Blackfin/ipipe: restore pipeline bits in irqflags
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blob05b92c457010700a7578bb4fb418e612a8332fa3
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
78 #include <trace/events/sched.h>
81 * Protected counters by write_lock_irq(&tasklist_lock)
83 unsigned long total_forks; /* Handle normal Linux uptimes. */
84 int nr_threads; /* The idle threads do not count.. */
86 int max_threads; /* tunable limit on nr_threads */
88 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
92 #ifdef CONFIG_PROVE_RCU
93 int lockdep_tasklist_lock_is_held(void)
95 return lockdep_is_held(&tasklist_lock);
97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
98 #endif /* #ifdef CONFIG_PROVE_RCU */
100 int nr_processes(void)
102 int cpu;
103 int total = 0;
105 for_each_possible_cpu(cpu)
106 total += per_cpu(process_counts, cpu);
108 return total;
111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
113 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
114 static struct kmem_cache *task_struct_cachep;
115 #endif
117 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
118 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
120 #ifdef CONFIG_DEBUG_STACK_USAGE
121 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
122 #else
123 gfp_t mask = GFP_KERNEL;
124 #endif
125 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
128 static inline void free_thread_info(struct thread_info *ti)
130 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
132 #endif
134 /* SLAB cache for signal_struct structures (tsk->signal) */
135 static struct kmem_cache *signal_cachep;
137 /* SLAB cache for sighand_struct structures (tsk->sighand) */
138 struct kmem_cache *sighand_cachep;
140 /* SLAB cache for files_struct structures (tsk->files) */
141 struct kmem_cache *files_cachep;
143 /* SLAB cache for fs_struct structures (tsk->fs) */
144 struct kmem_cache *fs_cachep;
146 /* SLAB cache for vm_area_struct structures */
147 struct kmem_cache *vm_area_cachep;
149 /* SLAB cache for mm_struct structures (tsk->mm) */
150 static struct kmem_cache *mm_cachep;
152 static void account_kernel_stack(struct thread_info *ti, int account)
154 struct zone *zone = page_zone(virt_to_page(ti));
156 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
159 void free_task(struct task_struct *tsk)
161 prop_local_destroy_single(&tsk->dirties);
162 account_kernel_stack(tsk->stack, -1);
163 free_thread_info(tsk->stack);
164 rt_mutex_debug_task_free(tsk);
165 ftrace_graph_exit_task(tsk);
166 free_task_struct(tsk);
168 EXPORT_SYMBOL(free_task);
170 static inline void free_signal_struct(struct signal_struct *sig)
172 taskstats_tgid_free(sig);
173 sched_autogroup_exit(sig);
174 kmem_cache_free(signal_cachep, sig);
177 static inline void put_signal_struct(struct signal_struct *sig)
179 if (atomic_dec_and_test(&sig->sigcnt))
180 free_signal_struct(sig);
183 void __put_task_struct(struct task_struct *tsk)
185 WARN_ON(!tsk->exit_state);
186 WARN_ON(atomic_read(&tsk->usage));
187 WARN_ON(tsk == current);
189 exit_creds(tsk);
190 delayacct_tsk_free(tsk);
191 put_signal_struct(tsk->signal);
193 if (!profile_handoff_task(tsk))
194 free_task(tsk);
196 EXPORT_SYMBOL_GPL(__put_task_struct);
199 * macro override instead of weak attribute alias, to workaround
200 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
202 #ifndef arch_task_cache_init
203 #define arch_task_cache_init()
204 #endif
206 void __init fork_init(unsigned long mempages)
208 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
209 #ifndef ARCH_MIN_TASKALIGN
210 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
211 #endif
212 /* create a slab on which task_structs can be allocated */
213 task_struct_cachep =
214 kmem_cache_create("task_struct", sizeof(struct task_struct),
215 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
216 #endif
218 /* do the arch specific task caches init */
219 arch_task_cache_init();
222 * The default maximum number of threads is set to a safe
223 * value: the thread structures can take up at most half
224 * of memory.
226 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
229 * we need to allow at least 20 threads to boot a system
231 if(max_threads < 20)
232 max_threads = 20;
234 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
235 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
236 init_task.signal->rlim[RLIMIT_SIGPENDING] =
237 init_task.signal->rlim[RLIMIT_NPROC];
240 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
241 struct task_struct *src)
243 *dst = *src;
244 return 0;
247 static struct task_struct *dup_task_struct(struct task_struct *orig)
249 struct task_struct *tsk;
250 struct thread_info *ti;
251 unsigned long *stackend;
253 int err;
255 prepare_to_copy(orig);
257 tsk = alloc_task_struct();
258 if (!tsk)
259 return NULL;
261 ti = alloc_thread_info(tsk);
262 if (!ti) {
263 free_task_struct(tsk);
264 return NULL;
267 err = arch_dup_task_struct(tsk, orig);
268 if (err)
269 goto out;
271 tsk->stack = ti;
273 err = prop_local_init_single(&tsk->dirties);
274 if (err)
275 goto out;
277 setup_thread_stack(tsk, orig);
278 clear_user_return_notifier(tsk);
279 clear_tsk_need_resched(tsk);
280 stackend = end_of_stack(tsk);
281 *stackend = STACK_END_MAGIC; /* for overflow detection */
283 #ifdef CONFIG_CC_STACKPROTECTOR
284 tsk->stack_canary = get_random_int();
285 #endif
287 /* One for us, one for whoever does the "release_task()" (usually parent) */
288 atomic_set(&tsk->usage,2);
289 atomic_set(&tsk->fs_excl, 0);
290 #ifdef CONFIG_BLK_DEV_IO_TRACE
291 tsk->btrace_seq = 0;
292 #endif
293 tsk->splice_pipe = NULL;
295 account_kernel_stack(ti, 1);
297 return tsk;
299 out:
300 free_thread_info(ti);
301 free_task_struct(tsk);
302 return NULL;
305 #ifdef CONFIG_MMU
306 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
308 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
309 struct rb_node **rb_link, *rb_parent;
310 int retval;
311 unsigned long charge;
312 struct mempolicy *pol;
314 down_write(&oldmm->mmap_sem);
315 flush_cache_dup_mm(oldmm);
317 * Not linked in yet - no deadlock potential:
319 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
321 mm->locked_vm = 0;
322 mm->mmap = NULL;
323 mm->mmap_cache = NULL;
324 mm->free_area_cache = oldmm->mmap_base;
325 mm->cached_hole_size = ~0UL;
326 mm->map_count = 0;
327 cpumask_clear(mm_cpumask(mm));
328 mm->mm_rb = RB_ROOT;
329 rb_link = &mm->mm_rb.rb_node;
330 rb_parent = NULL;
331 pprev = &mm->mmap;
332 retval = ksm_fork(mm, oldmm);
333 if (retval)
334 goto out;
335 retval = khugepaged_fork(mm, oldmm);
336 if (retval)
337 goto out;
339 prev = NULL;
340 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
341 struct file *file;
343 if (mpnt->vm_flags & VM_DONTCOPY) {
344 long pages = vma_pages(mpnt);
345 mm->total_vm -= pages;
346 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
347 -pages);
348 continue;
350 charge = 0;
351 if (mpnt->vm_flags & VM_ACCOUNT) {
352 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
353 if (security_vm_enough_memory(len))
354 goto fail_nomem;
355 charge = len;
357 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358 if (!tmp)
359 goto fail_nomem;
360 *tmp = *mpnt;
361 INIT_LIST_HEAD(&tmp->anon_vma_chain);
362 pol = mpol_dup(vma_policy(mpnt));
363 retval = PTR_ERR(pol);
364 if (IS_ERR(pol))
365 goto fail_nomem_policy;
366 vma_set_policy(tmp, pol);
367 tmp->vm_mm = mm;
368 if (anon_vma_fork(tmp, mpnt))
369 goto fail_nomem_anon_vma_fork;
370 tmp->vm_flags &= ~VM_LOCKED;
371 tmp->vm_next = tmp->vm_prev = NULL;
372 file = tmp->vm_file;
373 if (file) {
374 struct inode *inode = file->f_path.dentry->d_inode;
375 struct address_space *mapping = file->f_mapping;
377 get_file(file);
378 if (tmp->vm_flags & VM_DENYWRITE)
379 atomic_dec(&inode->i_writecount);
380 spin_lock(&mapping->i_mmap_lock);
381 if (tmp->vm_flags & VM_SHARED)
382 mapping->i_mmap_writable++;
383 tmp->vm_truncate_count = mpnt->vm_truncate_count;
384 flush_dcache_mmap_lock(mapping);
385 /* insert tmp into the share list, just after mpnt */
386 vma_prio_tree_add(tmp, mpnt);
387 flush_dcache_mmap_unlock(mapping);
388 spin_unlock(&mapping->i_mmap_lock);
392 * Clear hugetlb-related page reserves for children. This only
393 * affects MAP_PRIVATE mappings. Faults generated by the child
394 * are not guaranteed to succeed, even if read-only
396 if (is_vm_hugetlb_page(tmp))
397 reset_vma_resv_huge_pages(tmp);
400 * Link in the new vma and copy the page table entries.
402 *pprev = tmp;
403 pprev = &tmp->vm_next;
404 tmp->vm_prev = prev;
405 prev = tmp;
407 __vma_link_rb(mm, tmp, rb_link, rb_parent);
408 rb_link = &tmp->vm_rb.rb_right;
409 rb_parent = &tmp->vm_rb;
411 mm->map_count++;
412 retval = copy_page_range(mm, oldmm, mpnt);
414 if (tmp->vm_ops && tmp->vm_ops->open)
415 tmp->vm_ops->open(tmp);
417 if (retval)
418 goto out;
420 /* a new mm has just been created */
421 arch_dup_mmap(oldmm, mm);
422 retval = 0;
423 out:
424 up_write(&mm->mmap_sem);
425 flush_tlb_mm(oldmm);
426 up_write(&oldmm->mmap_sem);
427 return retval;
428 fail_nomem_anon_vma_fork:
429 mpol_put(pol);
430 fail_nomem_policy:
431 kmem_cache_free(vm_area_cachep, tmp);
432 fail_nomem:
433 retval = -ENOMEM;
434 vm_unacct_memory(charge);
435 goto out;
438 static inline int mm_alloc_pgd(struct mm_struct * mm)
440 mm->pgd = pgd_alloc(mm);
441 if (unlikely(!mm->pgd))
442 return -ENOMEM;
443 return 0;
446 static inline void mm_free_pgd(struct mm_struct * mm)
448 pgd_free(mm, mm->pgd);
450 #else
451 #define dup_mmap(mm, oldmm) (0)
452 #define mm_alloc_pgd(mm) (0)
453 #define mm_free_pgd(mm)
454 #endif /* CONFIG_MMU */
456 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
458 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
459 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
461 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
463 static int __init coredump_filter_setup(char *s)
465 default_dump_filter =
466 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
467 MMF_DUMP_FILTER_MASK;
468 return 1;
471 __setup("coredump_filter=", coredump_filter_setup);
473 #include <linux/init_task.h>
475 static void mm_init_aio(struct mm_struct *mm)
477 #ifdef CONFIG_AIO
478 spin_lock_init(&mm->ioctx_lock);
479 INIT_HLIST_HEAD(&mm->ioctx_list);
480 #endif
483 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
485 atomic_set(&mm->mm_users, 1);
486 atomic_set(&mm->mm_count, 1);
487 init_rwsem(&mm->mmap_sem);
488 INIT_LIST_HEAD(&mm->mmlist);
489 mm->flags = (current->mm) ?
490 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
491 mm->core_state = NULL;
492 mm->nr_ptes = 0;
493 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
494 spin_lock_init(&mm->page_table_lock);
495 mm->free_area_cache = TASK_UNMAPPED_BASE;
496 mm->cached_hole_size = ~0UL;
497 mm_init_aio(mm);
498 mm_init_owner(mm, p);
499 atomic_set(&mm->oom_disable_count, 0);
501 if (likely(!mm_alloc_pgd(mm))) {
502 mm->def_flags = 0;
503 mmu_notifier_mm_init(mm);
504 return mm;
507 free_mm(mm);
508 return NULL;
512 * Allocate and initialize an mm_struct.
514 struct mm_struct * mm_alloc(void)
516 struct mm_struct * mm;
518 mm = allocate_mm();
519 if (mm) {
520 memset(mm, 0, sizeof(*mm));
521 mm = mm_init(mm, current);
523 return mm;
527 * Called when the last reference to the mm
528 * is dropped: either by a lazy thread or by
529 * mmput. Free the page directory and the mm.
531 void __mmdrop(struct mm_struct *mm)
533 BUG_ON(mm == &init_mm);
534 mm_free_pgd(mm);
535 destroy_context(mm);
536 mmu_notifier_mm_destroy(mm);
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 VM_BUG_ON(mm->pmd_huge_pte);
539 #endif
540 free_mm(mm);
542 EXPORT_SYMBOL_GPL(__mmdrop);
545 * Decrement the use count and release all resources for an mm.
547 void mmput(struct mm_struct *mm)
549 might_sleep();
551 if (atomic_dec_and_test(&mm->mm_users)) {
552 exit_aio(mm);
553 ksm_exit(mm);
554 khugepaged_exit(mm); /* must run before exit_mmap */
555 exit_mmap(mm);
556 set_mm_exe_file(mm, NULL);
557 if (!list_empty(&mm->mmlist)) {
558 spin_lock(&mmlist_lock);
559 list_del(&mm->mmlist);
560 spin_unlock(&mmlist_lock);
562 put_swap_token(mm);
563 if (mm->binfmt)
564 module_put(mm->binfmt->module);
565 mmdrop(mm);
568 EXPORT_SYMBOL_GPL(mmput);
571 * get_task_mm - acquire a reference to the task's mm
573 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
574 * this kernel workthread has transiently adopted a user mm with use_mm,
575 * to do its AIO) is not set and if so returns a reference to it, after
576 * bumping up the use count. User must release the mm via mmput()
577 * after use. Typically used by /proc and ptrace.
579 struct mm_struct *get_task_mm(struct task_struct *task)
581 struct mm_struct *mm;
583 task_lock(task);
584 mm = task->mm;
585 if (mm) {
586 if (task->flags & PF_KTHREAD)
587 mm = NULL;
588 else
589 atomic_inc(&mm->mm_users);
591 task_unlock(task);
592 return mm;
594 EXPORT_SYMBOL_GPL(get_task_mm);
596 /* Please note the differences between mmput and mm_release.
597 * mmput is called whenever we stop holding onto a mm_struct,
598 * error success whatever.
600 * mm_release is called after a mm_struct has been removed
601 * from the current process.
603 * This difference is important for error handling, when we
604 * only half set up a mm_struct for a new process and need to restore
605 * the old one. Because we mmput the new mm_struct before
606 * restoring the old one. . .
607 * Eric Biederman 10 January 1998
609 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
611 struct completion *vfork_done = tsk->vfork_done;
613 /* Get rid of any futexes when releasing the mm */
614 #ifdef CONFIG_FUTEX
615 if (unlikely(tsk->robust_list)) {
616 exit_robust_list(tsk);
617 tsk->robust_list = NULL;
619 #ifdef CONFIG_COMPAT
620 if (unlikely(tsk->compat_robust_list)) {
621 compat_exit_robust_list(tsk);
622 tsk->compat_robust_list = NULL;
624 #endif
625 if (unlikely(!list_empty(&tsk->pi_state_list)))
626 exit_pi_state_list(tsk);
627 #endif
629 /* Get rid of any cached register state */
630 deactivate_mm(tsk, mm);
632 /* notify parent sleeping on vfork() */
633 if (vfork_done) {
634 tsk->vfork_done = NULL;
635 complete(vfork_done);
639 * If we're exiting normally, clear a user-space tid field if
640 * requested. We leave this alone when dying by signal, to leave
641 * the value intact in a core dump, and to save the unnecessary
642 * trouble otherwise. Userland only wants this done for a sys_exit.
644 if (tsk->clear_child_tid) {
645 if (!(tsk->flags & PF_SIGNALED) &&
646 atomic_read(&mm->mm_users) > 1) {
648 * We don't check the error code - if userspace has
649 * not set up a proper pointer then tough luck.
651 put_user(0, tsk->clear_child_tid);
652 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
653 1, NULL, NULL, 0);
655 tsk->clear_child_tid = NULL;
660 * Allocate a new mm structure and copy contents from the
661 * mm structure of the passed in task structure.
663 struct mm_struct *dup_mm(struct task_struct *tsk)
665 struct mm_struct *mm, *oldmm = current->mm;
666 int err;
668 if (!oldmm)
669 return NULL;
671 mm = allocate_mm();
672 if (!mm)
673 goto fail_nomem;
675 memcpy(mm, oldmm, sizeof(*mm));
677 /* Initializing for Swap token stuff */
678 mm->token_priority = 0;
679 mm->last_interval = 0;
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 mm->pmd_huge_pte = NULL;
683 #endif
685 if (!mm_init(mm, tsk))
686 goto fail_nomem;
688 if (init_new_context(tsk, mm))
689 goto fail_nocontext;
691 dup_mm_exe_file(oldmm, mm);
693 err = dup_mmap(mm, oldmm);
694 if (err)
695 goto free_pt;
697 mm->hiwater_rss = get_mm_rss(mm);
698 mm->hiwater_vm = mm->total_vm;
700 if (mm->binfmt && !try_module_get(mm->binfmt->module))
701 goto free_pt;
703 return mm;
705 free_pt:
706 /* don't put binfmt in mmput, we haven't got module yet */
707 mm->binfmt = NULL;
708 mmput(mm);
710 fail_nomem:
711 return NULL;
713 fail_nocontext:
715 * If init_new_context() failed, we cannot use mmput() to free the mm
716 * because it calls destroy_context()
718 mm_free_pgd(mm);
719 free_mm(mm);
720 return NULL;
723 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
725 struct mm_struct * mm, *oldmm;
726 int retval;
728 tsk->min_flt = tsk->maj_flt = 0;
729 tsk->nvcsw = tsk->nivcsw = 0;
730 #ifdef CONFIG_DETECT_HUNG_TASK
731 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
732 #endif
734 tsk->mm = NULL;
735 tsk->active_mm = NULL;
738 * Are we cloning a kernel thread?
740 * We need to steal a active VM for that..
742 oldmm = current->mm;
743 if (!oldmm)
744 return 0;
746 if (clone_flags & CLONE_VM) {
747 atomic_inc(&oldmm->mm_users);
748 mm = oldmm;
749 goto good_mm;
752 retval = -ENOMEM;
753 mm = dup_mm(tsk);
754 if (!mm)
755 goto fail_nomem;
757 good_mm:
758 /* Initializing for Swap token stuff */
759 mm->token_priority = 0;
760 mm->last_interval = 0;
761 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
762 atomic_inc(&mm->oom_disable_count);
764 tsk->mm = mm;
765 tsk->active_mm = mm;
766 return 0;
768 fail_nomem:
769 return retval;
772 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
774 struct fs_struct *fs = current->fs;
775 if (clone_flags & CLONE_FS) {
776 /* tsk->fs is already what we want */
777 spin_lock(&fs->lock);
778 if (fs->in_exec) {
779 spin_unlock(&fs->lock);
780 return -EAGAIN;
782 fs->users++;
783 spin_unlock(&fs->lock);
784 return 0;
786 tsk->fs = copy_fs_struct(fs);
787 if (!tsk->fs)
788 return -ENOMEM;
789 return 0;
792 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
794 struct files_struct *oldf, *newf;
795 int error = 0;
798 * A background process may not have any files ...
800 oldf = current->files;
801 if (!oldf)
802 goto out;
804 if (clone_flags & CLONE_FILES) {
805 atomic_inc(&oldf->count);
806 goto out;
809 newf = dup_fd(oldf, &error);
810 if (!newf)
811 goto out;
813 tsk->files = newf;
814 error = 0;
815 out:
816 return error;
819 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
821 #ifdef CONFIG_BLOCK
822 struct io_context *ioc = current->io_context;
824 if (!ioc)
825 return 0;
827 * Share io context with parent, if CLONE_IO is set
829 if (clone_flags & CLONE_IO) {
830 tsk->io_context = ioc_task_link(ioc);
831 if (unlikely(!tsk->io_context))
832 return -ENOMEM;
833 } else if (ioprio_valid(ioc->ioprio)) {
834 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
835 if (unlikely(!tsk->io_context))
836 return -ENOMEM;
838 tsk->io_context->ioprio = ioc->ioprio;
840 #endif
841 return 0;
844 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
846 struct sighand_struct *sig;
848 if (clone_flags & CLONE_SIGHAND) {
849 atomic_inc(&current->sighand->count);
850 return 0;
852 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
853 rcu_assign_pointer(tsk->sighand, sig);
854 if (!sig)
855 return -ENOMEM;
856 atomic_set(&sig->count, 1);
857 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
858 return 0;
861 void __cleanup_sighand(struct sighand_struct *sighand)
863 if (atomic_dec_and_test(&sighand->count))
864 kmem_cache_free(sighand_cachep, sighand);
869 * Initialize POSIX timer handling for a thread group.
871 static void posix_cpu_timers_init_group(struct signal_struct *sig)
873 unsigned long cpu_limit;
875 /* Thread group counters. */
876 thread_group_cputime_init(sig);
878 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
879 if (cpu_limit != RLIM_INFINITY) {
880 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
881 sig->cputimer.running = 1;
884 /* The timer lists. */
885 INIT_LIST_HEAD(&sig->cpu_timers[0]);
886 INIT_LIST_HEAD(&sig->cpu_timers[1]);
887 INIT_LIST_HEAD(&sig->cpu_timers[2]);
890 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
892 struct signal_struct *sig;
894 if (clone_flags & CLONE_THREAD)
895 return 0;
897 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
898 tsk->signal = sig;
899 if (!sig)
900 return -ENOMEM;
902 sig->nr_threads = 1;
903 atomic_set(&sig->live, 1);
904 atomic_set(&sig->sigcnt, 1);
905 init_waitqueue_head(&sig->wait_chldexit);
906 if (clone_flags & CLONE_NEWPID)
907 sig->flags |= SIGNAL_UNKILLABLE;
908 sig->curr_target = tsk;
909 init_sigpending(&sig->shared_pending);
910 INIT_LIST_HEAD(&sig->posix_timers);
912 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
913 sig->real_timer.function = it_real_fn;
915 task_lock(current->group_leader);
916 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
917 task_unlock(current->group_leader);
919 posix_cpu_timers_init_group(sig);
921 tty_audit_fork(sig);
922 sched_autogroup_fork(sig);
924 sig->oom_adj = current->signal->oom_adj;
925 sig->oom_score_adj = current->signal->oom_score_adj;
926 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
928 mutex_init(&sig->cred_guard_mutex);
930 return 0;
933 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
935 unsigned long new_flags = p->flags;
937 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
938 new_flags |= PF_FORKNOEXEC;
939 new_flags |= PF_STARTING;
940 p->flags = new_flags;
941 clear_freeze_flag(p);
944 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
946 current->clear_child_tid = tidptr;
948 return task_pid_vnr(current);
951 static void rt_mutex_init_task(struct task_struct *p)
953 raw_spin_lock_init(&p->pi_lock);
954 #ifdef CONFIG_RT_MUTEXES
955 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
956 p->pi_blocked_on = NULL;
957 #endif
960 #ifdef CONFIG_MM_OWNER
961 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
963 mm->owner = p;
965 #endif /* CONFIG_MM_OWNER */
968 * Initialize POSIX timer handling for a single task.
970 static void posix_cpu_timers_init(struct task_struct *tsk)
972 tsk->cputime_expires.prof_exp = cputime_zero;
973 tsk->cputime_expires.virt_exp = cputime_zero;
974 tsk->cputime_expires.sched_exp = 0;
975 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
976 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
977 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
981 * This creates a new process as a copy of the old one,
982 * but does not actually start it yet.
984 * It copies the registers, and all the appropriate
985 * parts of the process environment (as per the clone
986 * flags). The actual kick-off is left to the caller.
988 static struct task_struct *copy_process(unsigned long clone_flags,
989 unsigned long stack_start,
990 struct pt_regs *regs,
991 unsigned long stack_size,
992 int __user *child_tidptr,
993 struct pid *pid,
994 int trace)
996 int retval;
997 struct task_struct *p;
998 int cgroup_callbacks_done = 0;
1000 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1001 return ERR_PTR(-EINVAL);
1004 * Thread groups must share signals as well, and detached threads
1005 * can only be started up within the thread group.
1007 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1008 return ERR_PTR(-EINVAL);
1011 * Shared signal handlers imply shared VM. By way of the above,
1012 * thread groups also imply shared VM. Blocking this case allows
1013 * for various simplifications in other code.
1015 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1016 return ERR_PTR(-EINVAL);
1019 * Siblings of global init remain as zombies on exit since they are
1020 * not reaped by their parent (swapper). To solve this and to avoid
1021 * multi-rooted process trees, prevent global and container-inits
1022 * from creating siblings.
1024 if ((clone_flags & CLONE_PARENT) &&
1025 current->signal->flags & SIGNAL_UNKILLABLE)
1026 return ERR_PTR(-EINVAL);
1028 retval = security_task_create(clone_flags);
1029 if (retval)
1030 goto fork_out;
1032 retval = -ENOMEM;
1033 p = dup_task_struct(current);
1034 if (!p)
1035 goto fork_out;
1037 ftrace_graph_init_task(p);
1039 rt_mutex_init_task(p);
1041 #ifdef CONFIG_PROVE_LOCKING
1042 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1043 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1044 #endif
1045 retval = -EAGAIN;
1046 if (atomic_read(&p->real_cred->user->processes) >=
1047 task_rlimit(p, RLIMIT_NPROC)) {
1048 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1049 p->real_cred->user != INIT_USER)
1050 goto bad_fork_free;
1053 retval = copy_creds(p, clone_flags);
1054 if (retval < 0)
1055 goto bad_fork_free;
1058 * If multiple threads are within copy_process(), then this check
1059 * triggers too late. This doesn't hurt, the check is only there
1060 * to stop root fork bombs.
1062 retval = -EAGAIN;
1063 if (nr_threads >= max_threads)
1064 goto bad_fork_cleanup_count;
1066 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1067 goto bad_fork_cleanup_count;
1069 p->did_exec = 0;
1070 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1071 copy_flags(clone_flags, p);
1072 INIT_LIST_HEAD(&p->children);
1073 INIT_LIST_HEAD(&p->sibling);
1074 rcu_copy_process(p);
1075 p->vfork_done = NULL;
1076 spin_lock_init(&p->alloc_lock);
1078 init_sigpending(&p->pending);
1080 p->utime = cputime_zero;
1081 p->stime = cputime_zero;
1082 p->gtime = cputime_zero;
1083 p->utimescaled = cputime_zero;
1084 p->stimescaled = cputime_zero;
1085 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1086 p->prev_utime = cputime_zero;
1087 p->prev_stime = cputime_zero;
1088 #endif
1089 #if defined(SPLIT_RSS_COUNTING)
1090 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1091 #endif
1093 p->default_timer_slack_ns = current->timer_slack_ns;
1095 task_io_accounting_init(&p->ioac);
1096 acct_clear_integrals(p);
1098 posix_cpu_timers_init(p);
1100 p->lock_depth = -1; /* -1 = no lock */
1101 do_posix_clock_monotonic_gettime(&p->start_time);
1102 p->real_start_time = p->start_time;
1103 monotonic_to_bootbased(&p->real_start_time);
1104 p->io_context = NULL;
1105 p->audit_context = NULL;
1106 cgroup_fork(p);
1107 #ifdef CONFIG_NUMA
1108 p->mempolicy = mpol_dup(p->mempolicy);
1109 if (IS_ERR(p->mempolicy)) {
1110 retval = PTR_ERR(p->mempolicy);
1111 p->mempolicy = NULL;
1112 goto bad_fork_cleanup_cgroup;
1114 mpol_fix_fork_child_flag(p);
1115 #endif
1116 #ifdef CONFIG_TRACE_IRQFLAGS
1117 p->irq_events = 0;
1118 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1119 p->hardirqs_enabled = 1;
1120 #else
1121 p->hardirqs_enabled = 0;
1122 #endif
1123 p->hardirq_enable_ip = 0;
1124 p->hardirq_enable_event = 0;
1125 p->hardirq_disable_ip = _THIS_IP_;
1126 p->hardirq_disable_event = 0;
1127 p->softirqs_enabled = 1;
1128 p->softirq_enable_ip = _THIS_IP_;
1129 p->softirq_enable_event = 0;
1130 p->softirq_disable_ip = 0;
1131 p->softirq_disable_event = 0;
1132 p->hardirq_context = 0;
1133 p->softirq_context = 0;
1134 #endif
1135 #ifdef CONFIG_LOCKDEP
1136 p->lockdep_depth = 0; /* no locks held yet */
1137 p->curr_chain_key = 0;
1138 p->lockdep_recursion = 0;
1139 #endif
1141 #ifdef CONFIG_DEBUG_MUTEXES
1142 p->blocked_on = NULL; /* not blocked yet */
1143 #endif
1144 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1145 p->memcg_batch.do_batch = 0;
1146 p->memcg_batch.memcg = NULL;
1147 #endif
1149 /* Perform scheduler related setup. Assign this task to a CPU. */
1150 sched_fork(p, clone_flags);
1152 retval = perf_event_init_task(p);
1153 if (retval)
1154 goto bad_fork_cleanup_policy;
1156 if ((retval = audit_alloc(p)))
1157 goto bad_fork_cleanup_policy;
1158 /* copy all the process information */
1159 if ((retval = copy_semundo(clone_flags, p)))
1160 goto bad_fork_cleanup_audit;
1161 if ((retval = copy_files(clone_flags, p)))
1162 goto bad_fork_cleanup_semundo;
1163 if ((retval = copy_fs(clone_flags, p)))
1164 goto bad_fork_cleanup_files;
1165 if ((retval = copy_sighand(clone_flags, p)))
1166 goto bad_fork_cleanup_fs;
1167 if ((retval = copy_signal(clone_flags, p)))
1168 goto bad_fork_cleanup_sighand;
1169 if ((retval = copy_mm(clone_flags, p)))
1170 goto bad_fork_cleanup_signal;
1171 if ((retval = copy_namespaces(clone_flags, p)))
1172 goto bad_fork_cleanup_mm;
1173 if ((retval = copy_io(clone_flags, p)))
1174 goto bad_fork_cleanup_namespaces;
1175 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1176 if (retval)
1177 goto bad_fork_cleanup_io;
1179 if (pid != &init_struct_pid) {
1180 retval = -ENOMEM;
1181 pid = alloc_pid(p->nsproxy->pid_ns);
1182 if (!pid)
1183 goto bad_fork_cleanup_io;
1185 if (clone_flags & CLONE_NEWPID) {
1186 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1187 if (retval < 0)
1188 goto bad_fork_free_pid;
1192 p->pid = pid_nr(pid);
1193 p->tgid = p->pid;
1194 if (clone_flags & CLONE_THREAD)
1195 p->tgid = current->tgid;
1197 if (current->nsproxy != p->nsproxy) {
1198 retval = ns_cgroup_clone(p, pid);
1199 if (retval)
1200 goto bad_fork_free_pid;
1203 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1205 * Clear TID on mm_release()?
1207 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1208 #ifdef CONFIG_FUTEX
1209 p->robust_list = NULL;
1210 #ifdef CONFIG_COMPAT
1211 p->compat_robust_list = NULL;
1212 #endif
1213 INIT_LIST_HEAD(&p->pi_state_list);
1214 p->pi_state_cache = NULL;
1215 #endif
1217 * sigaltstack should be cleared when sharing the same VM
1219 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1220 p->sas_ss_sp = p->sas_ss_size = 0;
1223 * Syscall tracing and stepping should be turned off in the
1224 * child regardless of CLONE_PTRACE.
1226 user_disable_single_step(p);
1227 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1228 #ifdef TIF_SYSCALL_EMU
1229 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1230 #endif
1231 clear_all_latency_tracing(p);
1233 /* ok, now we should be set up.. */
1234 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1235 p->pdeath_signal = 0;
1236 p->exit_state = 0;
1239 * Ok, make it visible to the rest of the system.
1240 * We dont wake it up yet.
1242 p->group_leader = p;
1243 INIT_LIST_HEAD(&p->thread_group);
1245 /* Now that the task is set up, run cgroup callbacks if
1246 * necessary. We need to run them before the task is visible
1247 * on the tasklist. */
1248 cgroup_fork_callbacks(p);
1249 cgroup_callbacks_done = 1;
1251 /* Need tasklist lock for parent etc handling! */
1252 write_lock_irq(&tasklist_lock);
1254 /* CLONE_PARENT re-uses the old parent */
1255 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1256 p->real_parent = current->real_parent;
1257 p->parent_exec_id = current->parent_exec_id;
1258 } else {
1259 p->real_parent = current;
1260 p->parent_exec_id = current->self_exec_id;
1263 spin_lock(&current->sighand->siglock);
1266 * Process group and session signals need to be delivered to just the
1267 * parent before the fork or both the parent and the child after the
1268 * fork. Restart if a signal comes in before we add the new process to
1269 * it's process group.
1270 * A fatal signal pending means that current will exit, so the new
1271 * thread can't slip out of an OOM kill (or normal SIGKILL).
1273 recalc_sigpending();
1274 if (signal_pending(current)) {
1275 spin_unlock(&current->sighand->siglock);
1276 write_unlock_irq(&tasklist_lock);
1277 retval = -ERESTARTNOINTR;
1278 goto bad_fork_free_pid;
1281 if (clone_flags & CLONE_THREAD) {
1282 current->signal->nr_threads++;
1283 atomic_inc(&current->signal->live);
1284 atomic_inc(&current->signal->sigcnt);
1285 p->group_leader = current->group_leader;
1286 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1289 if (likely(p->pid)) {
1290 tracehook_finish_clone(p, clone_flags, trace);
1292 if (thread_group_leader(p)) {
1293 if (clone_flags & CLONE_NEWPID)
1294 p->nsproxy->pid_ns->child_reaper = p;
1296 p->signal->leader_pid = pid;
1297 p->signal->tty = tty_kref_get(current->signal->tty);
1298 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1299 attach_pid(p, PIDTYPE_SID, task_session(current));
1300 list_add_tail(&p->sibling, &p->real_parent->children);
1301 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1302 __this_cpu_inc(process_counts);
1304 attach_pid(p, PIDTYPE_PID, pid);
1305 nr_threads++;
1308 total_forks++;
1309 spin_unlock(&current->sighand->siglock);
1310 write_unlock_irq(&tasklist_lock);
1311 proc_fork_connector(p);
1312 cgroup_post_fork(p);
1313 perf_event_fork(p);
1314 return p;
1316 bad_fork_free_pid:
1317 if (pid != &init_struct_pid)
1318 free_pid(pid);
1319 bad_fork_cleanup_io:
1320 if (p->io_context)
1321 exit_io_context(p);
1322 bad_fork_cleanup_namespaces:
1323 exit_task_namespaces(p);
1324 bad_fork_cleanup_mm:
1325 if (p->mm) {
1326 task_lock(p);
1327 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1328 atomic_dec(&p->mm->oom_disable_count);
1329 task_unlock(p);
1330 mmput(p->mm);
1332 bad_fork_cleanup_signal:
1333 if (!(clone_flags & CLONE_THREAD))
1334 free_signal_struct(p->signal);
1335 bad_fork_cleanup_sighand:
1336 __cleanup_sighand(p->sighand);
1337 bad_fork_cleanup_fs:
1338 exit_fs(p); /* blocking */
1339 bad_fork_cleanup_files:
1340 exit_files(p); /* blocking */
1341 bad_fork_cleanup_semundo:
1342 exit_sem(p);
1343 bad_fork_cleanup_audit:
1344 audit_free(p);
1345 bad_fork_cleanup_policy:
1346 perf_event_free_task(p);
1347 #ifdef CONFIG_NUMA
1348 mpol_put(p->mempolicy);
1349 bad_fork_cleanup_cgroup:
1350 #endif
1351 cgroup_exit(p, cgroup_callbacks_done);
1352 delayacct_tsk_free(p);
1353 module_put(task_thread_info(p)->exec_domain->module);
1354 bad_fork_cleanup_count:
1355 atomic_dec(&p->cred->user->processes);
1356 exit_creds(p);
1357 bad_fork_free:
1358 free_task(p);
1359 fork_out:
1360 return ERR_PTR(retval);
1363 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1365 memset(regs, 0, sizeof(struct pt_regs));
1366 return regs;
1369 static inline void init_idle_pids(struct pid_link *links)
1371 enum pid_type type;
1373 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1374 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1375 links[type].pid = &init_struct_pid;
1379 struct task_struct * __cpuinit fork_idle(int cpu)
1381 struct task_struct *task;
1382 struct pt_regs regs;
1384 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1385 &init_struct_pid, 0);
1386 if (!IS_ERR(task)) {
1387 init_idle_pids(task->pids);
1388 init_idle(task, cpu);
1391 return task;
1395 * Ok, this is the main fork-routine.
1397 * It copies the process, and if successful kick-starts
1398 * it and waits for it to finish using the VM if required.
1400 long do_fork(unsigned long clone_flags,
1401 unsigned long stack_start,
1402 struct pt_regs *regs,
1403 unsigned long stack_size,
1404 int __user *parent_tidptr,
1405 int __user *child_tidptr)
1407 struct task_struct *p;
1408 int trace = 0;
1409 long nr;
1412 * Do some preliminary argument and permissions checking before we
1413 * actually start allocating stuff
1415 if (clone_flags & CLONE_NEWUSER) {
1416 if (clone_flags & CLONE_THREAD)
1417 return -EINVAL;
1418 /* hopefully this check will go away when userns support is
1419 * complete
1421 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1422 !capable(CAP_SETGID))
1423 return -EPERM;
1427 * When called from kernel_thread, don't do user tracing stuff.
1429 if (likely(user_mode(regs)))
1430 trace = tracehook_prepare_clone(clone_flags);
1432 p = copy_process(clone_flags, stack_start, regs, stack_size,
1433 child_tidptr, NULL, trace);
1435 * Do this prior waking up the new thread - the thread pointer
1436 * might get invalid after that point, if the thread exits quickly.
1438 if (!IS_ERR(p)) {
1439 struct completion vfork;
1441 trace_sched_process_fork(current, p);
1443 nr = task_pid_vnr(p);
1445 if (clone_flags & CLONE_PARENT_SETTID)
1446 put_user(nr, parent_tidptr);
1448 if (clone_flags & CLONE_VFORK) {
1449 p->vfork_done = &vfork;
1450 init_completion(&vfork);
1453 audit_finish_fork(p);
1454 tracehook_report_clone(regs, clone_flags, nr, p);
1457 * We set PF_STARTING at creation in case tracing wants to
1458 * use this to distinguish a fully live task from one that
1459 * hasn't gotten to tracehook_report_clone() yet. Now we
1460 * clear it and set the child going.
1462 p->flags &= ~PF_STARTING;
1464 wake_up_new_task(p, clone_flags);
1466 tracehook_report_clone_complete(trace, regs,
1467 clone_flags, nr, p);
1469 if (clone_flags & CLONE_VFORK) {
1470 freezer_do_not_count();
1471 wait_for_completion(&vfork);
1472 freezer_count();
1473 tracehook_report_vfork_done(p, nr);
1475 } else {
1476 nr = PTR_ERR(p);
1478 return nr;
1481 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1482 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1483 #endif
1485 static void sighand_ctor(void *data)
1487 struct sighand_struct *sighand = data;
1489 spin_lock_init(&sighand->siglock);
1490 init_waitqueue_head(&sighand->signalfd_wqh);
1493 void __init proc_caches_init(void)
1495 sighand_cachep = kmem_cache_create("sighand_cache",
1496 sizeof(struct sighand_struct), 0,
1497 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1498 SLAB_NOTRACK, sighand_ctor);
1499 signal_cachep = kmem_cache_create("signal_cache",
1500 sizeof(struct signal_struct), 0,
1501 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1502 files_cachep = kmem_cache_create("files_cache",
1503 sizeof(struct files_struct), 0,
1504 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1505 fs_cachep = kmem_cache_create("fs_cache",
1506 sizeof(struct fs_struct), 0,
1507 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1508 mm_cachep = kmem_cache_create("mm_struct",
1509 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1510 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1512 mmap_init();
1516 * Check constraints on flags passed to the unshare system call and
1517 * force unsharing of additional process context as appropriate.
1519 static void check_unshare_flags(unsigned long *flags_ptr)
1522 * If unsharing a thread from a thread group, must also
1523 * unshare vm.
1525 if (*flags_ptr & CLONE_THREAD)
1526 *flags_ptr |= CLONE_VM;
1529 * If unsharing vm, must also unshare signal handlers.
1531 if (*flags_ptr & CLONE_VM)
1532 *flags_ptr |= CLONE_SIGHAND;
1535 * If unsharing namespace, must also unshare filesystem information.
1537 if (*flags_ptr & CLONE_NEWNS)
1538 *flags_ptr |= CLONE_FS;
1542 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1544 static int unshare_thread(unsigned long unshare_flags)
1546 if (unshare_flags & CLONE_THREAD)
1547 return -EINVAL;
1549 return 0;
1553 * Unshare the filesystem structure if it is being shared
1555 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1557 struct fs_struct *fs = current->fs;
1559 if (!(unshare_flags & CLONE_FS) || !fs)
1560 return 0;
1562 /* don't need lock here; in the worst case we'll do useless copy */
1563 if (fs->users == 1)
1564 return 0;
1566 *new_fsp = copy_fs_struct(fs);
1567 if (!*new_fsp)
1568 return -ENOMEM;
1570 return 0;
1574 * Unsharing of sighand is not supported yet
1576 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1578 struct sighand_struct *sigh = current->sighand;
1580 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1581 return -EINVAL;
1582 else
1583 return 0;
1587 * Unshare vm if it is being shared
1589 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1591 struct mm_struct *mm = current->mm;
1593 if ((unshare_flags & CLONE_VM) &&
1594 (mm && atomic_read(&mm->mm_users) > 1)) {
1595 return -EINVAL;
1598 return 0;
1602 * Unshare file descriptor table if it is being shared
1604 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1606 struct files_struct *fd = current->files;
1607 int error = 0;
1609 if ((unshare_flags & CLONE_FILES) &&
1610 (fd && atomic_read(&fd->count) > 1)) {
1611 *new_fdp = dup_fd(fd, &error);
1612 if (!*new_fdp)
1613 return error;
1616 return 0;
1620 * unshare allows a process to 'unshare' part of the process
1621 * context which was originally shared using clone. copy_*
1622 * functions used by do_fork() cannot be used here directly
1623 * because they modify an inactive task_struct that is being
1624 * constructed. Here we are modifying the current, active,
1625 * task_struct.
1627 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1629 int err = 0;
1630 struct fs_struct *fs, *new_fs = NULL;
1631 struct sighand_struct *new_sigh = NULL;
1632 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1633 struct files_struct *fd, *new_fd = NULL;
1634 struct nsproxy *new_nsproxy = NULL;
1635 int do_sysvsem = 0;
1637 check_unshare_flags(&unshare_flags);
1639 /* Return -EINVAL for all unsupported flags */
1640 err = -EINVAL;
1641 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1642 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1643 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1644 goto bad_unshare_out;
1647 * CLONE_NEWIPC must also detach from the undolist: after switching
1648 * to a new ipc namespace, the semaphore arrays from the old
1649 * namespace are unreachable.
1651 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1652 do_sysvsem = 1;
1653 if ((err = unshare_thread(unshare_flags)))
1654 goto bad_unshare_out;
1655 if ((err = unshare_fs(unshare_flags, &new_fs)))
1656 goto bad_unshare_cleanup_thread;
1657 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1658 goto bad_unshare_cleanup_fs;
1659 if ((err = unshare_vm(unshare_flags, &new_mm)))
1660 goto bad_unshare_cleanup_sigh;
1661 if ((err = unshare_fd(unshare_flags, &new_fd)))
1662 goto bad_unshare_cleanup_vm;
1663 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1664 new_fs)))
1665 goto bad_unshare_cleanup_fd;
1667 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1668 if (do_sysvsem) {
1670 * CLONE_SYSVSEM is equivalent to sys_exit().
1672 exit_sem(current);
1675 if (new_nsproxy) {
1676 switch_task_namespaces(current, new_nsproxy);
1677 new_nsproxy = NULL;
1680 task_lock(current);
1682 if (new_fs) {
1683 fs = current->fs;
1684 spin_lock(&fs->lock);
1685 current->fs = new_fs;
1686 if (--fs->users)
1687 new_fs = NULL;
1688 else
1689 new_fs = fs;
1690 spin_unlock(&fs->lock);
1693 if (new_mm) {
1694 mm = current->mm;
1695 active_mm = current->active_mm;
1696 current->mm = new_mm;
1697 current->active_mm = new_mm;
1698 if (current->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
1699 atomic_dec(&mm->oom_disable_count);
1700 atomic_inc(&new_mm->oom_disable_count);
1702 activate_mm(active_mm, new_mm);
1703 new_mm = mm;
1706 if (new_fd) {
1707 fd = current->files;
1708 current->files = new_fd;
1709 new_fd = fd;
1712 task_unlock(current);
1715 if (new_nsproxy)
1716 put_nsproxy(new_nsproxy);
1718 bad_unshare_cleanup_fd:
1719 if (new_fd)
1720 put_files_struct(new_fd);
1722 bad_unshare_cleanup_vm:
1723 if (new_mm)
1724 mmput(new_mm);
1726 bad_unshare_cleanup_sigh:
1727 if (new_sigh)
1728 if (atomic_dec_and_test(&new_sigh->count))
1729 kmem_cache_free(sighand_cachep, new_sigh);
1731 bad_unshare_cleanup_fs:
1732 if (new_fs)
1733 free_fs_struct(new_fs);
1735 bad_unshare_cleanup_thread:
1736 bad_unshare_out:
1737 return err;
1741 * Helper to unshare the files of the current task.
1742 * We don't want to expose copy_files internals to
1743 * the exec layer of the kernel.
1746 int unshare_files(struct files_struct **displaced)
1748 struct task_struct *task = current;
1749 struct files_struct *copy = NULL;
1750 int error;
1752 error = unshare_fd(CLONE_FILES, &copy);
1753 if (error || !copy) {
1754 *displaced = NULL;
1755 return error;
1757 *displaced = task->files;
1758 task_lock(task);
1759 task->files = copy;
1760 task_unlock(task);
1761 return 0;