[media] dsbr100: ensure correct disconnect sequence
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / super.c
blob7e9dd4cc2c01170d0d7a38035a430e554c90cc57
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include "internal.h"
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
40 /**
41 * alloc_super - create new superblock
42 * @type: filesystem type superblock should belong to
44 * Allocates and initializes a new &struct super_block. alloc_super()
45 * returns a pointer new superblock or %NULL if allocation had failed.
47 static struct super_block *alloc_super(struct file_system_type *type)
49 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
50 static const struct super_operations default_op;
52 if (s) {
53 if (security_sb_alloc(s)) {
54 kfree(s);
55 s = NULL;
56 goto out;
58 #ifdef CONFIG_SMP
59 s->s_files = alloc_percpu(struct list_head);
60 if (!s->s_files) {
61 security_sb_free(s);
62 kfree(s);
63 s = NULL;
64 goto out;
65 } else {
66 int i;
68 for_each_possible_cpu(i)
69 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
71 #else
72 INIT_LIST_HEAD(&s->s_files);
73 #endif
74 INIT_LIST_HEAD(&s->s_instances);
75 INIT_HLIST_BL_HEAD(&s->s_anon);
76 INIT_LIST_HEAD(&s->s_inodes);
77 INIT_LIST_HEAD(&s->s_dentry_lru);
78 init_rwsem(&s->s_umount);
79 mutex_init(&s->s_lock);
80 lockdep_set_class(&s->s_umount, &type->s_umount_key);
82 * The locking rules for s_lock are up to the
83 * filesystem. For example ext3fs has different
84 * lock ordering than usbfs:
86 lockdep_set_class(&s->s_lock, &type->s_lock_key);
88 * sget() can have s_umount recursion.
90 * When it cannot find a suitable sb, it allocates a new
91 * one (this one), and tries again to find a suitable old
92 * one.
94 * In case that succeeds, it will acquire the s_umount
95 * lock of the old one. Since these are clearly distrinct
96 * locks, and this object isn't exposed yet, there's no
97 * risk of deadlocks.
99 * Annotate this by putting this lock in a different
100 * subclass.
102 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
103 s->s_count = 1;
104 atomic_set(&s->s_active, 1);
105 mutex_init(&s->s_vfs_rename_mutex);
106 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
107 mutex_init(&s->s_dquot.dqio_mutex);
108 mutex_init(&s->s_dquot.dqonoff_mutex);
109 init_rwsem(&s->s_dquot.dqptr_sem);
110 init_waitqueue_head(&s->s_wait_unfrozen);
111 s->s_maxbytes = MAX_NON_LFS;
112 s->s_op = &default_op;
113 s->s_time_gran = 1000000000;
115 out:
116 return s;
120 * destroy_super - frees a superblock
121 * @s: superblock to free
123 * Frees a superblock.
125 static inline void destroy_super(struct super_block *s)
127 #ifdef CONFIG_SMP
128 free_percpu(s->s_files);
129 #endif
130 security_sb_free(s);
131 kfree(s->s_subtype);
132 kfree(s->s_options);
133 kfree(s);
136 /* Superblock refcounting */
139 * Drop a superblock's refcount. The caller must hold sb_lock.
141 void __put_super(struct super_block *sb)
143 if (!--sb->s_count) {
144 list_del_init(&sb->s_list);
145 destroy_super(sb);
150 * put_super - drop a temporary reference to superblock
151 * @sb: superblock in question
153 * Drops a temporary reference, frees superblock if there's no
154 * references left.
156 void put_super(struct super_block *sb)
158 spin_lock(&sb_lock);
159 __put_super(sb);
160 spin_unlock(&sb_lock);
165 * deactivate_locked_super - drop an active reference to superblock
166 * @s: superblock to deactivate
168 * Drops an active reference to superblock, converting it into a temprory
169 * one if there is no other active references left. In that case we
170 * tell fs driver to shut it down and drop the temporary reference we
171 * had just acquired.
173 * Caller holds exclusive lock on superblock; that lock is released.
175 void deactivate_locked_super(struct super_block *s)
177 struct file_system_type *fs = s->s_type;
178 if (atomic_dec_and_test(&s->s_active)) {
179 fs->kill_sb(s);
181 * We need to call rcu_barrier so all the delayed rcu free
182 * inodes are flushed before we release the fs module.
184 rcu_barrier();
185 put_filesystem(fs);
186 put_super(s);
187 } else {
188 up_write(&s->s_umount);
192 EXPORT_SYMBOL(deactivate_locked_super);
195 * deactivate_super - drop an active reference to superblock
196 * @s: superblock to deactivate
198 * Variant of deactivate_locked_super(), except that superblock is *not*
199 * locked by caller. If we are going to drop the final active reference,
200 * lock will be acquired prior to that.
202 void deactivate_super(struct super_block *s)
204 if (!atomic_add_unless(&s->s_active, -1, 1)) {
205 down_write(&s->s_umount);
206 deactivate_locked_super(s);
210 EXPORT_SYMBOL(deactivate_super);
213 * grab_super - acquire an active reference
214 * @s: reference we are trying to make active
216 * Tries to acquire an active reference. grab_super() is used when we
217 * had just found a superblock in super_blocks or fs_type->fs_supers
218 * and want to turn it into a full-blown active reference. grab_super()
219 * is called with sb_lock held and drops it. Returns 1 in case of
220 * success, 0 if we had failed (superblock contents was already dead or
221 * dying when grab_super() had been called).
223 static int grab_super(struct super_block *s) __releases(sb_lock)
225 if (atomic_inc_not_zero(&s->s_active)) {
226 spin_unlock(&sb_lock);
227 return 1;
229 /* it's going away */
230 s->s_count++;
231 spin_unlock(&sb_lock);
232 /* wait for it to die */
233 down_write(&s->s_umount);
234 up_write(&s->s_umount);
235 put_super(s);
236 return 0;
240 * Superblock locking. We really ought to get rid of these two.
242 void lock_super(struct super_block * sb)
244 get_fs_excl();
245 mutex_lock(&sb->s_lock);
248 void unlock_super(struct super_block * sb)
250 put_fs_excl();
251 mutex_unlock(&sb->s_lock);
254 EXPORT_SYMBOL(lock_super);
255 EXPORT_SYMBOL(unlock_super);
258 * generic_shutdown_super - common helper for ->kill_sb()
259 * @sb: superblock to kill
261 * generic_shutdown_super() does all fs-independent work on superblock
262 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
263 * that need destruction out of superblock, call generic_shutdown_super()
264 * and release aforementioned objects. Note: dentries and inodes _are_
265 * taken care of and do not need specific handling.
267 * Upon calling this function, the filesystem may no longer alter or
268 * rearrange the set of dentries belonging to this super_block, nor may it
269 * change the attachments of dentries to inodes.
271 void generic_shutdown_super(struct super_block *sb)
273 const struct super_operations *sop = sb->s_op;
276 if (sb->s_root) {
277 shrink_dcache_for_umount(sb);
278 sync_filesystem(sb);
279 get_fs_excl();
280 sb->s_flags &= ~MS_ACTIVE;
282 fsnotify_unmount_inodes(&sb->s_inodes);
284 evict_inodes(sb);
286 if (sop->put_super)
287 sop->put_super(sb);
289 if (!list_empty(&sb->s_inodes)) {
290 printk("VFS: Busy inodes after unmount of %s. "
291 "Self-destruct in 5 seconds. Have a nice day...\n",
292 sb->s_id);
294 put_fs_excl();
296 spin_lock(&sb_lock);
297 /* should be initialized for __put_super_and_need_restart() */
298 list_del_init(&sb->s_instances);
299 spin_unlock(&sb_lock);
300 up_write(&sb->s_umount);
303 EXPORT_SYMBOL(generic_shutdown_super);
306 * sget - find or create a superblock
307 * @type: filesystem type superblock should belong to
308 * @test: comparison callback
309 * @set: setup callback
310 * @data: argument to each of them
312 struct super_block *sget(struct file_system_type *type,
313 int (*test)(struct super_block *,void *),
314 int (*set)(struct super_block *,void *),
315 void *data)
317 struct super_block *s = NULL;
318 struct super_block *old;
319 int err;
321 retry:
322 spin_lock(&sb_lock);
323 if (test) {
324 list_for_each_entry(old, &type->fs_supers, s_instances) {
325 if (!test(old, data))
326 continue;
327 if (!grab_super(old))
328 goto retry;
329 if (s) {
330 up_write(&s->s_umount);
331 destroy_super(s);
332 s = NULL;
334 down_write(&old->s_umount);
335 if (unlikely(!(old->s_flags & MS_BORN))) {
336 deactivate_locked_super(old);
337 goto retry;
339 return old;
342 if (!s) {
343 spin_unlock(&sb_lock);
344 s = alloc_super(type);
345 if (!s)
346 return ERR_PTR(-ENOMEM);
347 goto retry;
350 err = set(s, data);
351 if (err) {
352 spin_unlock(&sb_lock);
353 up_write(&s->s_umount);
354 destroy_super(s);
355 return ERR_PTR(err);
357 s->s_type = type;
358 strlcpy(s->s_id, type->name, sizeof(s->s_id));
359 list_add_tail(&s->s_list, &super_blocks);
360 list_add(&s->s_instances, &type->fs_supers);
361 spin_unlock(&sb_lock);
362 get_filesystem(type);
363 return s;
366 EXPORT_SYMBOL(sget);
368 void drop_super(struct super_block *sb)
370 up_read(&sb->s_umount);
371 put_super(sb);
374 EXPORT_SYMBOL(drop_super);
377 * sync_supers - helper for periodic superblock writeback
379 * Call the write_super method if present on all dirty superblocks in
380 * the system. This is for the periodic writeback used by most older
381 * filesystems. For data integrity superblock writeback use
382 * sync_filesystems() instead.
384 * Note: check the dirty flag before waiting, so we don't
385 * hold up the sync while mounting a device. (The newly
386 * mounted device won't need syncing.)
388 void sync_supers(void)
390 struct super_block *sb, *p = NULL;
392 spin_lock(&sb_lock);
393 list_for_each_entry(sb, &super_blocks, s_list) {
394 if (list_empty(&sb->s_instances))
395 continue;
396 if (sb->s_op->write_super && sb->s_dirt) {
397 sb->s_count++;
398 spin_unlock(&sb_lock);
400 down_read(&sb->s_umount);
401 if (sb->s_root && sb->s_dirt)
402 sb->s_op->write_super(sb);
403 up_read(&sb->s_umount);
405 spin_lock(&sb_lock);
406 if (p)
407 __put_super(p);
408 p = sb;
411 if (p)
412 __put_super(p);
413 spin_unlock(&sb_lock);
417 * iterate_supers - call function for all active superblocks
418 * @f: function to call
419 * @arg: argument to pass to it
421 * Scans the superblock list and calls given function, passing it
422 * locked superblock and given argument.
424 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
426 struct super_block *sb, *p = NULL;
428 spin_lock(&sb_lock);
429 list_for_each_entry(sb, &super_blocks, s_list) {
430 if (list_empty(&sb->s_instances))
431 continue;
432 sb->s_count++;
433 spin_unlock(&sb_lock);
435 down_read(&sb->s_umount);
436 if (sb->s_root)
437 f(sb, arg);
438 up_read(&sb->s_umount);
440 spin_lock(&sb_lock);
441 if (p)
442 __put_super(p);
443 p = sb;
445 if (p)
446 __put_super(p);
447 spin_unlock(&sb_lock);
451 * get_super - get the superblock of a device
452 * @bdev: device to get the superblock for
454 * Scans the superblock list and finds the superblock of the file system
455 * mounted on the device given. %NULL is returned if no match is found.
458 struct super_block *get_super(struct block_device *bdev)
460 struct super_block *sb;
462 if (!bdev)
463 return NULL;
465 spin_lock(&sb_lock);
466 rescan:
467 list_for_each_entry(sb, &super_blocks, s_list) {
468 if (list_empty(&sb->s_instances))
469 continue;
470 if (sb->s_bdev == bdev) {
471 sb->s_count++;
472 spin_unlock(&sb_lock);
473 down_read(&sb->s_umount);
474 /* still alive? */
475 if (sb->s_root)
476 return sb;
477 up_read(&sb->s_umount);
478 /* nope, got unmounted */
479 spin_lock(&sb_lock);
480 __put_super(sb);
481 goto rescan;
484 spin_unlock(&sb_lock);
485 return NULL;
488 EXPORT_SYMBOL(get_super);
491 * get_active_super - get an active reference to the superblock of a device
492 * @bdev: device to get the superblock for
494 * Scans the superblock list and finds the superblock of the file system
495 * mounted on the device given. Returns the superblock with an active
496 * reference or %NULL if none was found.
498 struct super_block *get_active_super(struct block_device *bdev)
500 struct super_block *sb;
502 if (!bdev)
503 return NULL;
505 restart:
506 spin_lock(&sb_lock);
507 list_for_each_entry(sb, &super_blocks, s_list) {
508 if (list_empty(&sb->s_instances))
509 continue;
510 if (sb->s_bdev == bdev) {
511 if (grab_super(sb)) /* drops sb_lock */
512 return sb;
513 else
514 goto restart;
517 spin_unlock(&sb_lock);
518 return NULL;
521 struct super_block *user_get_super(dev_t dev)
523 struct super_block *sb;
525 spin_lock(&sb_lock);
526 rescan:
527 list_for_each_entry(sb, &super_blocks, s_list) {
528 if (list_empty(&sb->s_instances))
529 continue;
530 if (sb->s_dev == dev) {
531 sb->s_count++;
532 spin_unlock(&sb_lock);
533 down_read(&sb->s_umount);
534 /* still alive? */
535 if (sb->s_root)
536 return sb;
537 up_read(&sb->s_umount);
538 /* nope, got unmounted */
539 spin_lock(&sb_lock);
540 __put_super(sb);
541 goto rescan;
544 spin_unlock(&sb_lock);
545 return NULL;
549 * do_remount_sb - asks filesystem to change mount options.
550 * @sb: superblock in question
551 * @flags: numeric part of options
552 * @data: the rest of options
553 * @force: whether or not to force the change
555 * Alters the mount options of a mounted file system.
557 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
559 int retval;
560 int remount_ro;
562 if (sb->s_frozen != SB_UNFROZEN)
563 return -EBUSY;
565 #ifdef CONFIG_BLOCK
566 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
567 return -EACCES;
568 #endif
570 if (flags & MS_RDONLY)
571 acct_auto_close(sb);
572 shrink_dcache_sb(sb);
573 sync_filesystem(sb);
575 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
577 /* If we are remounting RDONLY and current sb is read/write,
578 make sure there are no rw files opened */
579 if (remount_ro) {
580 if (force)
581 mark_files_ro(sb);
582 else if (!fs_may_remount_ro(sb))
583 return -EBUSY;
586 if (sb->s_op->remount_fs) {
587 retval = sb->s_op->remount_fs(sb, &flags, data);
588 if (retval)
589 return retval;
591 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
594 * Some filesystems modify their metadata via some other path than the
595 * bdev buffer cache (eg. use a private mapping, or directories in
596 * pagecache, etc). Also file data modifications go via their own
597 * mappings. So If we try to mount readonly then copy the filesystem
598 * from bdev, we could get stale data, so invalidate it to give a best
599 * effort at coherency.
601 if (remount_ro && sb->s_bdev)
602 invalidate_bdev(sb->s_bdev);
603 return 0;
606 static void do_emergency_remount(struct work_struct *work)
608 struct super_block *sb, *p = NULL;
610 spin_lock(&sb_lock);
611 list_for_each_entry(sb, &super_blocks, s_list) {
612 if (list_empty(&sb->s_instances))
613 continue;
614 sb->s_count++;
615 spin_unlock(&sb_lock);
616 down_write(&sb->s_umount);
617 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
619 * What lock protects sb->s_flags??
621 do_remount_sb(sb, MS_RDONLY, NULL, 1);
623 up_write(&sb->s_umount);
624 spin_lock(&sb_lock);
625 if (p)
626 __put_super(p);
627 p = sb;
629 if (p)
630 __put_super(p);
631 spin_unlock(&sb_lock);
632 kfree(work);
633 printk("Emergency Remount complete\n");
636 void emergency_remount(void)
638 struct work_struct *work;
640 work = kmalloc(sizeof(*work), GFP_ATOMIC);
641 if (work) {
642 INIT_WORK(work, do_emergency_remount);
643 schedule_work(work);
648 * Unnamed block devices are dummy devices used by virtual
649 * filesystems which don't use real block-devices. -- jrs
652 static DEFINE_IDA(unnamed_dev_ida);
653 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
654 static int unnamed_dev_start = 0; /* don't bother trying below it */
656 int set_anon_super(struct super_block *s, void *data)
658 int dev;
659 int error;
661 retry:
662 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
663 return -ENOMEM;
664 spin_lock(&unnamed_dev_lock);
665 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
666 if (!error)
667 unnamed_dev_start = dev + 1;
668 spin_unlock(&unnamed_dev_lock);
669 if (error == -EAGAIN)
670 /* We raced and lost with another CPU. */
671 goto retry;
672 else if (error)
673 return -EAGAIN;
675 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
676 spin_lock(&unnamed_dev_lock);
677 ida_remove(&unnamed_dev_ida, dev);
678 if (unnamed_dev_start > dev)
679 unnamed_dev_start = dev;
680 spin_unlock(&unnamed_dev_lock);
681 return -EMFILE;
683 s->s_dev = MKDEV(0, dev & MINORMASK);
684 s->s_bdi = &noop_backing_dev_info;
685 return 0;
688 EXPORT_SYMBOL(set_anon_super);
690 void kill_anon_super(struct super_block *sb)
692 int slot = MINOR(sb->s_dev);
694 generic_shutdown_super(sb);
695 spin_lock(&unnamed_dev_lock);
696 ida_remove(&unnamed_dev_ida, slot);
697 if (slot < unnamed_dev_start)
698 unnamed_dev_start = slot;
699 spin_unlock(&unnamed_dev_lock);
702 EXPORT_SYMBOL(kill_anon_super);
704 void kill_litter_super(struct super_block *sb)
706 if (sb->s_root)
707 d_genocide(sb->s_root);
708 kill_anon_super(sb);
711 EXPORT_SYMBOL(kill_litter_super);
713 static int ns_test_super(struct super_block *sb, void *data)
715 return sb->s_fs_info == data;
718 static int ns_set_super(struct super_block *sb, void *data)
720 sb->s_fs_info = data;
721 return set_anon_super(sb, NULL);
724 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
725 void *data, int (*fill_super)(struct super_block *, void *, int))
727 struct super_block *sb;
729 sb = sget(fs_type, ns_test_super, ns_set_super, data);
730 if (IS_ERR(sb))
731 return ERR_CAST(sb);
733 if (!sb->s_root) {
734 int err;
735 sb->s_flags = flags;
736 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
737 if (err) {
738 deactivate_locked_super(sb);
739 return ERR_PTR(err);
742 sb->s_flags |= MS_ACTIVE;
745 return dget(sb->s_root);
748 EXPORT_SYMBOL(mount_ns);
750 #ifdef CONFIG_BLOCK
751 static int set_bdev_super(struct super_block *s, void *data)
753 s->s_bdev = data;
754 s->s_dev = s->s_bdev->bd_dev;
757 * We set the bdi here to the queue backing, file systems can
758 * overwrite this in ->fill_super()
760 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
761 return 0;
764 static int test_bdev_super(struct super_block *s, void *data)
766 return (void *)s->s_bdev == data;
769 struct dentry *mount_bdev(struct file_system_type *fs_type,
770 int flags, const char *dev_name, void *data,
771 int (*fill_super)(struct super_block *, void *, int))
773 struct block_device *bdev;
774 struct super_block *s;
775 fmode_t mode = FMODE_READ | FMODE_EXCL;
776 int error = 0;
778 if (!(flags & MS_RDONLY))
779 mode |= FMODE_WRITE;
781 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
782 if (IS_ERR(bdev))
783 return ERR_CAST(bdev);
786 * once the super is inserted into the list by sget, s_umount
787 * will protect the lockfs code from trying to start a snapshot
788 * while we are mounting
790 mutex_lock(&bdev->bd_fsfreeze_mutex);
791 if (bdev->bd_fsfreeze_count > 0) {
792 mutex_unlock(&bdev->bd_fsfreeze_mutex);
793 error = -EBUSY;
794 goto error_bdev;
796 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
797 mutex_unlock(&bdev->bd_fsfreeze_mutex);
798 if (IS_ERR(s))
799 goto error_s;
801 if (s->s_root) {
802 if ((flags ^ s->s_flags) & MS_RDONLY) {
803 deactivate_locked_super(s);
804 error = -EBUSY;
805 goto error_bdev;
809 * s_umount nests inside bd_mutex during
810 * __invalidate_device(). blkdev_put() acquires
811 * bd_mutex and can't be called under s_umount. Drop
812 * s_umount temporarily. This is safe as we're
813 * holding an active reference.
815 up_write(&s->s_umount);
816 blkdev_put(bdev, mode);
817 down_write(&s->s_umount);
818 } else {
819 char b[BDEVNAME_SIZE];
821 s->s_flags = flags;
822 s->s_mode = mode;
823 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
824 sb_set_blocksize(s, block_size(bdev));
825 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
826 if (error) {
827 deactivate_locked_super(s);
828 goto error;
831 s->s_flags |= MS_ACTIVE;
832 bdev->bd_super = s;
835 return dget(s->s_root);
837 error_s:
838 error = PTR_ERR(s);
839 error_bdev:
840 blkdev_put(bdev, mode);
841 error:
842 return ERR_PTR(error);
844 EXPORT_SYMBOL(mount_bdev);
846 int get_sb_bdev(struct file_system_type *fs_type,
847 int flags, const char *dev_name, void *data,
848 int (*fill_super)(struct super_block *, void *, int),
849 struct vfsmount *mnt)
851 struct dentry *root;
853 root = mount_bdev(fs_type, flags, dev_name, data, fill_super);
854 if (IS_ERR(root))
855 return PTR_ERR(root);
856 mnt->mnt_root = root;
857 mnt->mnt_sb = root->d_sb;
858 return 0;
861 EXPORT_SYMBOL(get_sb_bdev);
863 void kill_block_super(struct super_block *sb)
865 struct block_device *bdev = sb->s_bdev;
866 fmode_t mode = sb->s_mode;
868 bdev->bd_super = NULL;
869 generic_shutdown_super(sb);
870 sync_blockdev(bdev);
871 WARN_ON_ONCE(!(mode & FMODE_EXCL));
872 blkdev_put(bdev, mode | FMODE_EXCL);
875 EXPORT_SYMBOL(kill_block_super);
876 #endif
878 struct dentry *mount_nodev(struct file_system_type *fs_type,
879 int flags, void *data,
880 int (*fill_super)(struct super_block *, void *, int))
882 int error;
883 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
885 if (IS_ERR(s))
886 return ERR_CAST(s);
888 s->s_flags = flags;
890 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
891 if (error) {
892 deactivate_locked_super(s);
893 return ERR_PTR(error);
895 s->s_flags |= MS_ACTIVE;
896 return dget(s->s_root);
898 EXPORT_SYMBOL(mount_nodev);
900 int get_sb_nodev(struct file_system_type *fs_type,
901 int flags, void *data,
902 int (*fill_super)(struct super_block *, void *, int),
903 struct vfsmount *mnt)
905 struct dentry *root;
907 root = mount_nodev(fs_type, flags, data, fill_super);
908 if (IS_ERR(root))
909 return PTR_ERR(root);
910 mnt->mnt_root = root;
911 mnt->mnt_sb = root->d_sb;
912 return 0;
914 EXPORT_SYMBOL(get_sb_nodev);
916 static int compare_single(struct super_block *s, void *p)
918 return 1;
921 struct dentry *mount_single(struct file_system_type *fs_type,
922 int flags, void *data,
923 int (*fill_super)(struct super_block *, void *, int))
925 struct super_block *s;
926 int error;
928 s = sget(fs_type, compare_single, set_anon_super, NULL);
929 if (IS_ERR(s))
930 return ERR_CAST(s);
931 if (!s->s_root) {
932 s->s_flags = flags;
933 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
934 if (error) {
935 deactivate_locked_super(s);
936 return ERR_PTR(error);
938 s->s_flags |= MS_ACTIVE;
939 } else {
940 do_remount_sb(s, flags, data, 0);
942 return dget(s->s_root);
944 EXPORT_SYMBOL(mount_single);
946 int get_sb_single(struct file_system_type *fs_type,
947 int flags, void *data,
948 int (*fill_super)(struct super_block *, void *, int),
949 struct vfsmount *mnt)
951 struct dentry *root;
952 root = mount_single(fs_type, flags, data, fill_super);
953 if (IS_ERR(root))
954 return PTR_ERR(root);
955 mnt->mnt_root = root;
956 mnt->mnt_sb = root->d_sb;
957 return 0;
960 EXPORT_SYMBOL(get_sb_single);
962 struct vfsmount *
963 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
965 struct vfsmount *mnt;
966 struct dentry *root;
967 char *secdata = NULL;
968 int error;
970 if (!type)
971 return ERR_PTR(-ENODEV);
973 error = -ENOMEM;
974 mnt = alloc_vfsmnt(name);
975 if (!mnt)
976 goto out;
978 if (flags & MS_KERNMOUNT)
979 mnt->mnt_flags = MNT_INTERNAL;
981 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
982 secdata = alloc_secdata();
983 if (!secdata)
984 goto out_mnt;
986 error = security_sb_copy_data(data, secdata);
987 if (error)
988 goto out_free_secdata;
991 if (type->mount) {
992 root = type->mount(type, flags, name, data);
993 if (IS_ERR(root)) {
994 error = PTR_ERR(root);
995 goto out_free_secdata;
997 mnt->mnt_root = root;
998 mnt->mnt_sb = root->d_sb;
999 } else {
1000 error = type->get_sb(type, flags, name, data, mnt);
1001 if (error < 0)
1002 goto out_free_secdata;
1004 BUG_ON(!mnt->mnt_sb);
1005 WARN_ON(!mnt->mnt_sb->s_bdi);
1006 mnt->mnt_sb->s_flags |= MS_BORN;
1008 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
1009 if (error)
1010 goto out_sb;
1013 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1014 * but s_maxbytes was an unsigned long long for many releases. Throw
1015 * this warning for a little while to try and catch filesystems that
1016 * violate this rule. This warning should be either removed or
1017 * converted to a BUG() in 2.6.34.
1019 WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1020 "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
1022 mnt->mnt_mountpoint = mnt->mnt_root;
1023 mnt->mnt_parent = mnt;
1024 up_write(&mnt->mnt_sb->s_umount);
1025 free_secdata(secdata);
1026 return mnt;
1027 out_sb:
1028 dput(mnt->mnt_root);
1029 deactivate_locked_super(mnt->mnt_sb);
1030 out_free_secdata:
1031 free_secdata(secdata);
1032 out_mnt:
1033 free_vfsmnt(mnt);
1034 out:
1035 return ERR_PTR(error);
1038 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1041 * freeze_super - lock the filesystem and force it into a consistent state
1042 * @sb: the super to lock
1044 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1045 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1046 * -EBUSY.
1048 int freeze_super(struct super_block *sb)
1050 int ret;
1052 atomic_inc(&sb->s_active);
1053 down_write(&sb->s_umount);
1054 if (sb->s_frozen) {
1055 deactivate_locked_super(sb);
1056 return -EBUSY;
1059 if (sb->s_flags & MS_RDONLY) {
1060 sb->s_frozen = SB_FREEZE_TRANS;
1061 smp_wmb();
1062 up_write(&sb->s_umount);
1063 return 0;
1066 sb->s_frozen = SB_FREEZE_WRITE;
1067 smp_wmb();
1069 sync_filesystem(sb);
1071 sb->s_frozen = SB_FREEZE_TRANS;
1072 smp_wmb();
1074 sync_blockdev(sb->s_bdev);
1075 if (sb->s_op->freeze_fs) {
1076 ret = sb->s_op->freeze_fs(sb);
1077 if (ret) {
1078 printk(KERN_ERR
1079 "VFS:Filesystem freeze failed\n");
1080 sb->s_frozen = SB_UNFROZEN;
1081 deactivate_locked_super(sb);
1082 return ret;
1085 up_write(&sb->s_umount);
1086 return 0;
1088 EXPORT_SYMBOL(freeze_super);
1091 * thaw_super -- unlock filesystem
1092 * @sb: the super to thaw
1094 * Unlocks the filesystem and marks it writeable again after freeze_super().
1096 int thaw_super(struct super_block *sb)
1098 int error;
1100 down_write(&sb->s_umount);
1101 if (sb->s_frozen == SB_UNFROZEN) {
1102 up_write(&sb->s_umount);
1103 return -EINVAL;
1106 if (sb->s_flags & MS_RDONLY)
1107 goto out;
1109 if (sb->s_op->unfreeze_fs) {
1110 error = sb->s_op->unfreeze_fs(sb);
1111 if (error) {
1112 printk(KERN_ERR
1113 "VFS:Filesystem thaw failed\n");
1114 sb->s_frozen = SB_FREEZE_TRANS;
1115 up_write(&sb->s_umount);
1116 return error;
1120 out:
1121 sb->s_frozen = SB_UNFROZEN;
1122 smp_wmb();
1123 wake_up(&sb->s_wait_unfrozen);
1124 deactivate_locked_super(sb);
1126 return 0;
1128 EXPORT_SYMBOL(thaw_super);
1130 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1132 int err;
1133 const char *subtype = strchr(fstype, '.');
1134 if (subtype) {
1135 subtype++;
1136 err = -EINVAL;
1137 if (!subtype[0])
1138 goto err;
1139 } else
1140 subtype = "";
1142 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1143 err = -ENOMEM;
1144 if (!mnt->mnt_sb->s_subtype)
1145 goto err;
1146 return mnt;
1148 err:
1149 mntput(mnt);
1150 return ERR_PTR(err);
1153 struct vfsmount *
1154 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1156 struct file_system_type *type = get_fs_type(fstype);
1157 struct vfsmount *mnt;
1158 if (!type)
1159 return ERR_PTR(-ENODEV);
1160 mnt = vfs_kern_mount(type, flags, name, data);
1161 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1162 !mnt->mnt_sb->s_subtype)
1163 mnt = fs_set_subtype(mnt, fstype);
1164 put_filesystem(type);
1165 return mnt;
1167 EXPORT_SYMBOL_GPL(do_kern_mount);
1169 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1171 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1174 EXPORT_SYMBOL_GPL(kern_mount_data);