drm/i915: drop KM_USER0 argument to k(un)map_atomic
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rtlwifi / efuse.c
blob3fc21f60bb0494d8cb49c0f2cc4e2a60cc62c49d
1 /******************************************************************************
3 * Copyright(c) 2009-2010 Realtek Corporation.
5 * Tmis program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * tmis program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * Tme full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #include "wifi.h"
31 #include "efuse.h"
33 static const u8 MAX_PGPKT_SIZE = 9;
34 static const u8 PGPKT_DATA_SIZE = 8;
35 static const int EFUSE_MAX_SIZE = 512;
37 static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
39 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
40 {0, 0, 0, 2},
41 {0, 1, 0, 2},
42 {0, 2, 0, 2},
43 {1, 0, 0, 1},
44 {1, 0, 1, 1},
45 {1, 1, 0, 1},
46 {1, 1, 1, 3},
47 {1, 3, 0, 17},
48 {3, 3, 1, 48},
49 {10, 0, 0, 6},
50 {10, 3, 0, 1},
51 {10, 3, 1, 1},
52 {11, 0, 0, 28}
55 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
56 u8 *value);
57 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
58 u16 *value);
59 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
60 u32 *value);
61 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
62 u8 value);
63 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
64 u16 value);
65 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
66 u32 value);
67 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
68 u8 *data);
69 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
70 u8 data);
71 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
72 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
73 u8 *data);
74 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
75 u8 word_en, u8 *data);
76 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
77 u8 *targetdata);
78 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
79 u16 efuse_addr, u8 word_en, u8 *data);
80 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
81 u8 pwrstate);
82 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
83 static u8 efuse_calculate_word_cnts(u8 word_en);
85 void efuse_initialize(struct ieee80211_hw *hw)
87 struct rtl_priv *rtlpriv = rtl_priv(hw);
88 u8 bytetemp;
89 u8 temp;
91 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
92 temp = bytetemp | 0x20;
93 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
95 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
96 temp = bytetemp & 0xFE;
97 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
99 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
100 temp = bytetemp | 0x80;
101 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
103 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
105 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
109 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
111 struct rtl_priv *rtlpriv = rtl_priv(hw);
112 u8 data;
113 u8 bytetemp;
114 u8 temp;
115 u32 k = 0;
116 const u32 efuse_len =
117 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
119 if (address < efuse_len) {
120 temp = address & 0xFF;
121 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
122 temp);
123 bytetemp = rtl_read_byte(rtlpriv,
124 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
125 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
126 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
127 temp);
129 bytetemp = rtl_read_byte(rtlpriv,
130 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
131 temp = bytetemp & 0x7F;
132 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
133 temp);
135 bytetemp = rtl_read_byte(rtlpriv,
136 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
137 while (!(bytetemp & 0x80)) {
138 bytetemp = rtl_read_byte(rtlpriv,
139 rtlpriv->cfg->
140 maps[EFUSE_CTRL] + 3);
141 k++;
142 if (k == 1000) {
143 k = 0;
144 break;
147 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
148 return data;
149 } else
150 return 0xFF;
153 EXPORT_SYMBOL(efuse_read_1byte);
155 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
157 struct rtl_priv *rtlpriv = rtl_priv(hw);
158 u8 bytetemp;
159 u8 temp;
160 u32 k = 0;
161 const u32 efuse_len =
162 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
164 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
165 ("Addr=%x Data =%x\n", address, value));
167 if (address < efuse_len) {
168 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
170 temp = address & 0xFF;
171 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
172 temp);
173 bytetemp = rtl_read_byte(rtlpriv,
174 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
176 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
177 rtl_write_byte(rtlpriv,
178 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
180 bytetemp = rtl_read_byte(rtlpriv,
181 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
182 temp = bytetemp | 0x80;
183 rtl_write_byte(rtlpriv,
184 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
186 bytetemp = rtl_read_byte(rtlpriv,
187 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
189 while (bytetemp & 0x80) {
190 bytetemp = rtl_read_byte(rtlpriv,
191 rtlpriv->cfg->
192 maps[EFUSE_CTRL] + 3);
193 k++;
194 if (k == 100) {
195 k = 0;
196 break;
203 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
205 struct rtl_priv *rtlpriv = rtl_priv(hw);
206 u32 value32;
207 u8 readbyte;
208 u16 retry;
210 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
211 (_offset & 0xff));
212 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
213 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
214 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
216 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
217 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
218 (readbyte & 0x7f));
220 retry = 0;
221 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
222 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
223 value32 = rtl_read_dword(rtlpriv,
224 rtlpriv->cfg->maps[EFUSE_CTRL]);
225 retry++;
228 udelay(50);
229 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
231 *pbuf = (u8) (value32 & 0xff);
234 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
236 struct rtl_priv *rtlpriv = rtl_priv(hw);
237 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
238 u8 *efuse_tbl;
239 u8 rtemp8[1];
240 u16 efuse_addr = 0;
241 u8 offset, wren;
242 u16 i;
243 u16 j;
244 const u16 efuse_max_section =
245 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
246 const u32 efuse_len =
247 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
248 u16 **efuse_word;
249 u16 efuse_utilized = 0;
250 u8 efuse_usage;
252 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
253 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
254 ("read_efuse(): Invalid offset(%#x) with read "
255 "bytes(%#x)!!\n", _offset, _size_byte));
256 return;
259 /* allocate memory for efuse_tbl and efuse_word */
260 efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
261 sizeof(u8), GFP_ATOMIC);
262 if (!efuse_tbl)
263 return;
264 efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
265 if (!efuse_word)
266 goto done;
267 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
268 efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
269 GFP_ATOMIC);
270 if (!efuse_word[i])
271 goto done;
274 for (i = 0; i < efuse_max_section; i++)
275 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
276 efuse_word[j][i] = 0xFFFF;
278 read_efuse_byte(hw, efuse_addr, rtemp8);
279 if (*rtemp8 != 0xFF) {
280 efuse_utilized++;
281 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
282 ("Addr=%d\n", efuse_addr));
283 efuse_addr++;
286 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
287 offset = ((*rtemp8 >> 4) & 0x0f);
289 if (offset < efuse_max_section) {
290 wren = (*rtemp8 & 0x0f);
291 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
292 ("offset-%d Worden=%x\n", offset, wren));
294 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
295 if (!(wren & 0x01)) {
296 RTPRINT(rtlpriv, FEEPROM,
297 EFUSE_READ_ALL, ("Addr=%d\n",
298 efuse_addr));
300 read_efuse_byte(hw, efuse_addr, rtemp8);
301 efuse_addr++;
302 efuse_utilized++;
303 efuse_word[i][offset] =
304 (*rtemp8 & 0xff);
306 if (efuse_addr >= efuse_len)
307 break;
309 RTPRINT(rtlpriv, FEEPROM,
310 EFUSE_READ_ALL, ("Addr=%d\n",
311 efuse_addr));
313 read_efuse_byte(hw, efuse_addr, rtemp8);
314 efuse_addr++;
315 efuse_utilized++;
316 efuse_word[i][offset] |=
317 (((u16)*rtemp8 << 8) & 0xff00);
319 if (efuse_addr >= efuse_len)
320 break;
323 wren >>= 1;
327 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
328 ("Addr=%d\n", efuse_addr));
329 read_efuse_byte(hw, efuse_addr, rtemp8);
330 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
331 efuse_utilized++;
332 efuse_addr++;
336 for (i = 0; i < efuse_max_section; i++) {
337 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
338 efuse_tbl[(i * 8) + (j * 2)] =
339 (efuse_word[j][i] & 0xff);
340 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
341 ((efuse_word[j][i] >> 8) & 0xff);
345 for (i = 0; i < _size_byte; i++)
346 pbuf[i] = efuse_tbl[_offset + i];
348 rtlefuse->efuse_usedbytes = efuse_utilized;
349 efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
350 rtlefuse->efuse_usedpercentage = efuse_usage;
351 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
352 (u8 *)&efuse_utilized);
353 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
354 (u8 *)&efuse_usage);
355 done:
356 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
357 kfree(efuse_word[i]);
358 kfree(efuse_word);
359 kfree(efuse_tbl);
362 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
364 struct rtl_priv *rtlpriv = rtl_priv(hw);
365 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
366 u8 section_idx, i, Base;
367 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
368 bool wordchanged, result = true;
370 for (section_idx = 0; section_idx < 16; section_idx++) {
371 Base = section_idx * 8;
372 wordchanged = false;
374 for (i = 0; i < 8; i = i + 2) {
375 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
376 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
377 (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
378 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
379 1])) {
380 words_need++;
381 wordchanged = true;
385 if (wordchanged)
386 hdr_num++;
389 totalbytes = hdr_num + words_need * 2;
390 efuse_used = rtlefuse->efuse_usedbytes;
392 if ((totalbytes + efuse_used) >=
393 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
394 result = false;
396 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
397 ("efuse_shadow_update_chk(): totalbytes(%#x), "
398 "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
399 totalbytes, hdr_num, words_need, efuse_used));
401 return result;
404 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
405 u16 offset, u32 *value)
407 if (type == 1)
408 efuse_shadow_read_1byte(hw, offset, (u8 *) value);
409 else if (type == 2)
410 efuse_shadow_read_2byte(hw, offset, (u16 *) value);
411 else if (type == 4)
412 efuse_shadow_read_4byte(hw, offset, (u32 *) value);
416 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
417 u32 value)
419 if (type == 1)
420 efuse_shadow_write_1byte(hw, offset, (u8) value);
421 else if (type == 2)
422 efuse_shadow_write_2byte(hw, offset, (u16) value);
423 else if (type == 4)
424 efuse_shadow_write_4byte(hw, offset, value);
428 bool efuse_shadow_update(struct ieee80211_hw *hw)
430 struct rtl_priv *rtlpriv = rtl_priv(hw);
431 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
432 u16 i, offset, base;
433 u8 word_en = 0x0F;
434 u8 first_pg = false;
436 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
438 if (!efuse_shadow_update_chk(hw)) {
439 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
440 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
441 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
442 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
444 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
445 ("<---efuse out of capacity!!\n"));
446 return false;
448 efuse_power_switch(hw, true, true);
450 for (offset = 0; offset < 16; offset++) {
452 word_en = 0x0F;
453 base = offset * 8;
455 for (i = 0; i < 8; i++) {
456 if (first_pg) {
458 word_en &= ~(BIT(i / 2));
460 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
461 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
462 } else {
464 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
465 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
466 word_en &= ~(BIT(i / 2));
468 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
469 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
474 if (word_en != 0x0F) {
475 u8 tmpdata[8];
476 memcpy(tmpdata,
477 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
479 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
480 ("U-efuse\n"), tmpdata, 8);
482 if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
483 tmpdata)) {
484 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
485 ("PG section(%#x) fail!!\n", offset));
486 break;
492 efuse_power_switch(hw, true, false);
493 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
495 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
496 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
497 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
499 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
500 return true;
503 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
505 struct rtl_priv *rtlpriv = rtl_priv(hw);
506 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
508 if (rtlefuse->autoload_failflag)
509 memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
510 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
511 else
512 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
514 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
515 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
516 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
519 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
521 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
523 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
525 efuse_power_switch(hw, true, true);
527 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
529 efuse_power_switch(hw, true, false);
533 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
537 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
538 u16 offset, u8 *value)
540 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
541 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
544 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
545 u16 offset, u16 *value)
547 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
549 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
550 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
554 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
555 u16 offset, u32 *value)
557 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
559 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
560 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
561 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
562 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
565 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
566 u16 offset, u8 value)
568 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
570 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
573 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
574 u16 offset, u16 value)
576 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
578 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
579 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
583 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
584 u16 offset, u32 value)
586 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
588 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
589 (u8) (value & 0x000000FF);
590 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
591 (u8) ((value >> 8) & 0x0000FF);
592 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
593 (u8) ((value >> 16) & 0x00FF);
594 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
595 (u8) ((value >> 24) & 0xFF);
599 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
601 struct rtl_priv *rtlpriv = rtl_priv(hw);
602 u8 tmpidx = 0;
603 int result;
605 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
606 (u8) (addr & 0xff));
607 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
608 ((u8) ((addr >> 8) & 0x03)) |
609 (rtl_read_byte(rtlpriv,
610 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
611 0xFC));
613 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
615 while (!(0x80 & rtl_read_byte(rtlpriv,
616 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
617 && (tmpidx < 100)) {
618 tmpidx++;
621 if (tmpidx < 100) {
622 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
623 result = true;
624 } else {
625 *data = 0xff;
626 result = false;
628 return result;
631 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
633 struct rtl_priv *rtlpriv = rtl_priv(hw);
634 u8 tmpidx = 0;
636 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
637 ("Addr = %x Data=%x\n", addr, data));
639 rtl_write_byte(rtlpriv,
640 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
641 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
642 (rtl_read_byte(rtlpriv,
643 rtlpriv->cfg->maps[EFUSE_CTRL] +
644 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
646 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
647 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
649 while ((0x80 & rtl_read_byte(rtlpriv,
650 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
651 && (tmpidx < 100)) {
652 tmpidx++;
655 if (tmpidx < 100)
656 return true;
658 return false;
661 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
663 struct rtl_priv *rtlpriv = rtl_priv(hw);
664 efuse_power_switch(hw, false, true);
665 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
666 efuse_power_switch(hw, false, false);
669 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
670 u8 efuse_data, u8 offset, u8 *tmpdata,
671 u8 *readstate)
673 bool dataempty = true;
674 u8 hoffset;
675 u8 tmpidx;
676 u8 hworden;
677 u8 word_cnts;
679 hoffset = (efuse_data >> 4) & 0x0F;
680 hworden = efuse_data & 0x0F;
681 word_cnts = efuse_calculate_word_cnts(hworden);
683 if (hoffset == offset) {
684 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
685 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
686 &efuse_data)) {
687 tmpdata[tmpidx] = efuse_data;
688 if (efuse_data != 0xff)
689 dataempty = true;
693 if (dataempty) {
694 *readstate = PG_STATE_DATA;
695 } else {
696 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
697 *readstate = PG_STATE_HEADER;
700 } else {
701 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
702 *readstate = PG_STATE_HEADER;
706 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
708 u8 readstate = PG_STATE_HEADER;
709 bool continual = true;
710 u8 efuse_data, word_cnts = 0;
711 u16 efuse_addr = 0;
712 u8 tmpdata[8];
714 if (data == NULL)
715 return false;
716 if (offset > 15)
717 return false;
719 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
720 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
722 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
723 if (readstate & PG_STATE_HEADER) {
724 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
725 && (efuse_data != 0xFF))
726 efuse_read_data_case1(hw, &efuse_addr,
727 efuse_data,
728 offset, tmpdata,
729 &readstate);
730 else
731 continual = false;
732 } else if (readstate & PG_STATE_DATA) {
733 efuse_word_enable_data_read(0, tmpdata, data);
734 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
735 readstate = PG_STATE_HEADER;
740 if ((data[0] == 0xff) && (data[1] == 0xff) &&
741 (data[2] == 0xff) && (data[3] == 0xff) &&
742 (data[4] == 0xff) && (data[5] == 0xff) &&
743 (data[6] == 0xff) && (data[7] == 0xff))
744 return false;
745 else
746 return true;
750 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
751 u8 efuse_data, u8 offset, int *continual,
752 u8 *write_state, struct pgpkt_struct *target_pkt,
753 int *repeat_times, int *result, u8 word_en)
755 struct rtl_priv *rtlpriv = rtl_priv(hw);
756 struct pgpkt_struct tmp_pkt;
757 bool dataempty = true;
758 u8 originaldata[8 * sizeof(u8)];
759 u8 badworden = 0x0F;
760 u8 match_word_en, tmp_word_en;
761 u8 tmpindex;
762 u8 tmp_header = efuse_data;
763 u8 tmp_word_cnts;
765 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
766 tmp_pkt.word_en = tmp_header & 0x0F;
767 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
769 if (tmp_pkt.offset != target_pkt->offset) {
770 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
771 *write_state = PG_STATE_HEADER;
772 } else {
773 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
774 u16 address = *efuse_addr + 1 + tmpindex;
775 if (efuse_one_byte_read(hw, address,
776 &efuse_data) && (efuse_data != 0xFF))
777 dataempty = false;
780 if (dataempty == false) {
781 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
782 *write_state = PG_STATE_HEADER;
783 } else {
784 match_word_en = 0x0F;
785 if (!((target_pkt->word_en & BIT(0)) |
786 (tmp_pkt.word_en & BIT(0))))
787 match_word_en &= (~BIT(0));
789 if (!((target_pkt->word_en & BIT(1)) |
790 (tmp_pkt.word_en & BIT(1))))
791 match_word_en &= (~BIT(1));
793 if (!((target_pkt->word_en & BIT(2)) |
794 (tmp_pkt.word_en & BIT(2))))
795 match_word_en &= (~BIT(2));
797 if (!((target_pkt->word_en & BIT(3)) |
798 (tmp_pkt.word_en & BIT(3))))
799 match_word_en &= (~BIT(3));
801 if ((match_word_en & 0x0F) != 0x0F) {
802 badworden = efuse_word_enable_data_write(
803 hw, *efuse_addr + 1,
804 tmp_pkt.word_en,
805 target_pkt->data);
807 if (0x0F != (badworden & 0x0F)) {
808 u8 reorg_offset = offset;
809 u8 reorg_worden = badworden;
810 efuse_pg_packet_write(hw, reorg_offset,
811 reorg_worden,
812 originaldata);
815 tmp_word_en = 0x0F;
816 if ((target_pkt->word_en & BIT(0)) ^
817 (match_word_en & BIT(0)))
818 tmp_word_en &= (~BIT(0));
820 if ((target_pkt->word_en & BIT(1)) ^
821 (match_word_en & BIT(1)))
822 tmp_word_en &= (~BIT(1));
824 if ((target_pkt->word_en & BIT(2)) ^
825 (match_word_en & BIT(2)))
826 tmp_word_en &= (~BIT(2));
828 if ((target_pkt->word_en & BIT(3)) ^
829 (match_word_en & BIT(3)))
830 tmp_word_en &= (~BIT(3));
832 if ((tmp_word_en & 0x0F) != 0x0F) {
833 *efuse_addr = efuse_get_current_size(hw);
834 target_pkt->offset = offset;
835 target_pkt->word_en = tmp_word_en;
836 } else {
837 *continual = false;
839 *write_state = PG_STATE_HEADER;
840 *repeat_times += 1;
841 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
842 *continual = false;
843 *result = false;
845 } else {
846 *efuse_addr += (2 * tmp_word_cnts) + 1;
847 target_pkt->offset = offset;
848 target_pkt->word_en = word_en;
849 *write_state = PG_STATE_HEADER;
853 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
856 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
857 int *continual, u8 *write_state,
858 struct pgpkt_struct target_pkt,
859 int *repeat_times, int *result)
861 struct rtl_priv *rtlpriv = rtl_priv(hw);
862 struct pgpkt_struct tmp_pkt;
863 u8 pg_header;
864 u8 tmp_header;
865 u8 originaldata[8 * sizeof(u8)];
866 u8 tmp_word_cnts;
867 u8 badworden = 0x0F;
869 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
870 efuse_one_byte_write(hw, *efuse_addr, pg_header);
871 efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
873 if (tmp_header == pg_header) {
874 *write_state = PG_STATE_DATA;
875 } else if (tmp_header == 0xFF) {
876 *write_state = PG_STATE_HEADER;
877 *repeat_times += 1;
878 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
879 *continual = false;
880 *result = false;
882 } else {
883 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
884 tmp_pkt.word_en = tmp_header & 0x0F;
886 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
888 memset(originaldata, 0xff, 8 * sizeof(u8));
890 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
891 badworden = efuse_word_enable_data_write(hw,
892 *efuse_addr + 1, tmp_pkt.word_en,
893 originaldata);
895 if (0x0F != (badworden & 0x0F)) {
896 u8 reorg_offset = tmp_pkt.offset;
897 u8 reorg_worden = badworden;
898 efuse_pg_packet_write(hw, reorg_offset,
899 reorg_worden,
900 originaldata);
901 *efuse_addr = efuse_get_current_size(hw);
902 } else {
903 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
904 + 1;
906 } else {
907 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
910 *write_state = PG_STATE_HEADER;
911 *repeat_times += 1;
912 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
913 *continual = false;
914 *result = false;
917 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
918 ("efuse PG_STATE_HEADER-2\n"));
922 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
923 u8 offset, u8 word_en, u8 *data)
925 struct rtl_priv *rtlpriv = rtl_priv(hw);
926 struct pgpkt_struct target_pkt;
927 u8 write_state = PG_STATE_HEADER;
928 int continual = true, result = true;
929 u16 efuse_addr = 0;
930 u8 efuse_data;
931 u8 target_word_cnts = 0;
932 u8 badworden = 0x0F;
933 static int repeat_times;
935 if (efuse_get_current_size(hw) >=
936 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
937 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
938 ("efuse_pg_packet_write error\n"));
939 return false;
942 target_pkt.offset = offset;
943 target_pkt.word_en = word_en;
945 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
947 efuse_word_enable_data_read(word_en, data, target_pkt.data);
948 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
950 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
952 while (continual && (efuse_addr <
953 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
955 if (write_state == PG_STATE_HEADER) {
956 badworden = 0x0F;
957 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
958 ("efuse PG_STATE_HEADER\n"));
960 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
961 (efuse_data != 0xFF))
962 efuse_write_data_case1(hw, &efuse_addr,
963 efuse_data, offset,
964 &continual,
965 &write_state, &target_pkt,
966 &repeat_times, &result,
967 word_en);
968 else
969 efuse_write_data_case2(hw, &efuse_addr,
970 &continual,
971 &write_state,
972 target_pkt,
973 &repeat_times,
974 &result);
976 } else if (write_state == PG_STATE_DATA) {
977 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
978 ("efuse PG_STATE_DATA\n"));
979 badworden =
980 efuse_word_enable_data_write(hw, efuse_addr + 1,
981 target_pkt.word_en,
982 target_pkt.data);
984 if ((badworden & 0x0F) == 0x0F) {
985 continual = false;
986 } else {
987 efuse_addr += (2 * target_word_cnts) + 1;
989 target_pkt.offset = offset;
990 target_pkt.word_en = badworden;
991 target_word_cnts =
992 efuse_calculate_word_cnts(target_pkt.
993 word_en);
994 write_state = PG_STATE_HEADER;
995 repeat_times++;
996 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
997 continual = false;
998 result = false;
1000 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001 ("efuse PG_STATE_HEADER-3\n"));
1006 if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
1007 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1008 ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
1011 return true;
1014 static void efuse_word_enable_data_read(u8 word_en,
1015 u8 *sourdata, u8 *targetdata)
1017 if (!(word_en & BIT(0))) {
1018 targetdata[0] = sourdata[0];
1019 targetdata[1] = sourdata[1];
1022 if (!(word_en & BIT(1))) {
1023 targetdata[2] = sourdata[2];
1024 targetdata[3] = sourdata[3];
1027 if (!(word_en & BIT(2))) {
1028 targetdata[4] = sourdata[4];
1029 targetdata[5] = sourdata[5];
1032 if (!(word_en & BIT(3))) {
1033 targetdata[6] = sourdata[6];
1034 targetdata[7] = sourdata[7];
1038 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1039 u16 efuse_addr, u8 word_en, u8 *data)
1041 struct rtl_priv *rtlpriv = rtl_priv(hw);
1042 u16 tmpaddr;
1043 u16 start_addr = efuse_addr;
1044 u8 badworden = 0x0F;
1045 u8 tmpdata[8];
1047 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1048 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1049 ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
1051 if (!(word_en & BIT(0))) {
1052 tmpaddr = start_addr;
1053 efuse_one_byte_write(hw, start_addr++, data[0]);
1054 efuse_one_byte_write(hw, start_addr++, data[1]);
1056 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1057 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1058 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1059 badworden &= (~BIT(0));
1062 if (!(word_en & BIT(1))) {
1063 tmpaddr = start_addr;
1064 efuse_one_byte_write(hw, start_addr++, data[2]);
1065 efuse_one_byte_write(hw, start_addr++, data[3]);
1067 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1068 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1069 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1070 badworden &= (~BIT(1));
1073 if (!(word_en & BIT(2))) {
1074 tmpaddr = start_addr;
1075 efuse_one_byte_write(hw, start_addr++, data[4]);
1076 efuse_one_byte_write(hw, start_addr++, data[5]);
1078 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1079 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1080 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1081 badworden &= (~BIT(2));
1084 if (!(word_en & BIT(3))) {
1085 tmpaddr = start_addr;
1086 efuse_one_byte_write(hw, start_addr++, data[6]);
1087 efuse_one_byte_write(hw, start_addr++, data[7]);
1089 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1090 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1091 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1092 badworden &= (~BIT(3));
1095 return badworden;
1098 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1100 struct rtl_priv *rtlpriv = rtl_priv(hw);
1101 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1102 u8 tempval;
1103 u16 tmpV16;
1105 if (pwrstate && (rtlhal->hw_type !=
1106 HARDWARE_TYPE_RTL8192SE)) {
1107 tmpV16 = rtl_read_word(rtlpriv,
1108 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1109 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1110 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1111 rtl_write_word(rtlpriv,
1112 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1113 tmpV16);
1116 tmpV16 = rtl_read_word(rtlpriv,
1117 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1118 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1119 tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1120 rtl_write_word(rtlpriv,
1121 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1124 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1125 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1126 (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1127 tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1128 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1129 rtl_write_word(rtlpriv,
1130 rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1134 if (pwrstate) {
1135 if (write) {
1136 tempval = rtl_read_byte(rtlpriv,
1137 rtlpriv->cfg->maps[EFUSE_TEST] +
1140 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1141 tempval &= 0x0F;
1142 tempval |= (VOLTAGE_V25 << 4);
1145 rtl_write_byte(rtlpriv,
1146 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1147 (tempval | 0x80));
1150 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1151 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1152 0x03);
1155 } else {
1156 if (write) {
1157 tempval = rtl_read_byte(rtlpriv,
1158 rtlpriv->cfg->maps[EFUSE_TEST] +
1160 rtl_write_byte(rtlpriv,
1161 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1162 (tempval & 0x7F));
1165 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1166 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1167 0x02);
1174 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1176 int continual = true;
1177 u16 efuse_addr = 0;
1178 u8 hworden;
1179 u8 efuse_data, word_cnts;
1181 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1182 && (efuse_addr < EFUSE_MAX_SIZE)) {
1183 if (efuse_data != 0xFF) {
1184 hworden = efuse_data & 0x0F;
1185 word_cnts = efuse_calculate_word_cnts(hworden);
1186 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1187 } else {
1188 continual = false;
1192 return efuse_addr;
1195 static u8 efuse_calculate_word_cnts(u8 word_en)
1197 u8 word_cnts = 0;
1198 if (!(word_en & BIT(0)))
1199 word_cnts++;
1200 if (!(word_en & BIT(1)))
1201 word_cnts++;
1202 if (!(word_en & BIT(2)))
1203 word_cnts++;
1204 if (!(word_en & BIT(3)))
1205 word_cnts++;
1206 return word_cnts;