2 * linux/mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
47 * To use this allocator, arch code should do the followings.
49 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50 * regular address to percpu pointer and back if they need to be
51 * different from the default
53 * - use pcpu_setup_first_chunk() during percpu area initialization to
54 * setup the first chunk containing the kernel static percpu area
57 #include <linux/bitmap.h>
58 #include <linux/bootmem.h>
59 #include <linux/err.h>
60 #include <linux/list.h>
61 #include <linux/log2.h>
63 #include <linux/module.h>
64 #include <linux/mutex.h>
65 #include <linux/percpu.h>
66 #include <linux/pfn.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/vmalloc.h>
70 #include <linux/workqueue.h>
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81 #ifndef __addr_to_pcpu_ptr
82 #define __addr_to_pcpu_ptr(addr) \
83 (void __percpu *)((unsigned long)(addr) - \
84 (unsigned long)pcpu_base_addr + \
85 (unsigned long)__per_cpu_start)
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void __force *)((unsigned long)(ptr) + \
90 (unsigned long)pcpu_base_addr - \
91 (unsigned long)__per_cpu_start)
95 struct list_head list
; /* linked to pcpu_slot lists */
96 int free_size
; /* free bytes in the chunk */
97 int contig_hint
; /* max contiguous size hint */
98 void *base_addr
; /* base address of this chunk */
99 int map_used
; /* # of map entries used */
100 int map_alloc
; /* # of map entries allocated */
101 int *map
; /* allocation map */
102 struct vm_struct
**vms
; /* mapped vmalloc regions */
103 bool immutable
; /* no [de]population allowed */
104 unsigned long populated
[]; /* populated bitmap */
107 static int pcpu_unit_pages __read_mostly
;
108 static int pcpu_unit_size __read_mostly
;
109 static int pcpu_nr_units __read_mostly
;
110 static int pcpu_atom_size __read_mostly
;
111 static int pcpu_nr_slots __read_mostly
;
112 static size_t pcpu_chunk_struct_size __read_mostly
;
114 /* cpus with the lowest and highest unit numbers */
115 static unsigned int pcpu_first_unit_cpu __read_mostly
;
116 static unsigned int pcpu_last_unit_cpu __read_mostly
;
118 /* the address of the first chunk which starts with the kernel static area */
119 void *pcpu_base_addr __read_mostly
;
120 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
122 static const int *pcpu_unit_map __read_mostly
; /* cpu -> unit */
123 const unsigned long *pcpu_unit_offsets __read_mostly
; /* cpu -> unit offset */
125 /* group information, used for vm allocation */
126 static int pcpu_nr_groups __read_mostly
;
127 static const unsigned long *pcpu_group_offsets __read_mostly
;
128 static const size_t *pcpu_group_sizes __read_mostly
;
131 * The first chunk which always exists. Note that unlike other
132 * chunks, this one can be allocated and mapped in several different
133 * ways and thus often doesn't live in the vmalloc area.
135 static struct pcpu_chunk
*pcpu_first_chunk
;
138 * Optional reserved chunk. This chunk reserves part of the first
139 * chunk and serves it for reserved allocations. The amount of
140 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
141 * area doesn't exist, the following variables contain NULL and 0
144 static struct pcpu_chunk
*pcpu_reserved_chunk
;
145 static int pcpu_reserved_chunk_limit
;
148 * Synchronization rules.
150 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
151 * protects allocation/reclaim paths, chunks, populated bitmap and
152 * vmalloc mapping. The latter is a spinlock and protects the index
153 * data structures - chunk slots, chunks and area maps in chunks.
155 * During allocation, pcpu_alloc_mutex is kept locked all the time and
156 * pcpu_lock is grabbed and released as necessary. All actual memory
157 * allocations are done using GFP_KERNEL with pcpu_lock released. In
158 * general, percpu memory can't be allocated with irq off but
159 * irqsave/restore are still used in alloc path so that it can be used
160 * from early init path - sched_init() specifically.
162 * Free path accesses and alters only the index data structures, so it
163 * can be safely called from atomic context. When memory needs to be
164 * returned to the system, free path schedules reclaim_work which
165 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
166 * reclaimed, release both locks and frees the chunks. Note that it's
167 * necessary to grab both locks to remove a chunk from circulation as
168 * allocation path might be referencing the chunk with only
169 * pcpu_alloc_mutex locked.
171 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* protects whole alloc and reclaim */
172 static DEFINE_SPINLOCK(pcpu_lock
); /* protects index data structures */
174 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
176 /* reclaim work to release fully free chunks, scheduled from free path */
177 static void pcpu_reclaim(struct work_struct
*work
);
178 static DECLARE_WORK(pcpu_reclaim_work
, pcpu_reclaim
);
180 static int __pcpu_size_to_slot(int size
)
182 int highbit
= fls(size
); /* size is in bytes */
183 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
186 static int pcpu_size_to_slot(int size
)
188 if (size
== pcpu_unit_size
)
189 return pcpu_nr_slots
- 1;
190 return __pcpu_size_to_slot(size
);
193 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
195 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
198 return pcpu_size_to_slot(chunk
->free_size
);
201 static int pcpu_page_idx(unsigned int cpu
, int page_idx
)
203 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
206 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
207 unsigned int cpu
, int page_idx
)
209 return (unsigned long)chunk
->base_addr
+ pcpu_unit_offsets
[cpu
] +
210 (page_idx
<< PAGE_SHIFT
);
213 static struct page
*pcpu_chunk_page(struct pcpu_chunk
*chunk
,
214 unsigned int cpu
, int page_idx
)
216 /* must not be used on pre-mapped chunk */
217 WARN_ON(chunk
->immutable
);
219 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk
, cpu
, page_idx
));
222 /* set the pointer to a chunk in a page struct */
223 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
225 page
->index
= (unsigned long)pcpu
;
228 /* obtain pointer to a chunk from a page struct */
229 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
231 return (struct pcpu_chunk
*)page
->index
;
234 static void pcpu_next_unpop(struct pcpu_chunk
*chunk
, int *rs
, int *re
, int end
)
236 *rs
= find_next_zero_bit(chunk
->populated
, end
, *rs
);
237 *re
= find_next_bit(chunk
->populated
, end
, *rs
+ 1);
240 static void pcpu_next_pop(struct pcpu_chunk
*chunk
, int *rs
, int *re
, int end
)
242 *rs
= find_next_bit(chunk
->populated
, end
, *rs
);
243 *re
= find_next_zero_bit(chunk
->populated
, end
, *rs
+ 1);
247 * (Un)populated page region iterators. Iterate over (un)populated
248 * page regions betwen @start and @end in @chunk. @rs and @re should
249 * be integer variables and will be set to start and end page index of
250 * the current region.
252 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
253 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
255 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
257 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
258 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
260 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
263 * pcpu_mem_alloc - allocate memory
264 * @size: bytes to allocate
266 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
267 * kzalloc() is used; otherwise, vmalloc() is used. The returned
268 * memory is always zeroed.
271 * Does GFP_KERNEL allocation.
274 * Pointer to the allocated area on success, NULL on failure.
276 static void *pcpu_mem_alloc(size_t size
)
278 if (size
<= PAGE_SIZE
)
279 return kzalloc(size
, GFP_KERNEL
);
281 void *ptr
= vmalloc(size
);
283 memset(ptr
, 0, size
);
289 * pcpu_mem_free - free memory
290 * @ptr: memory to free
291 * @size: size of the area
293 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
295 static void pcpu_mem_free(void *ptr
, size_t size
)
297 if (size
<= PAGE_SIZE
)
304 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
305 * @chunk: chunk of interest
306 * @oslot: the previous slot it was on
308 * This function is called after an allocation or free changed @chunk.
309 * New slot according to the changed state is determined and @chunk is
310 * moved to the slot. Note that the reserved chunk is never put on
316 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
318 int nslot
= pcpu_chunk_slot(chunk
);
320 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
322 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
324 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
329 * pcpu_chunk_addr_search - determine chunk containing specified address
330 * @addr: address for which the chunk needs to be determined.
333 * The address of the found chunk.
335 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
337 void *first_start
= pcpu_first_chunk
->base_addr
;
339 /* is it in the first chunk? */
340 if (addr
>= first_start
&& addr
< first_start
+ pcpu_unit_size
) {
341 /* is it in the reserved area? */
342 if (addr
< first_start
+ pcpu_reserved_chunk_limit
)
343 return pcpu_reserved_chunk
;
344 return pcpu_first_chunk
;
348 * The address is relative to unit0 which might be unused and
349 * thus unmapped. Offset the address to the unit space of the
350 * current processor before looking it up in the vmalloc
351 * space. Note that any possible cpu id can be used here, so
352 * there's no need to worry about preemption or cpu hotplug.
354 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
355 return pcpu_get_page_chunk(vmalloc_to_page(addr
));
359 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
360 * @chunk: chunk of interest
362 * Determine whether area map of @chunk needs to be extended to
363 * accomodate a new allocation.
369 * New target map allocation length if extension is necessary, 0
372 static int pcpu_need_to_extend(struct pcpu_chunk
*chunk
)
376 if (chunk
->map_alloc
>= chunk
->map_used
+ 2)
379 new_alloc
= PCPU_DFL_MAP_ALLOC
;
380 while (new_alloc
< chunk
->map_used
+ 2)
387 * pcpu_extend_area_map - extend area map of a chunk
388 * @chunk: chunk of interest
389 * @new_alloc: new target allocation length of the area map
391 * Extend area map of @chunk to have @new_alloc entries.
394 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
397 * 0 on success, -errno on failure.
399 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
, int new_alloc
)
401 int *old
= NULL
, *new = NULL
;
402 size_t old_size
= 0, new_size
= new_alloc
* sizeof(new[0]);
405 new = pcpu_mem_alloc(new_size
);
409 /* acquire pcpu_lock and switch to new area map */
410 spin_lock_irqsave(&pcpu_lock
, flags
);
412 if (new_alloc
<= chunk
->map_alloc
)
415 old_size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
416 memcpy(new, chunk
->map
, old_size
);
419 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
420 * one of the first chunks and still using static map.
422 if (chunk
->map_alloc
>= PCPU_DFL_MAP_ALLOC
)
425 chunk
->map_alloc
= new_alloc
;
430 spin_unlock_irqrestore(&pcpu_lock
, flags
);
433 * pcpu_mem_free() might end up calling vfree() which uses
434 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
436 pcpu_mem_free(old
, old_size
);
437 pcpu_mem_free(new, new_size
);
443 * pcpu_split_block - split a map block
444 * @chunk: chunk of interest
445 * @i: index of map block to split
446 * @head: head size in bytes (can be 0)
447 * @tail: tail size in bytes (can be 0)
449 * Split the @i'th map block into two or three blocks. If @head is
450 * non-zero, @head bytes block is inserted before block @i moving it
451 * to @i+1 and reducing its size by @head bytes.
453 * If @tail is non-zero, the target block, which can be @i or @i+1
454 * depending on @head, is reduced by @tail bytes and @tail byte block
455 * is inserted after the target block.
457 * @chunk->map must have enough free slots to accomodate the split.
462 static void pcpu_split_block(struct pcpu_chunk
*chunk
, int i
,
465 int nr_extra
= !!head
+ !!tail
;
467 BUG_ON(chunk
->map_alloc
< chunk
->map_used
+ nr_extra
);
469 /* insert new subblocks */
470 memmove(&chunk
->map
[i
+ nr_extra
], &chunk
->map
[i
],
471 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
472 chunk
->map_used
+= nr_extra
;
475 chunk
->map
[i
+ 1] = chunk
->map
[i
] - head
;
476 chunk
->map
[i
++] = head
;
479 chunk
->map
[i
++] -= tail
;
480 chunk
->map
[i
] = tail
;
485 * pcpu_alloc_area - allocate area from a pcpu_chunk
486 * @chunk: chunk of interest
487 * @size: wanted size in bytes
488 * @align: wanted align
490 * Try to allocate @size bytes area aligned at @align from @chunk.
491 * Note that this function only allocates the offset. It doesn't
492 * populate or map the area.
494 * @chunk->map must have at least two free slots.
500 * Allocated offset in @chunk on success, -1 if no matching area is
503 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
)
505 int oslot
= pcpu_chunk_slot(chunk
);
509 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++])) {
510 bool is_last
= i
+ 1 == chunk
->map_used
;
513 /* extra for alignment requirement */
514 head
= ALIGN(off
, align
) - off
;
515 BUG_ON(i
== 0 && head
!= 0);
517 if (chunk
->map
[i
] < 0)
519 if (chunk
->map
[i
] < head
+ size
) {
520 max_contig
= max(chunk
->map
[i
], max_contig
);
525 * If head is small or the previous block is free,
526 * merge'em. Note that 'small' is defined as smaller
527 * than sizeof(int), which is very small but isn't too
528 * uncommon for percpu allocations.
530 if (head
&& (head
< sizeof(int) || chunk
->map
[i
- 1] > 0)) {
531 if (chunk
->map
[i
- 1] > 0)
532 chunk
->map
[i
- 1] += head
;
534 chunk
->map
[i
- 1] -= head
;
535 chunk
->free_size
-= head
;
537 chunk
->map
[i
] -= head
;
542 /* if tail is small, just keep it around */
543 tail
= chunk
->map
[i
] - head
- size
;
544 if (tail
< sizeof(int))
547 /* split if warranted */
549 pcpu_split_block(chunk
, i
, head
, tail
);
553 max_contig
= max(chunk
->map
[i
- 1], max_contig
);
556 max_contig
= max(chunk
->map
[i
+ 1], max_contig
);
559 /* update hint and mark allocated */
561 chunk
->contig_hint
= max_contig
; /* fully scanned */
563 chunk
->contig_hint
= max(chunk
->contig_hint
,
566 chunk
->free_size
-= chunk
->map
[i
];
567 chunk
->map
[i
] = -chunk
->map
[i
];
569 pcpu_chunk_relocate(chunk
, oslot
);
573 chunk
->contig_hint
= max_contig
; /* fully scanned */
574 pcpu_chunk_relocate(chunk
, oslot
);
576 /* tell the upper layer that this chunk has no matching area */
581 * pcpu_free_area - free area to a pcpu_chunk
582 * @chunk: chunk of interest
583 * @freeme: offset of area to free
585 * Free area starting from @freeme to @chunk. Note that this function
586 * only modifies the allocation map. It doesn't depopulate or unmap
592 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
)
594 int oslot
= pcpu_chunk_slot(chunk
);
597 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++]))
600 BUG_ON(off
!= freeme
);
601 BUG_ON(chunk
->map
[i
] > 0);
603 chunk
->map
[i
] = -chunk
->map
[i
];
604 chunk
->free_size
+= chunk
->map
[i
];
606 /* merge with previous? */
607 if (i
> 0 && chunk
->map
[i
- 1] >= 0) {
608 chunk
->map
[i
- 1] += chunk
->map
[i
];
610 memmove(&chunk
->map
[i
], &chunk
->map
[i
+ 1],
611 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
614 /* merge with next? */
615 if (i
+ 1 < chunk
->map_used
&& chunk
->map
[i
+ 1] >= 0) {
616 chunk
->map
[i
] += chunk
->map
[i
+ 1];
618 memmove(&chunk
->map
[i
+ 1], &chunk
->map
[i
+ 2],
619 (chunk
->map_used
- (i
+ 1)) * sizeof(chunk
->map
[0]));
622 chunk
->contig_hint
= max(chunk
->map
[i
], chunk
->contig_hint
);
623 pcpu_chunk_relocate(chunk
, oslot
);
627 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
628 * @chunk: chunk of interest
629 * @bitmapp: output parameter for bitmap
630 * @may_alloc: may allocate the array
632 * Returns pointer to array of pointers to struct page and bitmap,
633 * both of which can be indexed with pcpu_page_idx(). The returned
634 * array is cleared to zero and *@bitmapp is copied from
635 * @chunk->populated. Note that there is only one array and bitmap
636 * and access exclusion is the caller's responsibility.
639 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
640 * Otherwise, don't care.
643 * Pointer to temp pages array on success, NULL on failure.
645 static struct page
**pcpu_get_pages_and_bitmap(struct pcpu_chunk
*chunk
,
646 unsigned long **bitmapp
,
649 static struct page
**pages
;
650 static unsigned long *bitmap
;
651 size_t pages_size
= pcpu_nr_units
* pcpu_unit_pages
* sizeof(pages
[0]);
652 size_t bitmap_size
= BITS_TO_LONGS(pcpu_unit_pages
) *
653 sizeof(unsigned long);
655 if (!pages
|| !bitmap
) {
656 if (may_alloc
&& !pages
)
657 pages
= pcpu_mem_alloc(pages_size
);
658 if (may_alloc
&& !bitmap
)
659 bitmap
= pcpu_mem_alloc(bitmap_size
);
660 if (!pages
|| !bitmap
)
664 memset(pages
, 0, pages_size
);
665 bitmap_copy(bitmap
, chunk
->populated
, pcpu_unit_pages
);
672 * pcpu_free_pages - free pages which were allocated for @chunk
673 * @chunk: chunk pages were allocated for
674 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
675 * @populated: populated bitmap
676 * @page_start: page index of the first page to be freed
677 * @page_end: page index of the last page to be freed + 1
679 * Free pages [@page_start and @page_end) in @pages for all units.
680 * The pages were allocated for @chunk.
682 static void pcpu_free_pages(struct pcpu_chunk
*chunk
,
683 struct page
**pages
, unsigned long *populated
,
684 int page_start
, int page_end
)
689 for_each_possible_cpu(cpu
) {
690 for (i
= page_start
; i
< page_end
; i
++) {
691 struct page
*page
= pages
[pcpu_page_idx(cpu
, i
)];
700 * pcpu_alloc_pages - allocates pages for @chunk
701 * @chunk: target chunk
702 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
703 * @populated: populated bitmap
704 * @page_start: page index of the first page to be allocated
705 * @page_end: page index of the last page to be allocated + 1
707 * Allocate pages [@page_start,@page_end) into @pages for all units.
708 * The allocation is for @chunk. Percpu core doesn't care about the
709 * content of @pages and will pass it verbatim to pcpu_map_pages().
711 static int pcpu_alloc_pages(struct pcpu_chunk
*chunk
,
712 struct page
**pages
, unsigned long *populated
,
713 int page_start
, int page_end
)
715 const gfp_t gfp
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_COLD
;
719 for_each_possible_cpu(cpu
) {
720 for (i
= page_start
; i
< page_end
; i
++) {
721 struct page
**pagep
= &pages
[pcpu_page_idx(cpu
, i
)];
723 *pagep
= alloc_pages_node(cpu_to_node(cpu
), gfp
, 0);
725 pcpu_free_pages(chunk
, pages
, populated
,
726 page_start
, page_end
);
735 * pcpu_pre_unmap_flush - flush cache prior to unmapping
736 * @chunk: chunk the regions to be flushed belongs to
737 * @page_start: page index of the first page to be flushed
738 * @page_end: page index of the last page to be flushed + 1
740 * Pages in [@page_start,@page_end) of @chunk are about to be
741 * unmapped. Flush cache. As each flushing trial can be very
742 * expensive, issue flush on the whole region at once rather than
743 * doing it for each cpu. This could be an overkill but is more
746 static void pcpu_pre_unmap_flush(struct pcpu_chunk
*chunk
,
747 int page_start
, int page_end
)
750 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
751 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
754 static void __pcpu_unmap_pages(unsigned long addr
, int nr_pages
)
756 unmap_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
);
760 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
761 * @chunk: chunk of interest
762 * @pages: pages array which can be used to pass information to free
763 * @populated: populated bitmap
764 * @page_start: page index of the first page to unmap
765 * @page_end: page index of the last page to unmap + 1
767 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
768 * Corresponding elements in @pages were cleared by the caller and can
769 * be used to carry information to pcpu_free_pages() which will be
770 * called after all unmaps are finished. The caller should call
771 * proper pre/post flush functions.
773 static void pcpu_unmap_pages(struct pcpu_chunk
*chunk
,
774 struct page
**pages
, unsigned long *populated
,
775 int page_start
, int page_end
)
780 for_each_possible_cpu(cpu
) {
781 for (i
= page_start
; i
< page_end
; i
++) {
784 page
= pcpu_chunk_page(chunk
, cpu
, i
);
786 pages
[pcpu_page_idx(cpu
, i
)] = page
;
788 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
789 page_end
- page_start
);
792 for (i
= page_start
; i
< page_end
; i
++)
793 __clear_bit(i
, populated
);
797 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
798 * @chunk: pcpu_chunk the regions to be flushed belong to
799 * @page_start: page index of the first page to be flushed
800 * @page_end: page index of the last page to be flushed + 1
802 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
803 * TLB for the regions. This can be skipped if the area is to be
804 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
806 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
807 * for the whole region.
809 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk
*chunk
,
810 int page_start
, int page_end
)
812 flush_tlb_kernel_range(
813 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
814 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
817 static int __pcpu_map_pages(unsigned long addr
, struct page
**pages
,
820 return map_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
,
825 * pcpu_map_pages - map pages into a pcpu_chunk
826 * @chunk: chunk of interest
827 * @pages: pages array containing pages to be mapped
828 * @populated: populated bitmap
829 * @page_start: page index of the first page to map
830 * @page_end: page index of the last page to map + 1
832 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
833 * caller is responsible for calling pcpu_post_map_flush() after all
834 * mappings are complete.
836 * This function is responsible for setting corresponding bits in
837 * @chunk->populated bitmap and whatever is necessary for reverse
838 * lookup (addr -> chunk).
840 static int pcpu_map_pages(struct pcpu_chunk
*chunk
,
841 struct page
**pages
, unsigned long *populated
,
842 int page_start
, int page_end
)
844 unsigned int cpu
, tcpu
;
847 for_each_possible_cpu(cpu
) {
848 err
= __pcpu_map_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
849 &pages
[pcpu_page_idx(cpu
, page_start
)],
850 page_end
- page_start
);
855 /* mapping successful, link chunk and mark populated */
856 for (i
= page_start
; i
< page_end
; i
++) {
857 for_each_possible_cpu(cpu
)
858 pcpu_set_page_chunk(pages
[pcpu_page_idx(cpu
, i
)],
860 __set_bit(i
, populated
);
866 for_each_possible_cpu(tcpu
) {
869 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, tcpu
, page_start
),
870 page_end
- page_start
);
876 * pcpu_post_map_flush - flush cache after mapping
877 * @chunk: pcpu_chunk the regions to be flushed belong to
878 * @page_start: page index of the first page to be flushed
879 * @page_end: page index of the last page to be flushed + 1
881 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
884 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
885 * for the whole region.
887 static void pcpu_post_map_flush(struct pcpu_chunk
*chunk
,
888 int page_start
, int page_end
)
891 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
892 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
896 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
897 * @chunk: chunk to depopulate
898 * @off: offset to the area to depopulate
899 * @size: size of the area to depopulate in bytes
900 * @flush: whether to flush cache and tlb or not
902 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
903 * from @chunk. If @flush is true, vcache is flushed before unmapping
909 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
911 int page_start
= PFN_DOWN(off
);
912 int page_end
= PFN_UP(off
+ size
);
914 unsigned long *populated
;
917 /* quick path, check whether it's empty already */
919 pcpu_next_unpop(chunk
, &rs
, &re
, page_end
);
920 if (rs
== page_start
&& re
== page_end
)
923 /* immutable chunks can't be depopulated */
924 WARN_ON(chunk
->immutable
);
927 * If control reaches here, there must have been at least one
928 * successful population attempt so the temp pages array must
931 pages
= pcpu_get_pages_and_bitmap(chunk
, &populated
, false);
935 pcpu_pre_unmap_flush(chunk
, page_start
, page_end
);
937 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
)
938 pcpu_unmap_pages(chunk
, pages
, populated
, rs
, re
);
940 /* no need to flush tlb, vmalloc will handle it lazily */
942 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
)
943 pcpu_free_pages(chunk
, pages
, populated
, rs
, re
);
945 /* commit new bitmap */
946 bitmap_copy(chunk
->populated
, populated
, pcpu_unit_pages
);
950 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
951 * @chunk: chunk of interest
952 * @off: offset to the area to populate
953 * @size: size of the area to populate in bytes
955 * For each cpu, populate and map pages [@page_start,@page_end) into
956 * @chunk. The area is cleared on return.
959 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
961 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
963 int page_start
= PFN_DOWN(off
);
964 int page_end
= PFN_UP(off
+ size
);
965 int free_end
= page_start
, unmap_end
= page_start
;
967 unsigned long *populated
;
971 /* quick path, check whether all pages are already there */
973 pcpu_next_pop(chunk
, &rs
, &re
, page_end
);
974 if (rs
== page_start
&& re
== page_end
)
977 /* need to allocate and map pages, this chunk can't be immutable */
978 WARN_ON(chunk
->immutable
);
980 pages
= pcpu_get_pages_and_bitmap(chunk
, &populated
, true);
985 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
986 rc
= pcpu_alloc_pages(chunk
, pages
, populated
, rs
, re
);
992 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
993 rc
= pcpu_map_pages(chunk
, pages
, populated
, rs
, re
);
998 pcpu_post_map_flush(chunk
, page_start
, page_end
);
1000 /* commit new bitmap */
1001 bitmap_copy(chunk
->populated
, populated
, pcpu_unit_pages
);
1003 for_each_possible_cpu(cpu
)
1004 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1008 pcpu_pre_unmap_flush(chunk
, page_start
, unmap_end
);
1009 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, unmap_end
)
1010 pcpu_unmap_pages(chunk
, pages
, populated
, rs
, re
);
1011 pcpu_post_unmap_tlb_flush(chunk
, page_start
, unmap_end
);
1013 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, free_end
)
1014 pcpu_free_pages(chunk
, pages
, populated
, rs
, re
);
1018 static void free_pcpu_chunk(struct pcpu_chunk
*chunk
)
1023 pcpu_free_vm_areas(chunk
->vms
, pcpu_nr_groups
);
1024 pcpu_mem_free(chunk
->map
, chunk
->map_alloc
* sizeof(chunk
->map
[0]));
1028 static struct pcpu_chunk
*alloc_pcpu_chunk(void)
1030 struct pcpu_chunk
*chunk
;
1032 chunk
= kzalloc(pcpu_chunk_struct_size
, GFP_KERNEL
);
1036 chunk
->map
= pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC
* sizeof(chunk
->map
[0]));
1037 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
1038 chunk
->map
[chunk
->map_used
++] = pcpu_unit_size
;
1040 chunk
->vms
= pcpu_get_vm_areas(pcpu_group_offsets
, pcpu_group_sizes
,
1041 pcpu_nr_groups
, pcpu_atom_size
,
1044 free_pcpu_chunk(chunk
);
1048 INIT_LIST_HEAD(&chunk
->list
);
1049 chunk
->free_size
= pcpu_unit_size
;
1050 chunk
->contig_hint
= pcpu_unit_size
;
1051 chunk
->base_addr
= chunk
->vms
[0]->addr
- pcpu_group_offsets
[0];
1057 * pcpu_alloc - the percpu allocator
1058 * @size: size of area to allocate in bytes
1059 * @align: alignment of area (max PAGE_SIZE)
1060 * @reserved: allocate from the reserved chunk if available
1062 * Allocate percpu area of @size bytes aligned at @align.
1065 * Does GFP_KERNEL allocation.
1068 * Percpu pointer to the allocated area on success, NULL on failure.
1070 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
)
1072 static int warn_limit
= 10;
1073 struct pcpu_chunk
*chunk
;
1075 int slot
, off
, new_alloc
;
1076 unsigned long flags
;
1078 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
1079 WARN(true, "illegal size (%zu) or align (%zu) for "
1080 "percpu allocation\n", size
, align
);
1084 mutex_lock(&pcpu_alloc_mutex
);
1085 spin_lock_irqsave(&pcpu_lock
, flags
);
1087 /* serve reserved allocations from the reserved chunk if available */
1088 if (reserved
&& pcpu_reserved_chunk
) {
1089 chunk
= pcpu_reserved_chunk
;
1091 if (size
> chunk
->contig_hint
) {
1092 err
= "alloc from reserved chunk failed";
1096 while ((new_alloc
= pcpu_need_to_extend(chunk
))) {
1097 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1098 if (pcpu_extend_area_map(chunk
, new_alloc
) < 0) {
1099 err
= "failed to extend area map of reserved chunk";
1100 goto fail_unlock_mutex
;
1102 spin_lock_irqsave(&pcpu_lock
, flags
);
1105 off
= pcpu_alloc_area(chunk
, size
, align
);
1109 err
= "alloc from reserved chunk failed";
1114 /* search through normal chunks */
1115 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
1116 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1117 if (size
> chunk
->contig_hint
)
1120 new_alloc
= pcpu_need_to_extend(chunk
);
1122 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1123 if (pcpu_extend_area_map(chunk
,
1125 err
= "failed to extend area map";
1126 goto fail_unlock_mutex
;
1128 spin_lock_irqsave(&pcpu_lock
, flags
);
1130 * pcpu_lock has been dropped, need to
1131 * restart cpu_slot list walking.
1136 off
= pcpu_alloc_area(chunk
, size
, align
);
1142 /* hmmm... no space left, create a new chunk */
1143 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1145 chunk
= alloc_pcpu_chunk();
1147 err
= "failed to allocate new chunk";
1148 goto fail_unlock_mutex
;
1151 spin_lock_irqsave(&pcpu_lock
, flags
);
1152 pcpu_chunk_relocate(chunk
, -1);
1156 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1158 /* populate, map and clear the area */
1159 if (pcpu_populate_chunk(chunk
, off
, size
)) {
1160 spin_lock_irqsave(&pcpu_lock
, flags
);
1161 pcpu_free_area(chunk
, off
);
1162 err
= "failed to populate";
1166 mutex_unlock(&pcpu_alloc_mutex
);
1168 /* return address relative to base address */
1169 return __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1172 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1174 mutex_unlock(&pcpu_alloc_mutex
);
1176 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1177 "%s\n", size
, align
, err
);
1180 pr_info("PERCPU: limit reached, disable warning\n");
1186 * __alloc_percpu - allocate dynamic percpu area
1187 * @size: size of area to allocate in bytes
1188 * @align: alignment of area (max PAGE_SIZE)
1190 * Allocate percpu area of @size bytes aligned at @align. Might
1191 * sleep. Might trigger writeouts.
1194 * Does GFP_KERNEL allocation.
1197 * Percpu pointer to the allocated area on success, NULL on failure.
1199 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
1201 return pcpu_alloc(size
, align
, false);
1203 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1206 * __alloc_reserved_percpu - allocate reserved percpu area
1207 * @size: size of area to allocate in bytes
1208 * @align: alignment of area (max PAGE_SIZE)
1210 * Allocate percpu area of @size bytes aligned at @align from reserved
1211 * percpu area if arch has set it up; otherwise, allocation is served
1212 * from the same dynamic area. Might sleep. Might trigger writeouts.
1215 * Does GFP_KERNEL allocation.
1218 * Percpu pointer to the allocated area on success, NULL on failure.
1220 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
1222 return pcpu_alloc(size
, align
, true);
1226 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1229 * Reclaim all fully free chunks except for the first one.
1232 * workqueue context.
1234 static void pcpu_reclaim(struct work_struct
*work
)
1237 struct list_head
*head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1238 struct pcpu_chunk
*chunk
, *next
;
1240 mutex_lock(&pcpu_alloc_mutex
);
1241 spin_lock_irq(&pcpu_lock
);
1243 list_for_each_entry_safe(chunk
, next
, head
, list
) {
1244 WARN_ON(chunk
->immutable
);
1246 /* spare the first one */
1247 if (chunk
== list_first_entry(head
, struct pcpu_chunk
, list
))
1250 list_move(&chunk
->list
, &todo
);
1253 spin_unlock_irq(&pcpu_lock
);
1255 list_for_each_entry_safe(chunk
, next
, &todo
, list
) {
1256 pcpu_depopulate_chunk(chunk
, 0, pcpu_unit_size
);
1257 free_pcpu_chunk(chunk
);
1260 mutex_unlock(&pcpu_alloc_mutex
);
1264 * free_percpu - free percpu area
1265 * @ptr: pointer to area to free
1267 * Free percpu area @ptr.
1270 * Can be called from atomic context.
1272 void free_percpu(void __percpu
*ptr
)
1275 struct pcpu_chunk
*chunk
;
1276 unsigned long flags
;
1282 addr
= __pcpu_ptr_to_addr(ptr
);
1284 spin_lock_irqsave(&pcpu_lock
, flags
);
1286 chunk
= pcpu_chunk_addr_search(addr
);
1287 off
= addr
- chunk
->base_addr
;
1289 pcpu_free_area(chunk
, off
);
1291 /* if there are more than one fully free chunks, wake up grim reaper */
1292 if (chunk
->free_size
== pcpu_unit_size
) {
1293 struct pcpu_chunk
*pos
;
1295 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1297 schedule_work(&pcpu_reclaim_work
);
1302 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1304 EXPORT_SYMBOL_GPL(free_percpu
);
1307 * is_kernel_percpu_address - test whether address is from static percpu area
1308 * @addr: address to test
1310 * Test whether @addr belongs to in-kernel static percpu area. Module
1311 * static percpu areas are not considered. For those, use
1312 * is_module_percpu_address().
1315 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1317 bool is_kernel_percpu_address(unsigned long addr
)
1319 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1320 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1323 for_each_possible_cpu(cpu
) {
1324 void *start
= per_cpu_ptr(base
, cpu
);
1326 if ((void *)addr
>= start
&& (void *)addr
< start
+ static_size
)
1333 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1334 * @addr: the address to be converted to physical address
1336 * Given @addr which is dereferenceable address obtained via one of
1337 * percpu access macros, this function translates it into its physical
1338 * address. The caller is responsible for ensuring @addr stays valid
1339 * until this function finishes.
1342 * The physical address for @addr.
1344 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
1346 if ((unsigned long)addr
< VMALLOC_START
||
1347 (unsigned long)addr
>= VMALLOC_END
)
1350 return page_to_phys(vmalloc_to_page(addr
));
1353 static inline size_t pcpu_calc_fc_sizes(size_t static_size
,
1354 size_t reserved_size
,
1359 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
1360 (*dyn_sizep
>= 0 ? *dyn_sizep
: 0));
1361 if (*dyn_sizep
!= 0)
1362 *dyn_sizep
= size_sum
- static_size
- reserved_size
;
1368 * pcpu_alloc_alloc_info - allocate percpu allocation info
1369 * @nr_groups: the number of groups
1370 * @nr_units: the number of units
1372 * Allocate ai which is large enough for @nr_groups groups containing
1373 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1374 * cpu_map array which is long enough for @nr_units and filled with
1375 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1376 * pointer of other groups.
1379 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1382 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1385 struct pcpu_alloc_info
*ai
;
1386 size_t base_size
, ai_size
;
1390 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1391 __alignof__(ai
->groups
[0].cpu_map
[0]));
1392 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1394 ptr
= alloc_bootmem_nopanic(PFN_ALIGN(ai_size
));
1400 ai
->groups
[0].cpu_map
= ptr
;
1402 for (unit
= 0; unit
< nr_units
; unit
++)
1403 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1405 ai
->nr_groups
= nr_groups
;
1406 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1412 * pcpu_free_alloc_info - free percpu allocation info
1413 * @ai: pcpu_alloc_info to free
1415 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1417 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1419 free_bootmem(__pa(ai
), ai
->__ai_size
);
1423 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1424 * @reserved_size: the size of reserved percpu area in bytes
1425 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1426 * @atom_size: allocation atom size
1427 * @cpu_distance_fn: callback to determine distance between cpus, optional
1429 * This function determines grouping of units, their mappings to cpus
1430 * and other parameters considering needed percpu size, allocation
1431 * atom size and distances between CPUs.
1433 * Groups are always mutliples of atom size and CPUs which are of
1434 * LOCAL_DISTANCE both ways are grouped together and share space for
1435 * units in the same group. The returned configuration is guaranteed
1436 * to have CPUs on different nodes on different groups and >=75% usage
1437 * of allocated virtual address space.
1440 * On success, pointer to the new allocation_info is returned. On
1441 * failure, ERR_PTR value is returned.
1443 struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
1444 size_t reserved_size
, ssize_t dyn_size
,
1446 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
1448 static int group_map
[NR_CPUS
] __initdata
;
1449 static int group_cnt
[NR_CPUS
] __initdata
;
1450 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1451 int group_cnt_max
= 0, nr_groups
= 1, nr_units
= 0;
1452 size_t size_sum
, min_unit_size
, alloc_size
;
1453 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
1454 int last_allocs
, group
, unit
;
1455 unsigned int cpu
, tcpu
;
1456 struct pcpu_alloc_info
*ai
;
1457 unsigned int *cpu_map
;
1459 /* this function may be called multiple times */
1460 memset(group_map
, 0, sizeof(group_map
));
1461 memset(group_cnt
, 0, sizeof(group_map
));
1464 * Determine min_unit_size, alloc_size and max_upa such that
1465 * alloc_size is multiple of atom_size and is the smallest
1466 * which can accomodate 4k aligned segments which are equal to
1467 * or larger than min_unit_size.
1469 size_sum
= pcpu_calc_fc_sizes(static_size
, reserved_size
, &dyn_size
);
1470 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
1472 alloc_size
= roundup(min_unit_size
, atom_size
);
1473 upa
= alloc_size
/ min_unit_size
;
1474 while (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1478 /* group cpus according to their proximity */
1479 for_each_possible_cpu(cpu
) {
1482 for_each_possible_cpu(tcpu
) {
1485 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
1486 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
1487 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
1489 nr_groups
= max(nr_groups
, group
+ 1);
1493 group_map
[cpu
] = group
;
1495 group_cnt_max
= max(group_cnt_max
, group_cnt
[group
]);
1499 * Expand unit size until address space usage goes over 75%
1500 * and then as much as possible without using more address
1503 last_allocs
= INT_MAX
;
1504 for (upa
= max_upa
; upa
; upa
--) {
1505 int allocs
= 0, wasted
= 0;
1507 if (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1510 for (group
= 0; group
< nr_groups
; group
++) {
1511 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
1512 allocs
+= this_allocs
;
1513 wasted
+= this_allocs
* upa
- group_cnt
[group
];
1517 * Don't accept if wastage is over 25%. The
1518 * greater-than comparison ensures upa==1 always
1519 * passes the following check.
1521 if (wasted
> num_possible_cpus() / 3)
1524 /* and then don't consume more memory */
1525 if (allocs
> last_allocs
)
1527 last_allocs
= allocs
;
1532 /* allocate and fill alloc_info */
1533 for (group
= 0; group
< nr_groups
; group
++)
1534 nr_units
+= roundup(group_cnt
[group
], upa
);
1536 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
1538 return ERR_PTR(-ENOMEM
);
1539 cpu_map
= ai
->groups
[0].cpu_map
;
1541 for (group
= 0; group
< nr_groups
; group
++) {
1542 ai
->groups
[group
].cpu_map
= cpu_map
;
1543 cpu_map
+= roundup(group_cnt
[group
], upa
);
1546 ai
->static_size
= static_size
;
1547 ai
->reserved_size
= reserved_size
;
1548 ai
->dyn_size
= dyn_size
;
1549 ai
->unit_size
= alloc_size
/ upa
;
1550 ai
->atom_size
= atom_size
;
1551 ai
->alloc_size
= alloc_size
;
1553 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
1554 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1557 * Initialize base_offset as if all groups are located
1558 * back-to-back. The caller should update this to
1559 * reflect actual allocation.
1561 gi
->base_offset
= unit
* ai
->unit_size
;
1563 for_each_possible_cpu(cpu
)
1564 if (group_map
[cpu
] == group
)
1565 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
1566 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
1567 unit
+= gi
->nr_units
;
1569 BUG_ON(unit
!= nr_units
);
1575 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1577 * @ai: allocation info to dump
1579 * Print out information about @ai using loglevel @lvl.
1581 static void pcpu_dump_alloc_info(const char *lvl
,
1582 const struct pcpu_alloc_info
*ai
)
1584 int group_width
= 1, cpu_width
= 1, width
;
1585 char empty_str
[] = "--------";
1586 int alloc
= 0, alloc_end
= 0;
1588 int upa
, apl
; /* units per alloc, allocs per line */
1594 v
= num_possible_cpus();
1597 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1599 upa
= ai
->alloc_size
/ ai
->unit_size
;
1600 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1601 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1603 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1604 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1605 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1607 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1608 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1609 int unit
= 0, unit_end
= 0;
1611 BUG_ON(gi
->nr_units
% upa
);
1612 for (alloc_end
+= gi
->nr_units
/ upa
;
1613 alloc
< alloc_end
; alloc
++) {
1614 if (!(alloc
% apl
)) {
1616 printk("%spcpu-alloc: ", lvl
);
1618 printk("[%0*d] ", group_width
, group
);
1620 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1621 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1622 printk("%0*d ", cpu_width
,
1625 printk("%s ", empty_str
);
1632 * pcpu_setup_first_chunk - initialize the first percpu chunk
1633 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1634 * @base_addr: mapped address
1636 * Initialize the first percpu chunk which contains the kernel static
1637 * perpcu area. This function is to be called from arch percpu area
1640 * @ai contains all information necessary to initialize the first
1641 * chunk and prime the dynamic percpu allocator.
1643 * @ai->static_size is the size of static percpu area.
1645 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1646 * reserve after the static area in the first chunk. This reserves
1647 * the first chunk such that it's available only through reserved
1648 * percpu allocation. This is primarily used to serve module percpu
1649 * static areas on architectures where the addressing model has
1650 * limited offset range for symbol relocations to guarantee module
1651 * percpu symbols fall inside the relocatable range.
1653 * @ai->dyn_size determines the number of bytes available for dynamic
1654 * allocation in the first chunk. The area between @ai->static_size +
1655 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1657 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1658 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1661 * @ai->atom_size is the allocation atom size and used as alignment
1664 * @ai->alloc_size is the allocation size and always multiple of
1665 * @ai->atom_size. This is larger than @ai->atom_size if
1666 * @ai->unit_size is larger than @ai->atom_size.
1668 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1669 * percpu areas. Units which should be colocated are put into the
1670 * same group. Dynamic VM areas will be allocated according to these
1671 * groupings. If @ai->nr_groups is zero, a single group containing
1672 * all units is assumed.
1674 * The caller should have mapped the first chunk at @base_addr and
1675 * copied static data to each unit.
1677 * If the first chunk ends up with both reserved and dynamic areas, it
1678 * is served by two chunks - one to serve the core static and reserved
1679 * areas and the other for the dynamic area. They share the same vm
1680 * and page map but uses different area allocation map to stay away
1681 * from each other. The latter chunk is circulated in the chunk slots
1682 * and available for dynamic allocation like any other chunks.
1685 * 0 on success, -errno on failure.
1687 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
1690 static char cpus_buf
[4096] __initdata
;
1691 static int smap
[2], dmap
[2];
1692 size_t dyn_size
= ai
->dyn_size
;
1693 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ dyn_size
;
1694 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1695 unsigned long *group_offsets
;
1696 size_t *group_sizes
;
1697 unsigned long *unit_off
;
1702 cpumask_scnprintf(cpus_buf
, sizeof(cpus_buf
), cpu_possible_mask
);
1704 #define PCPU_SETUP_BUG_ON(cond) do { \
1705 if (unlikely(cond)) { \
1706 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1707 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1708 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1714 BUILD_BUG_ON(ARRAY_SIZE(smap
) >= PCPU_DFL_MAP_ALLOC
||
1715 ARRAY_SIZE(dmap
) >= PCPU_DFL_MAP_ALLOC
);
1716 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
1717 PCPU_SETUP_BUG_ON(!ai
->static_size
);
1718 PCPU_SETUP_BUG_ON(!base_addr
);
1719 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
1720 PCPU_SETUP_BUG_ON(ai
->unit_size
& ~PAGE_MASK
);
1721 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
1723 /* process group information and build config tables accordingly */
1724 group_offsets
= alloc_bootmem(ai
->nr_groups
* sizeof(group_offsets
[0]));
1725 group_sizes
= alloc_bootmem(ai
->nr_groups
* sizeof(group_sizes
[0]));
1726 unit_map
= alloc_bootmem(nr_cpu_ids
* sizeof(unit_map
[0]));
1727 unit_off
= alloc_bootmem(nr_cpu_ids
* sizeof(unit_off
[0]));
1729 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
1730 unit_map
[cpu
] = UINT_MAX
;
1731 pcpu_first_unit_cpu
= NR_CPUS
;
1733 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
1734 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1736 group_offsets
[group
] = gi
->base_offset
;
1737 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
1739 for (i
= 0; i
< gi
->nr_units
; i
++) {
1740 cpu
= gi
->cpu_map
[i
];
1744 PCPU_SETUP_BUG_ON(cpu
> nr_cpu_ids
);
1745 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
1746 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
1748 unit_map
[cpu
] = unit
+ i
;
1749 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
1751 if (pcpu_first_unit_cpu
== NR_CPUS
)
1752 pcpu_first_unit_cpu
= cpu
;
1755 pcpu_last_unit_cpu
= cpu
;
1756 pcpu_nr_units
= unit
;
1758 for_each_possible_cpu(cpu
)
1759 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
1761 /* we're done parsing the input, undefine BUG macro and dump config */
1762 #undef PCPU_SETUP_BUG_ON
1763 pcpu_dump_alloc_info(KERN_INFO
, ai
);
1765 pcpu_nr_groups
= ai
->nr_groups
;
1766 pcpu_group_offsets
= group_offsets
;
1767 pcpu_group_sizes
= group_sizes
;
1768 pcpu_unit_map
= unit_map
;
1769 pcpu_unit_offsets
= unit_off
;
1771 /* determine basic parameters */
1772 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1773 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1774 pcpu_atom_size
= ai
->atom_size
;
1775 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
1776 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
1779 * Allocate chunk slots. The additional last slot is for
1782 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1783 pcpu_slot
= alloc_bootmem(pcpu_nr_slots
* sizeof(pcpu_slot
[0]));
1784 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1785 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1788 * Initialize static chunk. If reserved_size is zero, the
1789 * static chunk covers static area + dynamic allocation area
1790 * in the first chunk. If reserved_size is not zero, it
1791 * covers static area + reserved area (mostly used for module
1792 * static percpu allocation).
1794 schunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1795 INIT_LIST_HEAD(&schunk
->list
);
1796 schunk
->base_addr
= base_addr
;
1798 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1799 schunk
->immutable
= true;
1800 bitmap_fill(schunk
->populated
, pcpu_unit_pages
);
1802 if (ai
->reserved_size
) {
1803 schunk
->free_size
= ai
->reserved_size
;
1804 pcpu_reserved_chunk
= schunk
;
1805 pcpu_reserved_chunk_limit
= ai
->static_size
+ ai
->reserved_size
;
1807 schunk
->free_size
= dyn_size
;
1808 dyn_size
= 0; /* dynamic area covered */
1810 schunk
->contig_hint
= schunk
->free_size
;
1812 schunk
->map
[schunk
->map_used
++] = -ai
->static_size
;
1813 if (schunk
->free_size
)
1814 schunk
->map
[schunk
->map_used
++] = schunk
->free_size
;
1816 /* init dynamic chunk if necessary */
1818 dchunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1819 INIT_LIST_HEAD(&dchunk
->list
);
1820 dchunk
->base_addr
= base_addr
;
1822 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1823 dchunk
->immutable
= true;
1824 bitmap_fill(dchunk
->populated
, pcpu_unit_pages
);
1826 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1827 dchunk
->map
[dchunk
->map_used
++] = -pcpu_reserved_chunk_limit
;
1828 dchunk
->map
[dchunk
->map_used
++] = dchunk
->free_size
;
1831 /* link the first chunk in */
1832 pcpu_first_chunk
= dchunk
?: schunk
;
1833 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
1836 pcpu_base_addr
= base_addr
;
1840 const char *pcpu_fc_names
[PCPU_FC_NR
] __initdata
= {
1841 [PCPU_FC_AUTO
] = "auto",
1842 [PCPU_FC_EMBED
] = "embed",
1843 [PCPU_FC_PAGE
] = "page",
1846 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
1848 static int __init
percpu_alloc_setup(char *str
)
1852 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1853 else if (!strcmp(str
, "embed"))
1854 pcpu_chosen_fc
= PCPU_FC_EMBED
;
1856 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1857 else if (!strcmp(str
, "page"))
1858 pcpu_chosen_fc
= PCPU_FC_PAGE
;
1861 pr_warning("PERCPU: unknown allocator %s specified\n", str
);
1865 early_param("percpu_alloc", percpu_alloc_setup
);
1867 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1868 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1870 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1871 * @reserved_size: the size of reserved percpu area in bytes
1872 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1873 * @atom_size: allocation atom size
1874 * @cpu_distance_fn: callback to determine distance between cpus, optional
1875 * @alloc_fn: function to allocate percpu page
1876 * @free_fn: funtion to free percpu page
1878 * This is a helper to ease setting up embedded first percpu chunk and
1879 * can be called where pcpu_setup_first_chunk() is expected.
1881 * If this function is used to setup the first chunk, it is allocated
1882 * by calling @alloc_fn and used as-is without being mapped into
1883 * vmalloc area. Allocations are always whole multiples of @atom_size
1884 * aligned to @atom_size.
1886 * This enables the first chunk to piggy back on the linear physical
1887 * mapping which often uses larger page size. Please note that this
1888 * can result in very sparse cpu->unit mapping on NUMA machines thus
1889 * requiring large vmalloc address space. Don't use this allocator if
1890 * vmalloc space is not orders of magnitude larger than distances
1891 * between node memory addresses (ie. 32bit NUMA machines).
1893 * When @dyn_size is positive, dynamic area might be larger than
1894 * specified to fill page alignment. When @dyn_size is auto,
1895 * @dyn_size is just big enough to fill page alignment after static
1896 * and reserved areas.
1898 * If the needed size is smaller than the minimum or specified unit
1899 * size, the leftover is returned using @free_fn.
1902 * 0 on success, -errno on failure.
1904 int __init
pcpu_embed_first_chunk(size_t reserved_size
, ssize_t dyn_size
,
1906 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
1907 pcpu_fc_alloc_fn_t alloc_fn
,
1908 pcpu_fc_free_fn_t free_fn
)
1910 void *base
= (void *)ULONG_MAX
;
1911 void **areas
= NULL
;
1912 struct pcpu_alloc_info
*ai
;
1913 size_t size_sum
, areas_size
, max_distance
;
1916 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
1921 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
1922 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
1924 areas
= alloc_bootmem_nopanic(areas_size
);
1930 /* allocate, copy and determine base address */
1931 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1932 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1933 unsigned int cpu
= NR_CPUS
;
1936 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
1937 cpu
= gi
->cpu_map
[i
];
1938 BUG_ON(cpu
== NR_CPUS
);
1940 /* allocate space for the whole group */
1941 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
1944 goto out_free_areas
;
1948 base
= min(ptr
, base
);
1950 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
1951 if (gi
->cpu_map
[i
] == NR_CPUS
) {
1952 /* unused unit, free whole */
1953 free_fn(ptr
, ai
->unit_size
);
1956 /* copy and return the unused part */
1957 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
1958 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
1962 /* base address is now known, determine group base offsets */
1964 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1965 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
1966 max_distance
= max_t(size_t, max_distance
,
1967 ai
->groups
[group
].base_offset
);
1969 max_distance
+= ai
->unit_size
;
1971 /* warn if maximum distance is further than 75% of vmalloc space */
1972 if (max_distance
> (VMALLOC_END
- VMALLOC_START
) * 3 / 4) {
1973 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1975 max_distance
, VMALLOC_END
- VMALLOC_START
);
1976 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1977 /* and fail if we have fallback */
1983 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1984 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
1985 ai
->dyn_size
, ai
->unit_size
);
1987 rc
= pcpu_setup_first_chunk(ai
, base
);
1991 for (group
= 0; group
< ai
->nr_groups
; group
++)
1992 free_fn(areas
[group
],
1993 ai
->groups
[group
].nr_units
* ai
->unit_size
);
1995 pcpu_free_alloc_info(ai
);
1997 free_bootmem(__pa(areas
), areas_size
);
2000 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
2001 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
2003 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2005 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2006 * @reserved_size: the size of reserved percpu area in bytes
2007 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2008 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
2009 * @populate_pte_fn: function to populate pte
2011 * This is a helper to ease setting up page-remapped first percpu
2012 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2014 * This is the basic allocator. Static percpu area is allocated
2015 * page-by-page into vmalloc area.
2018 * 0 on success, -errno on failure.
2020 int __init
pcpu_page_first_chunk(size_t reserved_size
,
2021 pcpu_fc_alloc_fn_t alloc_fn
,
2022 pcpu_fc_free_fn_t free_fn
,
2023 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
2025 static struct vm_struct vm
;
2026 struct pcpu_alloc_info
*ai
;
2030 struct page
**pages
;
2033 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
2035 ai
= pcpu_build_alloc_info(reserved_size
, -1, PAGE_SIZE
, NULL
);
2038 BUG_ON(ai
->nr_groups
!= 1);
2039 BUG_ON(ai
->groups
[0].nr_units
!= num_possible_cpus());
2041 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2043 /* unaligned allocations can't be freed, round up to page size */
2044 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
2046 pages
= alloc_bootmem(pages_size
);
2048 /* allocate pages */
2050 for (unit
= 0; unit
< num_possible_cpus(); unit
++)
2051 for (i
= 0; i
< unit_pages
; i
++) {
2052 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
2055 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
2057 pr_warning("PERCPU: failed to allocate %s page "
2058 "for cpu%u\n", psize_str
, cpu
);
2061 pages
[j
++] = virt_to_page(ptr
);
2064 /* allocate vm area, map the pages and copy static data */
2065 vm
.flags
= VM_ALLOC
;
2066 vm
.size
= num_possible_cpus() * ai
->unit_size
;
2067 vm_area_register_early(&vm
, PAGE_SIZE
);
2069 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2070 unsigned long unit_addr
=
2071 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
2073 for (i
= 0; i
< unit_pages
; i
++)
2074 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
2076 /* pte already populated, the following shouldn't fail */
2077 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
2080 panic("failed to map percpu area, err=%d\n", rc
);
2083 * FIXME: Archs with virtual cache should flush local
2084 * cache for the linear mapping here - something
2085 * equivalent to flush_cache_vmap() on the local cpu.
2086 * flush_cache_vmap() can't be used as most supporting
2087 * data structures are not set up yet.
2090 /* copy static data */
2091 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
2094 /* we're ready, commit */
2095 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2096 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
2097 ai
->reserved_size
, ai
->dyn_size
);
2099 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
2104 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
2107 free_bootmem(__pa(pages
), pages_size
);
2108 pcpu_free_alloc_info(ai
);
2111 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2114 * Generic percpu area setup.
2116 * The embedding helper is used because its behavior closely resembles
2117 * the original non-dynamic generic percpu area setup. This is
2118 * important because many archs have addressing restrictions and might
2119 * fail if the percpu area is located far away from the previous
2120 * location. As an added bonus, in non-NUMA cases, embedding is
2121 * generally a good idea TLB-wise because percpu area can piggy back
2122 * on the physical linear memory mapping which uses large page
2123 * mappings on applicable archs.
2125 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2126 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
2127 EXPORT_SYMBOL(__per_cpu_offset
);
2129 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
2132 return __alloc_bootmem_nopanic(size
, align
, __pa(MAX_DMA_ADDRESS
));
2135 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
2137 free_bootmem(__pa(ptr
), size
);
2140 void __init
setup_per_cpu_areas(void)
2142 unsigned long delta
;
2147 * Always reserve area for module percpu variables. That's
2148 * what the legacy allocator did.
2150 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2151 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2152 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2154 panic("Failed to initialized percpu areas.");
2156 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2157 for_each_possible_cpu(cpu
)
2158 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2160 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */