2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/ima.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/generic_acl.h>
46 #include <linux/mman.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/vfs.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
104 SGP_READ
, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE
, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE
, /* may exceed i_size, may allocate page */
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages
/ 2;
116 static unsigned long shmem_default_max_inodes(void)
118 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
122 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
123 struct page
**pagep
, enum sgp_type sgp
, int *type
);
125 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
132 * Mobility flags are masked out as swap vectors cannot move
134 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
135 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
138 static inline void shmem_dir_free(struct page
*page
)
140 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
143 static struct page
**shmem_dir_map(struct page
*page
)
145 return (struct page
**)kmap_atomic(page
, KM_USER0
);
148 static inline void shmem_dir_unmap(struct page
**dir
)
150 kunmap_atomic(dir
, KM_USER0
);
153 static swp_entry_t
*shmem_swp_map(struct page
*page
)
155 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
158 static inline void shmem_swp_balance_unmap(void)
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
170 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
172 kunmap_atomic(entry
, KM_USER1
);
175 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
177 return sb
->s_fs_info
;
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
186 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
188 return (flags
& VM_NORESERVE
) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size
));
192 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
194 if (!(flags
& VM_NORESERVE
))
195 vm_unacct_memory(VM_ACCT(size
));
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
204 static inline int shmem_acct_block(unsigned long flags
)
206 return (flags
& VM_NORESERVE
) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
210 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
212 if (flags
& VM_NORESERVE
)
213 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
216 static const struct super_operations shmem_ops
;
217 static const struct address_space_operations shmem_aops
;
218 static const struct file_operations shmem_file_operations
;
219 static const struct inode_operations shmem_inode_operations
;
220 static const struct inode_operations shmem_dir_inode_operations
;
221 static const struct inode_operations shmem_special_inode_operations
;
222 static struct vm_operations_struct shmem_vm_ops
;
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
225 .ra_pages
= 0, /* No readahead */
226 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
227 .unplug_io_fn
= default_unplug_io_fn
,
230 static LIST_HEAD(shmem_swaplist
);
231 static DEFINE_MUTEX(shmem_swaplist_mutex
);
233 static void shmem_free_blocks(struct inode
*inode
, long pages
)
235 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
236 if (sbinfo
->max_blocks
) {
237 spin_lock(&sbinfo
->stat_lock
);
238 sbinfo
->free_blocks
+= pages
;
239 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
240 spin_unlock(&sbinfo
->stat_lock
);
244 static int shmem_reserve_inode(struct super_block
*sb
)
246 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
247 if (sbinfo
->max_inodes
) {
248 spin_lock(&sbinfo
->stat_lock
);
249 if (!sbinfo
->free_inodes
) {
250 spin_unlock(&sbinfo
->stat_lock
);
253 sbinfo
->free_inodes
--;
254 spin_unlock(&sbinfo
->stat_lock
);
259 static void shmem_free_inode(struct super_block
*sb
)
261 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
262 if (sbinfo
->max_inodes
) {
263 spin_lock(&sbinfo
->stat_lock
);
264 sbinfo
->free_inodes
++;
265 spin_unlock(&sbinfo
->stat_lock
);
270 * shmem_recalc_inode - recalculate the size of an inode
271 * @inode: inode to recalc
273 * We have to calculate the free blocks since the mm can drop
274 * undirtied hole pages behind our back.
276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 * It has to be called with the spinlock held.
281 static void shmem_recalc_inode(struct inode
*inode
)
283 struct shmem_inode_info
*info
= SHMEM_I(inode
);
286 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
288 info
->alloced
-= freed
;
289 shmem_unacct_blocks(info
->flags
, freed
);
290 shmem_free_blocks(inode
, freed
);
295 * shmem_swp_entry - find the swap vector position in the info structure
296 * @info: info structure for the inode
297 * @index: index of the page to find
298 * @page: optional page to add to the structure. Has to be preset to
301 * If there is no space allocated yet it will return NULL when
302 * page is NULL, else it will use the page for the needed block,
303 * setting it to NULL on return to indicate that it has been used.
305 * The swap vector is organized the following way:
307 * There are SHMEM_NR_DIRECT entries directly stored in the
308 * shmem_inode_info structure. So small files do not need an addional
311 * For pages with index > SHMEM_NR_DIRECT there is the pointer
312 * i_indirect which points to a page which holds in the first half
313 * doubly indirect blocks, in the second half triple indirect blocks:
315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316 * following layout (for SHMEM_NR_DIRECT == 16):
318 * i_indirect -> dir --> 16-19
331 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
333 unsigned long offset
;
337 if (index
< SHMEM_NR_DIRECT
) {
338 shmem_swp_balance_unmap();
339 return info
->i_direct
+index
;
341 if (!info
->i_indirect
) {
343 info
->i_indirect
= *page
;
346 return NULL
; /* need another page */
349 index
-= SHMEM_NR_DIRECT
;
350 offset
= index
% ENTRIES_PER_PAGE
;
351 index
/= ENTRIES_PER_PAGE
;
352 dir
= shmem_dir_map(info
->i_indirect
);
354 if (index
>= ENTRIES_PER_PAGE
/2) {
355 index
-= ENTRIES_PER_PAGE
/2;
356 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
357 index
%= ENTRIES_PER_PAGE
;
364 shmem_dir_unmap(dir
);
365 return NULL
; /* need another page */
367 shmem_dir_unmap(dir
);
368 dir
= shmem_dir_map(subdir
);
374 if (!page
|| !(subdir
= *page
)) {
375 shmem_dir_unmap(dir
);
376 return NULL
; /* need a page */
381 shmem_dir_unmap(dir
);
382 return shmem_swp_map(subdir
) + offset
;
385 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
387 long incdec
= value
? 1: -1;
390 info
->swapped
+= incdec
;
391 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
392 struct page
*page
= kmap_atomic_to_page(entry
);
393 set_page_private(page
, page_private(page
) + incdec
);
398 * shmem_swp_alloc - get the position of the swap entry for the page.
399 * @info: info structure for the inode
400 * @index: index of the page to find
401 * @sgp: check and recheck i_size? skip allocation?
403 * If the entry does not exist, allocate it.
405 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
407 struct inode
*inode
= &info
->vfs_inode
;
408 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
409 struct page
*page
= NULL
;
412 if (sgp
!= SGP_WRITE
&&
413 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
414 return ERR_PTR(-EINVAL
);
416 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
418 return shmem_swp_map(ZERO_PAGE(0));
420 * Test free_blocks against 1 not 0, since we have 1 data
421 * page (and perhaps indirect index pages) yet to allocate:
422 * a waste to allocate index if we cannot allocate data.
424 if (sbinfo
->max_blocks
) {
425 spin_lock(&sbinfo
->stat_lock
);
426 if (sbinfo
->free_blocks
<= 1) {
427 spin_unlock(&sbinfo
->stat_lock
);
428 return ERR_PTR(-ENOSPC
);
430 sbinfo
->free_blocks
--;
431 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
432 spin_unlock(&sbinfo
->stat_lock
);
435 spin_unlock(&info
->lock
);
436 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
438 set_page_private(page
, 0);
439 spin_lock(&info
->lock
);
442 shmem_free_blocks(inode
, 1);
443 return ERR_PTR(-ENOMEM
);
445 if (sgp
!= SGP_WRITE
&&
446 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
447 entry
= ERR_PTR(-EINVAL
);
450 if (info
->next_index
<= index
)
451 info
->next_index
= index
+ 1;
454 /* another task gave its page, or truncated the file */
455 shmem_free_blocks(inode
, 1);
456 shmem_dir_free(page
);
458 if (info
->next_index
<= index
&& !IS_ERR(entry
))
459 info
->next_index
= index
+ 1;
464 * shmem_free_swp - free some swap entries in a directory
465 * @dir: pointer to the directory
466 * @edir: pointer after last entry of the directory
467 * @punch_lock: pointer to spinlock when needed for the holepunch case
469 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
470 spinlock_t
*punch_lock
)
472 spinlock_t
*punch_unlock
= NULL
;
476 for (ptr
= dir
; ptr
< edir
; ptr
++) {
478 if (unlikely(punch_lock
)) {
479 punch_unlock
= punch_lock
;
481 spin_lock(punch_unlock
);
485 free_swap_and_cache(*ptr
);
486 *ptr
= (swp_entry_t
){0};
491 spin_unlock(punch_unlock
);
495 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
496 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
501 ptr
= shmem_swp_map(subdir
);
502 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
503 int size
= limit
- offset
;
504 if (size
> LATENCY_LIMIT
)
505 size
= LATENCY_LIMIT
;
506 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
508 if (need_resched()) {
509 shmem_swp_unmap(ptr
);
511 shmem_dir_unmap(*dir
);
515 ptr
= shmem_swp_map(subdir
);
518 shmem_swp_unmap(ptr
);
522 static void shmem_free_pages(struct list_head
*next
)
528 page
= container_of(next
, struct page
, lru
);
530 shmem_dir_free(page
);
532 if (freed
>= LATENCY_LIMIT
) {
539 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
541 struct shmem_inode_info
*info
= SHMEM_I(inode
);
546 unsigned long diroff
;
552 LIST_HEAD(pages_to_free
);
553 long nr_pages_to_free
= 0;
554 long nr_swaps_freed
= 0;
558 spinlock_t
*needs_lock
;
559 spinlock_t
*punch_lock
;
560 unsigned long upper_limit
;
562 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
563 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
564 if (idx
>= info
->next_index
)
567 spin_lock(&info
->lock
);
568 info
->flags
|= SHMEM_TRUNCATE
;
569 if (likely(end
== (loff_t
) -1)) {
570 limit
= info
->next_index
;
571 upper_limit
= SHMEM_MAX_INDEX
;
572 info
->next_index
= idx
;
576 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
577 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
579 upper_limit
= SHMEM_MAX_INDEX
;
581 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
584 needs_lock
= &info
->lock
;
588 topdir
= info
->i_indirect
;
589 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
590 info
->i_indirect
= NULL
;
592 list_add(&topdir
->lru
, &pages_to_free
);
594 spin_unlock(&info
->lock
);
596 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
597 ptr
= info
->i_direct
;
599 if (size
> SHMEM_NR_DIRECT
)
600 size
= SHMEM_NR_DIRECT
;
601 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
605 * If there are no indirect blocks or we are punching a hole
606 * below indirect blocks, nothing to be done.
608 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
612 * The truncation case has already dropped info->lock, and we're safe
613 * because i_size and next_index have already been lowered, preventing
614 * access beyond. But in the punch_hole case, we still need to take
615 * the lock when updating the swap directory, because there might be
616 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
617 * shmem_writepage. However, whenever we find we can remove a whole
618 * directory page (not at the misaligned start or end of the range),
619 * we first NULLify its pointer in the level above, and then have no
620 * need to take the lock when updating its contents: needs_lock and
621 * punch_lock (either pointing to info->lock or NULL) manage this.
624 upper_limit
-= SHMEM_NR_DIRECT
;
625 limit
-= SHMEM_NR_DIRECT
;
626 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
627 offset
= idx
% ENTRIES_PER_PAGE
;
630 dir
= shmem_dir_map(topdir
);
631 stage
= ENTRIES_PER_PAGEPAGE
/2;
632 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
634 diroff
= idx
/ENTRIES_PER_PAGE
;
636 dir
+= ENTRIES_PER_PAGE
/2;
637 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
639 stage
+= ENTRIES_PER_PAGEPAGE
;
642 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
643 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
644 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
646 spin_lock(needs_lock
);
648 spin_unlock(needs_lock
);
653 list_add(&middir
->lru
, &pages_to_free
);
655 shmem_dir_unmap(dir
);
656 dir
= shmem_dir_map(middir
);
664 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
665 if (unlikely(idx
== stage
)) {
666 shmem_dir_unmap(dir
);
667 dir
= shmem_dir_map(topdir
) +
668 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
671 idx
+= ENTRIES_PER_PAGEPAGE
;
675 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
678 needs_lock
= &info
->lock
;
679 if (upper_limit
>= stage
) {
681 spin_lock(needs_lock
);
683 spin_unlock(needs_lock
);
688 list_add(&middir
->lru
, &pages_to_free
);
690 shmem_dir_unmap(dir
);
692 dir
= shmem_dir_map(middir
);
695 punch_lock
= needs_lock
;
696 subdir
= dir
[diroff
];
697 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
699 spin_lock(needs_lock
);
701 spin_unlock(needs_lock
);
706 list_add(&subdir
->lru
, &pages_to_free
);
708 if (subdir
&& page_private(subdir
) /* has swap entries */) {
710 if (size
> ENTRIES_PER_PAGE
)
711 size
= ENTRIES_PER_PAGE
;
712 freed
= shmem_map_and_free_swp(subdir
,
713 offset
, size
, &dir
, punch_lock
);
715 dir
= shmem_dir_map(middir
);
716 nr_swaps_freed
+= freed
;
717 if (offset
|| punch_lock
) {
718 spin_lock(&info
->lock
);
719 set_page_private(subdir
,
720 page_private(subdir
) - freed
);
721 spin_unlock(&info
->lock
);
723 BUG_ON(page_private(subdir
) != freed
);
728 shmem_dir_unmap(dir
);
730 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
732 * Call truncate_inode_pages again: racing shmem_unuse_inode
733 * may have swizzled a page in from swap since vmtruncate or
734 * generic_delete_inode did it, before we lowered next_index.
735 * Also, though shmem_getpage checks i_size before adding to
736 * cache, no recheck after: so fix the narrow window there too.
738 * Recalling truncate_inode_pages_range and unmap_mapping_range
739 * every time for punch_hole (which never got a chance to clear
740 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
741 * yet hardly ever necessary: try to optimize them out later.
743 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
745 unmap_mapping_range(inode
->i_mapping
, start
,
749 spin_lock(&info
->lock
);
750 info
->flags
&= ~SHMEM_TRUNCATE
;
751 info
->swapped
-= nr_swaps_freed
;
752 if (nr_pages_to_free
)
753 shmem_free_blocks(inode
, nr_pages_to_free
);
754 shmem_recalc_inode(inode
);
755 spin_unlock(&info
->lock
);
758 * Empty swap vector directory pages to be freed?
760 if (!list_empty(&pages_to_free
)) {
761 pages_to_free
.prev
->next
= NULL
;
762 shmem_free_pages(pages_to_free
.next
);
766 static void shmem_truncate(struct inode
*inode
)
768 shmem_truncate_range(inode
, inode
->i_size
, (loff_t
)-1);
771 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
773 struct inode
*inode
= dentry
->d_inode
;
774 struct page
*page
= NULL
;
777 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
778 if (attr
->ia_size
< inode
->i_size
) {
780 * If truncating down to a partial page, then
781 * if that page is already allocated, hold it
782 * in memory until the truncation is over, so
783 * truncate_partial_page cannnot miss it were
784 * it assigned to swap.
786 if (attr
->ia_size
& (PAGE_CACHE_SIZE
-1)) {
787 (void) shmem_getpage(inode
,
788 attr
->ia_size
>>PAGE_CACHE_SHIFT
,
789 &page
, SGP_READ
, NULL
);
794 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
795 * detect if any pages might have been added to cache
796 * after truncate_inode_pages. But we needn't bother
797 * if it's being fully truncated to zero-length: the
798 * nrpages check is efficient enough in that case.
801 struct shmem_inode_info
*info
= SHMEM_I(inode
);
802 spin_lock(&info
->lock
);
803 info
->flags
&= ~SHMEM_PAGEIN
;
804 spin_unlock(&info
->lock
);
809 error
= inode_change_ok(inode
, attr
);
811 error
= inode_setattr(inode
, attr
);
812 #ifdef CONFIG_TMPFS_POSIX_ACL
813 if (!error
&& (attr
->ia_valid
& ATTR_MODE
))
814 error
= generic_acl_chmod(inode
, &shmem_acl_ops
);
817 page_cache_release(page
);
821 static void shmem_delete_inode(struct inode
*inode
)
823 struct shmem_inode_info
*info
= SHMEM_I(inode
);
825 if (inode
->i_op
->truncate
== shmem_truncate
) {
826 truncate_inode_pages(inode
->i_mapping
, 0);
827 shmem_unacct_size(info
->flags
, inode
->i_size
);
829 shmem_truncate(inode
);
830 if (!list_empty(&info
->swaplist
)) {
831 mutex_lock(&shmem_swaplist_mutex
);
832 list_del_init(&info
->swaplist
);
833 mutex_unlock(&shmem_swaplist_mutex
);
836 BUG_ON(inode
->i_blocks
);
837 shmem_free_inode(inode
->i_sb
);
841 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
845 for (ptr
= dir
; ptr
< edir
; ptr
++) {
846 if (ptr
->val
== entry
.val
)
852 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
866 ptr
= info
->i_direct
;
867 spin_lock(&info
->lock
);
868 if (!info
->swapped
) {
869 list_del_init(&info
->swaplist
);
872 limit
= info
->next_index
;
874 if (size
> SHMEM_NR_DIRECT
)
875 size
= SHMEM_NR_DIRECT
;
876 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
879 if (!info
->i_indirect
)
882 dir
= shmem_dir_map(info
->i_indirect
);
883 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
885 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
886 if (unlikely(idx
== stage
)) {
887 shmem_dir_unmap(dir
-1);
888 if (cond_resched_lock(&info
->lock
)) {
889 /* check it has not been truncated */
890 if (limit
> info
->next_index
) {
891 limit
= info
->next_index
;
896 dir
= shmem_dir_map(info
->i_indirect
) +
897 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
900 idx
+= ENTRIES_PER_PAGEPAGE
;
904 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
906 shmem_dir_unmap(dir
);
907 dir
= shmem_dir_map(subdir
);
910 if (subdir
&& page_private(subdir
)) {
911 ptr
= shmem_swp_map(subdir
);
913 if (size
> ENTRIES_PER_PAGE
)
914 size
= ENTRIES_PER_PAGE
;
915 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
916 shmem_swp_unmap(ptr
);
918 shmem_dir_unmap(dir
);
924 shmem_dir_unmap(dir
-1);
926 spin_unlock(&info
->lock
);
930 inode
= igrab(&info
->vfs_inode
);
931 spin_unlock(&info
->lock
);
934 * Move _head_ to start search for next from here.
935 * But be careful: shmem_delete_inode checks list_empty without taking
936 * mutex, and there's an instant in list_move_tail when info->swaplist
937 * would appear empty, if it were the only one on shmem_swaplist. We
938 * could avoid doing it if inode NULL; or use this minor optimization.
940 if (shmem_swaplist
.next
!= &info
->swaplist
)
941 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
942 mutex_unlock(&shmem_swaplist_mutex
);
948 * Charge page using GFP_KERNEL while we can wait.
949 * Charged back to the user(not to caller) when swap account is used.
950 * add_to_page_cache() will be called with GFP_NOWAIT.
952 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
955 error
= radix_tree_preload(GFP_KERNEL
);
957 mem_cgroup_uncharge_cache_page(page
);
962 spin_lock(&info
->lock
);
963 ptr
= shmem_swp_entry(info
, idx
, NULL
);
964 if (ptr
&& ptr
->val
== entry
.val
) {
965 error
= add_to_page_cache_locked(page
, inode
->i_mapping
,
967 /* does mem_cgroup_uncharge_cache_page on error */
968 } else /* we must compensate for our precharge above */
969 mem_cgroup_uncharge_cache_page(page
);
971 if (error
== -EEXIST
) {
972 struct page
*filepage
= find_get_page(inode
->i_mapping
, idx
);
976 * There might be a more uptodate page coming down
977 * from a stacked writepage: forget our swappage if so.
979 if (PageUptodate(filepage
))
981 page_cache_release(filepage
);
985 delete_from_swap_cache(page
);
986 set_page_dirty(page
);
987 info
->flags
|= SHMEM_PAGEIN
;
988 shmem_swp_set(info
, ptr
, 0);
990 error
= 1; /* not an error, but entry was found */
993 shmem_swp_unmap(ptr
);
994 spin_unlock(&info
->lock
);
995 radix_tree_preload_end();
998 page_cache_release(page
);
999 iput(inode
); /* allows for NULL */
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1006 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
1008 struct list_head
*p
, *next
;
1009 struct shmem_inode_info
*info
;
1012 mutex_lock(&shmem_swaplist_mutex
);
1013 list_for_each_safe(p
, next
, &shmem_swaplist
) {
1014 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
1015 found
= shmem_unuse_inode(info
, entry
, page
);
1020 mutex_unlock(&shmem_swaplist_mutex
);
1021 out
: return found
; /* 0 or 1 or -ENOMEM */
1025 * Move the page from the page cache to the swap cache.
1027 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1029 struct shmem_inode_info
*info
;
1030 swp_entry_t
*entry
, swap
;
1031 struct address_space
*mapping
;
1032 unsigned long index
;
1033 struct inode
*inode
;
1035 BUG_ON(!PageLocked(page
));
1036 mapping
= page
->mapping
;
1037 index
= page
->index
;
1038 inode
= mapping
->host
;
1039 info
= SHMEM_I(inode
);
1040 if (info
->flags
& VM_LOCKED
)
1042 if (!total_swap_pages
)
1046 * shmem_backing_dev_info's capabilities prevent regular writeback or
1047 * sync from ever calling shmem_writepage; but a stacking filesystem
1048 * may use the ->writepage of its underlying filesystem, in which case
1049 * tmpfs should write out to swap only in response to memory pressure,
1050 * and not for pdflush or sync. However, in those cases, we do still
1051 * want to check if there's a redundant swappage to be discarded.
1053 if (wbc
->for_reclaim
)
1054 swap
= get_swap_page();
1058 spin_lock(&info
->lock
);
1059 if (index
>= info
->next_index
) {
1060 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1063 entry
= shmem_swp_entry(info
, index
, NULL
);
1066 * The more uptodate page coming down from a stacked
1067 * writepage should replace our old swappage.
1069 free_swap_and_cache(*entry
);
1070 shmem_swp_set(info
, entry
, 0);
1072 shmem_recalc_inode(inode
);
1074 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1075 remove_from_page_cache(page
);
1076 shmem_swp_set(info
, entry
, swap
.val
);
1077 shmem_swp_unmap(entry
);
1078 if (list_empty(&info
->swaplist
))
1079 inode
= igrab(inode
);
1082 spin_unlock(&info
->lock
);
1083 swap_duplicate(swap
);
1084 BUG_ON(page_mapped(page
));
1085 page_cache_release(page
); /* pagecache ref */
1086 swap_writepage(page
, wbc
);
1088 mutex_lock(&shmem_swaplist_mutex
);
1089 /* move instead of add in case we're racing */
1090 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
1091 mutex_unlock(&shmem_swaplist_mutex
);
1097 shmem_swp_unmap(entry
);
1099 spin_unlock(&info
->lock
);
1100 swapcache_free(swap
, NULL
);
1102 set_page_dirty(page
);
1103 if (wbc
->for_reclaim
)
1104 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1111 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1115 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1116 return; /* show nothing */
1118 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
1120 seq_printf(seq
, ",mpol=%s", buffer
);
1123 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1125 struct mempolicy
*mpol
= NULL
;
1127 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1128 mpol
= sbinfo
->mpol
;
1130 spin_unlock(&sbinfo
->stat_lock
);
1134 #endif /* CONFIG_TMPFS */
1136 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1137 struct shmem_inode_info
*info
, unsigned long idx
)
1139 struct mempolicy mpol
, *spol
;
1140 struct vm_area_struct pvma
;
1143 spol
= mpol_cond_copy(&mpol
,
1144 mpol_shared_policy_lookup(&info
->policy
, idx
));
1146 /* Create a pseudo vma that just contains the policy */
1148 pvma
.vm_pgoff
= idx
;
1150 pvma
.vm_policy
= spol
;
1151 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1155 static struct page
*shmem_alloc_page(gfp_t gfp
,
1156 struct shmem_inode_info
*info
, unsigned long idx
)
1158 struct vm_area_struct pvma
;
1160 /* Create a pseudo vma that just contains the policy */
1162 pvma
.vm_pgoff
= idx
;
1164 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1167 * alloc_page_vma() will drop the shared policy reference
1169 return alloc_page_vma(gfp
, &pvma
, 0);
1171 #else /* !CONFIG_NUMA */
1173 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*p
)
1176 #endif /* CONFIG_TMPFS */
1178 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1179 struct shmem_inode_info
*info
, unsigned long idx
)
1181 return swapin_readahead(entry
, gfp
, NULL
, 0);
1184 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1185 struct shmem_inode_info
*info
, unsigned long idx
)
1187 return alloc_page(gfp
);
1189 #endif /* CONFIG_NUMA */
1191 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1192 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1199 * shmem_getpage - either get the page from swap or allocate a new one
1201 * If we allocate a new one we do not mark it dirty. That's up to the
1202 * vm. If we swap it in we mark it dirty since we also free the swap
1203 * entry since a page cannot live in both the swap and page cache
1205 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1206 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1208 struct address_space
*mapping
= inode
->i_mapping
;
1209 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1210 struct shmem_sb_info
*sbinfo
;
1211 struct page
*filepage
= *pagep
;
1212 struct page
*swappage
;
1218 if (idx
>= SHMEM_MAX_INDEX
)
1225 * Normally, filepage is NULL on entry, and either found
1226 * uptodate immediately, or allocated and zeroed, or read
1227 * in under swappage, which is then assigned to filepage.
1228 * But shmem_readpage (required for splice) passes in a locked
1229 * filepage, which may be found not uptodate by other callers
1230 * too, and may need to be copied from the swappage read in.
1234 filepage
= find_lock_page(mapping
, idx
);
1235 if (filepage
&& PageUptodate(filepage
))
1238 gfp
= mapping_gfp_mask(mapping
);
1241 * Try to preload while we can wait, to not make a habit of
1242 * draining atomic reserves; but don't latch on to this cpu.
1244 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1247 radix_tree_preload_end();
1250 spin_lock(&info
->lock
);
1251 shmem_recalc_inode(inode
);
1252 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1253 if (IS_ERR(entry
)) {
1254 spin_unlock(&info
->lock
);
1255 error
= PTR_ERR(entry
);
1261 /* Look it up and read it in.. */
1262 swappage
= lookup_swap_cache(swap
);
1264 shmem_swp_unmap(entry
);
1265 /* here we actually do the io */
1266 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1267 __count_vm_event(PGMAJFAULT
);
1268 *type
|= VM_FAULT_MAJOR
;
1270 spin_unlock(&info
->lock
);
1271 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1273 spin_lock(&info
->lock
);
1274 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1276 error
= PTR_ERR(entry
);
1278 if (entry
->val
== swap
.val
)
1280 shmem_swp_unmap(entry
);
1282 spin_unlock(&info
->lock
);
1287 wait_on_page_locked(swappage
);
1288 page_cache_release(swappage
);
1292 /* We have to do this with page locked to prevent races */
1293 if (!trylock_page(swappage
)) {
1294 shmem_swp_unmap(entry
);
1295 spin_unlock(&info
->lock
);
1296 wait_on_page_locked(swappage
);
1297 page_cache_release(swappage
);
1300 if (PageWriteback(swappage
)) {
1301 shmem_swp_unmap(entry
);
1302 spin_unlock(&info
->lock
);
1303 wait_on_page_writeback(swappage
);
1304 unlock_page(swappage
);
1305 page_cache_release(swappage
);
1308 if (!PageUptodate(swappage
)) {
1309 shmem_swp_unmap(entry
);
1310 spin_unlock(&info
->lock
);
1311 unlock_page(swappage
);
1312 page_cache_release(swappage
);
1318 shmem_swp_set(info
, entry
, 0);
1319 shmem_swp_unmap(entry
);
1320 delete_from_swap_cache(swappage
);
1321 spin_unlock(&info
->lock
);
1322 copy_highpage(filepage
, swappage
);
1323 unlock_page(swappage
);
1324 page_cache_release(swappage
);
1325 flush_dcache_page(filepage
);
1326 SetPageUptodate(filepage
);
1327 set_page_dirty(filepage
);
1329 } else if (!(error
= add_to_page_cache_locked(swappage
, mapping
,
1330 idx
, GFP_NOWAIT
))) {
1331 info
->flags
|= SHMEM_PAGEIN
;
1332 shmem_swp_set(info
, entry
, 0);
1333 shmem_swp_unmap(entry
);
1334 delete_from_swap_cache(swappage
);
1335 spin_unlock(&info
->lock
);
1336 filepage
= swappage
;
1337 set_page_dirty(filepage
);
1340 shmem_swp_unmap(entry
);
1341 spin_unlock(&info
->lock
);
1342 if (error
== -ENOMEM
) {
1344 * reclaim from proper memory cgroup and
1345 * call memcg's OOM if needed.
1347 error
= mem_cgroup_shmem_charge_fallback(
1352 unlock_page(swappage
);
1353 page_cache_release(swappage
);
1357 unlock_page(swappage
);
1358 page_cache_release(swappage
);
1361 } else if (sgp
== SGP_READ
&& !filepage
) {
1362 shmem_swp_unmap(entry
);
1363 filepage
= find_get_page(mapping
, idx
);
1365 (!PageUptodate(filepage
) || !trylock_page(filepage
))) {
1366 spin_unlock(&info
->lock
);
1367 wait_on_page_locked(filepage
);
1368 page_cache_release(filepage
);
1372 spin_unlock(&info
->lock
);
1374 shmem_swp_unmap(entry
);
1375 sbinfo
= SHMEM_SB(inode
->i_sb
);
1376 if (sbinfo
->max_blocks
) {
1377 spin_lock(&sbinfo
->stat_lock
);
1378 if (sbinfo
->free_blocks
== 0 ||
1379 shmem_acct_block(info
->flags
)) {
1380 spin_unlock(&sbinfo
->stat_lock
);
1381 spin_unlock(&info
->lock
);
1385 sbinfo
->free_blocks
--;
1386 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1387 spin_unlock(&sbinfo
->stat_lock
);
1388 } else if (shmem_acct_block(info
->flags
)) {
1389 spin_unlock(&info
->lock
);
1397 spin_unlock(&info
->lock
);
1398 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1400 shmem_unacct_blocks(info
->flags
, 1);
1401 shmem_free_blocks(inode
, 1);
1405 SetPageSwapBacked(filepage
);
1407 /* Precharge page while we can wait, compensate after */
1408 error
= mem_cgroup_cache_charge(filepage
, current
->mm
,
1411 page_cache_release(filepage
);
1412 shmem_unacct_blocks(info
->flags
, 1);
1413 shmem_free_blocks(inode
, 1);
1418 spin_lock(&info
->lock
);
1419 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1421 error
= PTR_ERR(entry
);
1424 shmem_swp_unmap(entry
);
1426 ret
= error
|| swap
.val
;
1428 mem_cgroup_uncharge_cache_page(filepage
);
1430 ret
= add_to_page_cache_lru(filepage
, mapping
,
1433 * At add_to_page_cache_lru() failure, uncharge will
1434 * be done automatically.
1437 spin_unlock(&info
->lock
);
1438 page_cache_release(filepage
);
1439 shmem_unacct_blocks(info
->flags
, 1);
1440 shmem_free_blocks(inode
, 1);
1446 info
->flags
|= SHMEM_PAGEIN
;
1450 spin_unlock(&info
->lock
);
1451 clear_highpage(filepage
);
1452 flush_dcache_page(filepage
);
1453 SetPageUptodate(filepage
);
1454 if (sgp
== SGP_DIRTY
)
1455 set_page_dirty(filepage
);
1462 if (*pagep
!= filepage
) {
1463 unlock_page(filepage
);
1464 page_cache_release(filepage
);
1469 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1471 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1475 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1476 return VM_FAULT_SIGBUS
;
1478 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1480 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1482 return ret
| VM_FAULT_LOCKED
;
1486 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1488 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1489 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1492 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1495 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1498 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1499 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1503 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1505 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1506 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1507 int retval
= -ENOMEM
;
1509 spin_lock(&info
->lock
);
1510 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1511 if (!user_shm_lock(inode
->i_size
, user
))
1513 info
->flags
|= VM_LOCKED
;
1514 mapping_set_unevictable(file
->f_mapping
);
1516 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1517 user_shm_unlock(inode
->i_size
, user
);
1518 info
->flags
&= ~VM_LOCKED
;
1519 mapping_clear_unevictable(file
->f_mapping
);
1520 scan_mapping_unevictable_pages(file
->f_mapping
);
1525 spin_unlock(&info
->lock
);
1529 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1531 file_accessed(file
);
1532 vma
->vm_ops
= &shmem_vm_ops
;
1533 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1537 static struct inode
*shmem_get_inode(struct super_block
*sb
, int mode
,
1538 dev_t dev
, unsigned long flags
)
1540 struct inode
*inode
;
1541 struct shmem_inode_info
*info
;
1542 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1544 if (shmem_reserve_inode(sb
))
1547 inode
= new_inode(sb
);
1549 inode
->i_mode
= mode
;
1550 inode
->i_uid
= current_fsuid();
1551 inode
->i_gid
= current_fsgid();
1552 inode
->i_blocks
= 0;
1553 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1554 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1555 inode
->i_generation
= get_seconds();
1556 info
= SHMEM_I(inode
);
1557 memset(info
, 0, (char *)inode
- (char *)info
);
1558 spin_lock_init(&info
->lock
);
1559 info
->flags
= flags
& VM_NORESERVE
;
1560 INIT_LIST_HEAD(&info
->swaplist
);
1561 cache_no_acl(inode
);
1563 switch (mode
& S_IFMT
) {
1565 inode
->i_op
= &shmem_special_inode_operations
;
1566 init_special_inode(inode
, mode
, dev
);
1569 inode
->i_mapping
->a_ops
= &shmem_aops
;
1570 inode
->i_op
= &shmem_inode_operations
;
1571 inode
->i_fop
= &shmem_file_operations
;
1572 mpol_shared_policy_init(&info
->policy
,
1573 shmem_get_sbmpol(sbinfo
));
1577 /* Some things misbehave if size == 0 on a directory */
1578 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1579 inode
->i_op
= &shmem_dir_inode_operations
;
1580 inode
->i_fop
= &simple_dir_operations
;
1584 * Must not load anything in the rbtree,
1585 * mpol_free_shared_policy will not be called.
1587 mpol_shared_policy_init(&info
->policy
, NULL
);
1591 shmem_free_inode(sb
);
1596 static const struct inode_operations shmem_symlink_inode_operations
;
1597 static const struct inode_operations shmem_symlink_inline_operations
;
1600 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1601 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1602 * below the loop driver, in the generic fashion that many filesystems support.
1604 static int shmem_readpage(struct file
*file
, struct page
*page
)
1606 struct inode
*inode
= page
->mapping
->host
;
1607 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1613 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1614 loff_t pos
, unsigned len
, unsigned flags
,
1615 struct page
**pagep
, void **fsdata
)
1617 struct inode
*inode
= mapping
->host
;
1618 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1620 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1624 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1625 loff_t pos
, unsigned len
, unsigned copied
,
1626 struct page
*page
, void *fsdata
)
1628 struct inode
*inode
= mapping
->host
;
1630 if (pos
+ copied
> inode
->i_size
)
1631 i_size_write(inode
, pos
+ copied
);
1634 set_page_dirty(page
);
1635 page_cache_release(page
);
1640 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1642 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1643 struct address_space
*mapping
= inode
->i_mapping
;
1644 unsigned long index
, offset
;
1645 enum sgp_type sgp
= SGP_READ
;
1648 * Might this read be for a stacking filesystem? Then when reading
1649 * holes of a sparse file, we actually need to allocate those pages,
1650 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1652 if (segment_eq(get_fs(), KERNEL_DS
))
1655 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1656 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1659 struct page
*page
= NULL
;
1660 unsigned long end_index
, nr
, ret
;
1661 loff_t i_size
= i_size_read(inode
);
1663 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1664 if (index
> end_index
)
1666 if (index
== end_index
) {
1667 nr
= i_size
& ~PAGE_CACHE_MASK
;
1672 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1674 if (desc
->error
== -EINVAL
)
1682 * We must evaluate after, since reads (unlike writes)
1683 * are called without i_mutex protection against truncate
1685 nr
= PAGE_CACHE_SIZE
;
1686 i_size
= i_size_read(inode
);
1687 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1688 if (index
== end_index
) {
1689 nr
= i_size
& ~PAGE_CACHE_MASK
;
1692 page_cache_release(page
);
1700 * If users can be writing to this page using arbitrary
1701 * virtual addresses, take care about potential aliasing
1702 * before reading the page on the kernel side.
1704 if (mapping_writably_mapped(mapping
))
1705 flush_dcache_page(page
);
1707 * Mark the page accessed if we read the beginning.
1710 mark_page_accessed(page
);
1712 page
= ZERO_PAGE(0);
1713 page_cache_get(page
);
1717 * Ok, we have the page, and it's up-to-date, so
1718 * now we can copy it to user space...
1720 * The actor routine returns how many bytes were actually used..
1721 * NOTE! This may not be the same as how much of a user buffer
1722 * we filled up (we may be padding etc), so we can only update
1723 * "pos" here (the actor routine has to update the user buffer
1724 * pointers and the remaining count).
1726 ret
= actor(desc
, page
, offset
, nr
);
1728 index
+= offset
>> PAGE_CACHE_SHIFT
;
1729 offset
&= ~PAGE_CACHE_MASK
;
1731 page_cache_release(page
);
1732 if (ret
!= nr
|| !desc
->count
)
1738 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1739 file_accessed(filp
);
1742 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1743 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1745 struct file
*filp
= iocb
->ki_filp
;
1749 loff_t
*ppos
= &iocb
->ki_pos
;
1751 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1755 for (seg
= 0; seg
< nr_segs
; seg
++) {
1756 read_descriptor_t desc
;
1759 desc
.arg
.buf
= iov
[seg
].iov_base
;
1760 desc
.count
= iov
[seg
].iov_len
;
1761 if (desc
.count
== 0)
1764 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1765 retval
+= desc
.written
;
1767 retval
= retval
?: desc
.error
;
1776 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1778 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1780 buf
->f_type
= TMPFS_MAGIC
;
1781 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1782 buf
->f_namelen
= NAME_MAX
;
1783 spin_lock(&sbinfo
->stat_lock
);
1784 if (sbinfo
->max_blocks
) {
1785 buf
->f_blocks
= sbinfo
->max_blocks
;
1786 buf
->f_bavail
= buf
->f_bfree
= sbinfo
->free_blocks
;
1788 if (sbinfo
->max_inodes
) {
1789 buf
->f_files
= sbinfo
->max_inodes
;
1790 buf
->f_ffree
= sbinfo
->free_inodes
;
1792 /* else leave those fields 0 like simple_statfs */
1793 spin_unlock(&sbinfo
->stat_lock
);
1798 * File creation. Allocate an inode, and we're done..
1801 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1803 struct inode
*inode
;
1804 int error
= -ENOSPC
;
1806 inode
= shmem_get_inode(dir
->i_sb
, mode
, dev
, VM_NORESERVE
);
1808 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1811 if (error
!= -EOPNOTSUPP
) {
1816 error
= shmem_acl_init(inode
, dir
);
1821 if (dir
->i_mode
& S_ISGID
) {
1822 inode
->i_gid
= dir
->i_gid
;
1824 inode
->i_mode
|= S_ISGID
;
1826 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1827 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1828 d_instantiate(dentry
, inode
);
1829 dget(dentry
); /* Extra count - pin the dentry in core */
1834 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1838 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1844 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1845 struct nameidata
*nd
)
1847 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1853 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1855 struct inode
*inode
= old_dentry
->d_inode
;
1859 * No ordinary (disk based) filesystem counts links as inodes;
1860 * but each new link needs a new dentry, pinning lowmem, and
1861 * tmpfs dentries cannot be pruned until they are unlinked.
1863 ret
= shmem_reserve_inode(inode
->i_sb
);
1867 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1868 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1870 atomic_inc(&inode
->i_count
); /* New dentry reference */
1871 dget(dentry
); /* Extra pinning count for the created dentry */
1872 d_instantiate(dentry
, inode
);
1877 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1879 struct inode
*inode
= dentry
->d_inode
;
1881 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1882 shmem_free_inode(inode
->i_sb
);
1884 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1885 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1887 dput(dentry
); /* Undo the count from "create" - this does all the work */
1891 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1893 if (!simple_empty(dentry
))
1896 drop_nlink(dentry
->d_inode
);
1898 return shmem_unlink(dir
, dentry
);
1902 * The VFS layer already does all the dentry stuff for rename,
1903 * we just have to decrement the usage count for the target if
1904 * it exists so that the VFS layer correctly free's it when it
1907 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1909 struct inode
*inode
= old_dentry
->d_inode
;
1910 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1912 if (!simple_empty(new_dentry
))
1915 if (new_dentry
->d_inode
) {
1916 (void) shmem_unlink(new_dir
, new_dentry
);
1918 drop_nlink(old_dir
);
1919 } else if (they_are_dirs
) {
1920 drop_nlink(old_dir
);
1924 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1925 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1926 old_dir
->i_ctime
= old_dir
->i_mtime
=
1927 new_dir
->i_ctime
= new_dir
->i_mtime
=
1928 inode
->i_ctime
= CURRENT_TIME
;
1932 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1936 struct inode
*inode
;
1937 struct page
*page
= NULL
;
1939 struct shmem_inode_info
*info
;
1941 len
= strlen(symname
) + 1;
1942 if (len
> PAGE_CACHE_SIZE
)
1943 return -ENAMETOOLONG
;
1945 inode
= shmem_get_inode(dir
->i_sb
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
1949 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1952 if (error
!= -EOPNOTSUPP
) {
1959 info
= SHMEM_I(inode
);
1960 inode
->i_size
= len
-1;
1961 if (len
<= (char *)inode
- (char *)info
) {
1963 memcpy(info
, symname
, len
);
1964 inode
->i_op
= &shmem_symlink_inline_operations
;
1966 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
1972 inode
->i_mapping
->a_ops
= &shmem_aops
;
1973 inode
->i_op
= &shmem_symlink_inode_operations
;
1974 kaddr
= kmap_atomic(page
, KM_USER0
);
1975 memcpy(kaddr
, symname
, len
);
1976 kunmap_atomic(kaddr
, KM_USER0
);
1977 set_page_dirty(page
);
1978 page_cache_release(page
);
1980 if (dir
->i_mode
& S_ISGID
)
1981 inode
->i_gid
= dir
->i_gid
;
1982 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1983 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1984 d_instantiate(dentry
, inode
);
1989 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
1991 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
1995 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1997 struct page
*page
= NULL
;
1998 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
1999 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
2005 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2007 if (!IS_ERR(nd_get_link(nd
))) {
2008 struct page
*page
= cookie
;
2010 mark_page_accessed(page
);
2011 page_cache_release(page
);
2015 static const struct inode_operations shmem_symlink_inline_operations
= {
2016 .readlink
= generic_readlink
,
2017 .follow_link
= shmem_follow_link_inline
,
2020 static const struct inode_operations shmem_symlink_inode_operations
= {
2021 .truncate
= shmem_truncate
,
2022 .readlink
= generic_readlink
,
2023 .follow_link
= shmem_follow_link
,
2024 .put_link
= shmem_put_link
,
2027 #ifdef CONFIG_TMPFS_POSIX_ACL
2029 * Superblocks without xattr inode operations will get security.* xattr
2030 * support from the VFS "for free". As soon as we have any other xattrs
2031 * like ACLs, we also need to implement the security.* handlers at
2032 * filesystem level, though.
2035 static size_t shmem_xattr_security_list(struct inode
*inode
, char *list
,
2036 size_t list_len
, const char *name
,
2039 return security_inode_listsecurity(inode
, list
, list_len
);
2042 static int shmem_xattr_security_get(struct inode
*inode
, const char *name
,
2043 void *buffer
, size_t size
)
2045 if (strcmp(name
, "") == 0)
2047 return xattr_getsecurity(inode
, name
, buffer
, size
);
2050 static int shmem_xattr_security_set(struct inode
*inode
, const char *name
,
2051 const void *value
, size_t size
, int flags
)
2053 if (strcmp(name
, "") == 0)
2055 return security_inode_setsecurity(inode
, name
, value
, size
, flags
);
2058 static struct xattr_handler shmem_xattr_security_handler
= {
2059 .prefix
= XATTR_SECURITY_PREFIX
,
2060 .list
= shmem_xattr_security_list
,
2061 .get
= shmem_xattr_security_get
,
2062 .set
= shmem_xattr_security_set
,
2065 static struct xattr_handler
*shmem_xattr_handlers
[] = {
2066 &shmem_xattr_acl_access_handler
,
2067 &shmem_xattr_acl_default_handler
,
2068 &shmem_xattr_security_handler
,
2073 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2075 return ERR_PTR(-ESTALE
);
2078 static int shmem_match(struct inode
*ino
, void *vfh
)
2082 inum
= (inum
<< 32) | fh
[1];
2083 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2086 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2087 struct fid
*fid
, int fh_len
, int fh_type
)
2089 struct inode
*inode
;
2090 struct dentry
*dentry
= NULL
;
2091 u64 inum
= fid
->raw
[2];
2092 inum
= (inum
<< 32) | fid
->raw
[1];
2097 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2098 shmem_match
, fid
->raw
);
2100 dentry
= d_find_alias(inode
);
2107 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2110 struct inode
*inode
= dentry
->d_inode
;
2115 if (hlist_unhashed(&inode
->i_hash
)) {
2116 /* Unfortunately insert_inode_hash is not idempotent,
2117 * so as we hash inodes here rather than at creation
2118 * time, we need a lock to ensure we only try
2121 static DEFINE_SPINLOCK(lock
);
2123 if (hlist_unhashed(&inode
->i_hash
))
2124 __insert_inode_hash(inode
,
2125 inode
->i_ino
+ inode
->i_generation
);
2129 fh
[0] = inode
->i_generation
;
2130 fh
[1] = inode
->i_ino
;
2131 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2137 static const struct export_operations shmem_export_ops
= {
2138 .get_parent
= shmem_get_parent
,
2139 .encode_fh
= shmem_encode_fh
,
2140 .fh_to_dentry
= shmem_fh_to_dentry
,
2143 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2146 char *this_char
, *value
, *rest
;
2148 while (options
!= NULL
) {
2149 this_char
= options
;
2152 * NUL-terminate this option: unfortunately,
2153 * mount options form a comma-separated list,
2154 * but mpol's nodelist may also contain commas.
2156 options
= strchr(options
, ',');
2157 if (options
== NULL
)
2160 if (!isdigit(*options
)) {
2167 if ((value
= strchr(this_char
,'=')) != NULL
) {
2171 "tmpfs: No value for mount option '%s'\n",
2176 if (!strcmp(this_char
,"size")) {
2177 unsigned long long size
;
2178 size
= memparse(value
,&rest
);
2180 size
<<= PAGE_SHIFT
;
2181 size
*= totalram_pages
;
2187 sbinfo
->max_blocks
=
2188 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2189 } else if (!strcmp(this_char
,"nr_blocks")) {
2190 sbinfo
->max_blocks
= memparse(value
, &rest
);
2193 } else if (!strcmp(this_char
,"nr_inodes")) {
2194 sbinfo
->max_inodes
= memparse(value
, &rest
);
2197 } else if (!strcmp(this_char
,"mode")) {
2200 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2203 } else if (!strcmp(this_char
,"uid")) {
2206 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2209 } else if (!strcmp(this_char
,"gid")) {
2212 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2215 } else if (!strcmp(this_char
,"mpol")) {
2216 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2219 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2227 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2233 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2235 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2236 struct shmem_sb_info config
= *sbinfo
;
2237 unsigned long blocks
;
2238 unsigned long inodes
;
2239 int error
= -EINVAL
;
2241 if (shmem_parse_options(data
, &config
, true))
2244 spin_lock(&sbinfo
->stat_lock
);
2245 blocks
= sbinfo
->max_blocks
- sbinfo
->free_blocks
;
2246 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2247 if (config
.max_blocks
< blocks
)
2249 if (config
.max_inodes
< inodes
)
2252 * Those tests also disallow limited->unlimited while any are in
2253 * use, so i_blocks will always be zero when max_blocks is zero;
2254 * but we must separately disallow unlimited->limited, because
2255 * in that case we have no record of how much is already in use.
2257 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2259 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2263 sbinfo
->max_blocks
= config
.max_blocks
;
2264 sbinfo
->free_blocks
= config
.max_blocks
- blocks
;
2265 sbinfo
->max_inodes
= config
.max_inodes
;
2266 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2268 mpol_put(sbinfo
->mpol
);
2269 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2271 spin_unlock(&sbinfo
->stat_lock
);
2275 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2277 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2279 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2280 seq_printf(seq
, ",size=%luk",
2281 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2282 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2283 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2284 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2285 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2286 if (sbinfo
->uid
!= 0)
2287 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2288 if (sbinfo
->gid
!= 0)
2289 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2290 shmem_show_mpol(seq
, sbinfo
->mpol
);
2293 #endif /* CONFIG_TMPFS */
2295 static void shmem_put_super(struct super_block
*sb
)
2297 kfree(sb
->s_fs_info
);
2298 sb
->s_fs_info
= NULL
;
2301 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2303 struct inode
*inode
;
2304 struct dentry
*root
;
2305 struct shmem_sb_info
*sbinfo
;
2308 /* Round up to L1_CACHE_BYTES to resist false sharing */
2309 sbinfo
= kmalloc(max((int)sizeof(struct shmem_sb_info
),
2310 L1_CACHE_BYTES
), GFP_KERNEL
);
2314 sbinfo
->max_blocks
= 0;
2315 sbinfo
->max_inodes
= 0;
2316 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2317 sbinfo
->uid
= current_fsuid();
2318 sbinfo
->gid
= current_fsgid();
2319 sbinfo
->mpol
= NULL
;
2320 sb
->s_fs_info
= sbinfo
;
2324 * Per default we only allow half of the physical ram per
2325 * tmpfs instance, limiting inodes to one per page of lowmem;
2326 * but the internal instance is left unlimited.
2328 if (!(sb
->s_flags
& MS_NOUSER
)) {
2329 sbinfo
->max_blocks
= shmem_default_max_blocks();
2330 sbinfo
->max_inodes
= shmem_default_max_inodes();
2331 if (shmem_parse_options(data
, sbinfo
, false)) {
2336 sb
->s_export_op
= &shmem_export_ops
;
2338 sb
->s_flags
|= MS_NOUSER
;
2341 spin_lock_init(&sbinfo
->stat_lock
);
2342 sbinfo
->free_blocks
= sbinfo
->max_blocks
;
2343 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2345 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2346 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2347 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2348 sb
->s_magic
= TMPFS_MAGIC
;
2349 sb
->s_op
= &shmem_ops
;
2350 sb
->s_time_gran
= 1;
2351 #ifdef CONFIG_TMPFS_POSIX_ACL
2352 sb
->s_xattr
= shmem_xattr_handlers
;
2353 sb
->s_flags
|= MS_POSIXACL
;
2356 inode
= shmem_get_inode(sb
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2359 inode
->i_uid
= sbinfo
->uid
;
2360 inode
->i_gid
= sbinfo
->gid
;
2361 root
= d_alloc_root(inode
);
2370 shmem_put_super(sb
);
2374 static struct kmem_cache
*shmem_inode_cachep
;
2376 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2378 struct shmem_inode_info
*p
;
2379 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2382 return &p
->vfs_inode
;
2385 static void shmem_destroy_inode(struct inode
*inode
)
2387 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2388 /* only struct inode is valid if it's an inline symlink */
2389 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2391 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2394 static void init_once(void *foo
)
2396 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2398 inode_init_once(&p
->vfs_inode
);
2401 static int init_inodecache(void)
2403 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2404 sizeof(struct shmem_inode_info
),
2405 0, SLAB_PANIC
, init_once
);
2409 static void destroy_inodecache(void)
2411 kmem_cache_destroy(shmem_inode_cachep
);
2414 static const struct address_space_operations shmem_aops
= {
2415 .writepage
= shmem_writepage
,
2416 .set_page_dirty
= __set_page_dirty_no_writeback
,
2418 .readpage
= shmem_readpage
,
2419 .write_begin
= shmem_write_begin
,
2420 .write_end
= shmem_write_end
,
2422 .migratepage
= migrate_page
,
2425 static const struct file_operations shmem_file_operations
= {
2428 .llseek
= generic_file_llseek
,
2429 .read
= do_sync_read
,
2430 .write
= do_sync_write
,
2431 .aio_read
= shmem_file_aio_read
,
2432 .aio_write
= generic_file_aio_write
,
2433 .fsync
= simple_sync_file
,
2434 .splice_read
= generic_file_splice_read
,
2435 .splice_write
= generic_file_splice_write
,
2439 static const struct inode_operations shmem_inode_operations
= {
2440 .truncate
= shmem_truncate
,
2441 .setattr
= shmem_notify_change
,
2442 .truncate_range
= shmem_truncate_range
,
2443 #ifdef CONFIG_TMPFS_POSIX_ACL
2444 .setxattr
= generic_setxattr
,
2445 .getxattr
= generic_getxattr
,
2446 .listxattr
= generic_listxattr
,
2447 .removexattr
= generic_removexattr
,
2448 .check_acl
= shmem_check_acl
,
2453 static const struct inode_operations shmem_dir_inode_operations
= {
2455 .create
= shmem_create
,
2456 .lookup
= simple_lookup
,
2458 .unlink
= shmem_unlink
,
2459 .symlink
= shmem_symlink
,
2460 .mkdir
= shmem_mkdir
,
2461 .rmdir
= shmem_rmdir
,
2462 .mknod
= shmem_mknod
,
2463 .rename
= shmem_rename
,
2465 #ifdef CONFIG_TMPFS_POSIX_ACL
2466 .setattr
= shmem_notify_change
,
2467 .setxattr
= generic_setxattr
,
2468 .getxattr
= generic_getxattr
,
2469 .listxattr
= generic_listxattr
,
2470 .removexattr
= generic_removexattr
,
2471 .check_acl
= shmem_check_acl
,
2475 static const struct inode_operations shmem_special_inode_operations
= {
2476 #ifdef CONFIG_TMPFS_POSIX_ACL
2477 .setattr
= shmem_notify_change
,
2478 .setxattr
= generic_setxattr
,
2479 .getxattr
= generic_getxattr
,
2480 .listxattr
= generic_listxattr
,
2481 .removexattr
= generic_removexattr
,
2482 .check_acl
= shmem_check_acl
,
2486 static const struct super_operations shmem_ops
= {
2487 .alloc_inode
= shmem_alloc_inode
,
2488 .destroy_inode
= shmem_destroy_inode
,
2490 .statfs
= shmem_statfs
,
2491 .remount_fs
= shmem_remount_fs
,
2492 .show_options
= shmem_show_options
,
2494 .delete_inode
= shmem_delete_inode
,
2495 .drop_inode
= generic_delete_inode
,
2496 .put_super
= shmem_put_super
,
2499 static struct vm_operations_struct shmem_vm_ops
= {
2500 .fault
= shmem_fault
,
2502 .set_policy
= shmem_set_policy
,
2503 .get_policy
= shmem_get_policy
,
2508 static int shmem_get_sb(struct file_system_type
*fs_type
,
2509 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
2511 return get_sb_nodev(fs_type
, flags
, data
, shmem_fill_super
, mnt
);
2514 static struct file_system_type tmpfs_fs_type
= {
2515 .owner
= THIS_MODULE
,
2517 .get_sb
= shmem_get_sb
,
2518 .kill_sb
= kill_litter_super
,
2521 int __init
init_tmpfs(void)
2525 error
= bdi_init(&shmem_backing_dev_info
);
2529 error
= init_inodecache();
2533 error
= register_filesystem(&tmpfs_fs_type
);
2535 printk(KERN_ERR
"Could not register tmpfs\n");
2539 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2540 tmpfs_fs_type
.name
, NULL
);
2541 if (IS_ERR(shm_mnt
)) {
2542 error
= PTR_ERR(shm_mnt
);
2543 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2549 unregister_filesystem(&tmpfs_fs_type
);
2551 destroy_inodecache();
2553 bdi_destroy(&shmem_backing_dev_info
);
2555 shm_mnt
= ERR_PTR(error
);
2559 #else /* !CONFIG_SHMEM */
2562 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2564 * This is intended for small system where the benefits of the full
2565 * shmem code (swap-backed and resource-limited) are outweighed by
2566 * their complexity. On systems without swap this code should be
2567 * effectively equivalent, but much lighter weight.
2570 #include <linux/ramfs.h>
2572 static struct file_system_type tmpfs_fs_type
= {
2574 .get_sb
= ramfs_get_sb
,
2575 .kill_sb
= kill_litter_super
,
2578 int __init
init_tmpfs(void)
2580 BUG_ON(register_filesystem(&tmpfs_fs_type
) != 0);
2582 shm_mnt
= kern_mount(&tmpfs_fs_type
);
2583 BUG_ON(IS_ERR(shm_mnt
));
2588 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
2593 #define shmem_vm_ops generic_file_vm_ops
2594 #define shmem_file_operations ramfs_file_operations
2595 #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev)
2596 #define shmem_acct_size(flags, size) 0
2597 #define shmem_unacct_size(flags, size) do {} while (0)
2598 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2600 #endif /* CONFIG_SHMEM */
2605 * shmem_file_setup - get an unlinked file living in tmpfs
2606 * @name: name for dentry (to be seen in /proc/<pid>/maps
2607 * @size: size to be set for the file
2608 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2610 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2614 struct inode
*inode
;
2615 struct dentry
*dentry
, *root
;
2618 if (IS_ERR(shm_mnt
))
2619 return (void *)shm_mnt
;
2621 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2622 return ERR_PTR(-EINVAL
);
2624 if (shmem_acct_size(flags
, size
))
2625 return ERR_PTR(-ENOMEM
);
2629 this.len
= strlen(name
);
2630 this.hash
= 0; /* will go */
2631 root
= shm_mnt
->mnt_root
;
2632 dentry
= d_alloc(root
, &this);
2637 file
= get_empty_filp();
2642 inode
= shmem_get_inode(root
->d_sb
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2646 d_instantiate(dentry
, inode
);
2647 inode
->i_size
= size
;
2648 inode
->i_nlink
= 0; /* It is unlinked */
2649 init_file(file
, shm_mnt
, dentry
, FMODE_WRITE
| FMODE_READ
,
2650 &shmem_file_operations
);
2653 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2657 ima_counts_get(file
);
2665 shmem_unacct_size(flags
, size
);
2666 return ERR_PTR(error
);
2668 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2671 * shmem_zero_setup - setup a shared anonymous mapping
2672 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2674 int shmem_zero_setup(struct vm_area_struct
*vma
)
2677 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2679 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2681 return PTR_ERR(file
);
2685 vma
->vm_file
= file
;
2686 vma
->vm_ops
= &shmem_vm_ops
;