2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <linux/of_device.h>
49 #include <linux/of_gpio.h>
50 #include <linux/of_net.h>
52 #include <asm/cacheflush.h>
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
61 #if defined(CONFIG_ARM)
62 #define FEC_ALIGNMENT 0xf
64 #define FEC_ALIGNMENT 0x3
67 #define DRIVER_NAME "fec"
69 /* Controller is ENET-MAC */
70 #define FEC_QUIRK_ENET_MAC (1 << 0)
71 /* Controller needs driver to swap frame */
72 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
73 /* Controller uses gasket */
74 #define FEC_QUIRK_USE_GASKET (1 << 2)
76 static struct platform_device_id fec_devtype
[] = {
78 /* keep it for coldfire */
83 .driver_data
= FEC_QUIRK_USE_GASKET
,
89 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
,
94 MODULE_DEVICE_TABLE(platform
, fec_devtype
);
97 IMX25_FEC
= 1, /* runs on i.mx25/50/53 */
98 IMX27_FEC
, /* runs on i.mx27/35/51 */
102 static const struct of_device_id fec_dt_ids
[] = {
103 { .compatible
= "fsl,imx25-fec", .data
= &fec_devtype
[IMX25_FEC
], },
104 { .compatible
= "fsl,imx27-fec", .data
= &fec_devtype
[IMX27_FEC
], },
105 { .compatible
= "fsl,imx28-fec", .data
= &fec_devtype
[IMX28_FEC
], },
108 MODULE_DEVICE_TABLE(of
, fec_dt_ids
);
110 static unsigned char macaddr
[ETH_ALEN
];
111 module_param_array(macaddr
, byte
, NULL
, 0);
112 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
114 #if defined(CONFIG_M5272)
116 * Some hardware gets it MAC address out of local flash memory.
117 * if this is non-zero then assume it is the address to get MAC from.
119 #if defined(CONFIG_NETtel)
120 #define FEC_FLASHMAC 0xf0006006
121 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
122 #define FEC_FLASHMAC 0xf0006000
123 #elif defined(CONFIG_CANCam)
124 #define FEC_FLASHMAC 0xf0020000
125 #elif defined (CONFIG_M5272C3)
126 #define FEC_FLASHMAC (0xffe04000 + 4)
127 #elif defined(CONFIG_MOD5272)
128 #define FEC_FLASHMAC 0xffc0406b
130 #define FEC_FLASHMAC 0
132 #endif /* CONFIG_M5272 */
134 /* The number of Tx and Rx buffers. These are allocated from the page
135 * pool. The code may assume these are power of two, so it it best
136 * to keep them that size.
137 * We don't need to allocate pages for the transmitter. We just use
138 * the skbuffer directly.
140 #define FEC_ENET_RX_PAGES 8
141 #define FEC_ENET_RX_FRSIZE 2048
142 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
143 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
144 #define FEC_ENET_TX_FRSIZE 2048
145 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
146 #define TX_RING_SIZE 16 /* Must be power of two */
147 #define TX_RING_MOD_MASK 15 /* for this to work */
149 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
150 #error "FEC: descriptor ring size constants too large"
153 /* Interrupt events/masks. */
154 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
155 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
156 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
157 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
158 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
159 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
160 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
161 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
162 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
163 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
165 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
167 /* The FEC stores dest/src/type, data, and checksum for receive packets.
169 #define PKT_MAXBUF_SIZE 1518
170 #define PKT_MINBUF_SIZE 64
171 #define PKT_MAXBLR_SIZE 1520
175 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
176 * size bits. Other FEC hardware does not, so we need to take that into
177 * account when setting it.
179 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
180 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
181 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
183 #define OPT_FRAME_SIZE 0
186 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
187 * tx_bd_base always point to the base of the buffer descriptors. The
188 * cur_rx and cur_tx point to the currently available buffer.
189 * The dirty_tx tracks the current buffer that is being sent by the
190 * controller. The cur_tx and dirty_tx are equal under both completely
191 * empty and completely full conditions. The empty/ready indicator in
192 * the buffer descriptor determines the actual condition.
194 struct fec_enet_private
{
195 /* Hardware registers of the FEC device */
198 struct net_device
*netdev
;
202 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
203 unsigned char *tx_bounce
[TX_RING_SIZE
];
204 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
205 struct sk_buff
* rx_skbuff
[RX_RING_SIZE
];
209 /* CPM dual port RAM relative addresses */
211 /* Address of Rx and Tx buffers */
212 struct bufdesc
*rx_bd_base
;
213 struct bufdesc
*tx_bd_base
;
214 /* The next free ring entry */
215 struct bufdesc
*cur_rx
, *cur_tx
;
216 /* The ring entries to be free()ed */
217 struct bufdesc
*dirty_tx
;
220 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
223 struct platform_device
*pdev
;
227 /* Phylib and MDIO interface */
228 struct mii_bus
*mii_bus
;
229 struct phy_device
*phy_dev
;
232 phy_interface_t phy_interface
;
235 struct completion mdio_done
;
238 /* FEC MII MMFR bits definition */
239 #define FEC_MMFR_ST (1 << 30)
240 #define FEC_MMFR_OP_READ (2 << 28)
241 #define FEC_MMFR_OP_WRITE (1 << 28)
242 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
243 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
244 #define FEC_MMFR_TA (2 << 16)
245 #define FEC_MMFR_DATA(v) (v & 0xffff)
247 #define FEC_MII_TIMEOUT 1000 /* us */
249 /* Transmitter timeout */
250 #define TX_TIMEOUT (2 * HZ)
252 static void *swap_buffer(void *bufaddr
, int len
)
255 unsigned int *buf
= bufaddr
;
257 for (i
= 0; i
< (len
+ 3) / 4; i
++, buf
++)
258 *buf
= cpu_to_be32(*buf
);
264 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
266 struct fec_enet_private
*fep
= netdev_priv(ndev
);
267 const struct platform_device_id
*id_entry
=
268 platform_get_device_id(fep
->pdev
);
271 unsigned short status
;
275 /* Link is down or autonegotiation is in progress. */
276 return NETDEV_TX_BUSY
;
279 spin_lock_irqsave(&fep
->hw_lock
, flags
);
280 /* Fill in a Tx ring entry */
283 status
= bdp
->cbd_sc
;
285 if (status
& BD_ENET_TX_READY
) {
286 /* Ooops. All transmit buffers are full. Bail out.
287 * This should not happen, since ndev->tbusy should be set.
289 printk("%s: tx queue full!.\n", ndev
->name
);
290 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
291 return NETDEV_TX_BUSY
;
294 /* Clear all of the status flags */
295 status
&= ~BD_ENET_TX_STATS
;
297 /* Set buffer length and buffer pointer */
299 bdp
->cbd_datlen
= skb
->len
;
302 * On some FEC implementations data must be aligned on
303 * 4-byte boundaries. Use bounce buffers to copy data
304 * and get it aligned. Ugh.
306 if (((unsigned long) bufaddr
) & FEC_ALIGNMENT
) {
308 index
= bdp
- fep
->tx_bd_base
;
309 memcpy(fep
->tx_bounce
[index
], skb
->data
, skb
->len
);
310 bufaddr
= fep
->tx_bounce
[index
];
314 * Some design made an incorrect assumption on endian mode of
315 * the system that it's running on. As the result, driver has to
316 * swap every frame going to and coming from the controller.
318 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
319 swap_buffer(bufaddr
, skb
->len
);
321 /* Save skb pointer */
322 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
324 ndev
->stats
.tx_bytes
+= skb
->len
;
325 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
327 /* Push the data cache so the CPM does not get stale memory
330 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
331 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
333 /* Send it on its way. Tell FEC it's ready, interrupt when done,
334 * it's the last BD of the frame, and to put the CRC on the end.
336 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
337 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
338 bdp
->cbd_sc
= status
;
340 /* Trigger transmission start */
341 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE
);
343 /* If this was the last BD in the ring, start at the beginning again. */
344 if (status
& BD_ENET_TX_WRAP
)
345 bdp
= fep
->tx_bd_base
;
349 if (bdp
== fep
->dirty_tx
) {
351 netif_stop_queue(ndev
);
356 skb_tx_timestamp(skb
);
358 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
363 /* This function is called to start or restart the FEC during a link
364 * change. This only happens when switching between half and full
368 fec_restart(struct net_device
*ndev
, int duplex
)
370 struct fec_enet_private
*fep
= netdev_priv(ndev
);
371 const struct platform_device_id
*id_entry
=
372 platform_get_device_id(fep
->pdev
);
375 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
377 /* Whack a reset. We should wait for this. */
378 writel(1, fep
->hwp
+ FEC_ECNTRL
);
382 * enet-mac reset will reset mac address registers too,
383 * so need to reconfigure it.
385 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
386 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
387 writel(cpu_to_be32(temp_mac
[0]), fep
->hwp
+ FEC_ADDR_LOW
);
388 writel(cpu_to_be32(temp_mac
[1]), fep
->hwp
+ FEC_ADDR_HIGH
);
391 /* Clear any outstanding interrupt. */
392 writel(0xffc00000, fep
->hwp
+ FEC_IEVENT
);
394 /* Reset all multicast. */
395 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
396 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
398 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
399 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
402 /* Set maximum receive buffer size. */
403 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE
);
405 /* Set receive and transmit descriptor base. */
406 writel(fep
->bd_dma
, fep
->hwp
+ FEC_R_DES_START
);
407 writel((unsigned long)fep
->bd_dma
+ sizeof(struct bufdesc
) * RX_RING_SIZE
,
408 fep
->hwp
+ FEC_X_DES_START
);
410 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
411 fep
->cur_rx
= fep
->rx_bd_base
;
413 /* Reset SKB transmit buffers. */
414 fep
->skb_cur
= fep
->skb_dirty
= 0;
415 for (i
= 0; i
<= TX_RING_MOD_MASK
; i
++) {
416 if (fep
->tx_skbuff
[i
]) {
417 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
418 fep
->tx_skbuff
[i
] = NULL
;
422 /* Enable MII mode */
425 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
429 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
432 fep
->full_duplex
= duplex
;
435 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
438 * The phy interface and speed need to get configured
439 * differently on enet-mac.
441 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
442 /* Enable flow control and length check */
443 rcntl
|= 0x40000000 | 0x00000020;
446 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
452 if (fep
->phy_dev
&& fep
->phy_dev
->speed
== SPEED_100
)
458 #ifdef FEC_MIIGSK_ENR
459 if (id_entry
->driver_data
& FEC_QUIRK_USE_GASKET
) {
460 /* disable the gasket and wait */
461 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
462 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
466 * configure the gasket:
467 * RMII, 50 MHz, no loopback, no echo
468 * MII, 25 MHz, no loopback, no echo
470 writel((fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
) ?
471 1 : 0, fep
->hwp
+ FEC_MIIGSK_CFGR
);
474 /* re-enable the gasket */
475 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
479 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
481 /* And last, enable the transmit and receive processing */
482 writel(2, fep
->hwp
+ FEC_ECNTRL
);
483 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
485 /* Enable interrupts we wish to service */
486 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
490 fec_stop(struct net_device
*ndev
)
492 struct fec_enet_private
*fep
= netdev_priv(ndev
);
494 /* We cannot expect a graceful transmit stop without link !!! */
496 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
498 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
499 printk("fec_stop : Graceful transmit stop did not complete !\n");
502 /* Whack a reset. We should wait for this. */
503 writel(1, fep
->hwp
+ FEC_ECNTRL
);
505 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
506 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
511 fec_timeout(struct net_device
*ndev
)
513 struct fec_enet_private
*fep
= netdev_priv(ndev
);
515 ndev
->stats
.tx_errors
++;
517 fec_restart(ndev
, fep
->full_duplex
);
518 netif_wake_queue(ndev
);
522 fec_enet_tx(struct net_device
*ndev
)
524 struct fec_enet_private
*fep
;
526 unsigned short status
;
529 fep
= netdev_priv(ndev
);
530 spin_lock(&fep
->hw_lock
);
533 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
534 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0)
537 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
538 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
539 bdp
->cbd_bufaddr
= 0;
541 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
542 /* Check for errors. */
543 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
544 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
546 ndev
->stats
.tx_errors
++;
547 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
548 ndev
->stats
.tx_heartbeat_errors
++;
549 if (status
& BD_ENET_TX_LC
) /* Late collision */
550 ndev
->stats
.tx_window_errors
++;
551 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
552 ndev
->stats
.tx_aborted_errors
++;
553 if (status
& BD_ENET_TX_UN
) /* Underrun */
554 ndev
->stats
.tx_fifo_errors
++;
555 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
556 ndev
->stats
.tx_carrier_errors
++;
558 ndev
->stats
.tx_packets
++;
561 if (status
& BD_ENET_TX_READY
)
562 printk("HEY! Enet xmit interrupt and TX_READY.\n");
564 /* Deferred means some collisions occurred during transmit,
565 * but we eventually sent the packet OK.
567 if (status
& BD_ENET_TX_DEF
)
568 ndev
->stats
.collisions
++;
570 /* Free the sk buffer associated with this last transmit */
571 dev_kfree_skb_any(skb
);
572 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
573 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
575 /* Update pointer to next buffer descriptor to be transmitted */
576 if (status
& BD_ENET_TX_WRAP
)
577 bdp
= fep
->tx_bd_base
;
581 /* Since we have freed up a buffer, the ring is no longer full
585 if (netif_queue_stopped(ndev
))
586 netif_wake_queue(ndev
);
590 spin_unlock(&fep
->hw_lock
);
594 /* During a receive, the cur_rx points to the current incoming buffer.
595 * When we update through the ring, if the next incoming buffer has
596 * not been given to the system, we just set the empty indicator,
597 * effectively tossing the packet.
600 fec_enet_rx(struct net_device
*ndev
)
602 struct fec_enet_private
*fep
= netdev_priv(ndev
);
603 const struct platform_device_id
*id_entry
=
604 platform_get_device_id(fep
->pdev
);
606 unsigned short status
;
615 spin_lock(&fep
->hw_lock
);
617 /* First, grab all of the stats for the incoming packet.
618 * These get messed up if we get called due to a busy condition.
622 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
624 /* Since we have allocated space to hold a complete frame,
625 * the last indicator should be set.
627 if ((status
& BD_ENET_RX_LAST
) == 0)
628 printk("FEC ENET: rcv is not +last\n");
631 goto rx_processing_done
;
633 /* Check for errors. */
634 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
635 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
636 ndev
->stats
.rx_errors
++;
637 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
638 /* Frame too long or too short. */
639 ndev
->stats
.rx_length_errors
++;
641 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
642 ndev
->stats
.rx_frame_errors
++;
643 if (status
& BD_ENET_RX_CR
) /* CRC Error */
644 ndev
->stats
.rx_crc_errors
++;
645 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
646 ndev
->stats
.rx_fifo_errors
++;
649 /* Report late collisions as a frame error.
650 * On this error, the BD is closed, but we don't know what we
651 * have in the buffer. So, just drop this frame on the floor.
653 if (status
& BD_ENET_RX_CL
) {
654 ndev
->stats
.rx_errors
++;
655 ndev
->stats
.rx_frame_errors
++;
656 goto rx_processing_done
;
659 /* Process the incoming frame. */
660 ndev
->stats
.rx_packets
++;
661 pkt_len
= bdp
->cbd_datlen
;
662 ndev
->stats
.rx_bytes
+= pkt_len
;
663 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
665 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
666 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
668 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
669 swap_buffer(data
, pkt_len
);
671 /* This does 16 byte alignment, exactly what we need.
672 * The packet length includes FCS, but we don't want to
673 * include that when passing upstream as it messes up
674 * bridging applications.
676 skb
= dev_alloc_skb(pkt_len
- 4 + NET_IP_ALIGN
);
678 if (unlikely(!skb
)) {
679 printk("%s: Memory squeeze, dropping packet.\n",
681 ndev
->stats
.rx_dropped
++;
683 skb_reserve(skb
, NET_IP_ALIGN
);
684 skb_put(skb
, pkt_len
- 4); /* Make room */
685 skb_copy_to_linear_data(skb
, data
, pkt_len
- 4);
686 skb
->protocol
= eth_type_trans(skb
, ndev
);
687 if (!skb_defer_rx_timestamp(skb
))
691 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, data
,
692 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
694 /* Clear the status flags for this buffer */
695 status
&= ~BD_ENET_RX_STATS
;
697 /* Mark the buffer empty */
698 status
|= BD_ENET_RX_EMPTY
;
699 bdp
->cbd_sc
= status
;
701 /* Update BD pointer to next entry */
702 if (status
& BD_ENET_RX_WRAP
)
703 bdp
= fep
->rx_bd_base
;
706 /* Doing this here will keep the FEC running while we process
707 * incoming frames. On a heavily loaded network, we should be
708 * able to keep up at the expense of system resources.
710 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
714 spin_unlock(&fep
->hw_lock
);
718 fec_enet_interrupt(int irq
, void *dev_id
)
720 struct net_device
*ndev
= dev_id
;
721 struct fec_enet_private
*fep
= netdev_priv(ndev
);
723 irqreturn_t ret
= IRQ_NONE
;
726 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
727 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
729 if (int_events
& FEC_ENET_RXF
) {
734 /* Transmit OK, or non-fatal error. Update the buffer
735 * descriptors. FEC handles all errors, we just discover
736 * them as part of the transmit process.
738 if (int_events
& FEC_ENET_TXF
) {
743 if (int_events
& FEC_ENET_MII
) {
745 complete(&fep
->mdio_done
);
747 } while (int_events
);
754 /* ------------------------------------------------------------------------- */
755 static void __inline__
fec_get_mac(struct net_device
*ndev
)
757 struct fec_enet_private
*fep
= netdev_priv(ndev
);
758 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
759 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
762 * try to get mac address in following order:
764 * 1) module parameter via kernel command line in form
765 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
771 * 2) from device tree data
773 if (!is_valid_ether_addr(iap
)) {
774 struct device_node
*np
= fep
->pdev
->dev
.of_node
;
776 const char *mac
= of_get_mac_address(np
);
778 iap
= (unsigned char *) mac
;
784 * 3) from flash or fuse (via platform data)
786 if (!is_valid_ether_addr(iap
)) {
789 iap
= (unsigned char *)FEC_FLASHMAC
;
792 memcpy(iap
, pdata
->mac
, ETH_ALEN
);
797 * 4) FEC mac registers set by bootloader
799 if (!is_valid_ether_addr(iap
)) {
800 *((unsigned long *) &tmpaddr
[0]) =
801 be32_to_cpu(readl(fep
->hwp
+ FEC_ADDR_LOW
));
802 *((unsigned short *) &tmpaddr
[4]) =
803 be16_to_cpu(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
807 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
809 /* Adjust MAC if using macaddr */
811 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->pdev
->id
;
814 /* ------------------------------------------------------------------------- */
819 static void fec_enet_adjust_link(struct net_device
*ndev
)
821 struct fec_enet_private
*fep
= netdev_priv(ndev
);
822 struct phy_device
*phy_dev
= fep
->phy_dev
;
825 int status_change
= 0;
827 spin_lock_irqsave(&fep
->hw_lock
, flags
);
829 /* Prevent a state halted on mii error */
830 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
831 phy_dev
->state
= PHY_RESUMING
;
835 /* Duplex link change */
837 if (fep
->full_duplex
!= phy_dev
->duplex
) {
838 fec_restart(ndev
, phy_dev
->duplex
);
843 /* Link on or off change */
844 if (phy_dev
->link
!= fep
->link
) {
845 fep
->link
= phy_dev
->link
;
847 fec_restart(ndev
, phy_dev
->duplex
);
854 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
857 phy_print_status(phy_dev
);
860 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
862 struct fec_enet_private
*fep
= bus
->priv
;
863 unsigned long time_left
;
865 fep
->mii_timeout
= 0;
866 init_completion(&fep
->mdio_done
);
868 /* start a read op */
869 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
870 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
871 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
873 /* wait for end of transfer */
874 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
875 usecs_to_jiffies(FEC_MII_TIMEOUT
));
876 if (time_left
== 0) {
877 fep
->mii_timeout
= 1;
878 printk(KERN_ERR
"FEC: MDIO read timeout\n");
883 return FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
886 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
889 struct fec_enet_private
*fep
= bus
->priv
;
890 unsigned long time_left
;
892 fep
->mii_timeout
= 0;
893 init_completion(&fep
->mdio_done
);
895 /* start a write op */
896 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
897 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
898 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
899 fep
->hwp
+ FEC_MII_DATA
);
901 /* wait for end of transfer */
902 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
903 usecs_to_jiffies(FEC_MII_TIMEOUT
));
904 if (time_left
== 0) {
905 fep
->mii_timeout
= 1;
906 printk(KERN_ERR
"FEC: MDIO write timeout\n");
913 static int fec_enet_mdio_reset(struct mii_bus
*bus
)
918 static int fec_enet_mii_probe(struct net_device
*ndev
)
920 struct fec_enet_private
*fep
= netdev_priv(ndev
);
921 struct phy_device
*phy_dev
= NULL
;
922 char mdio_bus_id
[MII_BUS_ID_SIZE
];
923 char phy_name
[MII_BUS_ID_SIZE
+ 3];
925 int dev_id
= fep
->pdev
->id
;
929 /* check for attached phy */
930 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
931 if ((fep
->mii_bus
->phy_mask
& (1 << phy_id
)))
933 if (fep
->mii_bus
->phy_map
[phy_id
] == NULL
)
935 if (fep
->mii_bus
->phy_map
[phy_id
]->phy_id
== 0)
939 strncpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
943 if (phy_id
>= PHY_MAX_ADDR
) {
944 printk(KERN_INFO
"%s: no PHY, assuming direct connection "
945 "to switch\n", ndev
->name
);
946 strncpy(mdio_bus_id
, "0", MII_BUS_ID_SIZE
);
950 snprintf(phy_name
, MII_BUS_ID_SIZE
, PHY_ID_FMT
, mdio_bus_id
, phy_id
);
951 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
, 0,
952 PHY_INTERFACE_MODE_MII
);
953 if (IS_ERR(phy_dev
)) {
954 printk(KERN_ERR
"%s: could not attach to PHY\n", ndev
->name
);
955 return PTR_ERR(phy_dev
);
958 /* mask with MAC supported features */
959 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
960 phy_dev
->advertising
= phy_dev
->supported
;
962 fep
->phy_dev
= phy_dev
;
964 fep
->full_duplex
= 0;
966 printk(KERN_INFO
"%s: Freescale FEC PHY driver [%s] "
967 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev
->name
,
968 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
974 static int fec_enet_mii_init(struct platform_device
*pdev
)
976 static struct mii_bus
*fec0_mii_bus
;
977 struct net_device
*ndev
= platform_get_drvdata(pdev
);
978 struct fec_enet_private
*fep
= netdev_priv(ndev
);
979 const struct platform_device_id
*id_entry
=
980 platform_get_device_id(fep
->pdev
);
984 * The dual fec interfaces are not equivalent with enet-mac.
985 * Here are the differences:
987 * - fec0 supports MII & RMII modes while fec1 only supports RMII
988 * - fec0 acts as the 1588 time master while fec1 is slave
989 * - external phys can only be configured by fec0
991 * That is to say fec1 can not work independently. It only works
992 * when fec0 is working. The reason behind this design is that the
993 * second interface is added primarily for Switch mode.
995 * Because of the last point above, both phys are attached on fec0
996 * mdio interface in board design, and need to be configured by
999 if ((id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) && pdev
->id
) {
1000 /* fec1 uses fec0 mii_bus */
1001 fep
->mii_bus
= fec0_mii_bus
;
1005 fep
->mii_timeout
= 0;
1008 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1010 fep
->phy_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk
), 5000000) << 1;
1011 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1013 fep
->mii_bus
= mdiobus_alloc();
1014 if (fep
->mii_bus
== NULL
) {
1019 fep
->mii_bus
->name
= "fec_enet_mii_bus";
1020 fep
->mii_bus
->read
= fec_enet_mdio_read
;
1021 fep
->mii_bus
->write
= fec_enet_mdio_write
;
1022 fep
->mii_bus
->reset
= fec_enet_mdio_reset
;
1023 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", pdev
->id
+ 1);
1024 fep
->mii_bus
->priv
= fep
;
1025 fep
->mii_bus
->parent
= &pdev
->dev
;
1027 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
1028 if (!fep
->mii_bus
->irq
) {
1030 goto err_out_free_mdiobus
;
1033 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
1034 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
1036 if (mdiobus_register(fep
->mii_bus
))
1037 goto err_out_free_mdio_irq
;
1039 /* save fec0 mii_bus */
1040 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
1041 fec0_mii_bus
= fep
->mii_bus
;
1045 err_out_free_mdio_irq
:
1046 kfree(fep
->mii_bus
->irq
);
1047 err_out_free_mdiobus
:
1048 mdiobus_free(fep
->mii_bus
);
1053 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
1056 phy_disconnect(fep
->phy_dev
);
1057 mdiobus_unregister(fep
->mii_bus
);
1058 kfree(fep
->mii_bus
->irq
);
1059 mdiobus_free(fep
->mii_bus
);
1062 static int fec_enet_get_settings(struct net_device
*ndev
,
1063 struct ethtool_cmd
*cmd
)
1065 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1066 struct phy_device
*phydev
= fep
->phy_dev
;
1071 return phy_ethtool_gset(phydev
, cmd
);
1074 static int fec_enet_set_settings(struct net_device
*ndev
,
1075 struct ethtool_cmd
*cmd
)
1077 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1078 struct phy_device
*phydev
= fep
->phy_dev
;
1083 return phy_ethtool_sset(phydev
, cmd
);
1086 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
1087 struct ethtool_drvinfo
*info
)
1089 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1091 strcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
);
1092 strcpy(info
->version
, "Revision: 1.0");
1093 strcpy(info
->bus_info
, dev_name(&ndev
->dev
));
1096 static struct ethtool_ops fec_enet_ethtool_ops
= {
1097 .get_settings
= fec_enet_get_settings
,
1098 .set_settings
= fec_enet_set_settings
,
1099 .get_drvinfo
= fec_enet_get_drvinfo
,
1100 .get_link
= ethtool_op_get_link
,
1103 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
1105 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1106 struct phy_device
*phydev
= fep
->phy_dev
;
1108 if (!netif_running(ndev
))
1114 return phy_mii_ioctl(phydev
, rq
, cmd
);
1117 static void fec_enet_free_buffers(struct net_device
*ndev
)
1119 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1121 struct sk_buff
*skb
;
1122 struct bufdesc
*bdp
;
1124 bdp
= fep
->rx_bd_base
;
1125 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1126 skb
= fep
->rx_skbuff
[i
];
1128 if (bdp
->cbd_bufaddr
)
1129 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1130 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1136 bdp
= fep
->tx_bd_base
;
1137 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1138 kfree(fep
->tx_bounce
[i
]);
1141 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
1143 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1145 struct sk_buff
*skb
;
1146 struct bufdesc
*bdp
;
1148 bdp
= fep
->rx_bd_base
;
1149 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1150 skb
= dev_alloc_skb(FEC_ENET_RX_FRSIZE
);
1152 fec_enet_free_buffers(ndev
);
1155 fep
->rx_skbuff
[i
] = skb
;
1157 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, skb
->data
,
1158 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1159 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1163 /* Set the last buffer to wrap. */
1165 bdp
->cbd_sc
|= BD_SC_WRAP
;
1167 bdp
= fep
->tx_bd_base
;
1168 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1169 fep
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
1172 bdp
->cbd_bufaddr
= 0;
1176 /* Set the last buffer to wrap. */
1178 bdp
->cbd_sc
|= BD_SC_WRAP
;
1184 fec_enet_open(struct net_device
*ndev
)
1186 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1189 /* I should reset the ring buffers here, but I don't yet know
1190 * a simple way to do that.
1193 ret
= fec_enet_alloc_buffers(ndev
);
1197 /* Probe and connect to PHY when open the interface */
1198 ret
= fec_enet_mii_probe(ndev
);
1200 fec_enet_free_buffers(ndev
);
1203 phy_start(fep
->phy_dev
);
1204 netif_start_queue(ndev
);
1210 fec_enet_close(struct net_device
*ndev
)
1212 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1214 /* Don't know what to do yet. */
1216 netif_stop_queue(ndev
);
1220 phy_stop(fep
->phy_dev
);
1221 phy_disconnect(fep
->phy_dev
);
1224 fec_enet_free_buffers(ndev
);
1229 /* Set or clear the multicast filter for this adaptor.
1230 * Skeleton taken from sunlance driver.
1231 * The CPM Ethernet implementation allows Multicast as well as individual
1232 * MAC address filtering. Some of the drivers check to make sure it is
1233 * a group multicast address, and discard those that are not. I guess I
1234 * will do the same for now, but just remove the test if you want
1235 * individual filtering as well (do the upper net layers want or support
1236 * this kind of feature?).
1239 #define HASH_BITS 6 /* #bits in hash */
1240 #define CRC32_POLY 0xEDB88320
1242 static void set_multicast_list(struct net_device
*ndev
)
1244 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1245 struct netdev_hw_addr
*ha
;
1246 unsigned int i
, bit
, data
, crc
, tmp
;
1249 if (ndev
->flags
& IFF_PROMISC
) {
1250 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1252 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1256 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1258 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1260 if (ndev
->flags
& IFF_ALLMULTI
) {
1261 /* Catch all multicast addresses, so set the
1264 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1265 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1270 /* Clear filter and add the addresses in hash register
1272 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1273 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1275 netdev_for_each_mc_addr(ha
, ndev
) {
1276 /* calculate crc32 value of mac address */
1279 for (i
= 0; i
< ndev
->addr_len
; i
++) {
1281 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
1283 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1287 /* only upper 6 bits (HASH_BITS) are used
1288 * which point to specific bit in he hash registers
1290 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1293 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1294 tmp
|= 1 << (hash
- 32);
1295 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1297 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1299 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1304 /* Set a MAC change in hardware. */
1306 fec_set_mac_address(struct net_device
*ndev
, void *p
)
1308 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1309 struct sockaddr
*addr
= p
;
1311 if (!is_valid_ether_addr(addr
->sa_data
))
1312 return -EADDRNOTAVAIL
;
1314 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
1316 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
1317 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
1318 fep
->hwp
+ FEC_ADDR_LOW
);
1319 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
1320 fep
->hwp
+ FEC_ADDR_HIGH
);
1324 static const struct net_device_ops fec_netdev_ops
= {
1325 .ndo_open
= fec_enet_open
,
1326 .ndo_stop
= fec_enet_close
,
1327 .ndo_start_xmit
= fec_enet_start_xmit
,
1328 .ndo_set_multicast_list
= set_multicast_list
,
1329 .ndo_change_mtu
= eth_change_mtu
,
1330 .ndo_validate_addr
= eth_validate_addr
,
1331 .ndo_tx_timeout
= fec_timeout
,
1332 .ndo_set_mac_address
= fec_set_mac_address
,
1333 .ndo_do_ioctl
= fec_enet_ioctl
,
1337 * XXX: We need to clean up on failure exits here.
1340 static int fec_enet_init(struct net_device
*ndev
)
1342 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1343 struct bufdesc
*cbd_base
;
1344 struct bufdesc
*bdp
;
1347 /* Allocate memory for buffer descriptors. */
1348 cbd_base
= dma_alloc_coherent(NULL
, PAGE_SIZE
, &fep
->bd_dma
,
1351 printk("FEC: allocate descriptor memory failed?\n");
1355 spin_lock_init(&fep
->hw_lock
);
1359 /* Get the Ethernet address */
1362 /* Set receive and transmit descriptor base. */
1363 fep
->rx_bd_base
= cbd_base
;
1364 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1366 /* The FEC Ethernet specific entries in the device structure */
1367 ndev
->watchdog_timeo
= TX_TIMEOUT
;
1368 ndev
->netdev_ops
= &fec_netdev_ops
;
1369 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
1371 /* Initialize the receive buffer descriptors. */
1372 bdp
= fep
->rx_bd_base
;
1373 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1375 /* Initialize the BD for every fragment in the page. */
1380 /* Set the last buffer to wrap */
1382 bdp
->cbd_sc
|= BD_SC_WRAP
;
1384 /* ...and the same for transmit */
1385 bdp
= fep
->tx_bd_base
;
1386 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1388 /* Initialize the BD for every fragment in the page. */
1390 bdp
->cbd_bufaddr
= 0;
1394 /* Set the last buffer to wrap */
1396 bdp
->cbd_sc
|= BD_SC_WRAP
;
1398 fec_restart(ndev
, 0);
1404 static int __devinit
fec_get_phy_mode_dt(struct platform_device
*pdev
)
1406 struct device_node
*np
= pdev
->dev
.of_node
;
1409 return of_get_phy_mode(np
);
1414 static int __devinit
fec_reset_phy(struct platform_device
*pdev
)
1417 struct device_node
*np
= pdev
->dev
.of_node
;
1422 phy_reset
= of_get_named_gpio(np
, "phy-reset-gpios", 0);
1423 err
= gpio_request_one(phy_reset
, GPIOF_OUT_INIT_LOW
, "phy-reset");
1425 pr_warn("FEC: failed to get gpio phy-reset: %d\n", err
);
1429 gpio_set_value(phy_reset
, 1);
1433 #else /* CONFIG_OF */
1434 static inline int fec_get_phy_mode_dt(struct platform_device
*pdev
)
1439 static inline int fec_reset_phy(struct platform_device
*pdev
)
1442 * In case of platform probe, the reset has been done
1447 #endif /* CONFIG_OF */
1449 static int __devinit
1450 fec_probe(struct platform_device
*pdev
)
1452 struct fec_enet_private
*fep
;
1453 struct fec_platform_data
*pdata
;
1454 struct net_device
*ndev
;
1455 int i
, irq
, ret
= 0;
1457 const struct of_device_id
*of_id
;
1459 of_id
= of_match_device(fec_dt_ids
, &pdev
->dev
);
1461 pdev
->id_entry
= of_id
->data
;
1463 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1467 r
= request_mem_region(r
->start
, resource_size(r
), pdev
->name
);
1471 /* Init network device */
1472 ndev
= alloc_etherdev(sizeof(struct fec_enet_private
));
1475 goto failed_alloc_etherdev
;
1478 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1480 /* setup board info structure */
1481 fep
= netdev_priv(ndev
);
1483 fep
->hwp
= ioremap(r
->start
, resource_size(r
));
1488 goto failed_ioremap
;
1491 platform_set_drvdata(pdev
, ndev
);
1493 ret
= fec_get_phy_mode_dt(pdev
);
1495 pdata
= pdev
->dev
.platform_data
;
1497 fep
->phy_interface
= pdata
->phy
;
1499 fep
->phy_interface
= PHY_INTERFACE_MODE_MII
;
1501 fep
->phy_interface
= ret
;
1504 fec_reset_phy(pdev
);
1506 /* This device has up to three irqs on some platforms */
1507 for (i
= 0; i
< 3; i
++) {
1508 irq
= platform_get_irq(pdev
, i
);
1511 ret
= request_irq(irq
, fec_enet_interrupt
, IRQF_DISABLED
, pdev
->name
, ndev
);
1514 irq
= platform_get_irq(pdev
, i
);
1515 free_irq(irq
, ndev
);
1521 fep
->clk
= clk_get(&pdev
->dev
, "fec_clk");
1522 if (IS_ERR(fep
->clk
)) {
1523 ret
= PTR_ERR(fep
->clk
);
1526 clk_enable(fep
->clk
);
1528 ret
= fec_enet_init(ndev
);
1532 ret
= fec_enet_mii_init(pdev
);
1534 goto failed_mii_init
;
1536 /* Carrier starts down, phylib will bring it up */
1537 netif_carrier_off(ndev
);
1539 ret
= register_netdev(ndev
);
1541 goto failed_register
;
1546 fec_enet_mii_remove(fep
);
1549 clk_disable(fep
->clk
);
1552 for (i
= 0; i
< 3; i
++) {
1553 irq
= platform_get_irq(pdev
, i
);
1555 free_irq(irq
, ndev
);
1561 failed_alloc_etherdev
:
1562 release_mem_region(r
->start
, resource_size(r
));
1567 static int __devexit
1568 fec_drv_remove(struct platform_device
*pdev
)
1570 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1571 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1575 fec_enet_mii_remove(fep
);
1576 clk_disable(fep
->clk
);
1579 unregister_netdev(ndev
);
1582 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1584 release_mem_region(r
->start
, resource_size(r
));
1586 platform_set_drvdata(pdev
, NULL
);
1593 fec_suspend(struct device
*dev
)
1595 struct net_device
*ndev
= dev_get_drvdata(dev
);
1596 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1598 if (netif_running(ndev
)) {
1600 netif_device_detach(ndev
);
1602 clk_disable(fep
->clk
);
1608 fec_resume(struct device
*dev
)
1610 struct net_device
*ndev
= dev_get_drvdata(dev
);
1611 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1613 clk_enable(fep
->clk
);
1614 if (netif_running(ndev
)) {
1615 fec_restart(ndev
, fep
->full_duplex
);
1616 netif_device_attach(ndev
);
1622 static const struct dev_pm_ops fec_pm_ops
= {
1623 .suspend
= fec_suspend
,
1624 .resume
= fec_resume
,
1625 .freeze
= fec_suspend
,
1627 .poweroff
= fec_suspend
,
1628 .restore
= fec_resume
,
1632 static struct platform_driver fec_driver
= {
1634 .name
= DRIVER_NAME
,
1635 .owner
= THIS_MODULE
,
1639 .of_match_table
= fec_dt_ids
,
1641 .id_table
= fec_devtype
,
1643 .remove
= __devexit_p(fec_drv_remove
),
1647 fec_enet_module_init(void)
1649 printk(KERN_INFO
"FEC Ethernet Driver\n");
1651 return platform_driver_register(&fec_driver
);
1655 fec_enet_cleanup(void)
1657 platform_driver_unregister(&fec_driver
);
1660 module_exit(fec_enet_cleanup
);
1661 module_init(fec_enet_module_init
);
1663 MODULE_LICENSE("GPL");