2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
44 static int ext3_writepage_trans_blocks(struct inode
*inode
);
47 * Test whether an inode is a fast symlink.
49 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
51 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
52 (inode
->i_sb
->s_blocksize
>> 9) : 0;
54 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
58 * The ext3 forget function must perform a revoke if we are freeing data
59 * which has been journaled. Metadata (eg. indirect blocks) must be
60 * revoked in all cases.
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
66 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
67 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
73 BUFFER_TRACE(bh
, "enter");
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
77 bh
, is_metadata
, inode
->i_mode
,
78 test_opt(inode
->i_sb
, DATA_FLAGS
));
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
85 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
86 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
88 BUFFER_TRACE(bh
, "call journal_forget");
89 return ext3_journal_forget(handle
, bh
);
95 * data!=journal && (is_metadata || should_journal_data(inode))
97 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
98 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
100 ext3_abort(inode
->i_sb
, __func__
,
101 "error %d when attempting revoke", err
);
102 BUFFER_TRACE(bh
, "exit");
107 * Work out how many blocks we need to proceed with the next chunk of a
108 * truncate transaction.
110 static unsigned long blocks_for_truncate(struct inode
*inode
)
112 unsigned long needed
;
114 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
125 /* But we need to bound the transaction so we don't overflow the
127 if (needed
> EXT3_MAX_TRANS_DATA
)
128 needed
= EXT3_MAX_TRANS_DATA
;
130 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
141 * transaction in the top-level truncate loop. --sct
143 static handle_t
*start_transaction(struct inode
*inode
)
147 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
151 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
156 * Try to extend this transaction for the purposes of truncation.
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
161 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
163 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
165 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
175 static int truncate_restart_transaction(handle_t
*handle
, struct inode
*inode
)
179 jbd_debug(2, "restarting handle %p\n", handle
);
181 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 * At this moment, get_block can be called only for blocks inside
183 * i_size since page cache has been already dropped and writes are
184 * blocked by i_mutex. So we can safely drop the truncate_mutex.
186 mutex_unlock(&EXT3_I(inode
)->truncate_mutex
);
187 ret
= ext3_journal_restart(handle
, blocks_for_truncate(inode
));
188 mutex_lock(&EXT3_I(inode
)->truncate_mutex
);
193 * Called at the last iput() if i_nlink is zero.
195 void ext3_delete_inode (struct inode
* inode
)
199 if (!is_bad_inode(inode
))
200 dquot_initialize(inode
);
202 truncate_inode_pages(&inode
->i_data
, 0);
204 if (is_bad_inode(inode
))
207 handle
= start_transaction(inode
);
208 if (IS_ERR(handle
)) {
210 * If we're going to skip the normal cleanup, we still need to
211 * make sure that the in-core orphan linked list is properly
214 ext3_orphan_del(NULL
, inode
);
222 ext3_truncate(inode
);
224 * Kill off the orphan record which ext3_truncate created.
225 * AKPM: I think this can be inside the above `if'.
226 * Note that ext3_orphan_del() has to be able to cope with the
227 * deletion of a non-existent orphan - this is because we don't
228 * know if ext3_truncate() actually created an orphan record.
229 * (Well, we could do this if we need to, but heck - it works)
231 ext3_orphan_del(handle
, inode
);
232 EXT3_I(inode
)->i_dtime
= get_seconds();
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
241 if (ext3_mark_inode_dirty(handle
, inode
))
242 /* If that failed, just do the required in-core inode clear. */
245 ext3_free_inode(handle
, inode
);
246 ext3_journal_stop(handle
);
249 clear_inode(inode
); /* We must guarantee clearing of inode... */
255 struct buffer_head
*bh
;
258 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
260 p
->key
= *(p
->p
= v
);
264 static int verify_chain(Indirect
*from
, Indirect
*to
)
266 while (from
<= to
&& from
->key
== *from
->p
)
272 * ext3_block_to_path - parse the block number into array of offsets
273 * @inode: inode in question (we are only interested in its superblock)
274 * @i_block: block number to be parsed
275 * @offsets: array to store the offsets in
276 * @boundary: set this non-zero if the referred-to block is likely to be
277 * followed (on disk) by an indirect block.
279 * To store the locations of file's data ext3 uses a data structure common
280 * for UNIX filesystems - tree of pointers anchored in the inode, with
281 * data blocks at leaves and indirect blocks in intermediate nodes.
282 * This function translates the block number into path in that tree -
283 * return value is the path length and @offsets[n] is the offset of
284 * pointer to (n+1)th node in the nth one. If @block is out of range
285 * (negative or too large) warning is printed and zero returned.
287 * Note: function doesn't find node addresses, so no IO is needed. All
288 * we need to know is the capacity of indirect blocks (taken from the
293 * Portability note: the last comparison (check that we fit into triple
294 * indirect block) is spelled differently, because otherwise on an
295 * architecture with 32-bit longs and 8Kb pages we might get into trouble
296 * if our filesystem had 8Kb blocks. We might use long long, but that would
297 * kill us on x86. Oh, well, at least the sign propagation does not matter -
298 * i_block would have to be negative in the very beginning, so we would not
302 static int ext3_block_to_path(struct inode
*inode
,
303 long i_block
, int offsets
[4], int *boundary
)
305 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
306 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
307 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
308 indirect_blocks
= ptrs
,
309 double_blocks
= (1 << (ptrs_bits
* 2));
314 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
315 } else if (i_block
< direct_blocks
) {
316 offsets
[n
++] = i_block
;
317 final
= direct_blocks
;
318 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
319 offsets
[n
++] = EXT3_IND_BLOCK
;
320 offsets
[n
++] = i_block
;
322 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
323 offsets
[n
++] = EXT3_DIND_BLOCK
;
324 offsets
[n
++] = i_block
>> ptrs_bits
;
325 offsets
[n
++] = i_block
& (ptrs
- 1);
327 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
328 offsets
[n
++] = EXT3_TIND_BLOCK
;
329 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
330 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
331 offsets
[n
++] = i_block
& (ptrs
- 1);
334 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
337 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
342 * ext3_get_branch - read the chain of indirect blocks leading to data
343 * @inode: inode in question
344 * @depth: depth of the chain (1 - direct pointer, etc.)
345 * @offsets: offsets of pointers in inode/indirect blocks
346 * @chain: place to store the result
347 * @err: here we store the error value
349 * Function fills the array of triples <key, p, bh> and returns %NULL
350 * if everything went OK or the pointer to the last filled triple
351 * (incomplete one) otherwise. Upon the return chain[i].key contains
352 * the number of (i+1)-th block in the chain (as it is stored in memory,
353 * i.e. little-endian 32-bit), chain[i].p contains the address of that
354 * number (it points into struct inode for i==0 and into the bh->b_data
355 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
356 * block for i>0 and NULL for i==0. In other words, it holds the block
357 * numbers of the chain, addresses they were taken from (and where we can
358 * verify that chain did not change) and buffer_heads hosting these
361 * Function stops when it stumbles upon zero pointer (absent block)
362 * (pointer to last triple returned, *@err == 0)
363 * or when it gets an IO error reading an indirect block
364 * (ditto, *@err == -EIO)
365 * or when it notices that chain had been changed while it was reading
366 * (ditto, *@err == -EAGAIN)
367 * or when it reads all @depth-1 indirect blocks successfully and finds
368 * the whole chain, all way to the data (returns %NULL, *err == 0).
370 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
371 Indirect chain
[4], int *err
)
373 struct super_block
*sb
= inode
->i_sb
;
375 struct buffer_head
*bh
;
378 /* i_data is not going away, no lock needed */
379 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
383 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
386 /* Reader: pointers */
387 if (!verify_chain(chain
, p
))
389 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
407 * ext3_find_near - find a place for allocation with sufficient locality
409 * @ind: descriptor of indirect block.
411 * This function returns the preferred place for block allocation.
412 * It is used when heuristic for sequential allocation fails.
414 * + if there is a block to the left of our position - allocate near it.
415 * + if pointer will live in indirect block - allocate near that block.
416 * + if pointer will live in inode - allocate in the same
419 * In the latter case we colour the starting block by the callers PID to
420 * prevent it from clashing with concurrent allocations for a different inode
421 * in the same block group. The PID is used here so that functionally related
422 * files will be close-by on-disk.
424 * Caller must make sure that @ind is valid and will stay that way.
426 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
428 struct ext3_inode_info
*ei
= EXT3_I(inode
);
429 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
431 ext3_fsblk_t bg_start
;
432 ext3_grpblk_t colour
;
434 /* Try to find previous block */
435 for (p
= ind
->p
- 1; p
>= start
; p
--) {
437 return le32_to_cpu(*p
);
440 /* No such thing, so let's try location of indirect block */
442 return ind
->bh
->b_blocknr
;
445 * It is going to be referred to from the inode itself? OK, just put it
446 * into the same cylinder group then.
448 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
449 colour
= (current
->pid
% 16) *
450 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
451 return bg_start
+ colour
;
455 * ext3_find_goal - find a preferred place for allocation.
457 * @block: block we want
458 * @partial: pointer to the last triple within a chain
460 * Normally this function find the preferred place for block allocation,
464 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
467 struct ext3_block_alloc_info
*block_i
;
469 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
472 * try the heuristic for sequential allocation,
473 * failing that at least try to get decent locality.
475 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
476 && (block_i
->last_alloc_physical_block
!= 0)) {
477 return block_i
->last_alloc_physical_block
+ 1;
480 return ext3_find_near(inode
, partial
);
484 * ext3_blks_to_allocate: Look up the block map and count the number
485 * of direct blocks need to be allocated for the given branch.
487 * @branch: chain of indirect blocks
488 * @k: number of blocks need for indirect blocks
489 * @blks: number of data blocks to be mapped.
490 * @blocks_to_boundary: the offset in the indirect block
492 * return the total number of blocks to be allocate, including the
493 * direct and indirect blocks.
495 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
496 int blocks_to_boundary
)
498 unsigned long count
= 0;
501 * Simple case, [t,d]Indirect block(s) has not allocated yet
502 * then it's clear blocks on that path have not allocated
505 /* right now we don't handle cross boundary allocation */
506 if (blks
< blocks_to_boundary
+ 1)
509 count
+= blocks_to_boundary
+ 1;
514 while (count
< blks
&& count
<= blocks_to_boundary
&&
515 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
522 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
523 * @indirect_blks: the number of blocks need to allocate for indirect
526 * @new_blocks: on return it will store the new block numbers for
527 * the indirect blocks(if needed) and the first direct block,
528 * @blks: on return it will store the total number of allocated
531 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
532 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
533 ext3_fsblk_t new_blocks
[4], int *err
)
536 unsigned long count
= 0;
538 ext3_fsblk_t current_block
= 0;
542 * Here we try to allocate the requested multiple blocks at once,
543 * on a best-effort basis.
544 * To build a branch, we should allocate blocks for
545 * the indirect blocks(if not allocated yet), and at least
546 * the first direct block of this branch. That's the
547 * minimum number of blocks need to allocate(required)
549 target
= blks
+ indirect_blks
;
553 /* allocating blocks for indirect blocks and direct blocks */
554 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
559 /* allocate blocks for indirect blocks */
560 while (index
< indirect_blks
&& count
) {
561 new_blocks
[index
++] = current_block
++;
569 /* save the new block number for the first direct block */
570 new_blocks
[index
] = current_block
;
572 /* total number of blocks allocated for direct blocks */
577 for (i
= 0; i
<index
; i
++)
578 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
583 * ext3_alloc_branch - allocate and set up a chain of blocks.
585 * @indirect_blks: number of allocated indirect blocks
586 * @blks: number of allocated direct blocks
587 * @offsets: offsets (in the blocks) to store the pointers to next.
588 * @branch: place to store the chain in.
590 * This function allocates blocks, zeroes out all but the last one,
591 * links them into chain and (if we are synchronous) writes them to disk.
592 * In other words, it prepares a branch that can be spliced onto the
593 * inode. It stores the information about that chain in the branch[], in
594 * the same format as ext3_get_branch() would do. We are calling it after
595 * we had read the existing part of chain and partial points to the last
596 * triple of that (one with zero ->key). Upon the exit we have the same
597 * picture as after the successful ext3_get_block(), except that in one
598 * place chain is disconnected - *branch->p is still zero (we did not
599 * set the last link), but branch->key contains the number that should
600 * be placed into *branch->p to fill that gap.
602 * If allocation fails we free all blocks we've allocated (and forget
603 * their buffer_heads) and return the error value the from failed
604 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
605 * as described above and return 0.
607 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
608 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
609 int *offsets
, Indirect
*branch
)
611 int blocksize
= inode
->i_sb
->s_blocksize
;
614 struct buffer_head
*bh
;
616 ext3_fsblk_t new_blocks
[4];
617 ext3_fsblk_t current_block
;
619 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
620 *blks
, new_blocks
, &err
);
624 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
626 * metadata blocks and data blocks are allocated.
628 for (n
= 1; n
<= indirect_blks
; n
++) {
630 * Get buffer_head for parent block, zero it out
631 * and set the pointer to new one, then send
634 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
637 BUFFER_TRACE(bh
, "call get_create_access");
638 err
= ext3_journal_get_create_access(handle
, bh
);
645 memset(bh
->b_data
, 0, blocksize
);
646 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
647 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
648 *branch
[n
].p
= branch
[n
].key
;
649 if ( n
== indirect_blks
) {
650 current_block
= new_blocks
[n
];
652 * End of chain, update the last new metablock of
653 * the chain to point to the new allocated
654 * data blocks numbers
656 for (i
=1; i
< num
; i
++)
657 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
659 BUFFER_TRACE(bh
, "marking uptodate");
660 set_buffer_uptodate(bh
);
663 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
664 err
= ext3_journal_dirty_metadata(handle
, bh
);
671 /* Allocation failed, free what we already allocated */
672 for (i
= 1; i
<= n
; i
++) {
673 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
674 ext3_journal_forget(handle
, branch
[i
].bh
);
676 for (i
= 0; i
<indirect_blks
; i
++)
677 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
679 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
685 * ext3_splice_branch - splice the allocated branch onto inode.
687 * @block: (logical) number of block we are adding
688 * @chain: chain of indirect blocks (with a missing link - see
690 * @where: location of missing link
691 * @num: number of indirect blocks we are adding
692 * @blks: number of direct blocks we are adding
694 * This function fills the missing link and does all housekeeping needed in
695 * inode (->i_blocks, etc.). In case of success we end up with the full
696 * chain to new block and return 0.
698 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
699 long block
, Indirect
*where
, int num
, int blks
)
703 struct ext3_block_alloc_info
*block_i
;
704 ext3_fsblk_t current_block
;
705 struct ext3_inode_info
*ei
= EXT3_I(inode
);
707 block_i
= ei
->i_block_alloc_info
;
709 * If we're splicing into a [td]indirect block (as opposed to the
710 * inode) then we need to get write access to the [td]indirect block
714 BUFFER_TRACE(where
->bh
, "get_write_access");
715 err
= ext3_journal_get_write_access(handle
, where
->bh
);
721 *where
->p
= where
->key
;
724 * Update the host buffer_head or inode to point to more just allocated
725 * direct blocks blocks
727 if (num
== 0 && blks
> 1) {
728 current_block
= le32_to_cpu(where
->key
) + 1;
729 for (i
= 1; i
< blks
; i
++)
730 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
734 * update the most recently allocated logical & physical block
735 * in i_block_alloc_info, to assist find the proper goal block for next
739 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
740 block_i
->last_alloc_physical_block
=
741 le32_to_cpu(where
[num
].key
) + blks
- 1;
744 /* We are done with atomic stuff, now do the rest of housekeeping */
746 inode
->i_ctime
= CURRENT_TIME_SEC
;
747 ext3_mark_inode_dirty(handle
, inode
);
748 /* ext3_mark_inode_dirty already updated i_sync_tid */
749 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
751 /* had we spliced it onto indirect block? */
754 * If we spliced it onto an indirect block, we haven't
755 * altered the inode. Note however that if it is being spliced
756 * onto an indirect block at the very end of the file (the
757 * file is growing) then we *will* alter the inode to reflect
758 * the new i_size. But that is not done here - it is done in
759 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
761 jbd_debug(5, "splicing indirect only\n");
762 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
763 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
768 * OK, we spliced it into the inode itself on a direct block.
769 * Inode was dirtied above.
771 jbd_debug(5, "splicing direct\n");
776 for (i
= 1; i
<= num
; i
++) {
777 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
778 ext3_journal_forget(handle
, where
[i
].bh
);
779 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
781 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
787 * Allocation strategy is simple: if we have to allocate something, we will
788 * have to go the whole way to leaf. So let's do it before attaching anything
789 * to tree, set linkage between the newborn blocks, write them if sync is
790 * required, recheck the path, free and repeat if check fails, otherwise
791 * set the last missing link (that will protect us from any truncate-generated
792 * removals - all blocks on the path are immune now) and possibly force the
793 * write on the parent block.
794 * That has a nice additional property: no special recovery from the failed
795 * allocations is needed - we simply release blocks and do not touch anything
796 * reachable from inode.
798 * `handle' can be NULL if create == 0.
800 * The BKL may not be held on entry here. Be sure to take it early.
801 * return > 0, # of blocks mapped or allocated.
802 * return = 0, if plain lookup failed.
803 * return < 0, error case.
805 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
806 sector_t iblock
, unsigned long maxblocks
,
807 struct buffer_head
*bh_result
,
816 int blocks_to_boundary
= 0;
818 struct ext3_inode_info
*ei
= EXT3_I(inode
);
820 ext3_fsblk_t first_block
= 0;
823 J_ASSERT(handle
!= NULL
|| create
== 0);
824 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
829 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
831 /* Simplest case - block found, no allocation needed */
833 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
834 clear_buffer_new(bh_result
);
837 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
840 if (!verify_chain(chain
, chain
+ depth
- 1)) {
842 * Indirect block might be removed by
843 * truncate while we were reading it.
844 * Handling of that case: forget what we've
845 * got now. Flag the err as EAGAIN, so it
852 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
854 if (blk
== first_block
+ count
)
863 /* Next simple case - plain lookup or failed read of indirect block */
864 if (!create
|| err
== -EIO
)
867 mutex_lock(&ei
->truncate_mutex
);
870 * If the indirect block is missing while we are reading
871 * the chain(ext3_get_branch() returns -EAGAIN err), or
872 * if the chain has been changed after we grab the semaphore,
873 * (either because another process truncated this branch, or
874 * another get_block allocated this branch) re-grab the chain to see if
875 * the request block has been allocated or not.
877 * Since we already block the truncate/other get_block
878 * at this point, we will have the current copy of the chain when we
879 * splice the branch into the tree.
881 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
882 while (partial
> chain
) {
886 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
889 mutex_unlock(&ei
->truncate_mutex
);
892 clear_buffer_new(bh_result
);
898 * Okay, we need to do block allocation. Lazily initialize the block
899 * allocation info here if necessary
901 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
902 ext3_init_block_alloc_info(inode
);
904 goal
= ext3_find_goal(inode
, iblock
, partial
);
906 /* the number of blocks need to allocate for [d,t]indirect blocks */
907 indirect_blks
= (chain
+ depth
) - partial
- 1;
910 * Next look up the indirect map to count the totoal number of
911 * direct blocks to allocate for this branch.
913 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
914 maxblocks
, blocks_to_boundary
);
916 * Block out ext3_truncate while we alter the tree
918 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
919 offsets
+ (partial
- chain
), partial
);
922 * The ext3_splice_branch call will free and forget any buffers
923 * on the new chain if there is a failure, but that risks using
924 * up transaction credits, especially for bitmaps where the
925 * credits cannot be returned. Can we handle this somehow? We
926 * may need to return -EAGAIN upwards in the worst case. --sct
929 err
= ext3_splice_branch(handle
, inode
, iblock
,
930 partial
, indirect_blks
, count
);
931 mutex_unlock(&ei
->truncate_mutex
);
935 set_buffer_new(bh_result
);
937 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
938 if (count
> blocks_to_boundary
)
939 set_buffer_boundary(bh_result
);
941 /* Clean up and exit */
942 partial
= chain
+ depth
- 1; /* the whole chain */
944 while (partial
> chain
) {
945 BUFFER_TRACE(partial
->bh
, "call brelse");
949 BUFFER_TRACE(bh_result
, "returned");
954 /* Maximum number of blocks we map for direct IO at once. */
955 #define DIO_MAX_BLOCKS 4096
957 * Number of credits we need for writing DIO_MAX_BLOCKS:
958 * We need sb + group descriptor + bitmap + inode -> 4
959 * For B blocks with A block pointers per block we need:
960 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
961 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
963 #define DIO_CREDITS 25
965 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
966 struct buffer_head
*bh_result
, int create
)
968 handle_t
*handle
= ext3_journal_current_handle();
969 int ret
= 0, started
= 0;
970 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
972 if (create
&& !handle
) { /* Direct IO write... */
973 if (max_blocks
> DIO_MAX_BLOCKS
)
974 max_blocks
= DIO_MAX_BLOCKS
;
975 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
976 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
));
977 if (IS_ERR(handle
)) {
978 ret
= PTR_ERR(handle
);
984 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
985 max_blocks
, bh_result
, create
);
987 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
991 ext3_journal_stop(handle
);
996 int ext3_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
999 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
1004 * `handle' can be NULL if create is zero
1006 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
1007 long block
, int create
, int *errp
)
1009 struct buffer_head dummy
;
1012 J_ASSERT(handle
!= NULL
|| create
== 0);
1015 dummy
.b_blocknr
= -1000;
1016 buffer_trace_init(&dummy
.b_history
);
1017 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1020 * ext3_get_blocks_handle() returns number of blocks
1021 * mapped. 0 in case of a HOLE.
1029 if (!err
&& buffer_mapped(&dummy
)) {
1030 struct buffer_head
*bh
;
1031 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1036 if (buffer_new(&dummy
)) {
1037 J_ASSERT(create
!= 0);
1038 J_ASSERT(handle
!= NULL
);
1041 * Now that we do not always journal data, we should
1042 * keep in mind whether this should always journal the
1043 * new buffer as metadata. For now, regular file
1044 * writes use ext3_get_block instead, so it's not a
1048 BUFFER_TRACE(bh
, "call get_create_access");
1049 fatal
= ext3_journal_get_create_access(handle
, bh
);
1050 if (!fatal
&& !buffer_uptodate(bh
)) {
1051 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1052 set_buffer_uptodate(bh
);
1055 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1056 err
= ext3_journal_dirty_metadata(handle
, bh
);
1060 BUFFER_TRACE(bh
, "not a new buffer");
1073 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1074 int block
, int create
, int *err
)
1076 struct buffer_head
* bh
;
1078 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1081 if (buffer_uptodate(bh
))
1083 ll_rw_block(READ_META
, 1, &bh
);
1085 if (buffer_uptodate(bh
))
1092 static int walk_page_buffers( handle_t
*handle
,
1093 struct buffer_head
*head
,
1097 int (*fn
)( handle_t
*handle
,
1098 struct buffer_head
*bh
))
1100 struct buffer_head
*bh
;
1101 unsigned block_start
, block_end
;
1102 unsigned blocksize
= head
->b_size
;
1104 struct buffer_head
*next
;
1106 for ( bh
= head
, block_start
= 0;
1107 ret
== 0 && (bh
!= head
|| !block_start
);
1108 block_start
= block_end
, bh
= next
)
1110 next
= bh
->b_this_page
;
1111 block_end
= block_start
+ blocksize
;
1112 if (block_end
<= from
|| block_start
>= to
) {
1113 if (partial
&& !buffer_uptodate(bh
))
1117 err
= (*fn
)(handle
, bh
);
1125 * To preserve ordering, it is essential that the hole instantiation and
1126 * the data write be encapsulated in a single transaction. We cannot
1127 * close off a transaction and start a new one between the ext3_get_block()
1128 * and the commit_write(). So doing the journal_start at the start of
1129 * prepare_write() is the right place.
1131 * Also, this function can nest inside ext3_writepage() ->
1132 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1133 * has generated enough buffer credits to do the whole page. So we won't
1134 * block on the journal in that case, which is good, because the caller may
1137 * By accident, ext3 can be reentered when a transaction is open via
1138 * quota file writes. If we were to commit the transaction while thus
1139 * reentered, there can be a deadlock - we would be holding a quota
1140 * lock, and the commit would never complete if another thread had a
1141 * transaction open and was blocking on the quota lock - a ranking
1144 * So what we do is to rely on the fact that journal_stop/journal_start
1145 * will _not_ run commit under these circumstances because handle->h_ref
1146 * is elevated. We'll still have enough credits for the tiny quotafile
1149 static int do_journal_get_write_access(handle_t
*handle
,
1150 struct buffer_head
*bh
)
1152 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1154 return ext3_journal_get_write_access(handle
, bh
);
1158 * Truncate blocks that were not used by write. We have to truncate the
1159 * pagecache as well so that corresponding buffers get properly unmapped.
1161 static void ext3_truncate_failed_write(struct inode
*inode
)
1163 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1164 ext3_truncate(inode
);
1167 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1168 loff_t pos
, unsigned len
, unsigned flags
,
1169 struct page
**pagep
, void **fsdata
)
1171 struct inode
*inode
= mapping
->host
;
1178 /* Reserve one block more for addition to orphan list in case
1179 * we allocate blocks but write fails for some reason */
1180 int needed_blocks
= ext3_writepage_trans_blocks(inode
) + 1;
1182 index
= pos
>> PAGE_CACHE_SHIFT
;
1183 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1187 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1192 handle
= ext3_journal_start(inode
, needed_blocks
);
1193 if (IS_ERR(handle
)) {
1195 page_cache_release(page
);
1196 ret
= PTR_ERR(handle
);
1199 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1202 goto write_begin_failed
;
1204 if (ext3_should_journal_data(inode
)) {
1205 ret
= walk_page_buffers(handle
, page_buffers(page
),
1206 from
, to
, NULL
, do_journal_get_write_access
);
1211 * block_write_begin may have instantiated a few blocks
1212 * outside i_size. Trim these off again. Don't need
1213 * i_size_read because we hold i_mutex.
1215 * Add inode to orphan list in case we crash before truncate
1216 * finishes. Do this only if ext3_can_truncate() agrees so
1217 * that orphan processing code is happy.
1219 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1220 ext3_orphan_add(handle
, inode
);
1221 ext3_journal_stop(handle
);
1223 page_cache_release(page
);
1224 if (pos
+ len
> inode
->i_size
)
1225 ext3_truncate_failed_write(inode
);
1227 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1234 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1236 int err
= journal_dirty_data(handle
, bh
);
1238 ext3_journal_abort_handle(__func__
, __func__
,
1243 /* For ordered writepage and write_end functions */
1244 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1247 * Write could have mapped the buffer but it didn't copy the data in
1248 * yet. So avoid filing such buffer into a transaction.
1250 if (buffer_mapped(bh
) && buffer_uptodate(bh
))
1251 return ext3_journal_dirty_data(handle
, bh
);
1255 /* For write_end() in data=journal mode */
1256 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1258 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1260 set_buffer_uptodate(bh
);
1261 return ext3_journal_dirty_metadata(handle
, bh
);
1265 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1266 * for the whole page but later we failed to copy the data in. Update inode
1267 * size according to what we managed to copy. The rest is going to be
1268 * truncated in write_end function.
1270 static void update_file_sizes(struct inode
*inode
, loff_t pos
, unsigned copied
)
1272 /* What matters to us is i_disksize. We don't write i_size anywhere */
1273 if (pos
+ copied
> inode
->i_size
)
1274 i_size_write(inode
, pos
+ copied
);
1275 if (pos
+ copied
> EXT3_I(inode
)->i_disksize
) {
1276 EXT3_I(inode
)->i_disksize
= pos
+ copied
;
1277 mark_inode_dirty(inode
);
1282 * We need to pick up the new inode size which generic_commit_write gave us
1283 * `file' can be NULL - eg, when called from page_symlink().
1285 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1286 * buffers are managed internally.
1288 static int ext3_ordered_write_end(struct file
*file
,
1289 struct address_space
*mapping
,
1290 loff_t pos
, unsigned len
, unsigned copied
,
1291 struct page
*page
, void *fsdata
)
1293 handle_t
*handle
= ext3_journal_current_handle();
1294 struct inode
*inode
= file
->f_mapping
->host
;
1298 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1300 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1302 ret
= walk_page_buffers(handle
, page_buffers(page
),
1303 from
, to
, NULL
, journal_dirty_data_fn
);
1306 update_file_sizes(inode
, pos
, copied
);
1308 * There may be allocated blocks outside of i_size because
1309 * we failed to copy some data. Prepare for truncate.
1311 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1312 ext3_orphan_add(handle
, inode
);
1313 ret2
= ext3_journal_stop(handle
);
1317 page_cache_release(page
);
1319 if (pos
+ len
> inode
->i_size
)
1320 ext3_truncate_failed_write(inode
);
1321 return ret
? ret
: copied
;
1324 static int ext3_writeback_write_end(struct file
*file
,
1325 struct address_space
*mapping
,
1326 loff_t pos
, unsigned len
, unsigned copied
,
1327 struct page
*page
, void *fsdata
)
1329 handle_t
*handle
= ext3_journal_current_handle();
1330 struct inode
*inode
= file
->f_mapping
->host
;
1333 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1334 update_file_sizes(inode
, pos
, copied
);
1336 * There may be allocated blocks outside of i_size because
1337 * we failed to copy some data. Prepare for truncate.
1339 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1340 ext3_orphan_add(handle
, inode
);
1341 ret
= ext3_journal_stop(handle
);
1343 page_cache_release(page
);
1345 if (pos
+ len
> inode
->i_size
)
1346 ext3_truncate_failed_write(inode
);
1347 return ret
? ret
: copied
;
1350 static int ext3_journalled_write_end(struct file
*file
,
1351 struct address_space
*mapping
,
1352 loff_t pos
, unsigned len
, unsigned copied
,
1353 struct page
*page
, void *fsdata
)
1355 handle_t
*handle
= ext3_journal_current_handle();
1356 struct inode
*inode
= mapping
->host
;
1361 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1365 if (!PageUptodate(page
))
1367 page_zero_new_buffers(page
, from
+ copied
, to
);
1371 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1372 to
, &partial
, write_end_fn
);
1374 SetPageUptodate(page
);
1376 if (pos
+ copied
> inode
->i_size
)
1377 i_size_write(inode
, pos
+ copied
);
1379 * There may be allocated blocks outside of i_size because
1380 * we failed to copy some data. Prepare for truncate.
1382 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1383 ext3_orphan_add(handle
, inode
);
1384 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1385 if (inode
->i_size
> EXT3_I(inode
)->i_disksize
) {
1386 EXT3_I(inode
)->i_disksize
= inode
->i_size
;
1387 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1392 ret2
= ext3_journal_stop(handle
);
1396 page_cache_release(page
);
1398 if (pos
+ len
> inode
->i_size
)
1399 ext3_truncate_failed_write(inode
);
1400 return ret
? ret
: copied
;
1404 * bmap() is special. It gets used by applications such as lilo and by
1405 * the swapper to find the on-disk block of a specific piece of data.
1407 * Naturally, this is dangerous if the block concerned is still in the
1408 * journal. If somebody makes a swapfile on an ext3 data-journaling
1409 * filesystem and enables swap, then they may get a nasty shock when the
1410 * data getting swapped to that swapfile suddenly gets overwritten by
1411 * the original zero's written out previously to the journal and
1412 * awaiting writeback in the kernel's buffer cache.
1414 * So, if we see any bmap calls here on a modified, data-journaled file,
1415 * take extra steps to flush any blocks which might be in the cache.
1417 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1419 struct inode
*inode
= mapping
->host
;
1423 if (ext3_test_inode_state(inode
, EXT3_STATE_JDATA
)) {
1425 * This is a REALLY heavyweight approach, but the use of
1426 * bmap on dirty files is expected to be extremely rare:
1427 * only if we run lilo or swapon on a freshly made file
1428 * do we expect this to happen.
1430 * (bmap requires CAP_SYS_RAWIO so this does not
1431 * represent an unprivileged user DOS attack --- we'd be
1432 * in trouble if mortal users could trigger this path at
1435 * NB. EXT3_STATE_JDATA is not set on files other than
1436 * regular files. If somebody wants to bmap a directory
1437 * or symlink and gets confused because the buffer
1438 * hasn't yet been flushed to disk, they deserve
1439 * everything they get.
1442 ext3_clear_inode_state(inode
, EXT3_STATE_JDATA
);
1443 journal
= EXT3_JOURNAL(inode
);
1444 journal_lock_updates(journal
);
1445 err
= journal_flush(journal
);
1446 journal_unlock_updates(journal
);
1452 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1455 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1461 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1467 static int buffer_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
1469 return !buffer_mapped(bh
);
1473 * Note that we always start a transaction even if we're not journalling
1474 * data. This is to preserve ordering: any hole instantiation within
1475 * __block_write_full_page -> ext3_get_block() should be journalled
1476 * along with the data so we don't crash and then get metadata which
1477 * refers to old data.
1479 * In all journalling modes block_write_full_page() will start the I/O.
1483 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1488 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1490 * Same applies to ext3_get_block(). We will deadlock on various things like
1491 * lock_journal and i_truncate_mutex.
1493 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1496 * 16May01: If we're reentered then journal_current_handle() will be
1497 * non-zero. We simply *return*.
1499 * 1 July 2001: @@@ FIXME:
1500 * In journalled data mode, a data buffer may be metadata against the
1501 * current transaction. But the same file is part of a shared mapping
1502 * and someone does a writepage() on it.
1504 * We will move the buffer onto the async_data list, but *after* it has
1505 * been dirtied. So there's a small window where we have dirty data on
1508 * Note that this only applies to the last partial page in the file. The
1509 * bit which block_write_full_page() uses prepare/commit for. (That's
1510 * broken code anyway: it's wrong for msync()).
1512 * It's a rare case: affects the final partial page, for journalled data
1513 * where the file is subject to bith write() and writepage() in the same
1514 * transction. To fix it we'll need a custom block_write_full_page().
1515 * We'll probably need that anyway for journalling writepage() output.
1517 * We don't honour synchronous mounts for writepage(). That would be
1518 * disastrous. Any write() or metadata operation will sync the fs for
1521 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1522 * we don't need to open a transaction here.
1524 static int ext3_ordered_writepage(struct page
*page
,
1525 struct writeback_control
*wbc
)
1527 struct inode
*inode
= page
->mapping
->host
;
1528 struct buffer_head
*page_bufs
;
1529 handle_t
*handle
= NULL
;
1533 J_ASSERT(PageLocked(page
));
1534 WARN_ON_ONCE(IS_RDONLY(inode
));
1537 * We give up here if we're reentered, because it might be for a
1538 * different filesystem.
1540 if (ext3_journal_current_handle())
1543 if (!page_has_buffers(page
)) {
1544 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1545 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1546 page_bufs
= page_buffers(page
);
1548 page_bufs
= page_buffers(page
);
1549 if (!walk_page_buffers(NULL
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1550 NULL
, buffer_unmapped
)) {
1551 /* Provide NULL get_block() to catch bugs if buffers
1552 * weren't really mapped */
1553 return block_write_full_page(page
, NULL
, wbc
);
1556 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1558 if (IS_ERR(handle
)) {
1559 ret
= PTR_ERR(handle
);
1563 walk_page_buffers(handle
, page_bufs
, 0,
1564 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1566 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1569 * The page can become unlocked at any point now, and
1570 * truncate can then come in and change things. So we
1571 * can't touch *page from now on. But *page_bufs is
1572 * safe due to elevated refcount.
1576 * And attach them to the current transaction. But only if
1577 * block_write_full_page() succeeded. Otherwise they are unmapped,
1578 * and generally junk.
1581 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1582 NULL
, journal_dirty_data_fn
);
1586 walk_page_buffers(handle
, page_bufs
, 0,
1587 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1588 err
= ext3_journal_stop(handle
);
1594 redirty_page_for_writepage(wbc
, page
);
1599 static int ext3_writeback_writepage(struct page
*page
,
1600 struct writeback_control
*wbc
)
1602 struct inode
*inode
= page
->mapping
->host
;
1603 handle_t
*handle
= NULL
;
1607 J_ASSERT(PageLocked(page
));
1608 WARN_ON_ONCE(IS_RDONLY(inode
));
1610 if (ext3_journal_current_handle())
1613 if (page_has_buffers(page
)) {
1614 if (!walk_page_buffers(NULL
, page_buffers(page
), 0,
1615 PAGE_CACHE_SIZE
, NULL
, buffer_unmapped
)) {
1616 /* Provide NULL get_block() to catch bugs if buffers
1617 * weren't really mapped */
1618 return block_write_full_page(page
, NULL
, wbc
);
1622 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1623 if (IS_ERR(handle
)) {
1624 ret
= PTR_ERR(handle
);
1628 if (test_opt(inode
->i_sb
, NOBH
) && ext3_should_writeback_data(inode
))
1629 ret
= nobh_writepage(page
, ext3_get_block
, wbc
);
1631 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1633 err
= ext3_journal_stop(handle
);
1639 redirty_page_for_writepage(wbc
, page
);
1644 static int ext3_journalled_writepage(struct page
*page
,
1645 struct writeback_control
*wbc
)
1647 struct inode
*inode
= page
->mapping
->host
;
1648 handle_t
*handle
= NULL
;
1652 J_ASSERT(PageLocked(page
));
1653 WARN_ON_ONCE(IS_RDONLY(inode
));
1655 if (ext3_journal_current_handle())
1658 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1659 if (IS_ERR(handle
)) {
1660 ret
= PTR_ERR(handle
);
1664 if (!page_has_buffers(page
) || PageChecked(page
)) {
1666 * It's mmapped pagecache. Add buffers and journal it. There
1667 * doesn't seem much point in redirtying the page here.
1669 ClearPageChecked(page
);
1670 ret
= block_prepare_write(page
, 0, PAGE_CACHE_SIZE
,
1673 ext3_journal_stop(handle
);
1676 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1677 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1679 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1680 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1683 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1687 * It may be a page full of checkpoint-mode buffers. We don't
1688 * really know unless we go poke around in the buffer_heads.
1689 * But block_write_full_page will do the right thing.
1691 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1693 err
= ext3_journal_stop(handle
);
1700 redirty_page_for_writepage(wbc
, page
);
1706 static int ext3_readpage(struct file
*file
, struct page
*page
)
1708 return mpage_readpage(page
, ext3_get_block
);
1712 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1713 struct list_head
*pages
, unsigned nr_pages
)
1715 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1718 static void ext3_invalidatepage(struct page
*page
, unsigned long offset
)
1720 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1723 * If it's a full truncate we just forget about the pending dirtying
1726 ClearPageChecked(page
);
1728 journal_invalidatepage(journal
, page
, offset
);
1731 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1733 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1735 WARN_ON(PageChecked(page
));
1736 if (!page_has_buffers(page
))
1738 return journal_try_to_free_buffers(journal
, page
, wait
);
1742 * If the O_DIRECT write will extend the file then add this inode to the
1743 * orphan list. So recovery will truncate it back to the original size
1744 * if the machine crashes during the write.
1746 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1747 * crashes then stale disk data _may_ be exposed inside the file. But current
1748 * VFS code falls back into buffered path in that case so we are safe.
1750 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1751 const struct iovec
*iov
, loff_t offset
,
1752 unsigned long nr_segs
)
1754 struct file
*file
= iocb
->ki_filp
;
1755 struct inode
*inode
= file
->f_mapping
->host
;
1756 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1760 size_t count
= iov_length(iov
, nr_segs
);
1764 loff_t final_size
= offset
+ count
;
1766 if (final_size
> inode
->i_size
) {
1767 /* Credits for sb + inode write */
1768 handle
= ext3_journal_start(inode
, 2);
1769 if (IS_ERR(handle
)) {
1770 ret
= PTR_ERR(handle
);
1773 ret
= ext3_orphan_add(handle
, inode
);
1775 ext3_journal_stop(handle
);
1779 ei
->i_disksize
= inode
->i_size
;
1780 ext3_journal_stop(handle
);
1785 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
1787 ext3_get_block
, NULL
);
1788 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1794 /* Credits for sb + inode write */
1795 handle
= ext3_journal_start(inode
, 2);
1796 if (IS_ERR(handle
)) {
1797 /* This is really bad luck. We've written the data
1798 * but cannot extend i_size. Truncate allocated blocks
1799 * and pretend the write failed... */
1800 ext3_truncate(inode
);
1801 ret
= PTR_ERR(handle
);
1805 ext3_orphan_del(handle
, inode
);
1807 loff_t end
= offset
+ ret
;
1808 if (end
> inode
->i_size
) {
1809 ei
->i_disksize
= end
;
1810 i_size_write(inode
, end
);
1812 * We're going to return a positive `ret'
1813 * here due to non-zero-length I/O, so there's
1814 * no way of reporting error returns from
1815 * ext3_mark_inode_dirty() to userspace. So
1818 ext3_mark_inode_dirty(handle
, inode
);
1821 err
= ext3_journal_stop(handle
);
1830 * Pages can be marked dirty completely asynchronously from ext3's journalling
1831 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1832 * much here because ->set_page_dirty is called under VFS locks. The page is
1833 * not necessarily locked.
1835 * We cannot just dirty the page and leave attached buffers clean, because the
1836 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1837 * or jbddirty because all the journalling code will explode.
1839 * So what we do is to mark the page "pending dirty" and next time writepage
1840 * is called, propagate that into the buffers appropriately.
1842 static int ext3_journalled_set_page_dirty(struct page
*page
)
1844 SetPageChecked(page
);
1845 return __set_page_dirty_nobuffers(page
);
1848 static const struct address_space_operations ext3_ordered_aops
= {
1849 .readpage
= ext3_readpage
,
1850 .readpages
= ext3_readpages
,
1851 .writepage
= ext3_ordered_writepage
,
1852 .sync_page
= block_sync_page
,
1853 .write_begin
= ext3_write_begin
,
1854 .write_end
= ext3_ordered_write_end
,
1856 .invalidatepage
= ext3_invalidatepage
,
1857 .releasepage
= ext3_releasepage
,
1858 .direct_IO
= ext3_direct_IO
,
1859 .migratepage
= buffer_migrate_page
,
1860 .is_partially_uptodate
= block_is_partially_uptodate
,
1861 .error_remove_page
= generic_error_remove_page
,
1864 static const struct address_space_operations ext3_writeback_aops
= {
1865 .readpage
= ext3_readpage
,
1866 .readpages
= ext3_readpages
,
1867 .writepage
= ext3_writeback_writepage
,
1868 .sync_page
= block_sync_page
,
1869 .write_begin
= ext3_write_begin
,
1870 .write_end
= ext3_writeback_write_end
,
1872 .invalidatepage
= ext3_invalidatepage
,
1873 .releasepage
= ext3_releasepage
,
1874 .direct_IO
= ext3_direct_IO
,
1875 .migratepage
= buffer_migrate_page
,
1876 .is_partially_uptodate
= block_is_partially_uptodate
,
1877 .error_remove_page
= generic_error_remove_page
,
1880 static const struct address_space_operations ext3_journalled_aops
= {
1881 .readpage
= ext3_readpage
,
1882 .readpages
= ext3_readpages
,
1883 .writepage
= ext3_journalled_writepage
,
1884 .sync_page
= block_sync_page
,
1885 .write_begin
= ext3_write_begin
,
1886 .write_end
= ext3_journalled_write_end
,
1887 .set_page_dirty
= ext3_journalled_set_page_dirty
,
1889 .invalidatepage
= ext3_invalidatepage
,
1890 .releasepage
= ext3_releasepage
,
1891 .is_partially_uptodate
= block_is_partially_uptodate
,
1892 .error_remove_page
= generic_error_remove_page
,
1895 void ext3_set_aops(struct inode
*inode
)
1897 if (ext3_should_order_data(inode
))
1898 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
1899 else if (ext3_should_writeback_data(inode
))
1900 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
1902 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
1906 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1907 * up to the end of the block which corresponds to `from'.
1908 * This required during truncate. We need to physically zero the tail end
1909 * of that block so it doesn't yield old data if the file is later grown.
1911 static int ext3_block_truncate_page(handle_t
*handle
, struct page
*page
,
1912 struct address_space
*mapping
, loff_t from
)
1914 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
1915 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1916 unsigned blocksize
, iblock
, length
, pos
;
1917 struct inode
*inode
= mapping
->host
;
1918 struct buffer_head
*bh
;
1921 blocksize
= inode
->i_sb
->s_blocksize
;
1922 length
= blocksize
- (offset
& (blocksize
- 1));
1923 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1926 * For "nobh" option, we can only work if we don't need to
1927 * read-in the page - otherwise we create buffers to do the IO.
1929 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
1930 ext3_should_writeback_data(inode
) && PageUptodate(page
)) {
1931 zero_user(page
, offset
, length
);
1932 set_page_dirty(page
);
1936 if (!page_has_buffers(page
))
1937 create_empty_buffers(page
, blocksize
, 0);
1939 /* Find the buffer that contains "offset" */
1940 bh
= page_buffers(page
);
1942 while (offset
>= pos
) {
1943 bh
= bh
->b_this_page
;
1949 if (buffer_freed(bh
)) {
1950 BUFFER_TRACE(bh
, "freed: skip");
1954 if (!buffer_mapped(bh
)) {
1955 BUFFER_TRACE(bh
, "unmapped");
1956 ext3_get_block(inode
, iblock
, bh
, 0);
1957 /* unmapped? It's a hole - nothing to do */
1958 if (!buffer_mapped(bh
)) {
1959 BUFFER_TRACE(bh
, "still unmapped");
1964 /* Ok, it's mapped. Make sure it's up-to-date */
1965 if (PageUptodate(page
))
1966 set_buffer_uptodate(bh
);
1968 if (!buffer_uptodate(bh
)) {
1970 ll_rw_block(READ
, 1, &bh
);
1972 /* Uhhuh. Read error. Complain and punt. */
1973 if (!buffer_uptodate(bh
))
1977 if (ext3_should_journal_data(inode
)) {
1978 BUFFER_TRACE(bh
, "get write access");
1979 err
= ext3_journal_get_write_access(handle
, bh
);
1984 zero_user(page
, offset
, length
);
1985 BUFFER_TRACE(bh
, "zeroed end of block");
1988 if (ext3_should_journal_data(inode
)) {
1989 err
= ext3_journal_dirty_metadata(handle
, bh
);
1991 if (ext3_should_order_data(inode
))
1992 err
= ext3_journal_dirty_data(handle
, bh
);
1993 mark_buffer_dirty(bh
);
1998 page_cache_release(page
);
2003 * Probably it should be a library function... search for first non-zero word
2004 * or memcmp with zero_page, whatever is better for particular architecture.
2007 static inline int all_zeroes(__le32
*p
, __le32
*q
)
2016 * ext3_find_shared - find the indirect blocks for partial truncation.
2017 * @inode: inode in question
2018 * @depth: depth of the affected branch
2019 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2020 * @chain: place to store the pointers to partial indirect blocks
2021 * @top: place to the (detached) top of branch
2023 * This is a helper function used by ext3_truncate().
2025 * When we do truncate() we may have to clean the ends of several
2026 * indirect blocks but leave the blocks themselves alive. Block is
2027 * partially truncated if some data below the new i_size is refered
2028 * from it (and it is on the path to the first completely truncated
2029 * data block, indeed). We have to free the top of that path along
2030 * with everything to the right of the path. Since no allocation
2031 * past the truncation point is possible until ext3_truncate()
2032 * finishes, we may safely do the latter, but top of branch may
2033 * require special attention - pageout below the truncation point
2034 * might try to populate it.
2036 * We atomically detach the top of branch from the tree, store the
2037 * block number of its root in *@top, pointers to buffer_heads of
2038 * partially truncated blocks - in @chain[].bh and pointers to
2039 * their last elements that should not be removed - in
2040 * @chain[].p. Return value is the pointer to last filled element
2043 * The work left to caller to do the actual freeing of subtrees:
2044 * a) free the subtree starting from *@top
2045 * b) free the subtrees whose roots are stored in
2046 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2047 * c) free the subtrees growing from the inode past the @chain[0].
2048 * (no partially truncated stuff there). */
2050 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
2051 int offsets
[4], Indirect chain
[4], __le32
*top
)
2053 Indirect
*partial
, *p
;
2057 /* Make k index the deepest non-null offset + 1 */
2058 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2060 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
2061 /* Writer: pointers */
2063 partial
= chain
+ k
-1;
2065 * If the branch acquired continuation since we've looked at it -
2066 * fine, it should all survive and (new) top doesn't belong to us.
2068 if (!partial
->key
&& *partial
->p
)
2071 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2074 * OK, we've found the last block that must survive. The rest of our
2075 * branch should be detached before unlocking. However, if that rest
2076 * of branch is all ours and does not grow immediately from the inode
2077 * it's easier to cheat and just decrement partial->p.
2079 if (p
== chain
+ k
- 1 && p
> chain
) {
2083 /* Nope, don't do this in ext3. Must leave the tree intact */
2090 while(partial
> p
) {
2091 brelse(partial
->bh
);
2099 * Zero a number of block pointers in either an inode or an indirect block.
2100 * If we restart the transaction we must again get write access to the
2101 * indirect block for further modification.
2103 * We release `count' blocks on disk, but (last - first) may be greater
2104 * than `count' because there can be holes in there.
2106 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2107 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2108 unsigned long count
, __le32
*first
, __le32
*last
)
2111 if (try_to_extend_transaction(handle
, inode
)) {
2113 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2114 ext3_journal_dirty_metadata(handle
, bh
);
2116 ext3_mark_inode_dirty(handle
, inode
);
2117 truncate_restart_transaction(handle
, inode
);
2119 BUFFER_TRACE(bh
, "retaking write access");
2120 ext3_journal_get_write_access(handle
, bh
);
2125 * Any buffers which are on the journal will be in memory. We find
2126 * them on the hash table so journal_revoke() will run journal_forget()
2127 * on them. We've already detached each block from the file, so
2128 * bforget() in journal_forget() should be safe.
2130 * AKPM: turn on bforget in journal_forget()!!!
2132 for (p
= first
; p
< last
; p
++) {
2133 u32 nr
= le32_to_cpu(*p
);
2135 struct buffer_head
*bh
;
2138 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2139 ext3_forget(handle
, 0, inode
, bh
, nr
);
2143 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2147 * ext3_free_data - free a list of data blocks
2148 * @handle: handle for this transaction
2149 * @inode: inode we are dealing with
2150 * @this_bh: indirect buffer_head which contains *@first and *@last
2151 * @first: array of block numbers
2152 * @last: points immediately past the end of array
2154 * We are freeing all blocks refered from that array (numbers are stored as
2155 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2157 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2158 * blocks are contiguous then releasing them at one time will only affect one
2159 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2160 * actually use a lot of journal space.
2162 * @this_bh will be %NULL if @first and @last point into the inode's direct
2165 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2166 struct buffer_head
*this_bh
,
2167 __le32
*first
, __le32
*last
)
2169 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2170 unsigned long count
= 0; /* Number of blocks in the run */
2171 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2174 ext3_fsblk_t nr
; /* Current block # */
2175 __le32
*p
; /* Pointer into inode/ind
2176 for current block */
2179 if (this_bh
) { /* For indirect block */
2180 BUFFER_TRACE(this_bh
, "get_write_access");
2181 err
= ext3_journal_get_write_access(handle
, this_bh
);
2182 /* Important: if we can't update the indirect pointers
2183 * to the blocks, we can't free them. */
2188 for (p
= first
; p
< last
; p
++) {
2189 nr
= le32_to_cpu(*p
);
2191 /* accumulate blocks to free if they're contiguous */
2194 block_to_free_p
= p
;
2196 } else if (nr
== block_to_free
+ count
) {
2199 ext3_clear_blocks(handle
, inode
, this_bh
,
2201 count
, block_to_free_p
, p
);
2203 block_to_free_p
= p
;
2210 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2211 count
, block_to_free_p
, p
);
2214 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2217 * The buffer head should have an attached journal head at this
2218 * point. However, if the data is corrupted and an indirect
2219 * block pointed to itself, it would have been detached when
2220 * the block was cleared. Check for this instead of OOPSing.
2223 ext3_journal_dirty_metadata(handle
, this_bh
);
2225 ext3_error(inode
->i_sb
, "ext3_free_data",
2226 "circular indirect block detected, "
2227 "inode=%lu, block=%llu",
2229 (unsigned long long)this_bh
->b_blocknr
);
2234 * ext3_free_branches - free an array of branches
2235 * @handle: JBD handle for this transaction
2236 * @inode: inode we are dealing with
2237 * @parent_bh: the buffer_head which contains *@first and *@last
2238 * @first: array of block numbers
2239 * @last: pointer immediately past the end of array
2240 * @depth: depth of the branches to free
2242 * We are freeing all blocks refered from these branches (numbers are
2243 * stored as little-endian 32-bit) and updating @inode->i_blocks
2246 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2247 struct buffer_head
*parent_bh
,
2248 __le32
*first
, __le32
*last
, int depth
)
2253 if (is_handle_aborted(handle
))
2257 struct buffer_head
*bh
;
2258 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2260 while (--p
>= first
) {
2261 nr
= le32_to_cpu(*p
);
2263 continue; /* A hole */
2265 /* Go read the buffer for the next level down */
2266 bh
= sb_bread(inode
->i_sb
, nr
);
2269 * A read failure? Report error and clear slot
2273 ext3_error(inode
->i_sb
, "ext3_free_branches",
2274 "Read failure, inode=%lu, block="E3FSBLK
,
2279 /* This zaps the entire block. Bottom up. */
2280 BUFFER_TRACE(bh
, "free child branches");
2281 ext3_free_branches(handle
, inode
, bh
,
2282 (__le32
*)bh
->b_data
,
2283 (__le32
*)bh
->b_data
+ addr_per_block
,
2287 * We've probably journalled the indirect block several
2288 * times during the truncate. But it's no longer
2289 * needed and we now drop it from the transaction via
2292 * That's easy if it's exclusively part of this
2293 * transaction. But if it's part of the committing
2294 * transaction then journal_forget() will simply
2295 * brelse() it. That means that if the underlying
2296 * block is reallocated in ext3_get_block(),
2297 * unmap_underlying_metadata() will find this block
2298 * and will try to get rid of it. damn, damn.
2300 * If this block has already been committed to the
2301 * journal, a revoke record will be written. And
2302 * revoke records must be emitted *before* clearing
2303 * this block's bit in the bitmaps.
2305 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2308 * Everything below this this pointer has been
2309 * released. Now let this top-of-subtree go.
2311 * We want the freeing of this indirect block to be
2312 * atomic in the journal with the updating of the
2313 * bitmap block which owns it. So make some room in
2316 * We zero the parent pointer *after* freeing its
2317 * pointee in the bitmaps, so if extend_transaction()
2318 * for some reason fails to put the bitmap changes and
2319 * the release into the same transaction, recovery
2320 * will merely complain about releasing a free block,
2321 * rather than leaking blocks.
2323 if (is_handle_aborted(handle
))
2325 if (try_to_extend_transaction(handle
, inode
)) {
2326 ext3_mark_inode_dirty(handle
, inode
);
2327 truncate_restart_transaction(handle
, inode
);
2330 ext3_free_blocks(handle
, inode
, nr
, 1);
2334 * The block which we have just freed is
2335 * pointed to by an indirect block: journal it
2337 BUFFER_TRACE(parent_bh
, "get_write_access");
2338 if (!ext3_journal_get_write_access(handle
,
2341 BUFFER_TRACE(parent_bh
,
2342 "call ext3_journal_dirty_metadata");
2343 ext3_journal_dirty_metadata(handle
,
2349 /* We have reached the bottom of the tree. */
2350 BUFFER_TRACE(parent_bh
, "free data blocks");
2351 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2355 int ext3_can_truncate(struct inode
*inode
)
2357 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
2359 if (S_ISREG(inode
->i_mode
))
2361 if (S_ISDIR(inode
->i_mode
))
2363 if (S_ISLNK(inode
->i_mode
))
2364 return !ext3_inode_is_fast_symlink(inode
);
2371 * We block out ext3_get_block() block instantiations across the entire
2372 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2373 * simultaneously on behalf of the same inode.
2375 * As we work through the truncate and commmit bits of it to the journal there
2376 * is one core, guiding principle: the file's tree must always be consistent on
2377 * disk. We must be able to restart the truncate after a crash.
2379 * The file's tree may be transiently inconsistent in memory (although it
2380 * probably isn't), but whenever we close off and commit a journal transaction,
2381 * the contents of (the filesystem + the journal) must be consistent and
2382 * restartable. It's pretty simple, really: bottom up, right to left (although
2383 * left-to-right works OK too).
2385 * Note that at recovery time, journal replay occurs *before* the restart of
2386 * truncate against the orphan inode list.
2388 * The committed inode has the new, desired i_size (which is the same as
2389 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2390 * that this inode's truncate did not complete and it will again call
2391 * ext3_truncate() to have another go. So there will be instantiated blocks
2392 * to the right of the truncation point in a crashed ext3 filesystem. But
2393 * that's fine - as long as they are linked from the inode, the post-crash
2394 * ext3_truncate() run will find them and release them.
2396 void ext3_truncate(struct inode
*inode
)
2399 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2400 __le32
*i_data
= ei
->i_data
;
2401 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2402 struct address_space
*mapping
= inode
->i_mapping
;
2409 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2412 if (!ext3_can_truncate(inode
))
2415 if (inode
->i_size
== 0 && ext3_should_writeback_data(inode
))
2416 ext3_set_inode_state(inode
, EXT3_STATE_FLUSH_ON_CLOSE
);
2419 * We have to lock the EOF page here, because lock_page() nests
2420 * outside journal_start().
2422 if ((inode
->i_size
& (blocksize
- 1)) == 0) {
2423 /* Block boundary? Nothing to do */
2426 page
= grab_cache_page(mapping
,
2427 inode
->i_size
>> PAGE_CACHE_SHIFT
);
2432 handle
= start_transaction(inode
);
2433 if (IS_ERR(handle
)) {
2435 clear_highpage(page
);
2436 flush_dcache_page(page
);
2438 page_cache_release(page
);
2443 last_block
= (inode
->i_size
+ blocksize
-1)
2444 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2447 ext3_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2449 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2451 goto out_stop
; /* error */
2454 * OK. This truncate is going to happen. We add the inode to the
2455 * orphan list, so that if this truncate spans multiple transactions,
2456 * and we crash, we will resume the truncate when the filesystem
2457 * recovers. It also marks the inode dirty, to catch the new size.
2459 * Implication: the file must always be in a sane, consistent
2460 * truncatable state while each transaction commits.
2462 if (ext3_orphan_add(handle
, inode
))
2466 * The orphan list entry will now protect us from any crash which
2467 * occurs before the truncate completes, so it is now safe to propagate
2468 * the new, shorter inode size (held for now in i_size) into the
2469 * on-disk inode. We do this via i_disksize, which is the value which
2470 * ext3 *really* writes onto the disk inode.
2472 ei
->i_disksize
= inode
->i_size
;
2475 * From here we block out all ext3_get_block() callers who want to
2476 * modify the block allocation tree.
2478 mutex_lock(&ei
->truncate_mutex
);
2480 if (n
== 1) { /* direct blocks */
2481 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2482 i_data
+ EXT3_NDIR_BLOCKS
);
2486 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2487 /* Kill the top of shared branch (not detached) */
2489 if (partial
== chain
) {
2490 /* Shared branch grows from the inode */
2491 ext3_free_branches(handle
, inode
, NULL
,
2492 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2495 * We mark the inode dirty prior to restart,
2496 * and prior to stop. No need for it here.
2499 /* Shared branch grows from an indirect block */
2500 BUFFER_TRACE(partial
->bh
, "get_write_access");
2501 ext3_free_branches(handle
, inode
, partial
->bh
,
2503 partial
->p
+1, (chain
+n
-1) - partial
);
2506 /* Clear the ends of indirect blocks on the shared branch */
2507 while (partial
> chain
) {
2508 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2509 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2510 (chain
+n
-1) - partial
);
2511 BUFFER_TRACE(partial
->bh
, "call brelse");
2512 brelse (partial
->bh
);
2516 /* Kill the remaining (whole) subtrees */
2517 switch (offsets
[0]) {
2519 nr
= i_data
[EXT3_IND_BLOCK
];
2521 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2522 i_data
[EXT3_IND_BLOCK
] = 0;
2524 case EXT3_IND_BLOCK
:
2525 nr
= i_data
[EXT3_DIND_BLOCK
];
2527 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2528 i_data
[EXT3_DIND_BLOCK
] = 0;
2530 case EXT3_DIND_BLOCK
:
2531 nr
= i_data
[EXT3_TIND_BLOCK
];
2533 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2534 i_data
[EXT3_TIND_BLOCK
] = 0;
2536 case EXT3_TIND_BLOCK
:
2540 ext3_discard_reservation(inode
);
2542 mutex_unlock(&ei
->truncate_mutex
);
2543 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2544 ext3_mark_inode_dirty(handle
, inode
);
2547 * In a multi-transaction truncate, we only make the final transaction
2554 * If this was a simple ftruncate(), and the file will remain alive
2555 * then we need to clear up the orphan record which we created above.
2556 * However, if this was a real unlink then we were called by
2557 * ext3_delete_inode(), and we allow that function to clean up the
2558 * orphan info for us.
2561 ext3_orphan_del(handle
, inode
);
2563 ext3_journal_stop(handle
);
2567 * Delete the inode from orphan list so that it doesn't stay there
2568 * forever and trigger assertion on umount.
2571 ext3_orphan_del(NULL
, inode
);
2574 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2575 unsigned long ino
, struct ext3_iloc
*iloc
)
2577 unsigned long block_group
;
2578 unsigned long offset
;
2580 struct ext3_group_desc
*gdp
;
2582 if (!ext3_valid_inum(sb
, ino
)) {
2584 * This error is already checked for in namei.c unless we are
2585 * looking at an NFS filehandle, in which case no error
2591 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2592 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2596 * Figure out the offset within the block group inode table
2598 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2599 EXT3_INODE_SIZE(sb
);
2600 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2601 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2603 iloc
->block_group
= block_group
;
2604 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2609 * ext3_get_inode_loc returns with an extra refcount against the inode's
2610 * underlying buffer_head on success. If 'in_mem' is true, we have all
2611 * data in memory that is needed to recreate the on-disk version of this
2614 static int __ext3_get_inode_loc(struct inode
*inode
,
2615 struct ext3_iloc
*iloc
, int in_mem
)
2618 struct buffer_head
*bh
;
2620 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2624 bh
= sb_getblk(inode
->i_sb
, block
);
2626 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2627 "unable to read inode block - "
2628 "inode=%lu, block="E3FSBLK
,
2629 inode
->i_ino
, block
);
2632 if (!buffer_uptodate(bh
)) {
2636 * If the buffer has the write error flag, we have failed
2637 * to write out another inode in the same block. In this
2638 * case, we don't have to read the block because we may
2639 * read the old inode data successfully.
2641 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
2642 set_buffer_uptodate(bh
);
2644 if (buffer_uptodate(bh
)) {
2645 /* someone brought it uptodate while we waited */
2651 * If we have all information of the inode in memory and this
2652 * is the only valid inode in the block, we need not read the
2656 struct buffer_head
*bitmap_bh
;
2657 struct ext3_group_desc
*desc
;
2658 int inodes_per_buffer
;
2659 int inode_offset
, i
;
2663 block_group
= (inode
->i_ino
- 1) /
2664 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2665 inodes_per_buffer
= bh
->b_size
/
2666 EXT3_INODE_SIZE(inode
->i_sb
);
2667 inode_offset
= ((inode
->i_ino
- 1) %
2668 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2669 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2671 /* Is the inode bitmap in cache? */
2672 desc
= ext3_get_group_desc(inode
->i_sb
,
2677 bitmap_bh
= sb_getblk(inode
->i_sb
,
2678 le32_to_cpu(desc
->bg_inode_bitmap
));
2683 * If the inode bitmap isn't in cache then the
2684 * optimisation may end up performing two reads instead
2685 * of one, so skip it.
2687 if (!buffer_uptodate(bitmap_bh
)) {
2691 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2692 if (i
== inode_offset
)
2694 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2698 if (i
== start
+ inodes_per_buffer
) {
2699 /* all other inodes are free, so skip I/O */
2700 memset(bh
->b_data
, 0, bh
->b_size
);
2701 set_buffer_uptodate(bh
);
2709 * There are other valid inodes in the buffer, this inode
2710 * has in-inode xattrs, or we don't have this inode in memory.
2711 * Read the block from disk.
2714 bh
->b_end_io
= end_buffer_read_sync
;
2715 submit_bh(READ_META
, bh
);
2717 if (!buffer_uptodate(bh
)) {
2718 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2719 "unable to read inode block - "
2720 "inode=%lu, block="E3FSBLK
,
2721 inode
->i_ino
, block
);
2731 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2733 /* We have all inode data except xattrs in memory here. */
2734 return __ext3_get_inode_loc(inode
, iloc
,
2735 !ext3_test_inode_state(inode
, EXT3_STATE_XATTR
));
2738 void ext3_set_inode_flags(struct inode
*inode
)
2740 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2742 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2743 if (flags
& EXT3_SYNC_FL
)
2744 inode
->i_flags
|= S_SYNC
;
2745 if (flags
& EXT3_APPEND_FL
)
2746 inode
->i_flags
|= S_APPEND
;
2747 if (flags
& EXT3_IMMUTABLE_FL
)
2748 inode
->i_flags
|= S_IMMUTABLE
;
2749 if (flags
& EXT3_NOATIME_FL
)
2750 inode
->i_flags
|= S_NOATIME
;
2751 if (flags
& EXT3_DIRSYNC_FL
)
2752 inode
->i_flags
|= S_DIRSYNC
;
2755 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2756 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2758 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2760 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2761 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2763 ei
->i_flags
|= EXT3_SYNC_FL
;
2764 if (flags
& S_APPEND
)
2765 ei
->i_flags
|= EXT3_APPEND_FL
;
2766 if (flags
& S_IMMUTABLE
)
2767 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2768 if (flags
& S_NOATIME
)
2769 ei
->i_flags
|= EXT3_NOATIME_FL
;
2770 if (flags
& S_DIRSYNC
)
2771 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2774 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2776 struct ext3_iloc iloc
;
2777 struct ext3_inode
*raw_inode
;
2778 struct ext3_inode_info
*ei
;
2779 struct buffer_head
*bh
;
2780 struct inode
*inode
;
2781 journal_t
*journal
= EXT3_SB(sb
)->s_journal
;
2782 transaction_t
*transaction
;
2786 inode
= iget_locked(sb
, ino
);
2788 return ERR_PTR(-ENOMEM
);
2789 if (!(inode
->i_state
& I_NEW
))
2793 ei
->i_block_alloc_info
= NULL
;
2795 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2799 raw_inode
= ext3_raw_inode(&iloc
);
2800 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2801 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2802 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2803 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2804 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2805 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2807 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2808 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2809 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2810 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2811 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2812 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2814 ei
->i_state_flags
= 0;
2815 ei
->i_dir_start_lookup
= 0;
2816 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2817 /* We now have enough fields to check if the inode was active or not.
2818 * This is needed because nfsd might try to access dead inodes
2819 * the test is that same one that e2fsck uses
2820 * NeilBrown 1999oct15
2822 if (inode
->i_nlink
== 0) {
2823 if (inode
->i_mode
== 0 ||
2824 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2825 /* this inode is deleted */
2830 /* The only unlinked inodes we let through here have
2831 * valid i_mode and are being read by the orphan
2832 * recovery code: that's fine, we're about to complete
2833 * the process of deleting those. */
2835 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2836 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2837 #ifdef EXT3_FRAGMENTS
2838 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2839 ei
->i_frag_no
= raw_inode
->i_frag
;
2840 ei
->i_frag_size
= raw_inode
->i_fsize
;
2842 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2843 if (!S_ISREG(inode
->i_mode
)) {
2844 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2847 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2849 ei
->i_disksize
= inode
->i_size
;
2850 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2851 ei
->i_block_group
= iloc
.block_group
;
2853 * NOTE! The in-memory inode i_data array is in little-endian order
2854 * even on big-endian machines: we do NOT byteswap the block numbers!
2856 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2857 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2858 INIT_LIST_HEAD(&ei
->i_orphan
);
2861 * Set transaction id's of transactions that have to be committed
2862 * to finish f[data]sync. We set them to currently running transaction
2863 * as we cannot be sure that the inode or some of its metadata isn't
2864 * part of the transaction - the inode could have been reclaimed and
2865 * now it is reread from disk.
2870 spin_lock(&journal
->j_state_lock
);
2871 if (journal
->j_running_transaction
)
2872 transaction
= journal
->j_running_transaction
;
2874 transaction
= journal
->j_committing_transaction
;
2876 tid
= transaction
->t_tid
;
2878 tid
= journal
->j_commit_sequence
;
2879 spin_unlock(&journal
->j_state_lock
);
2880 atomic_set(&ei
->i_sync_tid
, tid
);
2881 atomic_set(&ei
->i_datasync_tid
, tid
);
2884 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
2885 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
2887 * When mke2fs creates big inodes it does not zero out
2888 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2889 * so ignore those first few inodes.
2891 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2892 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2893 EXT3_INODE_SIZE(inode
->i_sb
)) {
2898 if (ei
->i_extra_isize
== 0) {
2899 /* The extra space is currently unused. Use it. */
2900 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
2901 EXT3_GOOD_OLD_INODE_SIZE
;
2903 __le32
*magic
= (void *)raw_inode
+
2904 EXT3_GOOD_OLD_INODE_SIZE
+
2906 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
2907 ext3_set_inode_state(inode
, EXT3_STATE_XATTR
);
2910 ei
->i_extra_isize
= 0;
2912 if (S_ISREG(inode
->i_mode
)) {
2913 inode
->i_op
= &ext3_file_inode_operations
;
2914 inode
->i_fop
= &ext3_file_operations
;
2915 ext3_set_aops(inode
);
2916 } else if (S_ISDIR(inode
->i_mode
)) {
2917 inode
->i_op
= &ext3_dir_inode_operations
;
2918 inode
->i_fop
= &ext3_dir_operations
;
2919 } else if (S_ISLNK(inode
->i_mode
)) {
2920 if (ext3_inode_is_fast_symlink(inode
)) {
2921 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
2922 nd_terminate_link(ei
->i_data
, inode
->i_size
,
2923 sizeof(ei
->i_data
) - 1);
2925 inode
->i_op
= &ext3_symlink_inode_operations
;
2926 ext3_set_aops(inode
);
2929 inode
->i_op
= &ext3_special_inode_operations
;
2930 if (raw_inode
->i_block
[0])
2931 init_special_inode(inode
, inode
->i_mode
,
2932 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
2934 init_special_inode(inode
, inode
->i_mode
,
2935 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
2938 ext3_set_inode_flags(inode
);
2939 unlock_new_inode(inode
);
2944 return ERR_PTR(ret
);
2948 * Post the struct inode info into an on-disk inode location in the
2949 * buffer-cache. This gobbles the caller's reference to the
2950 * buffer_head in the inode location struct.
2952 * The caller must have write access to iloc->bh.
2954 static int ext3_do_update_inode(handle_t
*handle
,
2955 struct inode
*inode
,
2956 struct ext3_iloc
*iloc
)
2958 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
2959 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2960 struct buffer_head
*bh
= iloc
->bh
;
2961 int err
= 0, rc
, block
;
2964 /* we can't allow multiple procs in here at once, its a bit racey */
2967 /* For fields not not tracking in the in-memory inode,
2968 * initialise them to zero for new inodes. */
2969 if (ext3_test_inode_state(inode
, EXT3_STATE_NEW
))
2970 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
2972 ext3_get_inode_flags(ei
);
2973 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
2974 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
2975 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
2976 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
2978 * Fix up interoperability with old kernels. Otherwise, old inodes get
2979 * re-used with the upper 16 bits of the uid/gid intact
2982 raw_inode
->i_uid_high
=
2983 cpu_to_le16(high_16_bits(inode
->i_uid
));
2984 raw_inode
->i_gid_high
=
2985 cpu_to_le16(high_16_bits(inode
->i_gid
));
2987 raw_inode
->i_uid_high
= 0;
2988 raw_inode
->i_gid_high
= 0;
2991 raw_inode
->i_uid_low
=
2992 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
2993 raw_inode
->i_gid_low
=
2994 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
2995 raw_inode
->i_uid_high
= 0;
2996 raw_inode
->i_gid_high
= 0;
2998 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
2999 raw_inode
->i_size
= cpu_to_le32(ei
->i_disksize
);
3000 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
3001 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
3002 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
3003 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
3004 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3005 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
3006 #ifdef EXT3_FRAGMENTS
3007 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
3008 raw_inode
->i_frag
= ei
->i_frag_no
;
3009 raw_inode
->i_fsize
= ei
->i_frag_size
;
3011 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
3012 if (!S_ISREG(inode
->i_mode
)) {
3013 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
3015 raw_inode
->i_size_high
=
3016 cpu_to_le32(ei
->i_disksize
>> 32);
3017 if (ei
->i_disksize
> 0x7fffffffULL
) {
3018 struct super_block
*sb
= inode
->i_sb
;
3019 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
3020 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3021 EXT3_SB(sb
)->s_es
->s_rev_level
==
3022 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
3023 /* If this is the first large file
3024 * created, add a flag to the superblock.
3027 err
= ext3_journal_get_write_access(handle
,
3028 EXT3_SB(sb
)->s_sbh
);
3032 ext3_update_dynamic_rev(sb
);
3033 EXT3_SET_RO_COMPAT_FEATURE(sb
,
3034 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
3036 err
= ext3_journal_dirty_metadata(handle
,
3037 EXT3_SB(sb
)->s_sbh
);
3038 /* get our lock and start over */
3043 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3044 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3045 if (old_valid_dev(inode
->i_rdev
)) {
3046 raw_inode
->i_block
[0] =
3047 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3048 raw_inode
->i_block
[1] = 0;
3050 raw_inode
->i_block
[0] = 0;
3051 raw_inode
->i_block
[1] =
3052 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3053 raw_inode
->i_block
[2] = 0;
3055 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
3056 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3058 if (ei
->i_extra_isize
)
3059 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3061 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
3063 rc
= ext3_journal_dirty_metadata(handle
, bh
);
3066 ext3_clear_inode_state(inode
, EXT3_STATE_NEW
);
3068 atomic_set(&ei
->i_sync_tid
, handle
->h_transaction
->t_tid
);
3071 ext3_std_error(inode
->i_sb
, err
);
3076 * ext3_write_inode()
3078 * We are called from a few places:
3080 * - Within generic_file_write() for O_SYNC files.
3081 * Here, there will be no transaction running. We wait for any running
3082 * trasnaction to commit.
3084 * - Within sys_sync(), kupdate and such.
3085 * We wait on commit, if tol to.
3087 * - Within prune_icache() (PF_MEMALLOC == true)
3088 * Here we simply return. We can't afford to block kswapd on the
3091 * In all cases it is actually safe for us to return without doing anything,
3092 * because the inode has been copied into a raw inode buffer in
3093 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3096 * Note that we are absolutely dependent upon all inode dirtiers doing the
3097 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3098 * which we are interested.
3100 * It would be a bug for them to not do this. The code:
3102 * mark_inode_dirty(inode)
3104 * inode->i_size = expr;
3106 * is in error because a kswapd-driven write_inode() could occur while
3107 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3108 * will no longer be on the superblock's dirty inode list.
3110 int ext3_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3112 if (current
->flags
& PF_MEMALLOC
)
3115 if (ext3_journal_current_handle()) {
3116 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3121 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3124 return ext3_force_commit(inode
->i_sb
);
3130 * Called from notify_change.
3132 * We want to trap VFS attempts to truncate the file as soon as
3133 * possible. In particular, we want to make sure that when the VFS
3134 * shrinks i_size, we put the inode on the orphan list and modify
3135 * i_disksize immediately, so that during the subsequent flushing of
3136 * dirty pages and freeing of disk blocks, we can guarantee that any
3137 * commit will leave the blocks being flushed in an unused state on
3138 * disk. (On recovery, the inode will get truncated and the blocks will
3139 * be freed, so we have a strong guarantee that no future commit will
3140 * leave these blocks visible to the user.)
3142 * Called with inode->sem down.
3144 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3146 struct inode
*inode
= dentry
->d_inode
;
3148 const unsigned int ia_valid
= attr
->ia_valid
;
3150 error
= inode_change_ok(inode
, attr
);
3154 if (is_quota_modification(inode
, attr
))
3155 dquot_initialize(inode
);
3156 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3157 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3160 /* (user+group)*(old+new) structure, inode write (sb,
3161 * inode block, ? - but truncate inode update has it) */
3162 handle
= ext3_journal_start(inode
, EXT3_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
3163 EXT3_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)+3);
3164 if (IS_ERR(handle
)) {
3165 error
= PTR_ERR(handle
);
3168 error
= dquot_transfer(inode
, attr
);
3170 ext3_journal_stop(handle
);
3173 /* Update corresponding info in inode so that everything is in
3174 * one transaction */
3175 if (attr
->ia_valid
& ATTR_UID
)
3176 inode
->i_uid
= attr
->ia_uid
;
3177 if (attr
->ia_valid
& ATTR_GID
)
3178 inode
->i_gid
= attr
->ia_gid
;
3179 error
= ext3_mark_inode_dirty(handle
, inode
);
3180 ext3_journal_stop(handle
);
3183 if (S_ISREG(inode
->i_mode
) &&
3184 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3187 handle
= ext3_journal_start(inode
, 3);
3188 if (IS_ERR(handle
)) {
3189 error
= PTR_ERR(handle
);
3193 error
= ext3_orphan_add(handle
, inode
);
3194 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3195 rc
= ext3_mark_inode_dirty(handle
, inode
);
3198 ext3_journal_stop(handle
);
3201 rc
= inode_setattr(inode
, attr
);
3203 if (!rc
&& (ia_valid
& ATTR_MODE
))
3204 rc
= ext3_acl_chmod(inode
);
3207 ext3_std_error(inode
->i_sb
, error
);
3215 * How many blocks doth make a writepage()?
3217 * With N blocks per page, it may be:
3222 * N+5 bitmap blocks (from the above)
3223 * N+5 group descriptor summary blocks
3226 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3228 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3230 * With ordered or writeback data it's the same, less the N data blocks.
3232 * If the inode's direct blocks can hold an integral number of pages then a
3233 * page cannot straddle two indirect blocks, and we can only touch one indirect
3234 * and dindirect block, and the "5" above becomes "3".
3236 * This still overestimates under most circumstances. If we were to pass the
3237 * start and end offsets in here as well we could do block_to_path() on each
3238 * block and work out the exact number of indirects which are touched. Pah.
3241 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3243 int bpp
= ext3_journal_blocks_per_page(inode
);
3244 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3247 if (ext3_should_journal_data(inode
))
3248 ret
= 3 * (bpp
+ indirects
) + 2;
3250 ret
= 2 * (bpp
+ indirects
) + 2;
3253 /* We know that structure was already allocated during dquot_initialize so
3254 * we will be updating only the data blocks + inodes */
3255 ret
+= EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
3262 * The caller must have previously called ext3_reserve_inode_write().
3263 * Give this, we know that the caller already has write access to iloc->bh.
3265 int ext3_mark_iloc_dirty(handle_t
*handle
,
3266 struct inode
*inode
, struct ext3_iloc
*iloc
)
3270 /* the do_update_inode consumes one bh->b_count */
3273 /* ext3_do_update_inode() does journal_dirty_metadata */
3274 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3280 * On success, We end up with an outstanding reference count against
3281 * iloc->bh. This _must_ be cleaned up later.
3285 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3286 struct ext3_iloc
*iloc
)
3290 err
= ext3_get_inode_loc(inode
, iloc
);
3292 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3293 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3300 ext3_std_error(inode
->i_sb
, err
);
3305 * What we do here is to mark the in-core inode as clean with respect to inode
3306 * dirtiness (it may still be data-dirty).
3307 * This means that the in-core inode may be reaped by prune_icache
3308 * without having to perform any I/O. This is a very good thing,
3309 * because *any* task may call prune_icache - even ones which
3310 * have a transaction open against a different journal.
3312 * Is this cheating? Not really. Sure, we haven't written the
3313 * inode out, but prune_icache isn't a user-visible syncing function.
3314 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3315 * we start and wait on commits.
3317 * Is this efficient/effective? Well, we're being nice to the system
3318 * by cleaning up our inodes proactively so they can be reaped
3319 * without I/O. But we are potentially leaving up to five seconds'
3320 * worth of inodes floating about which prune_icache wants us to
3321 * write out. One way to fix that would be to get prune_icache()
3322 * to do a write_super() to free up some memory. It has the desired
3325 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3327 struct ext3_iloc iloc
;
3331 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3333 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3338 * ext3_dirty_inode() is called from __mark_inode_dirty()
3340 * We're really interested in the case where a file is being extended.
3341 * i_size has been changed by generic_commit_write() and we thus need
3342 * to include the updated inode in the current transaction.
3344 * Also, dquot_alloc_space() will always dirty the inode when blocks
3345 * are allocated to the file.
3347 * If the inode is marked synchronous, we don't honour that here - doing
3348 * so would cause a commit on atime updates, which we don't bother doing.
3349 * We handle synchronous inodes at the highest possible level.
3351 void ext3_dirty_inode(struct inode
*inode
)
3353 handle_t
*current_handle
= ext3_journal_current_handle();
3356 handle
= ext3_journal_start(inode
, 2);
3359 if (current_handle
&&
3360 current_handle
->h_transaction
!= handle
->h_transaction
) {
3361 /* This task has a transaction open against a different fs */
3362 printk(KERN_EMERG
"%s: transactions do not match!\n",
3365 jbd_debug(5, "marking dirty. outer handle=%p\n",
3367 ext3_mark_inode_dirty(handle
, inode
);
3369 ext3_journal_stop(handle
);
3376 * Bind an inode's backing buffer_head into this transaction, to prevent
3377 * it from being flushed to disk early. Unlike
3378 * ext3_reserve_inode_write, this leaves behind no bh reference and
3379 * returns no iloc structure, so the caller needs to repeat the iloc
3380 * lookup to mark the inode dirty later.
3382 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3384 struct ext3_iloc iloc
;
3388 err
= ext3_get_inode_loc(inode
, &iloc
);
3390 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3391 err
= journal_get_write_access(handle
, iloc
.bh
);
3393 err
= ext3_journal_dirty_metadata(handle
,
3398 ext3_std_error(inode
->i_sb
, err
);
3403 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3410 * We have to be very careful here: changing a data block's
3411 * journaling status dynamically is dangerous. If we write a
3412 * data block to the journal, change the status and then delete
3413 * that block, we risk forgetting to revoke the old log record
3414 * from the journal and so a subsequent replay can corrupt data.
3415 * So, first we make sure that the journal is empty and that
3416 * nobody is changing anything.
3419 journal
= EXT3_JOURNAL(inode
);
3420 if (is_journal_aborted(journal
))
3423 journal_lock_updates(journal
);
3424 journal_flush(journal
);
3427 * OK, there are no updates running now, and all cached data is
3428 * synced to disk. We are now in a completely consistent state
3429 * which doesn't have anything in the journal, and we know that
3430 * no filesystem updates are running, so it is safe to modify
3431 * the inode's in-core data-journaling state flag now.
3435 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3437 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3438 ext3_set_aops(inode
);
3440 journal_unlock_updates(journal
);
3442 /* Finally we can mark the inode as dirty. */
3444 handle
= ext3_journal_start(inode
, 1);
3446 return PTR_ERR(handle
);
3448 err
= ext3_mark_inode_dirty(handle
, inode
);
3450 ext3_journal_stop(handle
);
3451 ext3_std_error(inode
->i_sb
, err
);