[media] dsbr100: ensure correct disconnect sequence
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / inode.c
blob0647d80accf6fb51274fe3e8489075e582ba5c16
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
30 * This is needed for the following functions:
31 * - inode_has_buffers
32 * - invalidate_bdev
34 * FIXME: remove all knowledge of the buffer layer from this file
36 #include <linux/buffer_head.h>
39 * New inode.c implementation.
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
45 * Famous last words.
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
57 #define I_HASHBITS i_hash_shift
58 #define I_HASHMASK i_hash_mask
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
75 static LIST_HEAD(inode_lru);
76 static struct hlist_head *inode_hashtable __read_mostly;
79 * A simple spinlock to protect the list manipulations.
81 * NOTE! You also have to own the lock if you change
82 * the i_state of an inode while it is in use..
84 DEFINE_SPINLOCK(inode_lock);
87 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
88 * icache shrinking path, and the umount path. Without this exclusion,
89 * by the time prune_icache calls iput for the inode whose pages it has
90 * been invalidating, or by the time it calls clear_inode & destroy_inode
91 * from its final dispose_list, the struct super_block they refer to
92 * (for inode->i_sb->s_op) may already have been freed and reused.
94 * We make this an rwsem because the fastpath is icache shrinking. In
95 * some cases a filesystem may be doing a significant amount of work in
96 * its inode reclaim code, so this should improve parallelism.
98 static DECLARE_RWSEM(iprune_sem);
101 * Statistics gathering..
103 struct inodes_stat_t inodes_stat;
105 static DEFINE_PER_CPU(unsigned int, nr_inodes);
107 static struct kmem_cache *inode_cachep __read_mostly;
109 static int get_nr_inodes(void)
111 int i;
112 int sum = 0;
113 for_each_possible_cpu(i)
114 sum += per_cpu(nr_inodes, i);
115 return sum < 0 ? 0 : sum;
118 static inline int get_nr_inodes_unused(void)
120 return inodes_stat.nr_unused;
123 int get_nr_dirty_inodes(void)
125 /* not actually dirty inodes, but a wild approximation */
126 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
127 return nr_dirty > 0 ? nr_dirty : 0;
131 * Handle nr_inode sysctl
133 #ifdef CONFIG_SYSCTL
134 int proc_nr_inodes(ctl_table *table, int write,
135 void __user *buffer, size_t *lenp, loff_t *ppos)
137 inodes_stat.nr_inodes = get_nr_inodes();
138 return proc_dointvec(table, write, buffer, lenp, ppos);
140 #endif
142 static void wake_up_inode(struct inode *inode)
145 * Prevent speculative execution through spin_unlock(&inode_lock);
147 smp_mb();
148 wake_up_bit(&inode->i_state, __I_NEW);
152 * inode_init_always - perform inode structure intialisation
153 * @sb: superblock inode belongs to
154 * @inode: inode to initialise
156 * These are initializations that need to be done on every inode
157 * allocation as the fields are not initialised by slab allocation.
159 int inode_init_always(struct super_block *sb, struct inode *inode)
161 static const struct address_space_operations empty_aops;
162 static const struct inode_operations empty_iops;
163 static const struct file_operations empty_fops;
164 struct address_space *const mapping = &inode->i_data;
166 inode->i_sb = sb;
167 inode->i_blkbits = sb->s_blocksize_bits;
168 inode->i_flags = 0;
169 atomic_set(&inode->i_count, 1);
170 inode->i_op = &empty_iops;
171 inode->i_fop = &empty_fops;
172 inode->i_nlink = 1;
173 inode->i_uid = 0;
174 inode->i_gid = 0;
175 atomic_set(&inode->i_writecount, 0);
176 inode->i_size = 0;
177 inode->i_blocks = 0;
178 inode->i_bytes = 0;
179 inode->i_generation = 0;
180 #ifdef CONFIG_QUOTA
181 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
182 #endif
183 inode->i_pipe = NULL;
184 inode->i_bdev = NULL;
185 inode->i_cdev = NULL;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
189 if (security_inode_alloc(inode))
190 goto out;
191 spin_lock_init(&inode->i_lock);
192 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
194 mutex_init(&inode->i_mutex);
195 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
197 init_rwsem(&inode->i_alloc_sem);
198 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
200 mapping->a_ops = &empty_aops;
201 mapping->host = inode;
202 mapping->flags = 0;
203 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
204 mapping->assoc_mapping = NULL;
205 mapping->backing_dev_info = &default_backing_dev_info;
206 mapping->writeback_index = 0;
209 * If the block_device provides a backing_dev_info for client
210 * inodes then use that. Otherwise the inode share the bdev's
211 * backing_dev_info.
213 if (sb->s_bdev) {
214 struct backing_dev_info *bdi;
216 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
217 mapping->backing_dev_info = bdi;
219 inode->i_private = NULL;
220 inode->i_mapping = mapping;
221 #ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223 #endif
225 #ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227 #endif
229 this_cpu_inc(nr_inodes);
231 return 0;
232 out:
233 return -ENOMEM;
235 EXPORT_SYMBOL(inode_init_always);
237 static struct inode *alloc_inode(struct super_block *sb)
239 struct inode *inode;
241 if (sb->s_op->alloc_inode)
242 inode = sb->s_op->alloc_inode(sb);
243 else
244 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
246 if (!inode)
247 return NULL;
249 if (unlikely(inode_init_always(sb, inode))) {
250 if (inode->i_sb->s_op->destroy_inode)
251 inode->i_sb->s_op->destroy_inode(inode);
252 else
253 kmem_cache_free(inode_cachep, inode);
254 return NULL;
257 return inode;
260 void free_inode_nonrcu(struct inode *inode)
262 kmem_cache_free(inode_cachep, inode);
264 EXPORT_SYMBOL(free_inode_nonrcu);
266 void __destroy_inode(struct inode *inode)
268 BUG_ON(inode_has_buffers(inode));
269 security_inode_free(inode);
270 fsnotify_inode_delete(inode);
271 #ifdef CONFIG_FS_POSIX_ACL
272 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
273 posix_acl_release(inode->i_acl);
274 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
275 posix_acl_release(inode->i_default_acl);
276 #endif
277 this_cpu_dec(nr_inodes);
279 EXPORT_SYMBOL(__destroy_inode);
281 static void i_callback(struct rcu_head *head)
283 struct inode *inode = container_of(head, struct inode, i_rcu);
284 INIT_LIST_HEAD(&inode->i_dentry);
285 kmem_cache_free(inode_cachep, inode);
288 static void destroy_inode(struct inode *inode)
290 BUG_ON(!list_empty(&inode->i_lru));
291 __destroy_inode(inode);
292 if (inode->i_sb->s_op->destroy_inode)
293 inode->i_sb->s_op->destroy_inode(inode);
294 else
295 call_rcu(&inode->i_rcu, i_callback);
298 void address_space_init_once(struct address_space *mapping)
300 memset(mapping, 0, sizeof(*mapping));
301 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
302 spin_lock_init(&mapping->tree_lock);
303 spin_lock_init(&mapping->i_mmap_lock);
304 INIT_LIST_HEAD(&mapping->private_list);
305 spin_lock_init(&mapping->private_lock);
306 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
307 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
308 mutex_init(&mapping->unmap_mutex);
310 EXPORT_SYMBOL(address_space_init_once);
313 * These are initializations that only need to be done
314 * once, because the fields are idempotent across use
315 * of the inode, so let the slab aware of that.
317 void inode_init_once(struct inode *inode)
319 memset(inode, 0, sizeof(*inode));
320 INIT_HLIST_NODE(&inode->i_hash);
321 INIT_LIST_HEAD(&inode->i_dentry);
322 INIT_LIST_HEAD(&inode->i_devices);
323 INIT_LIST_HEAD(&inode->i_wb_list);
324 INIT_LIST_HEAD(&inode->i_lru);
325 address_space_init_once(&inode->i_data);
326 i_size_ordered_init(inode);
327 #ifdef CONFIG_FSNOTIFY
328 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
329 #endif
331 EXPORT_SYMBOL(inode_init_once);
333 static void init_once(void *foo)
335 struct inode *inode = (struct inode *) foo;
337 inode_init_once(inode);
341 * inode_lock must be held
343 void __iget(struct inode *inode)
345 atomic_inc(&inode->i_count);
349 * get additional reference to inode; caller must already hold one.
351 void ihold(struct inode *inode)
353 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
355 EXPORT_SYMBOL(ihold);
357 static void inode_lru_list_add(struct inode *inode)
359 if (list_empty(&inode->i_lru)) {
360 list_add(&inode->i_lru, &inode_lru);
361 inodes_stat.nr_unused++;
365 static void inode_lru_list_del(struct inode *inode)
367 if (!list_empty(&inode->i_lru)) {
368 list_del_init(&inode->i_lru);
369 inodes_stat.nr_unused--;
373 static inline void __inode_sb_list_add(struct inode *inode)
375 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
379 * inode_sb_list_add - add inode to the superblock list of inodes
380 * @inode: inode to add
382 void inode_sb_list_add(struct inode *inode)
384 spin_lock(&inode_lock);
385 __inode_sb_list_add(inode);
386 spin_unlock(&inode_lock);
388 EXPORT_SYMBOL_GPL(inode_sb_list_add);
390 static inline void __inode_sb_list_del(struct inode *inode)
392 list_del_init(&inode->i_sb_list);
395 static unsigned long hash(struct super_block *sb, unsigned long hashval)
397 unsigned long tmp;
399 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
400 L1_CACHE_BYTES;
401 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
402 return tmp & I_HASHMASK;
406 * __insert_inode_hash - hash an inode
407 * @inode: unhashed inode
408 * @hashval: unsigned long value used to locate this object in the
409 * inode_hashtable.
411 * Add an inode to the inode hash for this superblock.
413 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
415 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
417 spin_lock(&inode_lock);
418 hlist_add_head(&inode->i_hash, b);
419 spin_unlock(&inode_lock);
421 EXPORT_SYMBOL(__insert_inode_hash);
424 * __remove_inode_hash - remove an inode from the hash
425 * @inode: inode to unhash
427 * Remove an inode from the superblock.
429 static void __remove_inode_hash(struct inode *inode)
431 hlist_del_init(&inode->i_hash);
435 * remove_inode_hash - remove an inode from the hash
436 * @inode: inode to unhash
438 * Remove an inode from the superblock.
440 void remove_inode_hash(struct inode *inode)
442 spin_lock(&inode_lock);
443 hlist_del_init(&inode->i_hash);
444 spin_unlock(&inode_lock);
446 EXPORT_SYMBOL(remove_inode_hash);
448 void end_writeback(struct inode *inode)
450 might_sleep();
451 BUG_ON(inode->i_data.nrpages);
452 BUG_ON(!list_empty(&inode->i_data.private_list));
453 BUG_ON(!(inode->i_state & I_FREEING));
454 BUG_ON(inode->i_state & I_CLEAR);
455 inode_sync_wait(inode);
456 /* don't need i_lock here, no concurrent mods to i_state */
457 inode->i_state = I_FREEING | I_CLEAR;
459 EXPORT_SYMBOL(end_writeback);
461 static void evict(struct inode *inode)
463 const struct super_operations *op = inode->i_sb->s_op;
465 if (op->evict_inode) {
466 op->evict_inode(inode);
467 } else {
468 if (inode->i_data.nrpages)
469 truncate_inode_pages(&inode->i_data, 0);
470 end_writeback(inode);
472 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
473 bd_forget(inode);
474 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
475 cd_forget(inode);
479 * dispose_list - dispose of the contents of a local list
480 * @head: the head of the list to free
482 * Dispose-list gets a local list with local inodes in it, so it doesn't
483 * need to worry about list corruption and SMP locks.
485 static void dispose_list(struct list_head *head)
487 while (!list_empty(head)) {
488 struct inode *inode;
490 inode = list_first_entry(head, struct inode, i_lru);
491 list_del_init(&inode->i_lru);
493 evict(inode);
495 spin_lock(&inode_lock);
496 __remove_inode_hash(inode);
497 __inode_sb_list_del(inode);
498 spin_unlock(&inode_lock);
500 wake_up_inode(inode);
501 destroy_inode(inode);
506 * evict_inodes - evict all evictable inodes for a superblock
507 * @sb: superblock to operate on
509 * Make sure that no inodes with zero refcount are retained. This is
510 * called by superblock shutdown after having MS_ACTIVE flag removed,
511 * so any inode reaching zero refcount during or after that call will
512 * be immediately evicted.
514 void evict_inodes(struct super_block *sb)
516 struct inode *inode, *next;
517 LIST_HEAD(dispose);
519 down_write(&iprune_sem);
521 spin_lock(&inode_lock);
522 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
523 if (atomic_read(&inode->i_count))
524 continue;
526 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
527 WARN_ON(1);
528 continue;
531 inode->i_state |= I_FREEING;
534 * Move the inode off the IO lists and LRU once I_FREEING is
535 * set so that it won't get moved back on there if it is dirty.
537 list_move(&inode->i_lru, &dispose);
538 list_del_init(&inode->i_wb_list);
539 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
540 inodes_stat.nr_unused--;
542 spin_unlock(&inode_lock);
544 dispose_list(&dispose);
545 up_write(&iprune_sem);
549 * invalidate_inodes - attempt to free all inodes on a superblock
550 * @sb: superblock to operate on
551 * @kill_dirty: flag to guide handling of dirty inodes
553 * Attempts to free all inodes for a given superblock. If there were any
554 * busy inodes return a non-zero value, else zero.
555 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
556 * them as busy.
558 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
560 int busy = 0;
561 struct inode *inode, *next;
562 LIST_HEAD(dispose);
564 down_write(&iprune_sem);
566 spin_lock(&inode_lock);
567 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
568 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
569 continue;
570 if (inode->i_state & I_DIRTY && !kill_dirty) {
571 busy = 1;
572 continue;
574 if (atomic_read(&inode->i_count)) {
575 busy = 1;
576 continue;
579 inode->i_state |= I_FREEING;
582 * Move the inode off the IO lists and LRU once I_FREEING is
583 * set so that it won't get moved back on there if it is dirty.
585 list_move(&inode->i_lru, &dispose);
586 list_del_init(&inode->i_wb_list);
587 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
588 inodes_stat.nr_unused--;
590 spin_unlock(&inode_lock);
592 dispose_list(&dispose);
593 up_write(&iprune_sem);
595 return busy;
598 static int can_unuse(struct inode *inode)
600 if (inode->i_state & ~I_REFERENCED)
601 return 0;
602 if (inode_has_buffers(inode))
603 return 0;
604 if (atomic_read(&inode->i_count))
605 return 0;
606 if (inode->i_data.nrpages)
607 return 0;
608 return 1;
612 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
613 * temporary list and then are freed outside inode_lock by dispose_list().
615 * Any inodes which are pinned purely because of attached pagecache have their
616 * pagecache removed. If the inode has metadata buffers attached to
617 * mapping->private_list then try to remove them.
619 * If the inode has the I_REFERENCED flag set, then it means that it has been
620 * used recently - the flag is set in iput_final(). When we encounter such an
621 * inode, clear the flag and move it to the back of the LRU so it gets another
622 * pass through the LRU before it gets reclaimed. This is necessary because of
623 * the fact we are doing lazy LRU updates to minimise lock contention so the
624 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
625 * with this flag set because they are the inodes that are out of order.
627 static void prune_icache(int nr_to_scan)
629 LIST_HEAD(freeable);
630 int nr_scanned;
631 unsigned long reap = 0;
633 down_read(&iprune_sem);
634 spin_lock(&inode_lock);
635 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
636 struct inode *inode;
638 if (list_empty(&inode_lru))
639 break;
641 inode = list_entry(inode_lru.prev, struct inode, i_lru);
644 * Referenced or dirty inodes are still in use. Give them
645 * another pass through the LRU as we canot reclaim them now.
647 if (atomic_read(&inode->i_count) ||
648 (inode->i_state & ~I_REFERENCED)) {
649 list_del_init(&inode->i_lru);
650 inodes_stat.nr_unused--;
651 continue;
654 /* recently referenced inodes get one more pass */
655 if (inode->i_state & I_REFERENCED) {
656 list_move(&inode->i_lru, &inode_lru);
657 inode->i_state &= ~I_REFERENCED;
658 continue;
660 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
661 __iget(inode);
662 spin_unlock(&inode_lock);
663 if (remove_inode_buffers(inode))
664 reap += invalidate_mapping_pages(&inode->i_data,
665 0, -1);
666 iput(inode);
667 spin_lock(&inode_lock);
669 if (inode != list_entry(inode_lru.next,
670 struct inode, i_lru))
671 continue; /* wrong inode or list_empty */
672 if (!can_unuse(inode))
673 continue;
675 WARN_ON(inode->i_state & I_NEW);
676 inode->i_state |= I_FREEING;
679 * Move the inode off the IO lists and LRU once I_FREEING is
680 * set so that it won't get moved back on there if it is dirty.
682 list_move(&inode->i_lru, &freeable);
683 list_del_init(&inode->i_wb_list);
684 inodes_stat.nr_unused--;
686 if (current_is_kswapd())
687 __count_vm_events(KSWAPD_INODESTEAL, reap);
688 else
689 __count_vm_events(PGINODESTEAL, reap);
690 spin_unlock(&inode_lock);
692 dispose_list(&freeable);
693 up_read(&iprune_sem);
697 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
698 * "unused" means that no dentries are referring to the inodes: the files are
699 * not open and the dcache references to those inodes have already been
700 * reclaimed.
702 * This function is passed the number of inodes to scan, and it returns the
703 * total number of remaining possibly-reclaimable inodes.
705 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
707 if (nr) {
709 * Nasty deadlock avoidance. We may hold various FS locks,
710 * and we don't want to recurse into the FS that called us
711 * in clear_inode() and friends..
713 if (!(gfp_mask & __GFP_FS))
714 return -1;
715 prune_icache(nr);
717 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
720 static struct shrinker icache_shrinker = {
721 .shrink = shrink_icache_memory,
722 .seeks = DEFAULT_SEEKS,
725 static void __wait_on_freeing_inode(struct inode *inode);
727 * Called with the inode lock held.
729 static struct inode *find_inode(struct super_block *sb,
730 struct hlist_head *head,
731 int (*test)(struct inode *, void *),
732 void *data)
734 struct hlist_node *node;
735 struct inode *inode = NULL;
737 repeat:
738 hlist_for_each_entry(inode, node, head, i_hash) {
739 if (inode->i_sb != sb)
740 continue;
741 if (!test(inode, data))
742 continue;
743 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
744 __wait_on_freeing_inode(inode);
745 goto repeat;
747 __iget(inode);
748 return inode;
750 return NULL;
754 * find_inode_fast is the fast path version of find_inode, see the comment at
755 * iget_locked for details.
757 static struct inode *find_inode_fast(struct super_block *sb,
758 struct hlist_head *head, unsigned long ino)
760 struct hlist_node *node;
761 struct inode *inode = NULL;
763 repeat:
764 hlist_for_each_entry(inode, node, head, i_hash) {
765 if (inode->i_ino != ino)
766 continue;
767 if (inode->i_sb != sb)
768 continue;
769 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
770 __wait_on_freeing_inode(inode);
771 goto repeat;
773 __iget(inode);
774 return inode;
776 return NULL;
780 * Each cpu owns a range of LAST_INO_BATCH numbers.
781 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
782 * to renew the exhausted range.
784 * This does not significantly increase overflow rate because every CPU can
785 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
786 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
787 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
788 * overflow rate by 2x, which does not seem too significant.
790 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
791 * error if st_ino won't fit in target struct field. Use 32bit counter
792 * here to attempt to avoid that.
794 #define LAST_INO_BATCH 1024
795 static DEFINE_PER_CPU(unsigned int, last_ino);
797 unsigned int get_next_ino(void)
799 unsigned int *p = &get_cpu_var(last_ino);
800 unsigned int res = *p;
802 #ifdef CONFIG_SMP
803 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
804 static atomic_t shared_last_ino;
805 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
807 res = next - LAST_INO_BATCH;
809 #endif
811 *p = ++res;
812 put_cpu_var(last_ino);
813 return res;
815 EXPORT_SYMBOL(get_next_ino);
818 * new_inode - obtain an inode
819 * @sb: superblock
821 * Allocates a new inode for given superblock. The default gfp_mask
822 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
823 * If HIGHMEM pages are unsuitable or it is known that pages allocated
824 * for the page cache are not reclaimable or migratable,
825 * mapping_set_gfp_mask() must be called with suitable flags on the
826 * newly created inode's mapping
829 struct inode *new_inode(struct super_block *sb)
831 struct inode *inode;
833 spin_lock_prefetch(&inode_lock);
835 inode = alloc_inode(sb);
836 if (inode) {
837 spin_lock(&inode_lock);
838 __inode_sb_list_add(inode);
839 inode->i_state = 0;
840 spin_unlock(&inode_lock);
842 return inode;
844 EXPORT_SYMBOL(new_inode);
846 void unlock_new_inode(struct inode *inode)
848 #ifdef CONFIG_DEBUG_LOCK_ALLOC
849 if (S_ISDIR(inode->i_mode)) {
850 struct file_system_type *type = inode->i_sb->s_type;
852 /* Set new key only if filesystem hasn't already changed it */
853 if (!lockdep_match_class(&inode->i_mutex,
854 &type->i_mutex_key)) {
856 * ensure nobody is actually holding i_mutex
858 mutex_destroy(&inode->i_mutex);
859 mutex_init(&inode->i_mutex);
860 lockdep_set_class(&inode->i_mutex,
861 &type->i_mutex_dir_key);
864 #endif
866 * This is special! We do not need the spinlock when clearing I_NEW,
867 * because we're guaranteed that nobody else tries to do anything about
868 * the state of the inode when it is locked, as we just created it (so
869 * there can be no old holders that haven't tested I_NEW).
870 * However we must emit the memory barrier so that other CPUs reliably
871 * see the clearing of I_NEW after the other inode initialisation has
872 * completed.
874 smp_mb();
875 WARN_ON(!(inode->i_state & I_NEW));
876 inode->i_state &= ~I_NEW;
877 wake_up_inode(inode);
879 EXPORT_SYMBOL(unlock_new_inode);
882 * This is called without the inode lock held.. Be careful.
884 * We no longer cache the sb_flags in i_flags - see fs.h
885 * -- rmk@arm.uk.linux.org
887 static struct inode *get_new_inode(struct super_block *sb,
888 struct hlist_head *head,
889 int (*test)(struct inode *, void *),
890 int (*set)(struct inode *, void *),
891 void *data)
893 struct inode *inode;
895 inode = alloc_inode(sb);
896 if (inode) {
897 struct inode *old;
899 spin_lock(&inode_lock);
900 /* We released the lock, so.. */
901 old = find_inode(sb, head, test, data);
902 if (!old) {
903 if (set(inode, data))
904 goto set_failed;
906 hlist_add_head(&inode->i_hash, head);
907 __inode_sb_list_add(inode);
908 inode->i_state = I_NEW;
909 spin_unlock(&inode_lock);
911 /* Return the locked inode with I_NEW set, the
912 * caller is responsible for filling in the contents
914 return inode;
918 * Uhhuh, somebody else created the same inode under
919 * us. Use the old inode instead of the one we just
920 * allocated.
922 spin_unlock(&inode_lock);
923 destroy_inode(inode);
924 inode = old;
925 wait_on_inode(inode);
927 return inode;
929 set_failed:
930 spin_unlock(&inode_lock);
931 destroy_inode(inode);
932 return NULL;
936 * get_new_inode_fast is the fast path version of get_new_inode, see the
937 * comment at iget_locked for details.
939 static struct inode *get_new_inode_fast(struct super_block *sb,
940 struct hlist_head *head, unsigned long ino)
942 struct inode *inode;
944 inode = alloc_inode(sb);
945 if (inode) {
946 struct inode *old;
948 spin_lock(&inode_lock);
949 /* We released the lock, so.. */
950 old = find_inode_fast(sb, head, ino);
951 if (!old) {
952 inode->i_ino = ino;
953 hlist_add_head(&inode->i_hash, head);
954 __inode_sb_list_add(inode);
955 inode->i_state = I_NEW;
956 spin_unlock(&inode_lock);
958 /* Return the locked inode with I_NEW set, the
959 * caller is responsible for filling in the contents
961 return inode;
965 * Uhhuh, somebody else created the same inode under
966 * us. Use the old inode instead of the one we just
967 * allocated.
969 spin_unlock(&inode_lock);
970 destroy_inode(inode);
971 inode = old;
972 wait_on_inode(inode);
974 return inode;
978 * search the inode cache for a matching inode number.
979 * If we find one, then the inode number we are trying to
980 * allocate is not unique and so we should not use it.
982 * Returns 1 if the inode number is unique, 0 if it is not.
984 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
986 struct hlist_head *b = inode_hashtable + hash(sb, ino);
987 struct hlist_node *node;
988 struct inode *inode;
990 hlist_for_each_entry(inode, node, b, i_hash) {
991 if (inode->i_ino == ino && inode->i_sb == sb)
992 return 0;
995 return 1;
999 * iunique - get a unique inode number
1000 * @sb: superblock
1001 * @max_reserved: highest reserved inode number
1003 * Obtain an inode number that is unique on the system for a given
1004 * superblock. This is used by file systems that have no natural
1005 * permanent inode numbering system. An inode number is returned that
1006 * is higher than the reserved limit but unique.
1008 * BUGS:
1009 * With a large number of inodes live on the file system this function
1010 * currently becomes quite slow.
1012 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1015 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1016 * error if st_ino won't fit in target struct field. Use 32bit counter
1017 * here to attempt to avoid that.
1019 static DEFINE_SPINLOCK(iunique_lock);
1020 static unsigned int counter;
1021 ino_t res;
1023 spin_lock(&inode_lock);
1024 spin_lock(&iunique_lock);
1025 do {
1026 if (counter <= max_reserved)
1027 counter = max_reserved + 1;
1028 res = counter++;
1029 } while (!test_inode_iunique(sb, res));
1030 spin_unlock(&iunique_lock);
1031 spin_unlock(&inode_lock);
1033 return res;
1035 EXPORT_SYMBOL(iunique);
1037 struct inode *igrab(struct inode *inode)
1039 spin_lock(&inode_lock);
1040 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1041 __iget(inode);
1042 else
1044 * Handle the case where s_op->clear_inode is not been
1045 * called yet, and somebody is calling igrab
1046 * while the inode is getting freed.
1048 inode = NULL;
1049 spin_unlock(&inode_lock);
1050 return inode;
1052 EXPORT_SYMBOL(igrab);
1055 * ifind - internal function, you want ilookup5() or iget5().
1056 * @sb: super block of file system to search
1057 * @head: the head of the list to search
1058 * @test: callback used for comparisons between inodes
1059 * @data: opaque data pointer to pass to @test
1060 * @wait: if true wait for the inode to be unlocked, if false do not
1062 * ifind() searches for the inode specified by @data in the inode
1063 * cache. This is a generalized version of ifind_fast() for file systems where
1064 * the inode number is not sufficient for unique identification of an inode.
1066 * If the inode is in the cache, the inode is returned with an incremented
1067 * reference count.
1069 * Otherwise NULL is returned.
1071 * Note, @test is called with the inode_lock held, so can't sleep.
1073 static struct inode *ifind(struct super_block *sb,
1074 struct hlist_head *head, int (*test)(struct inode *, void *),
1075 void *data, const int wait)
1077 struct inode *inode;
1079 spin_lock(&inode_lock);
1080 inode = find_inode(sb, head, test, data);
1081 if (inode) {
1082 spin_unlock(&inode_lock);
1083 if (likely(wait))
1084 wait_on_inode(inode);
1085 return inode;
1087 spin_unlock(&inode_lock);
1088 return NULL;
1092 * ifind_fast - internal function, you want ilookup() or iget().
1093 * @sb: super block of file system to search
1094 * @head: head of the list to search
1095 * @ino: inode number to search for
1097 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1098 * file systems where the inode number is sufficient for unique identification
1099 * of an inode.
1101 * If the inode is in the cache, the inode is returned with an incremented
1102 * reference count.
1104 * Otherwise NULL is returned.
1106 static struct inode *ifind_fast(struct super_block *sb,
1107 struct hlist_head *head, unsigned long ino)
1109 struct inode *inode;
1111 spin_lock(&inode_lock);
1112 inode = find_inode_fast(sb, head, ino);
1113 if (inode) {
1114 spin_unlock(&inode_lock);
1115 wait_on_inode(inode);
1116 return inode;
1118 spin_unlock(&inode_lock);
1119 return NULL;
1123 * ilookup5_nowait - search for an inode in the inode cache
1124 * @sb: super block of file system to search
1125 * @hashval: hash value (usually inode number) to search for
1126 * @test: callback used for comparisons between inodes
1127 * @data: opaque data pointer to pass to @test
1129 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1130 * @data in the inode cache. This is a generalized version of ilookup() for
1131 * file systems where the inode number is not sufficient for unique
1132 * identification of an inode.
1134 * If the inode is in the cache, the inode is returned with an incremented
1135 * reference count. Note, the inode lock is not waited upon so you have to be
1136 * very careful what you do with the returned inode. You probably should be
1137 * using ilookup5() instead.
1139 * Otherwise NULL is returned.
1141 * Note, @test is called with the inode_lock held, so can't sleep.
1143 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1144 int (*test)(struct inode *, void *), void *data)
1146 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1148 return ifind(sb, head, test, data, 0);
1150 EXPORT_SYMBOL(ilookup5_nowait);
1153 * ilookup5 - search for an inode in the inode cache
1154 * @sb: super block of file system to search
1155 * @hashval: hash value (usually inode number) to search for
1156 * @test: callback used for comparisons between inodes
1157 * @data: opaque data pointer to pass to @test
1159 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1160 * @data in the inode cache. This is a generalized version of ilookup() for
1161 * file systems where the inode number is not sufficient for unique
1162 * identification of an inode.
1164 * If the inode is in the cache, the inode lock is waited upon and the inode is
1165 * returned with an incremented reference count.
1167 * Otherwise NULL is returned.
1169 * Note, @test is called with the inode_lock held, so can't sleep.
1171 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1172 int (*test)(struct inode *, void *), void *data)
1174 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1176 return ifind(sb, head, test, data, 1);
1178 EXPORT_SYMBOL(ilookup5);
1181 * ilookup - search for an inode in the inode cache
1182 * @sb: super block of file system to search
1183 * @ino: inode number to search for
1185 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1186 * This is for file systems where the inode number is sufficient for unique
1187 * identification of an inode.
1189 * If the inode is in the cache, the inode is returned with an incremented
1190 * reference count.
1192 * Otherwise NULL is returned.
1194 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1196 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1198 return ifind_fast(sb, head, ino);
1200 EXPORT_SYMBOL(ilookup);
1203 * iget5_locked - obtain an inode from a mounted file system
1204 * @sb: super block of file system
1205 * @hashval: hash value (usually inode number) to get
1206 * @test: callback used for comparisons between inodes
1207 * @set: callback used to initialize a new struct inode
1208 * @data: opaque data pointer to pass to @test and @set
1210 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1211 * and @data in the inode cache and if present it is returned with an increased
1212 * reference count. This is a generalized version of iget_locked() for file
1213 * systems where the inode number is not sufficient for unique identification
1214 * of an inode.
1216 * If the inode is not in cache, get_new_inode() is called to allocate a new
1217 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1218 * file system gets to fill it in before unlocking it via unlock_new_inode().
1220 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1222 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1223 int (*test)(struct inode *, void *),
1224 int (*set)(struct inode *, void *), void *data)
1226 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1227 struct inode *inode;
1229 inode = ifind(sb, head, test, data, 1);
1230 if (inode)
1231 return inode;
1233 * get_new_inode() will do the right thing, re-trying the search
1234 * in case it had to block at any point.
1236 return get_new_inode(sb, head, test, set, data);
1238 EXPORT_SYMBOL(iget5_locked);
1241 * iget_locked - obtain an inode from a mounted file system
1242 * @sb: super block of file system
1243 * @ino: inode number to get
1245 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1246 * the inode cache and if present it is returned with an increased reference
1247 * count. This is for file systems where the inode number is sufficient for
1248 * unique identification of an inode.
1250 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1251 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1252 * The file system gets to fill it in before unlocking it via
1253 * unlock_new_inode().
1255 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1257 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1258 struct inode *inode;
1260 inode = ifind_fast(sb, head, ino);
1261 if (inode)
1262 return inode;
1264 * get_new_inode_fast() will do the right thing, re-trying the search
1265 * in case it had to block at any point.
1267 return get_new_inode_fast(sb, head, ino);
1269 EXPORT_SYMBOL(iget_locked);
1271 int insert_inode_locked(struct inode *inode)
1273 struct super_block *sb = inode->i_sb;
1274 ino_t ino = inode->i_ino;
1275 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1277 inode->i_state |= I_NEW;
1278 while (1) {
1279 struct hlist_node *node;
1280 struct inode *old = NULL;
1281 spin_lock(&inode_lock);
1282 hlist_for_each_entry(old, node, head, i_hash) {
1283 if (old->i_ino != ino)
1284 continue;
1285 if (old->i_sb != sb)
1286 continue;
1287 if (old->i_state & (I_FREEING|I_WILL_FREE))
1288 continue;
1289 break;
1291 if (likely(!node)) {
1292 hlist_add_head(&inode->i_hash, head);
1293 spin_unlock(&inode_lock);
1294 return 0;
1296 __iget(old);
1297 spin_unlock(&inode_lock);
1298 wait_on_inode(old);
1299 if (unlikely(!inode_unhashed(old))) {
1300 iput(old);
1301 return -EBUSY;
1303 iput(old);
1306 EXPORT_SYMBOL(insert_inode_locked);
1308 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1309 int (*test)(struct inode *, void *), void *data)
1311 struct super_block *sb = inode->i_sb;
1312 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1314 inode->i_state |= I_NEW;
1316 while (1) {
1317 struct hlist_node *node;
1318 struct inode *old = NULL;
1320 spin_lock(&inode_lock);
1321 hlist_for_each_entry(old, node, head, i_hash) {
1322 if (old->i_sb != sb)
1323 continue;
1324 if (!test(old, data))
1325 continue;
1326 if (old->i_state & (I_FREEING|I_WILL_FREE))
1327 continue;
1328 break;
1330 if (likely(!node)) {
1331 hlist_add_head(&inode->i_hash, head);
1332 spin_unlock(&inode_lock);
1333 return 0;
1335 __iget(old);
1336 spin_unlock(&inode_lock);
1337 wait_on_inode(old);
1338 if (unlikely(!inode_unhashed(old))) {
1339 iput(old);
1340 return -EBUSY;
1342 iput(old);
1345 EXPORT_SYMBOL(insert_inode_locked4);
1348 int generic_delete_inode(struct inode *inode)
1350 return 1;
1352 EXPORT_SYMBOL(generic_delete_inode);
1355 * Normal UNIX filesystem behaviour: delete the
1356 * inode when the usage count drops to zero, and
1357 * i_nlink is zero.
1359 int generic_drop_inode(struct inode *inode)
1361 return !inode->i_nlink || inode_unhashed(inode);
1363 EXPORT_SYMBOL_GPL(generic_drop_inode);
1366 * Called when we're dropping the last reference
1367 * to an inode.
1369 * Call the FS "drop_inode()" function, defaulting to
1370 * the legacy UNIX filesystem behaviour. If it tells
1371 * us to evict inode, do so. Otherwise, retain inode
1372 * in cache if fs is alive, sync and evict if fs is
1373 * shutting down.
1375 static void iput_final(struct inode *inode)
1377 struct super_block *sb = inode->i_sb;
1378 const struct super_operations *op = inode->i_sb->s_op;
1379 int drop;
1381 if (op && op->drop_inode)
1382 drop = op->drop_inode(inode);
1383 else
1384 drop = generic_drop_inode(inode);
1386 if (!drop) {
1387 if (sb->s_flags & MS_ACTIVE) {
1388 inode->i_state |= I_REFERENCED;
1389 if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1390 inode_lru_list_add(inode);
1392 spin_unlock(&inode_lock);
1393 return;
1395 WARN_ON(inode->i_state & I_NEW);
1396 inode->i_state |= I_WILL_FREE;
1397 spin_unlock(&inode_lock);
1398 write_inode_now(inode, 1);
1399 spin_lock(&inode_lock);
1400 WARN_ON(inode->i_state & I_NEW);
1401 inode->i_state &= ~I_WILL_FREE;
1402 __remove_inode_hash(inode);
1405 WARN_ON(inode->i_state & I_NEW);
1406 inode->i_state |= I_FREEING;
1409 * Move the inode off the IO lists and LRU once I_FREEING is
1410 * set so that it won't get moved back on there if it is dirty.
1412 inode_lru_list_del(inode);
1413 list_del_init(&inode->i_wb_list);
1415 __inode_sb_list_del(inode);
1416 spin_unlock(&inode_lock);
1417 evict(inode);
1418 remove_inode_hash(inode);
1419 wake_up_inode(inode);
1420 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1421 destroy_inode(inode);
1425 * iput - put an inode
1426 * @inode: inode to put
1428 * Puts an inode, dropping its usage count. If the inode use count hits
1429 * zero, the inode is then freed and may also be destroyed.
1431 * Consequently, iput() can sleep.
1433 void iput(struct inode *inode)
1435 if (inode) {
1436 BUG_ON(inode->i_state & I_CLEAR);
1438 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1439 iput_final(inode);
1442 EXPORT_SYMBOL(iput);
1445 * bmap - find a block number in a file
1446 * @inode: inode of file
1447 * @block: block to find
1449 * Returns the block number on the device holding the inode that
1450 * is the disk block number for the block of the file requested.
1451 * That is, asked for block 4 of inode 1 the function will return the
1452 * disk block relative to the disk start that holds that block of the
1453 * file.
1455 sector_t bmap(struct inode *inode, sector_t block)
1457 sector_t res = 0;
1458 if (inode->i_mapping->a_ops->bmap)
1459 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1460 return res;
1462 EXPORT_SYMBOL(bmap);
1465 * With relative atime, only update atime if the previous atime is
1466 * earlier than either the ctime or mtime or if at least a day has
1467 * passed since the last atime update.
1469 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1470 struct timespec now)
1473 if (!(mnt->mnt_flags & MNT_RELATIME))
1474 return 1;
1476 * Is mtime younger than atime? If yes, update atime:
1478 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1479 return 1;
1481 * Is ctime younger than atime? If yes, update atime:
1483 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1484 return 1;
1487 * Is the previous atime value older than a day? If yes,
1488 * update atime:
1490 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1491 return 1;
1493 * Good, we can skip the atime update:
1495 return 0;
1499 * touch_atime - update the access time
1500 * @mnt: mount the inode is accessed on
1501 * @dentry: dentry accessed
1503 * Update the accessed time on an inode and mark it for writeback.
1504 * This function automatically handles read only file systems and media,
1505 * as well as the "noatime" flag and inode specific "noatime" markers.
1507 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1509 struct inode *inode = dentry->d_inode;
1510 struct timespec now;
1512 if (inode->i_flags & S_NOATIME)
1513 return;
1514 if (IS_NOATIME(inode))
1515 return;
1516 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1517 return;
1519 if (mnt->mnt_flags & MNT_NOATIME)
1520 return;
1521 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1522 return;
1524 now = current_fs_time(inode->i_sb);
1526 if (!relatime_need_update(mnt, inode, now))
1527 return;
1529 if (timespec_equal(&inode->i_atime, &now))
1530 return;
1532 if (mnt_want_write(mnt))
1533 return;
1535 inode->i_atime = now;
1536 mark_inode_dirty_sync(inode);
1537 mnt_drop_write(mnt);
1539 EXPORT_SYMBOL(touch_atime);
1542 * file_update_time - update mtime and ctime time
1543 * @file: file accessed
1545 * Update the mtime and ctime members of an inode and mark the inode
1546 * for writeback. Note that this function is meant exclusively for
1547 * usage in the file write path of filesystems, and filesystems may
1548 * choose to explicitly ignore update via this function with the
1549 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1550 * timestamps are handled by the server.
1553 void file_update_time(struct file *file)
1555 struct inode *inode = file->f_path.dentry->d_inode;
1556 struct timespec now;
1557 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1559 /* First try to exhaust all avenues to not sync */
1560 if (IS_NOCMTIME(inode))
1561 return;
1563 now = current_fs_time(inode->i_sb);
1564 if (!timespec_equal(&inode->i_mtime, &now))
1565 sync_it = S_MTIME;
1567 if (!timespec_equal(&inode->i_ctime, &now))
1568 sync_it |= S_CTIME;
1570 if (IS_I_VERSION(inode))
1571 sync_it |= S_VERSION;
1573 if (!sync_it)
1574 return;
1576 /* Finally allowed to write? Takes lock. */
1577 if (mnt_want_write_file(file))
1578 return;
1580 /* Only change inode inside the lock region */
1581 if (sync_it & S_VERSION)
1582 inode_inc_iversion(inode);
1583 if (sync_it & S_CTIME)
1584 inode->i_ctime = now;
1585 if (sync_it & S_MTIME)
1586 inode->i_mtime = now;
1587 mark_inode_dirty_sync(inode);
1588 mnt_drop_write(file->f_path.mnt);
1590 EXPORT_SYMBOL(file_update_time);
1592 int inode_needs_sync(struct inode *inode)
1594 if (IS_SYNC(inode))
1595 return 1;
1596 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1597 return 1;
1598 return 0;
1600 EXPORT_SYMBOL(inode_needs_sync);
1602 int inode_wait(void *word)
1604 schedule();
1605 return 0;
1607 EXPORT_SYMBOL(inode_wait);
1610 * If we try to find an inode in the inode hash while it is being
1611 * deleted, we have to wait until the filesystem completes its
1612 * deletion before reporting that it isn't found. This function waits
1613 * until the deletion _might_ have completed. Callers are responsible
1614 * to recheck inode state.
1616 * It doesn't matter if I_NEW is not set initially, a call to
1617 * wake_up_inode() after removing from the hash list will DTRT.
1619 * This is called with inode_lock held.
1621 static void __wait_on_freeing_inode(struct inode *inode)
1623 wait_queue_head_t *wq;
1624 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1625 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1626 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1627 spin_unlock(&inode_lock);
1628 schedule();
1629 finish_wait(wq, &wait.wait);
1630 spin_lock(&inode_lock);
1633 static __initdata unsigned long ihash_entries;
1634 static int __init set_ihash_entries(char *str)
1636 if (!str)
1637 return 0;
1638 ihash_entries = simple_strtoul(str, &str, 0);
1639 return 1;
1641 __setup("ihash_entries=", set_ihash_entries);
1644 * Initialize the waitqueues and inode hash table.
1646 void __init inode_init_early(void)
1648 int loop;
1650 /* If hashes are distributed across NUMA nodes, defer
1651 * hash allocation until vmalloc space is available.
1653 if (hashdist)
1654 return;
1656 inode_hashtable =
1657 alloc_large_system_hash("Inode-cache",
1658 sizeof(struct hlist_head),
1659 ihash_entries,
1661 HASH_EARLY,
1662 &i_hash_shift,
1663 &i_hash_mask,
1666 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1667 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1670 void __init inode_init(void)
1672 int loop;
1674 /* inode slab cache */
1675 inode_cachep = kmem_cache_create("inode_cache",
1676 sizeof(struct inode),
1678 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1679 SLAB_MEM_SPREAD),
1680 init_once);
1681 register_shrinker(&icache_shrinker);
1683 /* Hash may have been set up in inode_init_early */
1684 if (!hashdist)
1685 return;
1687 inode_hashtable =
1688 alloc_large_system_hash("Inode-cache",
1689 sizeof(struct hlist_head),
1690 ihash_entries,
1693 &i_hash_shift,
1694 &i_hash_mask,
1697 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1698 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1701 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1703 inode->i_mode = mode;
1704 if (S_ISCHR(mode)) {
1705 inode->i_fop = &def_chr_fops;
1706 inode->i_rdev = rdev;
1707 } else if (S_ISBLK(mode)) {
1708 inode->i_fop = &def_blk_fops;
1709 inode->i_rdev = rdev;
1710 } else if (S_ISFIFO(mode))
1711 inode->i_fop = &def_fifo_fops;
1712 else if (S_ISSOCK(mode))
1713 inode->i_fop = &bad_sock_fops;
1714 else
1715 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1716 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1717 inode->i_ino);
1719 EXPORT_SYMBOL(init_special_inode);
1722 * Init uid,gid,mode for new inode according to posix standards
1723 * @inode: New inode
1724 * @dir: Directory inode
1725 * @mode: mode of the new inode
1727 void inode_init_owner(struct inode *inode, const struct inode *dir,
1728 mode_t mode)
1730 inode->i_uid = current_fsuid();
1731 if (dir && dir->i_mode & S_ISGID) {
1732 inode->i_gid = dir->i_gid;
1733 if (S_ISDIR(mode))
1734 mode |= S_ISGID;
1735 } else
1736 inode->i_gid = current_fsgid();
1737 inode->i_mode = mode;
1739 EXPORT_SYMBOL(inode_init_owner);