aa777a0de7b5e9d6777814a0f
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
65 * Protected counters by write_lock_irq(&tasklist_lock)
67 unsigned long total_forks; /* Handle normal Linux uptimes. */
68 int nr_threads; /* The idle threads do not count.. */
70 int max_threads; /* tunable limit on nr_threads */
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
76 int nr_processes(void)
78 int cpu;
79 int total = 0;
81 for_each_online_cpu(cpu)
82 total += per_cpu(process_counts, cpu);
84 return total;
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep;
91 #endif
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep;
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep;
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep;
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep;
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep;
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep;
111 void free_task(struct task_struct *tsk)
113 prop_local_destroy_single(&tsk->dirties);
114 free_thread_info(tsk->stack);
115 rt_mutex_debug_task_free(tsk);
116 free_task_struct(tsk);
118 EXPORT_SYMBOL(free_task);
120 void __put_task_struct(struct task_struct *tsk)
122 WARN_ON(!tsk->exit_state);
123 WARN_ON(atomic_read(&tsk->usage));
124 WARN_ON(tsk == current);
126 security_task_free(tsk);
127 free_uid(tsk->user);
128 put_group_info(tsk->group_info);
129 delayacct_tsk_free(tsk);
131 if (!profile_handoff_task(tsk))
132 free_task(tsk);
136 * macro override instead of weak attribute alias, to workaround
137 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
139 #ifndef arch_task_cache_init
140 #define arch_task_cache_init()
141 #endif
143 void __init fork_init(unsigned long mempages)
145 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
146 #ifndef ARCH_MIN_TASKALIGN
147 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
148 #endif
149 /* create a slab on which task_structs can be allocated */
150 task_struct_cachep =
151 kmem_cache_create("task_struct", sizeof(struct task_struct),
152 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
153 #endif
155 /* do the arch specific task caches init */
156 arch_task_cache_init();
159 * The default maximum number of threads is set to a safe
160 * value: the thread structures can take up at most half
161 * of memory.
163 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
166 * we need to allow at least 20 threads to boot a system
168 if(max_threads < 20)
169 max_threads = 20;
171 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
172 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
173 init_task.signal->rlim[RLIMIT_SIGPENDING] =
174 init_task.signal->rlim[RLIMIT_NPROC];
177 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
178 struct task_struct *src)
180 *dst = *src;
181 return 0;
184 static struct task_struct *dup_task_struct(struct task_struct *orig)
186 struct task_struct *tsk;
187 struct thread_info *ti;
188 int err;
190 prepare_to_copy(orig);
192 tsk = alloc_task_struct();
193 if (!tsk)
194 return NULL;
196 ti = alloc_thread_info(tsk);
197 if (!ti) {
198 free_task_struct(tsk);
199 return NULL;
202 err = arch_dup_task_struct(tsk, orig);
203 if (err)
204 goto out;
206 tsk->stack = ti;
208 err = prop_local_init_single(&tsk->dirties);
209 if (err)
210 goto out;
212 setup_thread_stack(tsk, orig);
214 #ifdef CONFIG_CC_STACKPROTECTOR
215 tsk->stack_canary = get_random_int();
216 #endif
218 /* One for us, one for whoever does the "release_task()" (usually parent) */
219 atomic_set(&tsk->usage,2);
220 atomic_set(&tsk->fs_excl, 0);
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222 tsk->btrace_seq = 0;
223 #endif
224 tsk->splice_pipe = NULL;
225 return tsk;
227 out:
228 free_thread_info(ti);
229 free_task_struct(tsk);
230 return NULL;
233 #ifdef CONFIG_MMU
234 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
236 struct vm_area_struct *mpnt, *tmp, **pprev;
237 struct rb_node **rb_link, *rb_parent;
238 int retval;
239 unsigned long charge;
240 struct mempolicy *pol;
242 down_write(&oldmm->mmap_sem);
243 flush_cache_dup_mm(oldmm);
245 * Not linked in yet - no deadlock potential:
247 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
249 mm->locked_vm = 0;
250 mm->mmap = NULL;
251 mm->mmap_cache = NULL;
252 mm->free_area_cache = oldmm->mmap_base;
253 mm->cached_hole_size = ~0UL;
254 mm->map_count = 0;
255 cpus_clear(mm->cpu_vm_mask);
256 mm->mm_rb = RB_ROOT;
257 rb_link = &mm->mm_rb.rb_node;
258 rb_parent = NULL;
259 pprev = &mm->mmap;
261 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
262 struct file *file;
264 if (mpnt->vm_flags & VM_DONTCOPY) {
265 long pages = vma_pages(mpnt);
266 mm->total_vm -= pages;
267 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
268 -pages);
269 continue;
271 charge = 0;
272 if (mpnt->vm_flags & VM_ACCOUNT) {
273 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
274 if (security_vm_enough_memory(len))
275 goto fail_nomem;
276 charge = len;
278 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
279 if (!tmp)
280 goto fail_nomem;
281 *tmp = *mpnt;
282 pol = mpol_copy(vma_policy(mpnt));
283 retval = PTR_ERR(pol);
284 if (IS_ERR(pol))
285 goto fail_nomem_policy;
286 vma_set_policy(tmp, pol);
287 tmp->vm_flags &= ~VM_LOCKED;
288 tmp->vm_mm = mm;
289 tmp->vm_next = NULL;
290 anon_vma_link(tmp);
291 file = tmp->vm_file;
292 if (file) {
293 struct inode *inode = file->f_path.dentry->d_inode;
294 get_file(file);
295 if (tmp->vm_flags & VM_DENYWRITE)
296 atomic_dec(&inode->i_writecount);
298 /* insert tmp into the share list, just after mpnt */
299 spin_lock(&file->f_mapping->i_mmap_lock);
300 tmp->vm_truncate_count = mpnt->vm_truncate_count;
301 flush_dcache_mmap_lock(file->f_mapping);
302 vma_prio_tree_add(tmp, mpnt);
303 flush_dcache_mmap_unlock(file->f_mapping);
304 spin_unlock(&file->f_mapping->i_mmap_lock);
308 * Link in the new vma and copy the page table entries.
310 *pprev = tmp;
311 pprev = &tmp->vm_next;
313 __vma_link_rb(mm, tmp, rb_link, rb_parent);
314 rb_link = &tmp->vm_rb.rb_right;
315 rb_parent = &tmp->vm_rb;
317 mm->map_count++;
318 retval = copy_page_range(mm, oldmm, mpnt);
320 if (tmp->vm_ops && tmp->vm_ops->open)
321 tmp->vm_ops->open(tmp);
323 if (retval)
324 goto out;
326 /* a new mm has just been created */
327 arch_dup_mmap(oldmm, mm);
328 retval = 0;
329 out:
330 up_write(&mm->mmap_sem);
331 flush_tlb_mm(oldmm);
332 up_write(&oldmm->mmap_sem);
333 return retval;
334 fail_nomem_policy:
335 kmem_cache_free(vm_area_cachep, tmp);
336 fail_nomem:
337 retval = -ENOMEM;
338 vm_unacct_memory(charge);
339 goto out;
342 static inline int mm_alloc_pgd(struct mm_struct * mm)
344 mm->pgd = pgd_alloc(mm);
345 if (unlikely(!mm->pgd))
346 return -ENOMEM;
347 return 0;
350 static inline void mm_free_pgd(struct mm_struct * mm)
352 pgd_free(mm, mm->pgd);
354 #else
355 #define dup_mmap(mm, oldmm) (0)
356 #define mm_alloc_pgd(mm) (0)
357 #define mm_free_pgd(mm)
358 #endif /* CONFIG_MMU */
360 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
362 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
363 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
365 #include <linux/init_task.h>
367 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
369 atomic_set(&mm->mm_users, 1);
370 atomic_set(&mm->mm_count, 1);
371 init_rwsem(&mm->mmap_sem);
372 INIT_LIST_HEAD(&mm->mmlist);
373 mm->flags = (current->mm) ? current->mm->flags
374 : MMF_DUMP_FILTER_DEFAULT;
375 mm->core_waiters = 0;
376 mm->nr_ptes = 0;
377 set_mm_counter(mm, file_rss, 0);
378 set_mm_counter(mm, anon_rss, 0);
379 spin_lock_init(&mm->page_table_lock);
380 rwlock_init(&mm->ioctx_list_lock);
381 mm->ioctx_list = NULL;
382 mm->free_area_cache = TASK_UNMAPPED_BASE;
383 mm->cached_hole_size = ~0UL;
384 mm_init_cgroup(mm, p);
386 if (likely(!mm_alloc_pgd(mm))) {
387 mm->def_flags = 0;
388 return mm;
391 mm_free_cgroup(mm);
392 free_mm(mm);
393 return NULL;
397 * Allocate and initialize an mm_struct.
399 struct mm_struct * mm_alloc(void)
401 struct mm_struct * mm;
403 mm = allocate_mm();
404 if (mm) {
405 memset(mm, 0, sizeof(*mm));
406 mm = mm_init(mm, current);
408 return mm;
412 * Called when the last reference to the mm
413 * is dropped: either by a lazy thread or by
414 * mmput. Free the page directory and the mm.
416 void __mmdrop(struct mm_struct *mm)
418 BUG_ON(mm == &init_mm);
419 mm_free_pgd(mm);
420 destroy_context(mm);
421 free_mm(mm);
423 EXPORT_SYMBOL_GPL(__mmdrop);
426 * Decrement the use count and release all resources for an mm.
428 void mmput(struct mm_struct *mm)
430 might_sleep();
432 if (atomic_dec_and_test(&mm->mm_users)) {
433 exit_aio(mm);
434 exit_mmap(mm);
435 if (!list_empty(&mm->mmlist)) {
436 spin_lock(&mmlist_lock);
437 list_del(&mm->mmlist);
438 spin_unlock(&mmlist_lock);
440 put_swap_token(mm);
441 mm_free_cgroup(mm);
442 mmdrop(mm);
445 EXPORT_SYMBOL_GPL(mmput);
448 * get_task_mm - acquire a reference to the task's mm
450 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
451 * this kernel workthread has transiently adopted a user mm with use_mm,
452 * to do its AIO) is not set and if so returns a reference to it, after
453 * bumping up the use count. User must release the mm via mmput()
454 * after use. Typically used by /proc and ptrace.
456 struct mm_struct *get_task_mm(struct task_struct *task)
458 struct mm_struct *mm;
460 task_lock(task);
461 mm = task->mm;
462 if (mm) {
463 if (task->flags & PF_BORROWED_MM)
464 mm = NULL;
465 else
466 atomic_inc(&mm->mm_users);
468 task_unlock(task);
469 return mm;
471 EXPORT_SYMBOL_GPL(get_task_mm);
473 /* Please note the differences between mmput and mm_release.
474 * mmput is called whenever we stop holding onto a mm_struct,
475 * error success whatever.
477 * mm_release is called after a mm_struct has been removed
478 * from the current process.
480 * This difference is important for error handling, when we
481 * only half set up a mm_struct for a new process and need to restore
482 * the old one. Because we mmput the new mm_struct before
483 * restoring the old one. . .
484 * Eric Biederman 10 January 1998
486 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
488 struct completion *vfork_done = tsk->vfork_done;
490 /* Get rid of any cached register state */
491 deactivate_mm(tsk, mm);
493 /* notify parent sleeping on vfork() */
494 if (vfork_done) {
495 tsk->vfork_done = NULL;
496 complete(vfork_done);
500 * If we're exiting normally, clear a user-space tid field if
501 * requested. We leave this alone when dying by signal, to leave
502 * the value intact in a core dump, and to save the unnecessary
503 * trouble otherwise. Userland only wants this done for a sys_exit.
505 if (tsk->clear_child_tid
506 && !(tsk->flags & PF_SIGNALED)
507 && atomic_read(&mm->mm_users) > 1) {
508 u32 __user * tidptr = tsk->clear_child_tid;
509 tsk->clear_child_tid = NULL;
512 * We don't check the error code - if userspace has
513 * not set up a proper pointer then tough luck.
515 put_user(0, tidptr);
516 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
521 * Allocate a new mm structure and copy contents from the
522 * mm structure of the passed in task structure.
524 static struct mm_struct *dup_mm(struct task_struct *tsk)
526 struct mm_struct *mm, *oldmm = current->mm;
527 int err;
529 if (!oldmm)
530 return NULL;
532 mm = allocate_mm();
533 if (!mm)
534 goto fail_nomem;
536 memcpy(mm, oldmm, sizeof(*mm));
538 /* Initializing for Swap token stuff */
539 mm->token_priority = 0;
540 mm->last_interval = 0;
542 if (!mm_init(mm, tsk))
543 goto fail_nomem;
545 if (init_new_context(tsk, mm))
546 goto fail_nocontext;
548 err = dup_mmap(mm, oldmm);
549 if (err)
550 goto free_pt;
552 mm->hiwater_rss = get_mm_rss(mm);
553 mm->hiwater_vm = mm->total_vm;
555 return mm;
557 free_pt:
558 mmput(mm);
560 fail_nomem:
561 return NULL;
563 fail_nocontext:
565 * If init_new_context() failed, we cannot use mmput() to free the mm
566 * because it calls destroy_context()
568 mm_free_pgd(mm);
569 free_mm(mm);
570 return NULL;
573 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
575 struct mm_struct * mm, *oldmm;
576 int retval;
578 tsk->min_flt = tsk->maj_flt = 0;
579 tsk->nvcsw = tsk->nivcsw = 0;
581 tsk->mm = NULL;
582 tsk->active_mm = NULL;
585 * Are we cloning a kernel thread?
587 * We need to steal a active VM for that..
589 oldmm = current->mm;
590 if (!oldmm)
591 return 0;
593 if (clone_flags & CLONE_VM) {
594 atomic_inc(&oldmm->mm_users);
595 mm = oldmm;
596 goto good_mm;
599 retval = -ENOMEM;
600 mm = dup_mm(tsk);
601 if (!mm)
602 goto fail_nomem;
604 good_mm:
605 /* Initializing for Swap token stuff */
606 mm->token_priority = 0;
607 mm->last_interval = 0;
609 tsk->mm = mm;
610 tsk->active_mm = mm;
611 return 0;
613 fail_nomem:
614 return retval;
617 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
619 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
620 /* We don't need to lock fs - think why ;-) */
621 if (fs) {
622 atomic_set(&fs->count, 1);
623 rwlock_init(&fs->lock);
624 fs->umask = old->umask;
625 read_lock(&old->lock);
626 fs->root = old->root;
627 path_get(&old->root);
628 fs->pwd = old->pwd;
629 path_get(&old->pwd);
630 if (old->altroot.dentry) {
631 fs->altroot = old->altroot;
632 path_get(&old->altroot);
633 } else {
634 fs->altroot.mnt = NULL;
635 fs->altroot.dentry = NULL;
637 read_unlock(&old->lock);
639 return fs;
642 struct fs_struct *copy_fs_struct(struct fs_struct *old)
644 return __copy_fs_struct(old);
647 EXPORT_SYMBOL_GPL(copy_fs_struct);
649 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
651 if (clone_flags & CLONE_FS) {
652 atomic_inc(&current->fs->count);
653 return 0;
655 tsk->fs = __copy_fs_struct(current->fs);
656 if (!tsk->fs)
657 return -ENOMEM;
658 return 0;
661 static int count_open_files(struct fdtable *fdt)
663 int size = fdt->max_fds;
664 int i;
666 /* Find the last open fd */
667 for (i = size/(8*sizeof(long)); i > 0; ) {
668 if (fdt->open_fds->fds_bits[--i])
669 break;
671 i = (i+1) * 8 * sizeof(long);
672 return i;
675 static struct files_struct *alloc_files(void)
677 struct files_struct *newf;
678 struct fdtable *fdt;
680 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
681 if (!newf)
682 goto out;
684 atomic_set(&newf->count, 1);
686 spin_lock_init(&newf->file_lock);
687 newf->next_fd = 0;
688 fdt = &newf->fdtab;
689 fdt->max_fds = NR_OPEN_DEFAULT;
690 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
691 fdt->open_fds = (fd_set *)&newf->open_fds_init;
692 fdt->fd = &newf->fd_array[0];
693 INIT_RCU_HEAD(&fdt->rcu);
694 fdt->next = NULL;
695 rcu_assign_pointer(newf->fdt, fdt);
696 out:
697 return newf;
701 * Allocate a new files structure and copy contents from the
702 * passed in files structure.
703 * errorp will be valid only when the returned files_struct is NULL.
705 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
707 struct files_struct *newf;
708 struct file **old_fds, **new_fds;
709 int open_files, size, i;
710 struct fdtable *old_fdt, *new_fdt;
712 *errorp = -ENOMEM;
713 newf = alloc_files();
714 if (!newf)
715 goto out;
717 spin_lock(&oldf->file_lock);
718 old_fdt = files_fdtable(oldf);
719 new_fdt = files_fdtable(newf);
720 open_files = count_open_files(old_fdt);
723 * Check whether we need to allocate a larger fd array and fd set.
724 * Note: we're not a clone task, so the open count won't change.
726 if (open_files > new_fdt->max_fds) {
727 new_fdt->max_fds = 0;
728 spin_unlock(&oldf->file_lock);
729 spin_lock(&newf->file_lock);
730 *errorp = expand_files(newf, open_files-1);
731 spin_unlock(&newf->file_lock);
732 if (*errorp < 0)
733 goto out_release;
734 new_fdt = files_fdtable(newf);
736 * Reacquire the oldf lock and a pointer to its fd table
737 * who knows it may have a new bigger fd table. We need
738 * the latest pointer.
740 spin_lock(&oldf->file_lock);
741 old_fdt = files_fdtable(oldf);
744 old_fds = old_fdt->fd;
745 new_fds = new_fdt->fd;
747 memcpy(new_fdt->open_fds->fds_bits,
748 old_fdt->open_fds->fds_bits, open_files/8);
749 memcpy(new_fdt->close_on_exec->fds_bits,
750 old_fdt->close_on_exec->fds_bits, open_files/8);
752 for (i = open_files; i != 0; i--) {
753 struct file *f = *old_fds++;
754 if (f) {
755 get_file(f);
756 } else {
758 * The fd may be claimed in the fd bitmap but not yet
759 * instantiated in the files array if a sibling thread
760 * is partway through open(). So make sure that this
761 * fd is available to the new process.
763 FD_CLR(open_files - i, new_fdt->open_fds);
765 rcu_assign_pointer(*new_fds++, f);
767 spin_unlock(&oldf->file_lock);
769 /* compute the remainder to be cleared */
770 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
772 /* This is long word aligned thus could use a optimized version */
773 memset(new_fds, 0, size);
775 if (new_fdt->max_fds > open_files) {
776 int left = (new_fdt->max_fds-open_files)/8;
777 int start = open_files / (8 * sizeof(unsigned long));
779 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
780 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
783 return newf;
785 out_release:
786 kmem_cache_free(files_cachep, newf);
787 out:
788 return NULL;
791 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
793 struct files_struct *oldf, *newf;
794 int error = 0;
797 * A background process may not have any files ...
799 oldf = current->files;
800 if (!oldf)
801 goto out;
803 if (clone_flags & CLONE_FILES) {
804 atomic_inc(&oldf->count);
805 goto out;
809 * Note: we may be using current for both targets (See exec.c)
810 * This works because we cache current->files (old) as oldf. Don't
811 * break this.
813 tsk->files = NULL;
814 newf = dup_fd(oldf, &error);
815 if (!newf)
816 goto out;
818 tsk->files = newf;
819 error = 0;
820 out:
821 return error;
824 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
826 #ifdef CONFIG_BLOCK
827 struct io_context *ioc = current->io_context;
829 if (!ioc)
830 return 0;
832 * Share io context with parent, if CLONE_IO is set
834 if (clone_flags & CLONE_IO) {
835 tsk->io_context = ioc_task_link(ioc);
836 if (unlikely(!tsk->io_context))
837 return -ENOMEM;
838 } else if (ioprio_valid(ioc->ioprio)) {
839 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
840 if (unlikely(!tsk->io_context))
841 return -ENOMEM;
843 tsk->io_context->ioprio = ioc->ioprio;
845 #endif
846 return 0;
850 * Helper to unshare the files of the current task.
851 * We don't want to expose copy_files internals to
852 * the exec layer of the kernel.
855 int unshare_files(void)
857 struct files_struct *files = current->files;
858 int rc;
860 BUG_ON(!files);
862 /* This can race but the race causes us to copy when we don't
863 need to and drop the copy */
864 if(atomic_read(&files->count) == 1)
866 atomic_inc(&files->count);
867 return 0;
869 rc = copy_files(0, current);
870 if(rc)
871 current->files = files;
872 return rc;
875 EXPORT_SYMBOL(unshare_files);
877 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
879 struct sighand_struct *sig;
881 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
882 atomic_inc(&current->sighand->count);
883 return 0;
885 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
886 rcu_assign_pointer(tsk->sighand, sig);
887 if (!sig)
888 return -ENOMEM;
889 atomic_set(&sig->count, 1);
890 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
891 return 0;
894 void __cleanup_sighand(struct sighand_struct *sighand)
896 if (atomic_dec_and_test(&sighand->count))
897 kmem_cache_free(sighand_cachep, sighand);
900 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
902 struct signal_struct *sig;
903 int ret;
905 if (clone_flags & CLONE_THREAD) {
906 atomic_inc(&current->signal->count);
907 atomic_inc(&current->signal->live);
908 return 0;
910 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
911 tsk->signal = sig;
912 if (!sig)
913 return -ENOMEM;
915 ret = copy_thread_group_keys(tsk);
916 if (ret < 0) {
917 kmem_cache_free(signal_cachep, sig);
918 return ret;
921 atomic_set(&sig->count, 1);
922 atomic_set(&sig->live, 1);
923 init_waitqueue_head(&sig->wait_chldexit);
924 sig->flags = 0;
925 sig->group_exit_code = 0;
926 sig->group_exit_task = NULL;
927 sig->group_stop_count = 0;
928 sig->curr_target = NULL;
929 init_sigpending(&sig->shared_pending);
930 INIT_LIST_HEAD(&sig->posix_timers);
932 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
933 sig->it_real_incr.tv64 = 0;
934 sig->real_timer.function = it_real_fn;
936 sig->it_virt_expires = cputime_zero;
937 sig->it_virt_incr = cputime_zero;
938 sig->it_prof_expires = cputime_zero;
939 sig->it_prof_incr = cputime_zero;
941 sig->leader = 0; /* session leadership doesn't inherit */
942 sig->tty_old_pgrp = NULL;
944 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
945 sig->gtime = cputime_zero;
946 sig->cgtime = cputime_zero;
947 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
948 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
949 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
950 sig->sum_sched_runtime = 0;
951 INIT_LIST_HEAD(&sig->cpu_timers[0]);
952 INIT_LIST_HEAD(&sig->cpu_timers[1]);
953 INIT_LIST_HEAD(&sig->cpu_timers[2]);
954 taskstats_tgid_init(sig);
956 task_lock(current->group_leader);
957 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
958 task_unlock(current->group_leader);
960 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
962 * New sole thread in the process gets an expiry time
963 * of the whole CPU time limit.
965 tsk->it_prof_expires =
966 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
968 acct_init_pacct(&sig->pacct);
970 tty_audit_fork(sig);
972 return 0;
975 void __cleanup_signal(struct signal_struct *sig)
977 exit_thread_group_keys(sig);
978 kmem_cache_free(signal_cachep, sig);
981 static void cleanup_signal(struct task_struct *tsk)
983 struct signal_struct *sig = tsk->signal;
985 atomic_dec(&sig->live);
987 if (atomic_dec_and_test(&sig->count))
988 __cleanup_signal(sig);
991 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
993 unsigned long new_flags = p->flags;
995 new_flags &= ~PF_SUPERPRIV;
996 new_flags |= PF_FORKNOEXEC;
997 if (!(clone_flags & CLONE_PTRACE))
998 p->ptrace = 0;
999 p->flags = new_flags;
1000 clear_freeze_flag(p);
1003 asmlinkage long sys_set_tid_address(int __user *tidptr)
1005 current->clear_child_tid = tidptr;
1007 return task_pid_vnr(current);
1010 static void rt_mutex_init_task(struct task_struct *p)
1012 spin_lock_init(&p->pi_lock);
1013 #ifdef CONFIG_RT_MUTEXES
1014 plist_head_init(&p->pi_waiters, &p->pi_lock);
1015 p->pi_blocked_on = NULL;
1016 #endif
1020 * This creates a new process as a copy of the old one,
1021 * but does not actually start it yet.
1023 * It copies the registers, and all the appropriate
1024 * parts of the process environment (as per the clone
1025 * flags). The actual kick-off is left to the caller.
1027 static struct task_struct *copy_process(unsigned long clone_flags,
1028 unsigned long stack_start,
1029 struct pt_regs *regs,
1030 unsigned long stack_size,
1031 int __user *child_tidptr,
1032 struct pid *pid)
1034 int retval;
1035 struct task_struct *p;
1036 int cgroup_callbacks_done = 0;
1038 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1039 return ERR_PTR(-EINVAL);
1042 * Thread groups must share signals as well, and detached threads
1043 * can only be started up within the thread group.
1045 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1046 return ERR_PTR(-EINVAL);
1049 * Shared signal handlers imply shared VM. By way of the above,
1050 * thread groups also imply shared VM. Blocking this case allows
1051 * for various simplifications in other code.
1053 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1054 return ERR_PTR(-EINVAL);
1056 retval = security_task_create(clone_flags);
1057 if (retval)
1058 goto fork_out;
1060 retval = -ENOMEM;
1061 p = dup_task_struct(current);
1062 if (!p)
1063 goto fork_out;
1065 rt_mutex_init_task(p);
1067 #ifdef CONFIG_TRACE_IRQFLAGS
1068 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1069 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1070 #endif
1071 retval = -EAGAIN;
1072 if (atomic_read(&p->user->processes) >=
1073 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1074 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1075 p->user != current->nsproxy->user_ns->root_user)
1076 goto bad_fork_free;
1079 atomic_inc(&p->user->__count);
1080 atomic_inc(&p->user->processes);
1081 get_group_info(p->group_info);
1084 * If multiple threads are within copy_process(), then this check
1085 * triggers too late. This doesn't hurt, the check is only there
1086 * to stop root fork bombs.
1088 if (nr_threads >= max_threads)
1089 goto bad_fork_cleanup_count;
1091 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1092 goto bad_fork_cleanup_count;
1094 if (p->binfmt && !try_module_get(p->binfmt->module))
1095 goto bad_fork_cleanup_put_domain;
1097 p->did_exec = 0;
1098 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1099 copy_flags(clone_flags, p);
1100 INIT_LIST_HEAD(&p->children);
1101 INIT_LIST_HEAD(&p->sibling);
1102 #ifdef CONFIG_PREEMPT_RCU
1103 p->rcu_read_lock_nesting = 0;
1104 p->rcu_flipctr_idx = 0;
1105 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1106 p->vfork_done = NULL;
1107 spin_lock_init(&p->alloc_lock);
1109 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1110 init_sigpending(&p->pending);
1112 p->utime = cputime_zero;
1113 p->stime = cputime_zero;
1114 p->gtime = cputime_zero;
1115 p->utimescaled = cputime_zero;
1116 p->stimescaled = cputime_zero;
1117 p->prev_utime = cputime_zero;
1118 p->prev_stime = cputime_zero;
1120 #ifdef CONFIG_DETECT_SOFTLOCKUP
1121 p->last_switch_count = 0;
1122 p->last_switch_timestamp = 0;
1123 #endif
1125 #ifdef CONFIG_TASK_XACCT
1126 p->rchar = 0; /* I/O counter: bytes read */
1127 p->wchar = 0; /* I/O counter: bytes written */
1128 p->syscr = 0; /* I/O counter: read syscalls */
1129 p->syscw = 0; /* I/O counter: write syscalls */
1130 #endif
1131 task_io_accounting_init(p);
1132 acct_clear_integrals(p);
1134 p->it_virt_expires = cputime_zero;
1135 p->it_prof_expires = cputime_zero;
1136 p->it_sched_expires = 0;
1137 INIT_LIST_HEAD(&p->cpu_timers[0]);
1138 INIT_LIST_HEAD(&p->cpu_timers[1]);
1139 INIT_LIST_HEAD(&p->cpu_timers[2]);
1141 p->lock_depth = -1; /* -1 = no lock */
1142 do_posix_clock_monotonic_gettime(&p->start_time);
1143 p->real_start_time = p->start_time;
1144 monotonic_to_bootbased(&p->real_start_time);
1145 #ifdef CONFIG_SECURITY
1146 p->security = NULL;
1147 #endif
1148 p->cap_bset = current->cap_bset;
1149 p->io_context = NULL;
1150 p->audit_context = NULL;
1151 cgroup_fork(p);
1152 #ifdef CONFIG_NUMA
1153 p->mempolicy = mpol_copy(p->mempolicy);
1154 if (IS_ERR(p->mempolicy)) {
1155 retval = PTR_ERR(p->mempolicy);
1156 p->mempolicy = NULL;
1157 goto bad_fork_cleanup_cgroup;
1159 mpol_fix_fork_child_flag(p);
1160 #endif
1161 #ifdef CONFIG_TRACE_IRQFLAGS
1162 p->irq_events = 0;
1163 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1164 p->hardirqs_enabled = 1;
1165 #else
1166 p->hardirqs_enabled = 0;
1167 #endif
1168 p->hardirq_enable_ip = 0;
1169 p->hardirq_enable_event = 0;
1170 p->hardirq_disable_ip = _THIS_IP_;
1171 p->hardirq_disable_event = 0;
1172 p->softirqs_enabled = 1;
1173 p->softirq_enable_ip = _THIS_IP_;
1174 p->softirq_enable_event = 0;
1175 p->softirq_disable_ip = 0;
1176 p->softirq_disable_event = 0;
1177 p->hardirq_context = 0;
1178 p->softirq_context = 0;
1179 #endif
1180 #ifdef CONFIG_LOCKDEP
1181 p->lockdep_depth = 0; /* no locks held yet */
1182 p->curr_chain_key = 0;
1183 p->lockdep_recursion = 0;
1184 #endif
1186 #ifdef CONFIG_DEBUG_MUTEXES
1187 p->blocked_on = NULL; /* not blocked yet */
1188 #endif
1190 /* Perform scheduler related setup. Assign this task to a CPU. */
1191 sched_fork(p, clone_flags);
1193 if ((retval = security_task_alloc(p)))
1194 goto bad_fork_cleanup_policy;
1195 if ((retval = audit_alloc(p)))
1196 goto bad_fork_cleanup_security;
1197 /* copy all the process information */
1198 if ((retval = copy_semundo(clone_flags, p)))
1199 goto bad_fork_cleanup_audit;
1200 if ((retval = copy_files(clone_flags, p)))
1201 goto bad_fork_cleanup_semundo;
1202 if ((retval = copy_fs(clone_flags, p)))
1203 goto bad_fork_cleanup_files;
1204 if ((retval = copy_sighand(clone_flags, p)))
1205 goto bad_fork_cleanup_fs;
1206 if ((retval = copy_signal(clone_flags, p)))
1207 goto bad_fork_cleanup_sighand;
1208 if ((retval = copy_mm(clone_flags, p)))
1209 goto bad_fork_cleanup_signal;
1210 if ((retval = copy_keys(clone_flags, p)))
1211 goto bad_fork_cleanup_mm;
1212 if ((retval = copy_namespaces(clone_flags, p)))
1213 goto bad_fork_cleanup_keys;
1214 if ((retval = copy_io(clone_flags, p)))
1215 goto bad_fork_cleanup_namespaces;
1216 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1217 if (retval)
1218 goto bad_fork_cleanup_io;
1220 if (pid != &init_struct_pid) {
1221 retval = -ENOMEM;
1222 pid = alloc_pid(task_active_pid_ns(p));
1223 if (!pid)
1224 goto bad_fork_cleanup_io;
1226 if (clone_flags & CLONE_NEWPID) {
1227 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1228 if (retval < 0)
1229 goto bad_fork_free_pid;
1233 p->pid = pid_nr(pid);
1234 p->tgid = p->pid;
1235 if (clone_flags & CLONE_THREAD)
1236 p->tgid = current->tgid;
1238 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1240 * Clear TID on mm_release()?
1242 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1243 #ifdef CONFIG_FUTEX
1244 p->robust_list = NULL;
1245 #ifdef CONFIG_COMPAT
1246 p->compat_robust_list = NULL;
1247 #endif
1248 INIT_LIST_HEAD(&p->pi_state_list);
1249 p->pi_state_cache = NULL;
1250 #endif
1252 * sigaltstack should be cleared when sharing the same VM
1254 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1255 p->sas_ss_sp = p->sas_ss_size = 0;
1258 * Syscall tracing should be turned off in the child regardless
1259 * of CLONE_PTRACE.
1261 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1262 #ifdef TIF_SYSCALL_EMU
1263 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1264 #endif
1265 clear_all_latency_tracing(p);
1267 /* Our parent execution domain becomes current domain
1268 These must match for thread signalling to apply */
1269 p->parent_exec_id = p->self_exec_id;
1271 /* ok, now we should be set up.. */
1272 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1273 p->pdeath_signal = 0;
1274 p->exit_state = 0;
1277 * Ok, make it visible to the rest of the system.
1278 * We dont wake it up yet.
1280 p->group_leader = p;
1281 INIT_LIST_HEAD(&p->thread_group);
1282 INIT_LIST_HEAD(&p->ptrace_children);
1283 INIT_LIST_HEAD(&p->ptrace_list);
1285 /* Now that the task is set up, run cgroup callbacks if
1286 * necessary. We need to run them before the task is visible
1287 * on the tasklist. */
1288 cgroup_fork_callbacks(p);
1289 cgroup_callbacks_done = 1;
1291 /* Need tasklist lock for parent etc handling! */
1292 write_lock_irq(&tasklist_lock);
1295 * The task hasn't been attached yet, so its cpus_allowed mask will
1296 * not be changed, nor will its assigned CPU.
1298 * The cpus_allowed mask of the parent may have changed after it was
1299 * copied first time - so re-copy it here, then check the child's CPU
1300 * to ensure it is on a valid CPU (and if not, just force it back to
1301 * parent's CPU). This avoids alot of nasty races.
1303 p->cpus_allowed = current->cpus_allowed;
1304 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1305 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1306 !cpu_online(task_cpu(p))))
1307 set_task_cpu(p, smp_processor_id());
1309 /* CLONE_PARENT re-uses the old parent */
1310 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1311 p->real_parent = current->real_parent;
1312 else
1313 p->real_parent = current;
1314 p->parent = p->real_parent;
1316 spin_lock(&current->sighand->siglock);
1319 * Process group and session signals need to be delivered to just the
1320 * parent before the fork or both the parent and the child after the
1321 * fork. Restart if a signal comes in before we add the new process to
1322 * it's process group.
1323 * A fatal signal pending means that current will exit, so the new
1324 * thread can't slip out of an OOM kill (or normal SIGKILL).
1326 recalc_sigpending();
1327 if (signal_pending(current)) {
1328 spin_unlock(&current->sighand->siglock);
1329 write_unlock_irq(&tasklist_lock);
1330 retval = -ERESTARTNOINTR;
1331 goto bad_fork_free_pid;
1334 if (clone_flags & CLONE_THREAD) {
1335 p->group_leader = current->group_leader;
1336 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1338 if (!cputime_eq(current->signal->it_virt_expires,
1339 cputime_zero) ||
1340 !cputime_eq(current->signal->it_prof_expires,
1341 cputime_zero) ||
1342 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1343 !list_empty(&current->signal->cpu_timers[0]) ||
1344 !list_empty(&current->signal->cpu_timers[1]) ||
1345 !list_empty(&current->signal->cpu_timers[2])) {
1347 * Have child wake up on its first tick to check
1348 * for process CPU timers.
1350 p->it_prof_expires = jiffies_to_cputime(1);
1354 if (likely(p->pid)) {
1355 add_parent(p);
1356 if (unlikely(p->ptrace & PT_PTRACED))
1357 __ptrace_link(p, current->parent);
1359 if (thread_group_leader(p)) {
1360 if (clone_flags & CLONE_NEWPID)
1361 p->nsproxy->pid_ns->child_reaper = p;
1363 p->signal->leader_pid = pid;
1364 p->signal->tty = current->signal->tty;
1365 set_task_pgrp(p, task_pgrp_nr(current));
1366 set_task_session(p, task_session_nr(current));
1367 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1368 attach_pid(p, PIDTYPE_SID, task_session(current));
1369 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1370 __get_cpu_var(process_counts)++;
1372 attach_pid(p, PIDTYPE_PID, pid);
1373 nr_threads++;
1376 total_forks++;
1377 spin_unlock(&current->sighand->siglock);
1378 write_unlock_irq(&tasklist_lock);
1379 proc_fork_connector(p);
1380 cgroup_post_fork(p);
1381 return p;
1383 bad_fork_free_pid:
1384 if (pid != &init_struct_pid)
1385 free_pid(pid);
1386 bad_fork_cleanup_io:
1387 put_io_context(p->io_context);
1388 bad_fork_cleanup_namespaces:
1389 exit_task_namespaces(p);
1390 bad_fork_cleanup_keys:
1391 exit_keys(p);
1392 bad_fork_cleanup_mm:
1393 if (p->mm)
1394 mmput(p->mm);
1395 bad_fork_cleanup_signal:
1396 cleanup_signal(p);
1397 bad_fork_cleanup_sighand:
1398 __cleanup_sighand(p->sighand);
1399 bad_fork_cleanup_fs:
1400 exit_fs(p); /* blocking */
1401 bad_fork_cleanup_files:
1402 exit_files(p); /* blocking */
1403 bad_fork_cleanup_semundo:
1404 exit_sem(p);
1405 bad_fork_cleanup_audit:
1406 audit_free(p);
1407 bad_fork_cleanup_security:
1408 security_task_free(p);
1409 bad_fork_cleanup_policy:
1410 #ifdef CONFIG_NUMA
1411 mpol_free(p->mempolicy);
1412 bad_fork_cleanup_cgroup:
1413 #endif
1414 cgroup_exit(p, cgroup_callbacks_done);
1415 delayacct_tsk_free(p);
1416 if (p->binfmt)
1417 module_put(p->binfmt->module);
1418 bad_fork_cleanup_put_domain:
1419 module_put(task_thread_info(p)->exec_domain->module);
1420 bad_fork_cleanup_count:
1421 put_group_info(p->group_info);
1422 atomic_dec(&p->user->processes);
1423 free_uid(p->user);
1424 bad_fork_free:
1425 free_task(p);
1426 fork_out:
1427 return ERR_PTR(retval);
1430 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1432 memset(regs, 0, sizeof(struct pt_regs));
1433 return regs;
1436 struct task_struct * __cpuinit fork_idle(int cpu)
1438 struct task_struct *task;
1439 struct pt_regs regs;
1441 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1442 &init_struct_pid);
1443 if (!IS_ERR(task))
1444 init_idle(task, cpu);
1446 return task;
1449 static int fork_traceflag(unsigned clone_flags)
1451 if (clone_flags & CLONE_UNTRACED)
1452 return 0;
1453 else if (clone_flags & CLONE_VFORK) {
1454 if (current->ptrace & PT_TRACE_VFORK)
1455 return PTRACE_EVENT_VFORK;
1456 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1457 if (current->ptrace & PT_TRACE_CLONE)
1458 return PTRACE_EVENT_CLONE;
1459 } else if (current->ptrace & PT_TRACE_FORK)
1460 return PTRACE_EVENT_FORK;
1462 return 0;
1466 * Ok, this is the main fork-routine.
1468 * It copies the process, and if successful kick-starts
1469 * it and waits for it to finish using the VM if required.
1471 long do_fork(unsigned long clone_flags,
1472 unsigned long stack_start,
1473 struct pt_regs *regs,
1474 unsigned long stack_size,
1475 int __user *parent_tidptr,
1476 int __user *child_tidptr)
1478 struct task_struct *p;
1479 int trace = 0;
1480 long nr;
1483 * We hope to recycle these flags after 2.6.26
1485 if (unlikely(clone_flags & CLONE_STOPPED)) {
1486 static int __read_mostly count = 100;
1488 if (count > 0 && printk_ratelimit()) {
1489 char comm[TASK_COMM_LEN];
1491 count--;
1492 printk(KERN_INFO "fork(): process `%s' used deprecated "
1493 "clone flags 0x%lx\n",
1494 get_task_comm(comm, current),
1495 clone_flags & CLONE_STOPPED);
1499 if (unlikely(current->ptrace)) {
1500 trace = fork_traceflag (clone_flags);
1501 if (trace)
1502 clone_flags |= CLONE_PTRACE;
1505 p = copy_process(clone_flags, stack_start, regs, stack_size,
1506 child_tidptr, NULL);
1508 * Do this prior waking up the new thread - the thread pointer
1509 * might get invalid after that point, if the thread exits quickly.
1511 if (!IS_ERR(p)) {
1512 struct completion vfork;
1514 nr = task_pid_vnr(p);
1516 if (clone_flags & CLONE_PARENT_SETTID)
1517 put_user(nr, parent_tidptr);
1519 if (clone_flags & CLONE_VFORK) {
1520 p->vfork_done = &vfork;
1521 init_completion(&vfork);
1524 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1526 * We'll start up with an immediate SIGSTOP.
1528 sigaddset(&p->pending.signal, SIGSTOP);
1529 set_tsk_thread_flag(p, TIF_SIGPENDING);
1532 if (!(clone_flags & CLONE_STOPPED))
1533 wake_up_new_task(p, clone_flags);
1534 else
1535 __set_task_state(p, TASK_STOPPED);
1537 if (unlikely (trace)) {
1538 current->ptrace_message = nr;
1539 ptrace_notify ((trace << 8) | SIGTRAP);
1542 if (clone_flags & CLONE_VFORK) {
1543 freezer_do_not_count();
1544 wait_for_completion(&vfork);
1545 freezer_count();
1546 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1547 current->ptrace_message = nr;
1548 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1551 } else {
1552 nr = PTR_ERR(p);
1554 return nr;
1557 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1558 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1559 #endif
1561 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1563 struct sighand_struct *sighand = data;
1565 spin_lock_init(&sighand->siglock);
1566 init_waitqueue_head(&sighand->signalfd_wqh);
1569 void __init proc_caches_init(void)
1571 sighand_cachep = kmem_cache_create("sighand_cache",
1572 sizeof(struct sighand_struct), 0,
1573 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1574 sighand_ctor);
1575 signal_cachep = kmem_cache_create("signal_cache",
1576 sizeof(struct signal_struct), 0,
1577 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1578 files_cachep = kmem_cache_create("files_cache",
1579 sizeof(struct files_struct), 0,
1580 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1581 fs_cachep = kmem_cache_create("fs_cache",
1582 sizeof(struct fs_struct), 0,
1583 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1584 vm_area_cachep = kmem_cache_create("vm_area_struct",
1585 sizeof(struct vm_area_struct), 0,
1586 SLAB_PANIC, NULL);
1587 mm_cachep = kmem_cache_create("mm_struct",
1588 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1589 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1593 * Check constraints on flags passed to the unshare system call and
1594 * force unsharing of additional process context as appropriate.
1596 static void check_unshare_flags(unsigned long *flags_ptr)
1599 * If unsharing a thread from a thread group, must also
1600 * unshare vm.
1602 if (*flags_ptr & CLONE_THREAD)
1603 *flags_ptr |= CLONE_VM;
1606 * If unsharing vm, must also unshare signal handlers.
1608 if (*flags_ptr & CLONE_VM)
1609 *flags_ptr |= CLONE_SIGHAND;
1612 * If unsharing signal handlers and the task was created
1613 * using CLONE_THREAD, then must unshare the thread
1615 if ((*flags_ptr & CLONE_SIGHAND) &&
1616 (atomic_read(&current->signal->count) > 1))
1617 *flags_ptr |= CLONE_THREAD;
1620 * If unsharing namespace, must also unshare filesystem information.
1622 if (*flags_ptr & CLONE_NEWNS)
1623 *flags_ptr |= CLONE_FS;
1627 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1629 static int unshare_thread(unsigned long unshare_flags)
1631 if (unshare_flags & CLONE_THREAD)
1632 return -EINVAL;
1634 return 0;
1638 * Unshare the filesystem structure if it is being shared
1640 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1642 struct fs_struct *fs = current->fs;
1644 if ((unshare_flags & CLONE_FS) &&
1645 (fs && atomic_read(&fs->count) > 1)) {
1646 *new_fsp = __copy_fs_struct(current->fs);
1647 if (!*new_fsp)
1648 return -ENOMEM;
1651 return 0;
1655 * Unsharing of sighand is not supported yet
1657 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1659 struct sighand_struct *sigh = current->sighand;
1661 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1662 return -EINVAL;
1663 else
1664 return 0;
1668 * Unshare vm if it is being shared
1670 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1672 struct mm_struct *mm = current->mm;
1674 if ((unshare_flags & CLONE_VM) &&
1675 (mm && atomic_read(&mm->mm_users) > 1)) {
1676 return -EINVAL;
1679 return 0;
1683 * Unshare file descriptor table if it is being shared
1685 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1687 struct files_struct *fd = current->files;
1688 int error = 0;
1690 if ((unshare_flags & CLONE_FILES) &&
1691 (fd && atomic_read(&fd->count) > 1)) {
1692 *new_fdp = dup_fd(fd, &error);
1693 if (!*new_fdp)
1694 return error;
1697 return 0;
1701 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1702 * supported yet
1704 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1706 if (unshare_flags & CLONE_SYSVSEM)
1707 return -EINVAL;
1709 return 0;
1713 * unshare allows a process to 'unshare' part of the process
1714 * context which was originally shared using clone. copy_*
1715 * functions used by do_fork() cannot be used here directly
1716 * because they modify an inactive task_struct that is being
1717 * constructed. Here we are modifying the current, active,
1718 * task_struct.
1720 asmlinkage long sys_unshare(unsigned long unshare_flags)
1722 int err = 0;
1723 struct fs_struct *fs, *new_fs = NULL;
1724 struct sighand_struct *new_sigh = NULL;
1725 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1726 struct files_struct *fd, *new_fd = NULL;
1727 struct sem_undo_list *new_ulist = NULL;
1728 struct nsproxy *new_nsproxy = NULL;
1730 check_unshare_flags(&unshare_flags);
1732 /* Return -EINVAL for all unsupported flags */
1733 err = -EINVAL;
1734 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1735 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1736 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1737 CLONE_NEWNET))
1738 goto bad_unshare_out;
1740 if ((err = unshare_thread(unshare_flags)))
1741 goto bad_unshare_out;
1742 if ((err = unshare_fs(unshare_flags, &new_fs)))
1743 goto bad_unshare_cleanup_thread;
1744 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1745 goto bad_unshare_cleanup_fs;
1746 if ((err = unshare_vm(unshare_flags, &new_mm)))
1747 goto bad_unshare_cleanup_sigh;
1748 if ((err = unshare_fd(unshare_flags, &new_fd)))
1749 goto bad_unshare_cleanup_vm;
1750 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1751 goto bad_unshare_cleanup_fd;
1752 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1753 new_fs)))
1754 goto bad_unshare_cleanup_semundo;
1756 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1758 if (new_nsproxy) {
1759 switch_task_namespaces(current, new_nsproxy);
1760 new_nsproxy = NULL;
1763 task_lock(current);
1765 if (new_fs) {
1766 fs = current->fs;
1767 current->fs = new_fs;
1768 new_fs = fs;
1771 if (new_mm) {
1772 mm = current->mm;
1773 active_mm = current->active_mm;
1774 current->mm = new_mm;
1775 current->active_mm = new_mm;
1776 activate_mm(active_mm, new_mm);
1777 new_mm = mm;
1780 if (new_fd) {
1781 fd = current->files;
1782 current->files = new_fd;
1783 new_fd = fd;
1786 task_unlock(current);
1789 if (new_nsproxy)
1790 put_nsproxy(new_nsproxy);
1792 bad_unshare_cleanup_semundo:
1793 bad_unshare_cleanup_fd:
1794 if (new_fd)
1795 put_files_struct(new_fd);
1797 bad_unshare_cleanup_vm:
1798 if (new_mm)
1799 mmput(new_mm);
1801 bad_unshare_cleanup_sigh:
1802 if (new_sigh)
1803 if (atomic_dec_and_test(&new_sigh->count))
1804 kmem_cache_free(sighand_cachep, new_sigh);
1806 bad_unshare_cleanup_fs:
1807 if (new_fs)
1808 put_fs_struct(new_fs);
1810 bad_unshare_cleanup_thread:
1811 bad_unshare_out:
1812 return err;