Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / hpsa.c
blob12deffccb8da2f13358202c229c530726edd9227
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
93 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
94 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
95 {0,}
98 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
100 /* board_id = Subsystem Device ID & Vendor ID
101 * product = Marketing Name for the board
102 * access = Address of the struct of function pointers
104 static struct board_type products[] = {
105 {0x3241103C, "Smart Array P212", &SA5_access},
106 {0x3243103C, "Smart Array P410", &SA5_access},
107 {0x3245103C, "Smart Array P410i", &SA5_access},
108 {0x3247103C, "Smart Array P411", &SA5_access},
109 {0x3249103C, "Smart Array P812", &SA5_access},
110 {0x324a103C, "Smart Array P712m", &SA5_access},
111 {0x324b103C, "Smart Array P711m", &SA5_access},
112 {0x3250103C, "Smart Array", &SA5_access},
113 {0x3250113C, "Smart Array", &SA5_access},
114 {0x3250123C, "Smart Array", &SA5_access},
115 {0x3250133C, "Smart Array", &SA5_access},
116 {0x3250143C, "Smart Array", &SA5_access},
117 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
120 static int number_of_controllers;
122 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
123 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
124 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
125 static void start_io(struct ctlr_info *h);
127 #ifdef CONFIG_COMPAT
128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
129 #endif
131 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
132 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
133 static struct CommandList *cmd_alloc(struct ctlr_info *h);
134 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
135 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
136 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
137 int cmd_type);
139 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
140 static void hpsa_scan_start(struct Scsi_Host *);
141 static int hpsa_scan_finished(struct Scsi_Host *sh,
142 unsigned long elapsed_time);
143 static int hpsa_change_queue_depth(struct scsi_device *sdev,
144 int qdepth, int reason);
146 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
147 static int hpsa_slave_alloc(struct scsi_device *sdev);
148 static void hpsa_slave_destroy(struct scsi_device *sdev);
150 static ssize_t raid_level_show(struct device *dev,
151 struct device_attribute *attr, char *buf);
152 static ssize_t lunid_show(struct device *dev,
153 struct device_attribute *attr, char *buf);
154 static ssize_t unique_id_show(struct device *dev,
155 struct device_attribute *attr, char *buf);
156 static ssize_t host_show_firmware_revision(struct device *dev,
157 struct device_attribute *attr, char *buf);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static ssize_t host_store_rescan(struct device *dev,
160 struct device_attribute *attr, const char *buf, size_t count);
161 static int check_for_unit_attention(struct ctlr_info *h,
162 struct CommandList *c);
163 static void check_ioctl_unit_attention(struct ctlr_info *h,
164 struct CommandList *c);
165 /* performant mode helper functions */
166 static void calc_bucket_map(int *bucket, int num_buckets,
167 int nsgs, int *bucket_map);
168 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
169 static inline u32 next_command(struct ctlr_info *h);
170 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
171 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
172 u64 *cfg_offset);
173 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
174 unsigned long *memory_bar);
175 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
177 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
178 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
179 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
180 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
181 static DEVICE_ATTR(firmware_revision, S_IRUGO,
182 host_show_firmware_revision, NULL);
184 static struct device_attribute *hpsa_sdev_attrs[] = {
185 &dev_attr_raid_level,
186 &dev_attr_lunid,
187 &dev_attr_unique_id,
188 NULL,
191 static struct device_attribute *hpsa_shost_attrs[] = {
192 &dev_attr_rescan,
193 &dev_attr_firmware_revision,
194 NULL,
197 static struct scsi_host_template hpsa_driver_template = {
198 .module = THIS_MODULE,
199 .name = "hpsa",
200 .proc_name = "hpsa",
201 .queuecommand = hpsa_scsi_queue_command,
202 .scan_start = hpsa_scan_start,
203 .scan_finished = hpsa_scan_finished,
204 .change_queue_depth = hpsa_change_queue_depth,
205 .this_id = -1,
206 .use_clustering = ENABLE_CLUSTERING,
207 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
208 .ioctl = hpsa_ioctl,
209 .slave_alloc = hpsa_slave_alloc,
210 .slave_destroy = hpsa_slave_destroy,
211 #ifdef CONFIG_COMPAT
212 .compat_ioctl = hpsa_compat_ioctl,
213 #endif
214 .sdev_attrs = hpsa_sdev_attrs,
215 .shost_attrs = hpsa_shost_attrs,
218 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
220 unsigned long *priv = shost_priv(sdev->host);
221 return (struct ctlr_info *) *priv;
224 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
226 unsigned long *priv = shost_priv(sh);
227 return (struct ctlr_info *) *priv;
230 static int check_for_unit_attention(struct ctlr_info *h,
231 struct CommandList *c)
233 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
234 return 0;
236 switch (c->err_info->SenseInfo[12]) {
237 case STATE_CHANGED:
238 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
239 "detected, command retried\n", h->ctlr);
240 break;
241 case LUN_FAILED:
242 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
243 "detected, action required\n", h->ctlr);
244 break;
245 case REPORT_LUNS_CHANGED:
246 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
247 "changed, action required\n", h->ctlr);
249 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
251 break;
252 case POWER_OR_RESET:
253 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
254 "or device reset detected\n", h->ctlr);
255 break;
256 case UNIT_ATTENTION_CLEARED:
257 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
258 "cleared by another initiator\n", h->ctlr);
259 break;
260 default:
261 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
262 "unit attention detected\n", h->ctlr);
263 break;
265 return 1;
268 static ssize_t host_store_rescan(struct device *dev,
269 struct device_attribute *attr,
270 const char *buf, size_t count)
272 struct ctlr_info *h;
273 struct Scsi_Host *shost = class_to_shost(dev);
274 h = shost_to_hba(shost);
275 hpsa_scan_start(h->scsi_host);
276 return count;
279 static ssize_t host_show_firmware_revision(struct device *dev,
280 struct device_attribute *attr, char *buf)
282 struct ctlr_info *h;
283 struct Scsi_Host *shost = class_to_shost(dev);
284 unsigned char *fwrev;
286 h = shost_to_hba(shost);
287 if (!h->hba_inquiry_data)
288 return 0;
289 fwrev = &h->hba_inquiry_data[32];
290 return snprintf(buf, 20, "%c%c%c%c\n",
291 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
294 /* Enqueuing and dequeuing functions for cmdlists. */
295 static inline void addQ(struct hlist_head *list, struct CommandList *c)
297 hlist_add_head(&c->list, list);
300 static inline u32 next_command(struct ctlr_info *h)
302 u32 a;
304 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
305 return h->access.command_completed(h);
307 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
308 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
309 (h->reply_pool_head)++;
310 h->commands_outstanding--;
311 } else {
312 a = FIFO_EMPTY;
314 /* Check for wraparound */
315 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
316 h->reply_pool_head = h->reply_pool;
317 h->reply_pool_wraparound ^= 1;
319 return a;
322 /* set_performant_mode: Modify the tag for cciss performant
323 * set bit 0 for pull model, bits 3-1 for block fetch
324 * register number
326 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
328 if (likely(h->transMethod == CFGTBL_Trans_Performant))
329 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
332 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
333 struct CommandList *c)
335 unsigned long flags;
337 set_performant_mode(h, c);
338 spin_lock_irqsave(&h->lock, flags);
339 addQ(&h->reqQ, c);
340 h->Qdepth++;
341 start_io(h);
342 spin_unlock_irqrestore(&h->lock, flags);
345 static inline void removeQ(struct CommandList *c)
347 if (WARN_ON(hlist_unhashed(&c->list)))
348 return;
349 hlist_del_init(&c->list);
352 static inline int is_hba_lunid(unsigned char scsi3addr[])
354 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
357 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
359 return (scsi3addr[3] & 0xC0) == 0x40;
362 static inline int is_scsi_rev_5(struct ctlr_info *h)
364 if (!h->hba_inquiry_data)
365 return 0;
366 if ((h->hba_inquiry_data[2] & 0x07) == 5)
367 return 1;
368 return 0;
371 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
372 "UNKNOWN"
374 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
376 static ssize_t raid_level_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
379 ssize_t l = 0;
380 unsigned char rlevel;
381 struct ctlr_info *h;
382 struct scsi_device *sdev;
383 struct hpsa_scsi_dev_t *hdev;
384 unsigned long flags;
386 sdev = to_scsi_device(dev);
387 h = sdev_to_hba(sdev);
388 spin_lock_irqsave(&h->lock, flags);
389 hdev = sdev->hostdata;
390 if (!hdev) {
391 spin_unlock_irqrestore(&h->lock, flags);
392 return -ENODEV;
395 /* Is this even a logical drive? */
396 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
397 spin_unlock_irqrestore(&h->lock, flags);
398 l = snprintf(buf, PAGE_SIZE, "N/A\n");
399 return l;
402 rlevel = hdev->raid_level;
403 spin_unlock_irqrestore(&h->lock, flags);
404 if (rlevel > RAID_UNKNOWN)
405 rlevel = RAID_UNKNOWN;
406 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
407 return l;
410 static ssize_t lunid_show(struct device *dev,
411 struct device_attribute *attr, char *buf)
413 struct ctlr_info *h;
414 struct scsi_device *sdev;
415 struct hpsa_scsi_dev_t *hdev;
416 unsigned long flags;
417 unsigned char lunid[8];
419 sdev = to_scsi_device(dev);
420 h = sdev_to_hba(sdev);
421 spin_lock_irqsave(&h->lock, flags);
422 hdev = sdev->hostdata;
423 if (!hdev) {
424 spin_unlock_irqrestore(&h->lock, flags);
425 return -ENODEV;
427 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
428 spin_unlock_irqrestore(&h->lock, flags);
429 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
430 lunid[0], lunid[1], lunid[2], lunid[3],
431 lunid[4], lunid[5], lunid[6], lunid[7]);
434 static ssize_t unique_id_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
437 struct ctlr_info *h;
438 struct scsi_device *sdev;
439 struct hpsa_scsi_dev_t *hdev;
440 unsigned long flags;
441 unsigned char sn[16];
443 sdev = to_scsi_device(dev);
444 h = sdev_to_hba(sdev);
445 spin_lock_irqsave(&h->lock, flags);
446 hdev = sdev->hostdata;
447 if (!hdev) {
448 spin_unlock_irqrestore(&h->lock, flags);
449 return -ENODEV;
451 memcpy(sn, hdev->device_id, sizeof(sn));
452 spin_unlock_irqrestore(&h->lock, flags);
453 return snprintf(buf, 16 * 2 + 2,
454 "%02X%02X%02X%02X%02X%02X%02X%02X"
455 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
456 sn[0], sn[1], sn[2], sn[3],
457 sn[4], sn[5], sn[6], sn[7],
458 sn[8], sn[9], sn[10], sn[11],
459 sn[12], sn[13], sn[14], sn[15]);
462 static int hpsa_find_target_lun(struct ctlr_info *h,
463 unsigned char scsi3addr[], int bus, int *target, int *lun)
465 /* finds an unused bus, target, lun for a new physical device
466 * assumes h->devlock is held
468 int i, found = 0;
469 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
471 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
473 for (i = 0; i < h->ndevices; i++) {
474 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
475 set_bit(h->dev[i]->target, lun_taken);
478 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
479 if (!test_bit(i, lun_taken)) {
480 /* *bus = 1; */
481 *target = i;
482 *lun = 0;
483 found = 1;
484 break;
487 return !found;
490 /* Add an entry into h->dev[] array. */
491 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
492 struct hpsa_scsi_dev_t *device,
493 struct hpsa_scsi_dev_t *added[], int *nadded)
495 /* assumes h->devlock is held */
496 int n = h->ndevices;
497 int i;
498 unsigned char addr1[8], addr2[8];
499 struct hpsa_scsi_dev_t *sd;
501 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
502 dev_err(&h->pdev->dev, "too many devices, some will be "
503 "inaccessible.\n");
504 return -1;
507 /* physical devices do not have lun or target assigned until now. */
508 if (device->lun != -1)
509 /* Logical device, lun is already assigned. */
510 goto lun_assigned;
512 /* If this device a non-zero lun of a multi-lun device
513 * byte 4 of the 8-byte LUN addr will contain the logical
514 * unit no, zero otherise.
516 if (device->scsi3addr[4] == 0) {
517 /* This is not a non-zero lun of a multi-lun device */
518 if (hpsa_find_target_lun(h, device->scsi3addr,
519 device->bus, &device->target, &device->lun) != 0)
520 return -1;
521 goto lun_assigned;
524 /* This is a non-zero lun of a multi-lun device.
525 * Search through our list and find the device which
526 * has the same 8 byte LUN address, excepting byte 4.
527 * Assign the same bus and target for this new LUN.
528 * Use the logical unit number from the firmware.
530 memcpy(addr1, device->scsi3addr, 8);
531 addr1[4] = 0;
532 for (i = 0; i < n; i++) {
533 sd = h->dev[i];
534 memcpy(addr2, sd->scsi3addr, 8);
535 addr2[4] = 0;
536 /* differ only in byte 4? */
537 if (memcmp(addr1, addr2, 8) == 0) {
538 device->bus = sd->bus;
539 device->target = sd->target;
540 device->lun = device->scsi3addr[4];
541 break;
544 if (device->lun == -1) {
545 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
546 " suspect firmware bug or unsupported hardware "
547 "configuration.\n");
548 return -1;
551 lun_assigned:
553 h->dev[n] = device;
554 h->ndevices++;
555 added[*nadded] = device;
556 (*nadded)++;
558 /* initially, (before registering with scsi layer) we don't
559 * know our hostno and we don't want to print anything first
560 * time anyway (the scsi layer's inquiries will show that info)
562 /* if (hostno != -1) */
563 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
564 scsi_device_type(device->devtype), hostno,
565 device->bus, device->target, device->lun);
566 return 0;
569 /* Replace an entry from h->dev[] array. */
570 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
571 int entry, struct hpsa_scsi_dev_t *new_entry,
572 struct hpsa_scsi_dev_t *added[], int *nadded,
573 struct hpsa_scsi_dev_t *removed[], int *nremoved)
575 /* assumes h->devlock is held */
576 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
577 removed[*nremoved] = h->dev[entry];
578 (*nremoved)++;
579 h->dev[entry] = new_entry;
580 added[*nadded] = new_entry;
581 (*nadded)++;
582 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
583 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
584 new_entry->target, new_entry->lun);
587 /* Remove an entry from h->dev[] array. */
588 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
589 struct hpsa_scsi_dev_t *removed[], int *nremoved)
591 /* assumes h->devlock is held */
592 int i;
593 struct hpsa_scsi_dev_t *sd;
595 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
597 sd = h->dev[entry];
598 removed[*nremoved] = h->dev[entry];
599 (*nremoved)++;
601 for (i = entry; i < h->ndevices-1; i++)
602 h->dev[i] = h->dev[i+1];
603 h->ndevices--;
604 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
605 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
606 sd->lun);
609 #define SCSI3ADDR_EQ(a, b) ( \
610 (a)[7] == (b)[7] && \
611 (a)[6] == (b)[6] && \
612 (a)[5] == (b)[5] && \
613 (a)[4] == (b)[4] && \
614 (a)[3] == (b)[3] && \
615 (a)[2] == (b)[2] && \
616 (a)[1] == (b)[1] && \
617 (a)[0] == (b)[0])
619 static void fixup_botched_add(struct ctlr_info *h,
620 struct hpsa_scsi_dev_t *added)
622 /* called when scsi_add_device fails in order to re-adjust
623 * h->dev[] to match the mid layer's view.
625 unsigned long flags;
626 int i, j;
628 spin_lock_irqsave(&h->lock, flags);
629 for (i = 0; i < h->ndevices; i++) {
630 if (h->dev[i] == added) {
631 for (j = i; j < h->ndevices-1; j++)
632 h->dev[j] = h->dev[j+1];
633 h->ndevices--;
634 break;
637 spin_unlock_irqrestore(&h->lock, flags);
638 kfree(added);
641 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
642 struct hpsa_scsi_dev_t *dev2)
644 /* we compare everything except lun and target as these
645 * are not yet assigned. Compare parts likely
646 * to differ first
648 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
649 sizeof(dev1->scsi3addr)) != 0)
650 return 0;
651 if (memcmp(dev1->device_id, dev2->device_id,
652 sizeof(dev1->device_id)) != 0)
653 return 0;
654 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
655 return 0;
656 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
657 return 0;
658 if (dev1->devtype != dev2->devtype)
659 return 0;
660 if (dev1->bus != dev2->bus)
661 return 0;
662 return 1;
665 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
666 * and return needle location in *index. If scsi3addr matches, but not
667 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
668 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
670 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
671 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
672 int *index)
674 int i;
675 #define DEVICE_NOT_FOUND 0
676 #define DEVICE_CHANGED 1
677 #define DEVICE_SAME 2
678 for (i = 0; i < haystack_size; i++) {
679 if (haystack[i] == NULL) /* previously removed. */
680 continue;
681 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
682 *index = i;
683 if (device_is_the_same(needle, haystack[i]))
684 return DEVICE_SAME;
685 else
686 return DEVICE_CHANGED;
689 *index = -1;
690 return DEVICE_NOT_FOUND;
693 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
694 struct hpsa_scsi_dev_t *sd[], int nsds)
696 /* sd contains scsi3 addresses and devtypes, and inquiry
697 * data. This function takes what's in sd to be the current
698 * reality and updates h->dev[] to reflect that reality.
700 int i, entry, device_change, changes = 0;
701 struct hpsa_scsi_dev_t *csd;
702 unsigned long flags;
703 struct hpsa_scsi_dev_t **added, **removed;
704 int nadded, nremoved;
705 struct Scsi_Host *sh = NULL;
707 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
708 GFP_KERNEL);
709 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
710 GFP_KERNEL);
712 if (!added || !removed) {
713 dev_warn(&h->pdev->dev, "out of memory in "
714 "adjust_hpsa_scsi_table\n");
715 goto free_and_out;
718 spin_lock_irqsave(&h->devlock, flags);
720 /* find any devices in h->dev[] that are not in
721 * sd[] and remove them from h->dev[], and for any
722 * devices which have changed, remove the old device
723 * info and add the new device info.
725 i = 0;
726 nremoved = 0;
727 nadded = 0;
728 while (i < h->ndevices) {
729 csd = h->dev[i];
730 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
731 if (device_change == DEVICE_NOT_FOUND) {
732 changes++;
733 hpsa_scsi_remove_entry(h, hostno, i,
734 removed, &nremoved);
735 continue; /* remove ^^^, hence i not incremented */
736 } else if (device_change == DEVICE_CHANGED) {
737 changes++;
738 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
739 added, &nadded, removed, &nremoved);
740 /* Set it to NULL to prevent it from being freed
741 * at the bottom of hpsa_update_scsi_devices()
743 sd[entry] = NULL;
745 i++;
748 /* Now, make sure every device listed in sd[] is also
749 * listed in h->dev[], adding them if they aren't found
752 for (i = 0; i < nsds; i++) {
753 if (!sd[i]) /* if already added above. */
754 continue;
755 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
756 h->ndevices, &entry);
757 if (device_change == DEVICE_NOT_FOUND) {
758 changes++;
759 if (hpsa_scsi_add_entry(h, hostno, sd[i],
760 added, &nadded) != 0)
761 break;
762 sd[i] = NULL; /* prevent from being freed later. */
763 } else if (device_change == DEVICE_CHANGED) {
764 /* should never happen... */
765 changes++;
766 dev_warn(&h->pdev->dev,
767 "device unexpectedly changed.\n");
768 /* but if it does happen, we just ignore that device */
771 spin_unlock_irqrestore(&h->devlock, flags);
773 /* Don't notify scsi mid layer of any changes the first time through
774 * (or if there are no changes) scsi_scan_host will do it later the
775 * first time through.
777 if (hostno == -1 || !changes)
778 goto free_and_out;
780 sh = h->scsi_host;
781 /* Notify scsi mid layer of any removed devices */
782 for (i = 0; i < nremoved; i++) {
783 struct scsi_device *sdev =
784 scsi_device_lookup(sh, removed[i]->bus,
785 removed[i]->target, removed[i]->lun);
786 if (sdev != NULL) {
787 scsi_remove_device(sdev);
788 scsi_device_put(sdev);
789 } else {
790 /* We don't expect to get here.
791 * future cmds to this device will get selection
792 * timeout as if the device was gone.
794 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
795 " for removal.", hostno, removed[i]->bus,
796 removed[i]->target, removed[i]->lun);
798 kfree(removed[i]);
799 removed[i] = NULL;
802 /* Notify scsi mid layer of any added devices */
803 for (i = 0; i < nadded; i++) {
804 if (scsi_add_device(sh, added[i]->bus,
805 added[i]->target, added[i]->lun) == 0)
806 continue;
807 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
808 "device not added.\n", hostno, added[i]->bus,
809 added[i]->target, added[i]->lun);
810 /* now we have to remove it from h->dev,
811 * since it didn't get added to scsi mid layer
813 fixup_botched_add(h, added[i]);
816 free_and_out:
817 kfree(added);
818 kfree(removed);
822 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
823 * Assume's h->devlock is held.
825 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
826 int bus, int target, int lun)
828 int i;
829 struct hpsa_scsi_dev_t *sd;
831 for (i = 0; i < h->ndevices; i++) {
832 sd = h->dev[i];
833 if (sd->bus == bus && sd->target == target && sd->lun == lun)
834 return sd;
836 return NULL;
839 /* link sdev->hostdata to our per-device structure. */
840 static int hpsa_slave_alloc(struct scsi_device *sdev)
842 struct hpsa_scsi_dev_t *sd;
843 unsigned long flags;
844 struct ctlr_info *h;
846 h = sdev_to_hba(sdev);
847 spin_lock_irqsave(&h->devlock, flags);
848 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
849 sdev_id(sdev), sdev->lun);
850 if (sd != NULL)
851 sdev->hostdata = sd;
852 spin_unlock_irqrestore(&h->devlock, flags);
853 return 0;
856 static void hpsa_slave_destroy(struct scsi_device *sdev)
858 /* nothing to do. */
861 static void hpsa_scsi_setup(struct ctlr_info *h)
863 h->ndevices = 0;
864 h->scsi_host = NULL;
865 spin_lock_init(&h->devlock);
868 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
870 int i;
872 if (!h->cmd_sg_list)
873 return;
874 for (i = 0; i < h->nr_cmds; i++) {
875 kfree(h->cmd_sg_list[i]);
876 h->cmd_sg_list[i] = NULL;
878 kfree(h->cmd_sg_list);
879 h->cmd_sg_list = NULL;
882 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
884 int i;
886 if (h->chainsize <= 0)
887 return 0;
889 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
890 GFP_KERNEL);
891 if (!h->cmd_sg_list)
892 return -ENOMEM;
893 for (i = 0; i < h->nr_cmds; i++) {
894 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
895 h->chainsize, GFP_KERNEL);
896 if (!h->cmd_sg_list[i])
897 goto clean;
899 return 0;
901 clean:
902 hpsa_free_sg_chain_blocks(h);
903 return -ENOMEM;
906 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
907 struct CommandList *c)
909 struct SGDescriptor *chain_sg, *chain_block;
910 u64 temp64;
912 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
913 chain_block = h->cmd_sg_list[c->cmdindex];
914 chain_sg->Ext = HPSA_SG_CHAIN;
915 chain_sg->Len = sizeof(*chain_sg) *
916 (c->Header.SGTotal - h->max_cmd_sg_entries);
917 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
918 PCI_DMA_TODEVICE);
919 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
920 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
923 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
924 struct CommandList *c)
926 struct SGDescriptor *chain_sg;
927 union u64bit temp64;
929 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
930 return;
932 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
933 temp64.val32.lower = chain_sg->Addr.lower;
934 temp64.val32.upper = chain_sg->Addr.upper;
935 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
938 static void complete_scsi_command(struct CommandList *cp,
939 int timeout, u32 tag)
941 struct scsi_cmnd *cmd;
942 struct ctlr_info *h;
943 struct ErrorInfo *ei;
945 unsigned char sense_key;
946 unsigned char asc; /* additional sense code */
947 unsigned char ascq; /* additional sense code qualifier */
949 ei = cp->err_info;
950 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
951 h = cp->h;
953 scsi_dma_unmap(cmd); /* undo the DMA mappings */
954 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
955 hpsa_unmap_sg_chain_block(h, cp);
957 cmd->result = (DID_OK << 16); /* host byte */
958 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
959 cmd->result |= ei->ScsiStatus;
961 /* copy the sense data whether we need to or not. */
962 memcpy(cmd->sense_buffer, ei->SenseInfo,
963 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
964 SCSI_SENSE_BUFFERSIZE :
965 ei->SenseLen);
966 scsi_set_resid(cmd, ei->ResidualCnt);
968 if (ei->CommandStatus == 0) {
969 cmd->scsi_done(cmd);
970 cmd_free(h, cp);
971 return;
974 /* an error has occurred */
975 switch (ei->CommandStatus) {
977 case CMD_TARGET_STATUS:
978 if (ei->ScsiStatus) {
979 /* Get sense key */
980 sense_key = 0xf & ei->SenseInfo[2];
981 /* Get additional sense code */
982 asc = ei->SenseInfo[12];
983 /* Get addition sense code qualifier */
984 ascq = ei->SenseInfo[13];
987 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
988 if (check_for_unit_attention(h, cp)) {
989 cmd->result = DID_SOFT_ERROR << 16;
990 break;
992 if (sense_key == ILLEGAL_REQUEST) {
994 * SCSI REPORT_LUNS is commonly unsupported on
995 * Smart Array. Suppress noisy complaint.
997 if (cp->Request.CDB[0] == REPORT_LUNS)
998 break;
1000 /* If ASC/ASCQ indicate Logical Unit
1001 * Not Supported condition,
1003 if ((asc == 0x25) && (ascq == 0x0)) {
1004 dev_warn(&h->pdev->dev, "cp %p "
1005 "has check condition\n", cp);
1006 break;
1010 if (sense_key == NOT_READY) {
1011 /* If Sense is Not Ready, Logical Unit
1012 * Not ready, Manual Intervention
1013 * required
1015 if ((asc == 0x04) && (ascq == 0x03)) {
1016 dev_warn(&h->pdev->dev, "cp %p "
1017 "has check condition: unit "
1018 "not ready, manual "
1019 "intervention required\n", cp);
1020 break;
1023 if (sense_key == ABORTED_COMMAND) {
1024 /* Aborted command is retryable */
1025 dev_warn(&h->pdev->dev, "cp %p "
1026 "has check condition: aborted command: "
1027 "ASC: 0x%x, ASCQ: 0x%x\n",
1028 cp, asc, ascq);
1029 cmd->result = DID_SOFT_ERROR << 16;
1030 break;
1032 /* Must be some other type of check condition */
1033 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1034 "unknown type: "
1035 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1036 "Returning result: 0x%x, "
1037 "cmd=[%02x %02x %02x %02x %02x "
1038 "%02x %02x %02x %02x %02x %02x "
1039 "%02x %02x %02x %02x %02x]\n",
1040 cp, sense_key, asc, ascq,
1041 cmd->result,
1042 cmd->cmnd[0], cmd->cmnd[1],
1043 cmd->cmnd[2], cmd->cmnd[3],
1044 cmd->cmnd[4], cmd->cmnd[5],
1045 cmd->cmnd[6], cmd->cmnd[7],
1046 cmd->cmnd[8], cmd->cmnd[9],
1047 cmd->cmnd[10], cmd->cmnd[11],
1048 cmd->cmnd[12], cmd->cmnd[13],
1049 cmd->cmnd[14], cmd->cmnd[15]);
1050 break;
1054 /* Problem was not a check condition
1055 * Pass it up to the upper layers...
1057 if (ei->ScsiStatus) {
1058 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1059 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1060 "Returning result: 0x%x\n",
1061 cp, ei->ScsiStatus,
1062 sense_key, asc, ascq,
1063 cmd->result);
1064 } else { /* scsi status is zero??? How??? */
1065 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1066 "Returning no connection.\n", cp),
1068 /* Ordinarily, this case should never happen,
1069 * but there is a bug in some released firmware
1070 * revisions that allows it to happen if, for
1071 * example, a 4100 backplane loses power and
1072 * the tape drive is in it. We assume that
1073 * it's a fatal error of some kind because we
1074 * can't show that it wasn't. We will make it
1075 * look like selection timeout since that is
1076 * the most common reason for this to occur,
1077 * and it's severe enough.
1080 cmd->result = DID_NO_CONNECT << 16;
1082 break;
1084 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1085 break;
1086 case CMD_DATA_OVERRUN:
1087 dev_warn(&h->pdev->dev, "cp %p has"
1088 " completed with data overrun "
1089 "reported\n", cp);
1090 break;
1091 case CMD_INVALID: {
1092 /* print_bytes(cp, sizeof(*cp), 1, 0);
1093 print_cmd(cp); */
1094 /* We get CMD_INVALID if you address a non-existent device
1095 * instead of a selection timeout (no response). You will
1096 * see this if you yank out a drive, then try to access it.
1097 * This is kind of a shame because it means that any other
1098 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1099 * missing target. */
1100 cmd->result = DID_NO_CONNECT << 16;
1102 break;
1103 case CMD_PROTOCOL_ERR:
1104 dev_warn(&h->pdev->dev, "cp %p has "
1105 "protocol error \n", cp);
1106 break;
1107 case CMD_HARDWARE_ERR:
1108 cmd->result = DID_ERROR << 16;
1109 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1110 break;
1111 case CMD_CONNECTION_LOST:
1112 cmd->result = DID_ERROR << 16;
1113 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1114 break;
1115 case CMD_ABORTED:
1116 cmd->result = DID_ABORT << 16;
1117 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1118 cp, ei->ScsiStatus);
1119 break;
1120 case CMD_ABORT_FAILED:
1121 cmd->result = DID_ERROR << 16;
1122 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1123 break;
1124 case CMD_UNSOLICITED_ABORT:
1125 cmd->result = DID_RESET << 16;
1126 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1127 "abort\n", cp);
1128 break;
1129 case CMD_TIMEOUT:
1130 cmd->result = DID_TIME_OUT << 16;
1131 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1132 break;
1133 default:
1134 cmd->result = DID_ERROR << 16;
1135 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1136 cp, ei->CommandStatus);
1138 cmd->scsi_done(cmd);
1139 cmd_free(h, cp);
1142 static int hpsa_scsi_detect(struct ctlr_info *h)
1144 struct Scsi_Host *sh;
1145 int error;
1147 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1148 if (sh == NULL)
1149 goto fail;
1151 sh->io_port = 0;
1152 sh->n_io_port = 0;
1153 sh->this_id = -1;
1154 sh->max_channel = 3;
1155 sh->max_cmd_len = MAX_COMMAND_SIZE;
1156 sh->max_lun = HPSA_MAX_LUN;
1157 sh->max_id = HPSA_MAX_LUN;
1158 sh->can_queue = h->nr_cmds;
1159 sh->cmd_per_lun = h->nr_cmds;
1160 sh->sg_tablesize = h->maxsgentries;
1161 h->scsi_host = sh;
1162 sh->hostdata[0] = (unsigned long) h;
1163 sh->irq = h->intr[PERF_MODE_INT];
1164 sh->unique_id = sh->irq;
1165 error = scsi_add_host(sh, &h->pdev->dev);
1166 if (error)
1167 goto fail_host_put;
1168 scsi_scan_host(sh);
1169 return 0;
1171 fail_host_put:
1172 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1173 " failed for controller %d\n", h->ctlr);
1174 scsi_host_put(sh);
1175 return error;
1176 fail:
1177 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1178 " failed for controller %d\n", h->ctlr);
1179 return -ENOMEM;
1182 static void hpsa_pci_unmap(struct pci_dev *pdev,
1183 struct CommandList *c, int sg_used, int data_direction)
1185 int i;
1186 union u64bit addr64;
1188 for (i = 0; i < sg_used; i++) {
1189 addr64.val32.lower = c->SG[i].Addr.lower;
1190 addr64.val32.upper = c->SG[i].Addr.upper;
1191 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1192 data_direction);
1196 static void hpsa_map_one(struct pci_dev *pdev,
1197 struct CommandList *cp,
1198 unsigned char *buf,
1199 size_t buflen,
1200 int data_direction)
1202 u64 addr64;
1204 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1205 cp->Header.SGList = 0;
1206 cp->Header.SGTotal = 0;
1207 return;
1210 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1211 cp->SG[0].Addr.lower =
1212 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1213 cp->SG[0].Addr.upper =
1214 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1215 cp->SG[0].Len = buflen;
1216 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1217 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1220 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1221 struct CommandList *c)
1223 DECLARE_COMPLETION_ONSTACK(wait);
1225 c->waiting = &wait;
1226 enqueue_cmd_and_start_io(h, c);
1227 wait_for_completion(&wait);
1230 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1231 struct CommandList *c, int data_direction)
1233 int retry_count = 0;
1235 do {
1236 memset(c->err_info, 0, sizeof(c->err_info));
1237 hpsa_scsi_do_simple_cmd_core(h, c);
1238 retry_count++;
1239 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1240 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1243 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1245 struct ErrorInfo *ei;
1246 struct device *d = &cp->h->pdev->dev;
1248 ei = cp->err_info;
1249 switch (ei->CommandStatus) {
1250 case CMD_TARGET_STATUS:
1251 dev_warn(d, "cmd %p has completed with errors\n", cp);
1252 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1253 ei->ScsiStatus);
1254 if (ei->ScsiStatus == 0)
1255 dev_warn(d, "SCSI status is abnormally zero. "
1256 "(probably indicates selection timeout "
1257 "reported incorrectly due to a known "
1258 "firmware bug, circa July, 2001.)\n");
1259 break;
1260 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1261 dev_info(d, "UNDERRUN\n");
1262 break;
1263 case CMD_DATA_OVERRUN:
1264 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1265 break;
1266 case CMD_INVALID: {
1267 /* controller unfortunately reports SCSI passthru's
1268 * to non-existent targets as invalid commands.
1270 dev_warn(d, "cp %p is reported invalid (probably means "
1271 "target device no longer present)\n", cp);
1272 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1273 print_cmd(cp); */
1275 break;
1276 case CMD_PROTOCOL_ERR:
1277 dev_warn(d, "cp %p has protocol error \n", cp);
1278 break;
1279 case CMD_HARDWARE_ERR:
1280 /* cmd->result = DID_ERROR << 16; */
1281 dev_warn(d, "cp %p had hardware error\n", cp);
1282 break;
1283 case CMD_CONNECTION_LOST:
1284 dev_warn(d, "cp %p had connection lost\n", cp);
1285 break;
1286 case CMD_ABORTED:
1287 dev_warn(d, "cp %p was aborted\n", cp);
1288 break;
1289 case CMD_ABORT_FAILED:
1290 dev_warn(d, "cp %p reports abort failed\n", cp);
1291 break;
1292 case CMD_UNSOLICITED_ABORT:
1293 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1294 break;
1295 case CMD_TIMEOUT:
1296 dev_warn(d, "cp %p timed out\n", cp);
1297 break;
1298 default:
1299 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1300 ei->CommandStatus);
1304 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1305 unsigned char page, unsigned char *buf,
1306 unsigned char bufsize)
1308 int rc = IO_OK;
1309 struct CommandList *c;
1310 struct ErrorInfo *ei;
1312 c = cmd_special_alloc(h);
1314 if (c == NULL) { /* trouble... */
1315 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1316 return -ENOMEM;
1319 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1320 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1321 ei = c->err_info;
1322 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1323 hpsa_scsi_interpret_error(c);
1324 rc = -1;
1326 cmd_special_free(h, c);
1327 return rc;
1330 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1332 int rc = IO_OK;
1333 struct CommandList *c;
1334 struct ErrorInfo *ei;
1336 c = cmd_special_alloc(h);
1338 if (c == NULL) { /* trouble... */
1339 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1340 return -ENOMEM;
1343 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1344 hpsa_scsi_do_simple_cmd_core(h, c);
1345 /* no unmap needed here because no data xfer. */
1347 ei = c->err_info;
1348 if (ei->CommandStatus != 0) {
1349 hpsa_scsi_interpret_error(c);
1350 rc = -1;
1352 cmd_special_free(h, c);
1353 return rc;
1356 static void hpsa_get_raid_level(struct ctlr_info *h,
1357 unsigned char *scsi3addr, unsigned char *raid_level)
1359 int rc;
1360 unsigned char *buf;
1362 *raid_level = RAID_UNKNOWN;
1363 buf = kzalloc(64, GFP_KERNEL);
1364 if (!buf)
1365 return;
1366 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1367 if (rc == 0)
1368 *raid_level = buf[8];
1369 if (*raid_level > RAID_UNKNOWN)
1370 *raid_level = RAID_UNKNOWN;
1371 kfree(buf);
1372 return;
1375 /* Get the device id from inquiry page 0x83 */
1376 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1377 unsigned char *device_id, int buflen)
1379 int rc;
1380 unsigned char *buf;
1382 if (buflen > 16)
1383 buflen = 16;
1384 buf = kzalloc(64, GFP_KERNEL);
1385 if (!buf)
1386 return -1;
1387 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1388 if (rc == 0)
1389 memcpy(device_id, &buf[8], buflen);
1390 kfree(buf);
1391 return rc != 0;
1394 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1395 struct ReportLUNdata *buf, int bufsize,
1396 int extended_response)
1398 int rc = IO_OK;
1399 struct CommandList *c;
1400 unsigned char scsi3addr[8];
1401 struct ErrorInfo *ei;
1403 c = cmd_special_alloc(h);
1404 if (c == NULL) { /* trouble... */
1405 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1406 return -1;
1408 /* address the controller */
1409 memset(scsi3addr, 0, sizeof(scsi3addr));
1410 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1411 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1412 if (extended_response)
1413 c->Request.CDB[1] = extended_response;
1414 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1415 ei = c->err_info;
1416 if (ei->CommandStatus != 0 &&
1417 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1418 hpsa_scsi_interpret_error(c);
1419 rc = -1;
1421 cmd_special_free(h, c);
1422 return rc;
1425 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1426 struct ReportLUNdata *buf,
1427 int bufsize, int extended_response)
1429 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1432 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1433 struct ReportLUNdata *buf, int bufsize)
1435 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1438 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1439 int bus, int target, int lun)
1441 device->bus = bus;
1442 device->target = target;
1443 device->lun = lun;
1446 static int hpsa_update_device_info(struct ctlr_info *h,
1447 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1449 #define OBDR_TAPE_INQ_SIZE 49
1450 unsigned char *inq_buff;
1452 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1453 if (!inq_buff)
1454 goto bail_out;
1456 /* Do an inquiry to the device to see what it is. */
1457 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1458 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1459 /* Inquiry failed (msg printed already) */
1460 dev_err(&h->pdev->dev,
1461 "hpsa_update_device_info: inquiry failed\n");
1462 goto bail_out;
1465 this_device->devtype = (inq_buff[0] & 0x1f);
1466 memcpy(this_device->scsi3addr, scsi3addr, 8);
1467 memcpy(this_device->vendor, &inq_buff[8],
1468 sizeof(this_device->vendor));
1469 memcpy(this_device->model, &inq_buff[16],
1470 sizeof(this_device->model));
1471 memset(this_device->device_id, 0,
1472 sizeof(this_device->device_id));
1473 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1474 sizeof(this_device->device_id));
1476 if (this_device->devtype == TYPE_DISK &&
1477 is_logical_dev_addr_mode(scsi3addr))
1478 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1479 else
1480 this_device->raid_level = RAID_UNKNOWN;
1482 kfree(inq_buff);
1483 return 0;
1485 bail_out:
1486 kfree(inq_buff);
1487 return 1;
1490 static unsigned char *msa2xxx_model[] = {
1491 "MSA2012",
1492 "MSA2024",
1493 "MSA2312",
1494 "MSA2324",
1495 NULL,
1498 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1500 int i;
1502 for (i = 0; msa2xxx_model[i]; i++)
1503 if (strncmp(device->model, msa2xxx_model[i],
1504 strlen(msa2xxx_model[i])) == 0)
1505 return 1;
1506 return 0;
1509 /* Helper function to assign bus, target, lun mapping of devices.
1510 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1511 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1512 * Logical drive target and lun are assigned at this time, but
1513 * physical device lun and target assignment are deferred (assigned
1514 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1516 static void figure_bus_target_lun(struct ctlr_info *h,
1517 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1518 struct hpsa_scsi_dev_t *device)
1520 u32 lunid;
1522 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1523 /* logical device */
1524 if (unlikely(is_scsi_rev_5(h))) {
1525 /* p1210m, logical drives lun assignments
1526 * match SCSI REPORT LUNS data.
1528 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1529 *bus = 0;
1530 *target = 0;
1531 *lun = (lunid & 0x3fff) + 1;
1532 } else {
1533 /* not p1210m... */
1534 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1535 if (is_msa2xxx(h, device)) {
1536 /* msa2xxx way, put logicals on bus 1
1537 * and match target/lun numbers box
1538 * reports.
1540 *bus = 1;
1541 *target = (lunid >> 16) & 0x3fff;
1542 *lun = lunid & 0x00ff;
1543 } else {
1544 /* Traditional smart array way. */
1545 *bus = 0;
1546 *lun = 0;
1547 *target = lunid & 0x3fff;
1550 } else {
1551 /* physical device */
1552 if (is_hba_lunid(lunaddrbytes))
1553 if (unlikely(is_scsi_rev_5(h))) {
1554 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1555 *target = 0;
1556 *lun = 0;
1557 return;
1558 } else
1559 *bus = 3; /* traditional smartarray */
1560 else
1561 *bus = 2; /* physical disk */
1562 *target = -1;
1563 *lun = -1; /* we will fill these in later. */
1568 * If there is no lun 0 on a target, linux won't find any devices.
1569 * For the MSA2xxx boxes, we have to manually detect the enclosure
1570 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1571 * it for some reason. *tmpdevice is the target we're adding,
1572 * this_device is a pointer into the current element of currentsd[]
1573 * that we're building up in update_scsi_devices(), below.
1574 * lunzerobits is a bitmap that tracks which targets already have a
1575 * lun 0 assigned.
1576 * Returns 1 if an enclosure was added, 0 if not.
1578 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1579 struct hpsa_scsi_dev_t *tmpdevice,
1580 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1581 int bus, int target, int lun, unsigned long lunzerobits[],
1582 int *nmsa2xxx_enclosures)
1584 unsigned char scsi3addr[8];
1586 if (test_bit(target, lunzerobits))
1587 return 0; /* There is already a lun 0 on this target. */
1589 if (!is_logical_dev_addr_mode(lunaddrbytes))
1590 return 0; /* It's the logical targets that may lack lun 0. */
1592 if (!is_msa2xxx(h, tmpdevice))
1593 return 0; /* It's only the MSA2xxx that have this problem. */
1595 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1596 return 0;
1598 if (is_hba_lunid(scsi3addr))
1599 return 0; /* Don't add the RAID controller here. */
1601 if (is_scsi_rev_5(h))
1602 return 0; /* p1210m doesn't need to do this. */
1604 #define MAX_MSA2XXX_ENCLOSURES 32
1605 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1606 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1607 "enclosures exceeded. Check your hardware "
1608 "configuration.");
1609 return 0;
1612 memset(scsi3addr, 0, 8);
1613 scsi3addr[3] = target;
1614 if (hpsa_update_device_info(h, scsi3addr, this_device))
1615 return 0;
1616 (*nmsa2xxx_enclosures)++;
1617 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1618 set_bit(target, lunzerobits);
1619 return 1;
1623 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1624 * logdev. The number of luns in physdev and logdev are returned in
1625 * *nphysicals and *nlogicals, respectively.
1626 * Returns 0 on success, -1 otherwise.
1628 static int hpsa_gather_lun_info(struct ctlr_info *h,
1629 int reportlunsize,
1630 struct ReportLUNdata *physdev, u32 *nphysicals,
1631 struct ReportLUNdata *logdev, u32 *nlogicals)
1633 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1634 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1635 return -1;
1637 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1638 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1639 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1640 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1641 *nphysicals - HPSA_MAX_PHYS_LUN);
1642 *nphysicals = HPSA_MAX_PHYS_LUN;
1644 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1645 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1646 return -1;
1648 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1649 /* Reject Logicals in excess of our max capability. */
1650 if (*nlogicals > HPSA_MAX_LUN) {
1651 dev_warn(&h->pdev->dev,
1652 "maximum logical LUNs (%d) exceeded. "
1653 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1654 *nlogicals - HPSA_MAX_LUN);
1655 *nlogicals = HPSA_MAX_LUN;
1657 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1658 dev_warn(&h->pdev->dev,
1659 "maximum logical + physical LUNs (%d) exceeded. "
1660 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1661 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1662 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1664 return 0;
1667 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1668 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1669 struct ReportLUNdata *logdev_list)
1671 /* Helper function, figure out where the LUN ID info is coming from
1672 * given index i, lists of physical and logical devices, where in
1673 * the list the raid controller is supposed to appear (first or last)
1676 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1677 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1679 if (i == raid_ctlr_position)
1680 return RAID_CTLR_LUNID;
1682 if (i < logicals_start)
1683 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1685 if (i < last_device)
1686 return &logdev_list->LUN[i - nphysicals -
1687 (raid_ctlr_position == 0)][0];
1688 BUG();
1689 return NULL;
1692 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1694 /* the idea here is we could get notified
1695 * that some devices have changed, so we do a report
1696 * physical luns and report logical luns cmd, and adjust
1697 * our list of devices accordingly.
1699 * The scsi3addr's of devices won't change so long as the
1700 * adapter is not reset. That means we can rescan and
1701 * tell which devices we already know about, vs. new
1702 * devices, vs. disappearing devices.
1704 struct ReportLUNdata *physdev_list = NULL;
1705 struct ReportLUNdata *logdev_list = NULL;
1706 unsigned char *inq_buff = NULL;
1707 u32 nphysicals = 0;
1708 u32 nlogicals = 0;
1709 u32 ndev_allocated = 0;
1710 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1711 int ncurrent = 0;
1712 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1713 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1714 int bus, target, lun;
1715 int raid_ctlr_position;
1716 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1718 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1719 GFP_KERNEL);
1720 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1721 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1722 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1723 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1725 if (!currentsd || !physdev_list || !logdev_list ||
1726 !inq_buff || !tmpdevice) {
1727 dev_err(&h->pdev->dev, "out of memory\n");
1728 goto out;
1730 memset(lunzerobits, 0, sizeof(lunzerobits));
1732 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1733 logdev_list, &nlogicals))
1734 goto out;
1736 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1737 * but each of them 4 times through different paths. The plus 1
1738 * is for the RAID controller.
1740 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1742 /* Allocate the per device structures */
1743 for (i = 0; i < ndevs_to_allocate; i++) {
1744 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1745 if (!currentsd[i]) {
1746 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1747 __FILE__, __LINE__);
1748 goto out;
1750 ndev_allocated++;
1753 if (unlikely(is_scsi_rev_5(h)))
1754 raid_ctlr_position = 0;
1755 else
1756 raid_ctlr_position = nphysicals + nlogicals;
1758 /* adjust our table of devices */
1759 nmsa2xxx_enclosures = 0;
1760 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1761 u8 *lunaddrbytes;
1763 /* Figure out where the LUN ID info is coming from */
1764 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1765 i, nphysicals, nlogicals, physdev_list, logdev_list);
1766 /* skip masked physical devices. */
1767 if (lunaddrbytes[3] & 0xC0 &&
1768 i < nphysicals + (raid_ctlr_position == 0))
1769 continue;
1771 /* Get device type, vendor, model, device id */
1772 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1773 continue; /* skip it if we can't talk to it. */
1774 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1775 tmpdevice);
1776 this_device = currentsd[ncurrent];
1779 * For the msa2xxx boxes, we have to insert a LUN 0 which
1780 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1781 * is nonetheless an enclosure device there. We have to
1782 * present that otherwise linux won't find anything if
1783 * there is no lun 0.
1785 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1786 lunaddrbytes, bus, target, lun, lunzerobits,
1787 &nmsa2xxx_enclosures)) {
1788 ncurrent++;
1789 this_device = currentsd[ncurrent];
1792 *this_device = *tmpdevice;
1793 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1795 switch (this_device->devtype) {
1796 case TYPE_ROM: {
1797 /* We don't *really* support actual CD-ROM devices,
1798 * just "One Button Disaster Recovery" tape drive
1799 * which temporarily pretends to be a CD-ROM drive.
1800 * So we check that the device is really an OBDR tape
1801 * device by checking for "$DR-10" in bytes 43-48 of
1802 * the inquiry data.
1804 char obdr_sig[7];
1805 #define OBDR_TAPE_SIG "$DR-10"
1806 strncpy(obdr_sig, &inq_buff[43], 6);
1807 obdr_sig[6] = '\0';
1808 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1809 /* Not OBDR device, ignore it. */
1810 break;
1812 ncurrent++;
1813 break;
1814 case TYPE_DISK:
1815 if (i < nphysicals)
1816 break;
1817 ncurrent++;
1818 break;
1819 case TYPE_TAPE:
1820 case TYPE_MEDIUM_CHANGER:
1821 ncurrent++;
1822 break;
1823 case TYPE_RAID:
1824 /* Only present the Smartarray HBA as a RAID controller.
1825 * If it's a RAID controller other than the HBA itself
1826 * (an external RAID controller, MSA500 or similar)
1827 * don't present it.
1829 if (!is_hba_lunid(lunaddrbytes))
1830 break;
1831 ncurrent++;
1832 break;
1833 default:
1834 break;
1836 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1837 break;
1839 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1840 out:
1841 kfree(tmpdevice);
1842 for (i = 0; i < ndev_allocated; i++)
1843 kfree(currentsd[i]);
1844 kfree(currentsd);
1845 kfree(inq_buff);
1846 kfree(physdev_list);
1847 kfree(logdev_list);
1850 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1851 * dma mapping and fills in the scatter gather entries of the
1852 * hpsa command, cp.
1854 static int hpsa_scatter_gather(struct ctlr_info *h,
1855 struct CommandList *cp,
1856 struct scsi_cmnd *cmd)
1858 unsigned int len;
1859 struct scatterlist *sg;
1860 u64 addr64;
1861 int use_sg, i, sg_index, chained;
1862 struct SGDescriptor *curr_sg;
1864 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1866 use_sg = scsi_dma_map(cmd);
1867 if (use_sg < 0)
1868 return use_sg;
1870 if (!use_sg)
1871 goto sglist_finished;
1873 curr_sg = cp->SG;
1874 chained = 0;
1875 sg_index = 0;
1876 scsi_for_each_sg(cmd, sg, use_sg, i) {
1877 if (i == h->max_cmd_sg_entries - 1 &&
1878 use_sg > h->max_cmd_sg_entries) {
1879 chained = 1;
1880 curr_sg = h->cmd_sg_list[cp->cmdindex];
1881 sg_index = 0;
1883 addr64 = (u64) sg_dma_address(sg);
1884 len = sg_dma_len(sg);
1885 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1886 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1887 curr_sg->Len = len;
1888 curr_sg->Ext = 0; /* we are not chaining */
1889 curr_sg++;
1892 if (use_sg + chained > h->maxSG)
1893 h->maxSG = use_sg + chained;
1895 if (chained) {
1896 cp->Header.SGList = h->max_cmd_sg_entries;
1897 cp->Header.SGTotal = (u16) (use_sg + 1);
1898 hpsa_map_sg_chain_block(h, cp);
1899 return 0;
1902 sglist_finished:
1904 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
1905 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1906 return 0;
1910 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1911 void (*done)(struct scsi_cmnd *))
1913 struct ctlr_info *h;
1914 struct hpsa_scsi_dev_t *dev;
1915 unsigned char scsi3addr[8];
1916 struct CommandList *c;
1917 unsigned long flags;
1919 /* Get the ptr to our adapter structure out of cmd->host. */
1920 h = sdev_to_hba(cmd->device);
1921 dev = cmd->device->hostdata;
1922 if (!dev) {
1923 cmd->result = DID_NO_CONNECT << 16;
1924 done(cmd);
1925 return 0;
1927 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1929 /* Need a lock as this is being allocated from the pool */
1930 spin_lock_irqsave(&h->lock, flags);
1931 c = cmd_alloc(h);
1932 spin_unlock_irqrestore(&h->lock, flags);
1933 if (c == NULL) { /* trouble... */
1934 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1935 return SCSI_MLQUEUE_HOST_BUSY;
1938 /* Fill in the command list header */
1940 cmd->scsi_done = done; /* save this for use by completion code */
1942 /* save c in case we have to abort it */
1943 cmd->host_scribble = (unsigned char *) c;
1945 c->cmd_type = CMD_SCSI;
1946 c->scsi_cmd = cmd;
1947 c->Header.ReplyQueue = 0; /* unused in simple mode */
1948 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1949 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1950 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1952 /* Fill in the request block... */
1954 c->Request.Timeout = 0;
1955 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1956 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1957 c->Request.CDBLen = cmd->cmd_len;
1958 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1959 c->Request.Type.Type = TYPE_CMD;
1960 c->Request.Type.Attribute = ATTR_SIMPLE;
1961 switch (cmd->sc_data_direction) {
1962 case DMA_TO_DEVICE:
1963 c->Request.Type.Direction = XFER_WRITE;
1964 break;
1965 case DMA_FROM_DEVICE:
1966 c->Request.Type.Direction = XFER_READ;
1967 break;
1968 case DMA_NONE:
1969 c->Request.Type.Direction = XFER_NONE;
1970 break;
1971 case DMA_BIDIRECTIONAL:
1972 /* This can happen if a buggy application does a scsi passthru
1973 * and sets both inlen and outlen to non-zero. ( see
1974 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1977 c->Request.Type.Direction = XFER_RSVD;
1978 /* This is technically wrong, and hpsa controllers should
1979 * reject it with CMD_INVALID, which is the most correct
1980 * response, but non-fibre backends appear to let it
1981 * slide by, and give the same results as if this field
1982 * were set correctly. Either way is acceptable for
1983 * our purposes here.
1986 break;
1988 default:
1989 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1990 cmd->sc_data_direction);
1991 BUG();
1992 break;
1995 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
1996 cmd_free(h, c);
1997 return SCSI_MLQUEUE_HOST_BUSY;
1999 enqueue_cmd_and_start_io(h, c);
2000 /* the cmd'll come back via intr handler in complete_scsi_command() */
2001 return 0;
2004 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2006 static void hpsa_scan_start(struct Scsi_Host *sh)
2008 struct ctlr_info *h = shost_to_hba(sh);
2009 unsigned long flags;
2011 /* wait until any scan already in progress is finished. */
2012 while (1) {
2013 spin_lock_irqsave(&h->scan_lock, flags);
2014 if (h->scan_finished)
2015 break;
2016 spin_unlock_irqrestore(&h->scan_lock, flags);
2017 wait_event(h->scan_wait_queue, h->scan_finished);
2018 /* Note: We don't need to worry about a race between this
2019 * thread and driver unload because the midlayer will
2020 * have incremented the reference count, so unload won't
2021 * happen if we're in here.
2024 h->scan_finished = 0; /* mark scan as in progress */
2025 spin_unlock_irqrestore(&h->scan_lock, flags);
2027 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2029 spin_lock_irqsave(&h->scan_lock, flags);
2030 h->scan_finished = 1; /* mark scan as finished. */
2031 wake_up_all(&h->scan_wait_queue);
2032 spin_unlock_irqrestore(&h->scan_lock, flags);
2035 static int hpsa_scan_finished(struct Scsi_Host *sh,
2036 unsigned long elapsed_time)
2038 struct ctlr_info *h = shost_to_hba(sh);
2039 unsigned long flags;
2040 int finished;
2042 spin_lock_irqsave(&h->scan_lock, flags);
2043 finished = h->scan_finished;
2044 spin_unlock_irqrestore(&h->scan_lock, flags);
2045 return finished;
2048 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2049 int qdepth, int reason)
2051 struct ctlr_info *h = sdev_to_hba(sdev);
2053 if (reason != SCSI_QDEPTH_DEFAULT)
2054 return -ENOTSUPP;
2056 if (qdepth < 1)
2057 qdepth = 1;
2058 else
2059 if (qdepth > h->nr_cmds)
2060 qdepth = h->nr_cmds;
2061 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2062 return sdev->queue_depth;
2065 static void hpsa_unregister_scsi(struct ctlr_info *h)
2067 /* we are being forcibly unloaded, and may not refuse. */
2068 scsi_remove_host(h->scsi_host);
2069 scsi_host_put(h->scsi_host);
2070 h->scsi_host = NULL;
2073 static int hpsa_register_scsi(struct ctlr_info *h)
2075 int rc;
2077 rc = hpsa_scsi_detect(h);
2078 if (rc != 0)
2079 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2080 " hpsa_scsi_detect(), rc is %d\n", rc);
2081 return rc;
2084 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2085 unsigned char lunaddr[])
2087 int rc = 0;
2088 int count = 0;
2089 int waittime = 1; /* seconds */
2090 struct CommandList *c;
2092 c = cmd_special_alloc(h);
2093 if (!c) {
2094 dev_warn(&h->pdev->dev, "out of memory in "
2095 "wait_for_device_to_become_ready.\n");
2096 return IO_ERROR;
2099 /* Send test unit ready until device ready, or give up. */
2100 while (count < HPSA_TUR_RETRY_LIMIT) {
2102 /* Wait for a bit. do this first, because if we send
2103 * the TUR right away, the reset will just abort it.
2105 msleep(1000 * waittime);
2106 count++;
2108 /* Increase wait time with each try, up to a point. */
2109 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2110 waittime = waittime * 2;
2112 /* Send the Test Unit Ready */
2113 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2114 hpsa_scsi_do_simple_cmd_core(h, c);
2115 /* no unmap needed here because no data xfer. */
2117 if (c->err_info->CommandStatus == CMD_SUCCESS)
2118 break;
2120 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2121 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2122 (c->err_info->SenseInfo[2] == NO_SENSE ||
2123 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2124 break;
2126 dev_warn(&h->pdev->dev, "waiting %d secs "
2127 "for device to become ready.\n", waittime);
2128 rc = 1; /* device not ready. */
2131 if (rc)
2132 dev_warn(&h->pdev->dev, "giving up on device.\n");
2133 else
2134 dev_warn(&h->pdev->dev, "device is ready.\n");
2136 cmd_special_free(h, c);
2137 return rc;
2140 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2141 * complaining. Doing a host- or bus-reset can't do anything good here.
2143 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2145 int rc;
2146 struct ctlr_info *h;
2147 struct hpsa_scsi_dev_t *dev;
2149 /* find the controller to which the command to be aborted was sent */
2150 h = sdev_to_hba(scsicmd->device);
2151 if (h == NULL) /* paranoia */
2152 return FAILED;
2153 dev = scsicmd->device->hostdata;
2154 if (!dev) {
2155 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2156 "device lookup failed.\n");
2157 return FAILED;
2159 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2160 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2161 /* send a reset to the SCSI LUN which the command was sent to */
2162 rc = hpsa_send_reset(h, dev->scsi3addr);
2163 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2164 return SUCCESS;
2166 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2167 return FAILED;
2171 * For operations that cannot sleep, a command block is allocated at init,
2172 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2173 * which ones are free or in use. Lock must be held when calling this.
2174 * cmd_free() is the complement.
2176 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2178 struct CommandList *c;
2179 int i;
2180 union u64bit temp64;
2181 dma_addr_t cmd_dma_handle, err_dma_handle;
2183 do {
2184 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2185 if (i == h->nr_cmds)
2186 return NULL;
2187 } while (test_and_set_bit
2188 (i & (BITS_PER_LONG - 1),
2189 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2190 c = h->cmd_pool + i;
2191 memset(c, 0, sizeof(*c));
2192 cmd_dma_handle = h->cmd_pool_dhandle
2193 + i * sizeof(*c);
2194 c->err_info = h->errinfo_pool + i;
2195 memset(c->err_info, 0, sizeof(*c->err_info));
2196 err_dma_handle = h->errinfo_pool_dhandle
2197 + i * sizeof(*c->err_info);
2198 h->nr_allocs++;
2200 c->cmdindex = i;
2202 INIT_HLIST_NODE(&c->list);
2203 c->busaddr = (u32) cmd_dma_handle;
2204 temp64.val = (u64) err_dma_handle;
2205 c->ErrDesc.Addr.lower = temp64.val32.lower;
2206 c->ErrDesc.Addr.upper = temp64.val32.upper;
2207 c->ErrDesc.Len = sizeof(*c->err_info);
2209 c->h = h;
2210 return c;
2213 /* For operations that can wait for kmalloc to possibly sleep,
2214 * this routine can be called. Lock need not be held to call
2215 * cmd_special_alloc. cmd_special_free() is the complement.
2217 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2219 struct CommandList *c;
2220 union u64bit temp64;
2221 dma_addr_t cmd_dma_handle, err_dma_handle;
2223 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2224 if (c == NULL)
2225 return NULL;
2226 memset(c, 0, sizeof(*c));
2228 c->cmdindex = -1;
2230 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2231 &err_dma_handle);
2233 if (c->err_info == NULL) {
2234 pci_free_consistent(h->pdev,
2235 sizeof(*c), c, cmd_dma_handle);
2236 return NULL;
2238 memset(c->err_info, 0, sizeof(*c->err_info));
2240 INIT_HLIST_NODE(&c->list);
2241 c->busaddr = (u32) cmd_dma_handle;
2242 temp64.val = (u64) err_dma_handle;
2243 c->ErrDesc.Addr.lower = temp64.val32.lower;
2244 c->ErrDesc.Addr.upper = temp64.val32.upper;
2245 c->ErrDesc.Len = sizeof(*c->err_info);
2247 c->h = h;
2248 return c;
2251 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2253 int i;
2255 i = c - h->cmd_pool;
2256 clear_bit(i & (BITS_PER_LONG - 1),
2257 h->cmd_pool_bits + (i / BITS_PER_LONG));
2258 h->nr_frees++;
2261 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2263 union u64bit temp64;
2265 temp64.val32.lower = c->ErrDesc.Addr.lower;
2266 temp64.val32.upper = c->ErrDesc.Addr.upper;
2267 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2268 c->err_info, (dma_addr_t) temp64.val);
2269 pci_free_consistent(h->pdev, sizeof(*c),
2270 c, (dma_addr_t) c->busaddr);
2273 #ifdef CONFIG_COMPAT
2275 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2277 IOCTL32_Command_struct __user *arg32 =
2278 (IOCTL32_Command_struct __user *) arg;
2279 IOCTL_Command_struct arg64;
2280 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2281 int err;
2282 u32 cp;
2284 err = 0;
2285 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2286 sizeof(arg64.LUN_info));
2287 err |= copy_from_user(&arg64.Request, &arg32->Request,
2288 sizeof(arg64.Request));
2289 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2290 sizeof(arg64.error_info));
2291 err |= get_user(arg64.buf_size, &arg32->buf_size);
2292 err |= get_user(cp, &arg32->buf);
2293 arg64.buf = compat_ptr(cp);
2294 err |= copy_to_user(p, &arg64, sizeof(arg64));
2296 if (err)
2297 return -EFAULT;
2299 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2300 if (err)
2301 return err;
2302 err |= copy_in_user(&arg32->error_info, &p->error_info,
2303 sizeof(arg32->error_info));
2304 if (err)
2305 return -EFAULT;
2306 return err;
2309 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2310 int cmd, void *arg)
2312 BIG_IOCTL32_Command_struct __user *arg32 =
2313 (BIG_IOCTL32_Command_struct __user *) arg;
2314 BIG_IOCTL_Command_struct arg64;
2315 BIG_IOCTL_Command_struct __user *p =
2316 compat_alloc_user_space(sizeof(arg64));
2317 int err;
2318 u32 cp;
2320 err = 0;
2321 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2322 sizeof(arg64.LUN_info));
2323 err |= copy_from_user(&arg64.Request, &arg32->Request,
2324 sizeof(arg64.Request));
2325 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2326 sizeof(arg64.error_info));
2327 err |= get_user(arg64.buf_size, &arg32->buf_size);
2328 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2329 err |= get_user(cp, &arg32->buf);
2330 arg64.buf = compat_ptr(cp);
2331 err |= copy_to_user(p, &arg64, sizeof(arg64));
2333 if (err)
2334 return -EFAULT;
2336 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2337 if (err)
2338 return err;
2339 err |= copy_in_user(&arg32->error_info, &p->error_info,
2340 sizeof(arg32->error_info));
2341 if (err)
2342 return -EFAULT;
2343 return err;
2346 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2348 switch (cmd) {
2349 case CCISS_GETPCIINFO:
2350 case CCISS_GETINTINFO:
2351 case CCISS_SETINTINFO:
2352 case CCISS_GETNODENAME:
2353 case CCISS_SETNODENAME:
2354 case CCISS_GETHEARTBEAT:
2355 case CCISS_GETBUSTYPES:
2356 case CCISS_GETFIRMVER:
2357 case CCISS_GETDRIVVER:
2358 case CCISS_REVALIDVOLS:
2359 case CCISS_DEREGDISK:
2360 case CCISS_REGNEWDISK:
2361 case CCISS_REGNEWD:
2362 case CCISS_RESCANDISK:
2363 case CCISS_GETLUNINFO:
2364 return hpsa_ioctl(dev, cmd, arg);
2366 case CCISS_PASSTHRU32:
2367 return hpsa_ioctl32_passthru(dev, cmd, arg);
2368 case CCISS_BIG_PASSTHRU32:
2369 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2371 default:
2372 return -ENOIOCTLCMD;
2375 #endif
2377 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2379 struct hpsa_pci_info pciinfo;
2381 if (!argp)
2382 return -EINVAL;
2383 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2384 pciinfo.bus = h->pdev->bus->number;
2385 pciinfo.dev_fn = h->pdev->devfn;
2386 pciinfo.board_id = h->board_id;
2387 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2388 return -EFAULT;
2389 return 0;
2392 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2394 DriverVer_type DriverVer;
2395 unsigned char vmaj, vmin, vsubmin;
2396 int rc;
2398 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2399 &vmaj, &vmin, &vsubmin);
2400 if (rc != 3) {
2401 dev_info(&h->pdev->dev, "driver version string '%s' "
2402 "unrecognized.", HPSA_DRIVER_VERSION);
2403 vmaj = 0;
2404 vmin = 0;
2405 vsubmin = 0;
2407 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2408 if (!argp)
2409 return -EINVAL;
2410 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2411 return -EFAULT;
2412 return 0;
2415 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2417 IOCTL_Command_struct iocommand;
2418 struct CommandList *c;
2419 char *buff = NULL;
2420 union u64bit temp64;
2422 if (!argp)
2423 return -EINVAL;
2424 if (!capable(CAP_SYS_RAWIO))
2425 return -EPERM;
2426 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2427 return -EFAULT;
2428 if ((iocommand.buf_size < 1) &&
2429 (iocommand.Request.Type.Direction != XFER_NONE)) {
2430 return -EINVAL;
2432 if (iocommand.buf_size > 0) {
2433 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2434 if (buff == NULL)
2435 return -EFAULT;
2437 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2438 /* Copy the data into the buffer we created */
2439 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2440 kfree(buff);
2441 return -EFAULT;
2443 } else
2444 memset(buff, 0, iocommand.buf_size);
2445 c = cmd_special_alloc(h);
2446 if (c == NULL) {
2447 kfree(buff);
2448 return -ENOMEM;
2450 /* Fill in the command type */
2451 c->cmd_type = CMD_IOCTL_PEND;
2452 /* Fill in Command Header */
2453 c->Header.ReplyQueue = 0; /* unused in simple mode */
2454 if (iocommand.buf_size > 0) { /* buffer to fill */
2455 c->Header.SGList = 1;
2456 c->Header.SGTotal = 1;
2457 } else { /* no buffers to fill */
2458 c->Header.SGList = 0;
2459 c->Header.SGTotal = 0;
2461 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2462 /* use the kernel address the cmd block for tag */
2463 c->Header.Tag.lower = c->busaddr;
2465 /* Fill in Request block */
2466 memcpy(&c->Request, &iocommand.Request,
2467 sizeof(c->Request));
2469 /* Fill in the scatter gather information */
2470 if (iocommand.buf_size > 0) {
2471 temp64.val = pci_map_single(h->pdev, buff,
2472 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2473 c->SG[0].Addr.lower = temp64.val32.lower;
2474 c->SG[0].Addr.upper = temp64.val32.upper;
2475 c->SG[0].Len = iocommand.buf_size;
2476 c->SG[0].Ext = 0; /* we are not chaining*/
2478 hpsa_scsi_do_simple_cmd_core(h, c);
2479 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2480 check_ioctl_unit_attention(h, c);
2482 /* Copy the error information out */
2483 memcpy(&iocommand.error_info, c->err_info,
2484 sizeof(iocommand.error_info));
2485 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2486 kfree(buff);
2487 cmd_special_free(h, c);
2488 return -EFAULT;
2491 if (iocommand.Request.Type.Direction == XFER_READ) {
2492 /* Copy the data out of the buffer we created */
2493 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2494 kfree(buff);
2495 cmd_special_free(h, c);
2496 return -EFAULT;
2499 kfree(buff);
2500 cmd_special_free(h, c);
2501 return 0;
2504 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2506 BIG_IOCTL_Command_struct *ioc;
2507 struct CommandList *c;
2508 unsigned char **buff = NULL;
2509 int *buff_size = NULL;
2510 union u64bit temp64;
2511 BYTE sg_used = 0;
2512 int status = 0;
2513 int i;
2514 u32 left;
2515 u32 sz;
2516 BYTE __user *data_ptr;
2518 if (!argp)
2519 return -EINVAL;
2520 if (!capable(CAP_SYS_RAWIO))
2521 return -EPERM;
2522 ioc = (BIG_IOCTL_Command_struct *)
2523 kmalloc(sizeof(*ioc), GFP_KERNEL);
2524 if (!ioc) {
2525 status = -ENOMEM;
2526 goto cleanup1;
2528 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2529 status = -EFAULT;
2530 goto cleanup1;
2532 if ((ioc->buf_size < 1) &&
2533 (ioc->Request.Type.Direction != XFER_NONE)) {
2534 status = -EINVAL;
2535 goto cleanup1;
2537 /* Check kmalloc limits using all SGs */
2538 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2539 status = -EINVAL;
2540 goto cleanup1;
2542 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2543 status = -EINVAL;
2544 goto cleanup1;
2546 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2547 if (!buff) {
2548 status = -ENOMEM;
2549 goto cleanup1;
2551 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2552 if (!buff_size) {
2553 status = -ENOMEM;
2554 goto cleanup1;
2556 left = ioc->buf_size;
2557 data_ptr = ioc->buf;
2558 while (left) {
2559 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2560 buff_size[sg_used] = sz;
2561 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2562 if (buff[sg_used] == NULL) {
2563 status = -ENOMEM;
2564 goto cleanup1;
2566 if (ioc->Request.Type.Direction == XFER_WRITE) {
2567 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2568 status = -ENOMEM;
2569 goto cleanup1;
2571 } else
2572 memset(buff[sg_used], 0, sz);
2573 left -= sz;
2574 data_ptr += sz;
2575 sg_used++;
2577 c = cmd_special_alloc(h);
2578 if (c == NULL) {
2579 status = -ENOMEM;
2580 goto cleanup1;
2582 c->cmd_type = CMD_IOCTL_PEND;
2583 c->Header.ReplyQueue = 0;
2585 if (ioc->buf_size > 0) {
2586 c->Header.SGList = sg_used;
2587 c->Header.SGTotal = sg_used;
2588 } else {
2589 c->Header.SGList = 0;
2590 c->Header.SGTotal = 0;
2592 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2593 c->Header.Tag.lower = c->busaddr;
2594 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2595 if (ioc->buf_size > 0) {
2596 int i;
2597 for (i = 0; i < sg_used; i++) {
2598 temp64.val = pci_map_single(h->pdev, buff[i],
2599 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2600 c->SG[i].Addr.lower = temp64.val32.lower;
2601 c->SG[i].Addr.upper = temp64.val32.upper;
2602 c->SG[i].Len = buff_size[i];
2603 /* we are not chaining */
2604 c->SG[i].Ext = 0;
2607 hpsa_scsi_do_simple_cmd_core(h, c);
2608 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2609 check_ioctl_unit_attention(h, c);
2610 /* Copy the error information out */
2611 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2612 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2613 cmd_special_free(h, c);
2614 status = -EFAULT;
2615 goto cleanup1;
2617 if (ioc->Request.Type.Direction == XFER_READ) {
2618 /* Copy the data out of the buffer we created */
2619 BYTE __user *ptr = ioc->buf;
2620 for (i = 0; i < sg_used; i++) {
2621 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2622 cmd_special_free(h, c);
2623 status = -EFAULT;
2624 goto cleanup1;
2626 ptr += buff_size[i];
2629 cmd_special_free(h, c);
2630 status = 0;
2631 cleanup1:
2632 if (buff) {
2633 for (i = 0; i < sg_used; i++)
2634 kfree(buff[i]);
2635 kfree(buff);
2637 kfree(buff_size);
2638 kfree(ioc);
2639 return status;
2642 static void check_ioctl_unit_attention(struct ctlr_info *h,
2643 struct CommandList *c)
2645 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2646 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2647 (void) check_for_unit_attention(h, c);
2650 * ioctl
2652 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2654 struct ctlr_info *h;
2655 void __user *argp = (void __user *)arg;
2657 h = sdev_to_hba(dev);
2659 switch (cmd) {
2660 case CCISS_DEREGDISK:
2661 case CCISS_REGNEWDISK:
2662 case CCISS_REGNEWD:
2663 hpsa_scan_start(h->scsi_host);
2664 return 0;
2665 case CCISS_GETPCIINFO:
2666 return hpsa_getpciinfo_ioctl(h, argp);
2667 case CCISS_GETDRIVVER:
2668 return hpsa_getdrivver_ioctl(h, argp);
2669 case CCISS_PASSTHRU:
2670 return hpsa_passthru_ioctl(h, argp);
2671 case CCISS_BIG_PASSTHRU:
2672 return hpsa_big_passthru_ioctl(h, argp);
2673 default:
2674 return -ENOTTY;
2678 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2679 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2680 int cmd_type)
2682 int pci_dir = XFER_NONE;
2684 c->cmd_type = CMD_IOCTL_PEND;
2685 c->Header.ReplyQueue = 0;
2686 if (buff != NULL && size > 0) {
2687 c->Header.SGList = 1;
2688 c->Header.SGTotal = 1;
2689 } else {
2690 c->Header.SGList = 0;
2691 c->Header.SGTotal = 0;
2693 c->Header.Tag.lower = c->busaddr;
2694 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2696 c->Request.Type.Type = cmd_type;
2697 if (cmd_type == TYPE_CMD) {
2698 switch (cmd) {
2699 case HPSA_INQUIRY:
2700 /* are we trying to read a vital product page */
2701 if (page_code != 0) {
2702 c->Request.CDB[1] = 0x01;
2703 c->Request.CDB[2] = page_code;
2705 c->Request.CDBLen = 6;
2706 c->Request.Type.Attribute = ATTR_SIMPLE;
2707 c->Request.Type.Direction = XFER_READ;
2708 c->Request.Timeout = 0;
2709 c->Request.CDB[0] = HPSA_INQUIRY;
2710 c->Request.CDB[4] = size & 0xFF;
2711 break;
2712 case HPSA_REPORT_LOG:
2713 case HPSA_REPORT_PHYS:
2714 /* Talking to controller so It's a physical command
2715 mode = 00 target = 0. Nothing to write.
2717 c->Request.CDBLen = 12;
2718 c->Request.Type.Attribute = ATTR_SIMPLE;
2719 c->Request.Type.Direction = XFER_READ;
2720 c->Request.Timeout = 0;
2721 c->Request.CDB[0] = cmd;
2722 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2723 c->Request.CDB[7] = (size >> 16) & 0xFF;
2724 c->Request.CDB[8] = (size >> 8) & 0xFF;
2725 c->Request.CDB[9] = size & 0xFF;
2726 break;
2727 case HPSA_CACHE_FLUSH:
2728 c->Request.CDBLen = 12;
2729 c->Request.Type.Attribute = ATTR_SIMPLE;
2730 c->Request.Type.Direction = XFER_WRITE;
2731 c->Request.Timeout = 0;
2732 c->Request.CDB[0] = BMIC_WRITE;
2733 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2734 break;
2735 case TEST_UNIT_READY:
2736 c->Request.CDBLen = 6;
2737 c->Request.Type.Attribute = ATTR_SIMPLE;
2738 c->Request.Type.Direction = XFER_NONE;
2739 c->Request.Timeout = 0;
2740 break;
2741 default:
2742 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2743 BUG();
2744 return;
2746 } else if (cmd_type == TYPE_MSG) {
2747 switch (cmd) {
2749 case HPSA_DEVICE_RESET_MSG:
2750 c->Request.CDBLen = 16;
2751 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2752 c->Request.Type.Attribute = ATTR_SIMPLE;
2753 c->Request.Type.Direction = XFER_NONE;
2754 c->Request.Timeout = 0; /* Don't time out */
2755 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
2756 c->Request.CDB[1] = 0x03; /* Reset target above */
2757 /* If bytes 4-7 are zero, it means reset the */
2758 /* LunID device */
2759 c->Request.CDB[4] = 0x00;
2760 c->Request.CDB[5] = 0x00;
2761 c->Request.CDB[6] = 0x00;
2762 c->Request.CDB[7] = 0x00;
2763 break;
2765 default:
2766 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2767 cmd);
2768 BUG();
2770 } else {
2771 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2772 BUG();
2775 switch (c->Request.Type.Direction) {
2776 case XFER_READ:
2777 pci_dir = PCI_DMA_FROMDEVICE;
2778 break;
2779 case XFER_WRITE:
2780 pci_dir = PCI_DMA_TODEVICE;
2781 break;
2782 case XFER_NONE:
2783 pci_dir = PCI_DMA_NONE;
2784 break;
2785 default:
2786 pci_dir = PCI_DMA_BIDIRECTIONAL;
2789 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2791 return;
2795 * Map (physical) PCI mem into (virtual) kernel space
2797 static void __iomem *remap_pci_mem(ulong base, ulong size)
2799 ulong page_base = ((ulong) base) & PAGE_MASK;
2800 ulong page_offs = ((ulong) base) - page_base;
2801 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2803 return page_remapped ? (page_remapped + page_offs) : NULL;
2806 /* Takes cmds off the submission queue and sends them to the hardware,
2807 * then puts them on the queue of cmds waiting for completion.
2809 static void start_io(struct ctlr_info *h)
2811 struct CommandList *c;
2813 while (!hlist_empty(&h->reqQ)) {
2814 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2815 /* can't do anything if fifo is full */
2816 if ((h->access.fifo_full(h))) {
2817 dev_warn(&h->pdev->dev, "fifo full\n");
2818 break;
2821 /* Get the first entry from the Request Q */
2822 removeQ(c);
2823 h->Qdepth--;
2825 /* Tell the controller execute command */
2826 h->access.submit_command(h, c);
2828 /* Put job onto the completed Q */
2829 addQ(&h->cmpQ, c);
2833 static inline unsigned long get_next_completion(struct ctlr_info *h)
2835 return h->access.command_completed(h);
2838 static inline bool interrupt_pending(struct ctlr_info *h)
2840 return h->access.intr_pending(h);
2843 static inline long interrupt_not_for_us(struct ctlr_info *h)
2845 return (h->access.intr_pending(h) == 0) ||
2846 (h->interrupts_enabled == 0);
2849 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2850 u32 raw_tag)
2852 if (unlikely(tag_index >= h->nr_cmds)) {
2853 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2854 return 1;
2856 return 0;
2859 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2861 removeQ(c);
2862 if (likely(c->cmd_type == CMD_SCSI))
2863 complete_scsi_command(c, 0, raw_tag);
2864 else if (c->cmd_type == CMD_IOCTL_PEND)
2865 complete(c->waiting);
2868 static inline u32 hpsa_tag_contains_index(u32 tag)
2870 #define DIRECT_LOOKUP_BIT 0x10
2871 return tag & DIRECT_LOOKUP_BIT;
2874 static inline u32 hpsa_tag_to_index(u32 tag)
2876 #define DIRECT_LOOKUP_SHIFT 5
2877 return tag >> DIRECT_LOOKUP_SHIFT;
2880 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2882 #define HPSA_ERROR_BITS 0x03
2883 return tag & ~HPSA_ERROR_BITS;
2886 /* process completion of an indexed ("direct lookup") command */
2887 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2888 u32 raw_tag)
2890 u32 tag_index;
2891 struct CommandList *c;
2893 tag_index = hpsa_tag_to_index(raw_tag);
2894 if (bad_tag(h, tag_index, raw_tag))
2895 return next_command(h);
2896 c = h->cmd_pool + tag_index;
2897 finish_cmd(c, raw_tag);
2898 return next_command(h);
2901 /* process completion of a non-indexed command */
2902 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2903 u32 raw_tag)
2905 u32 tag;
2906 struct CommandList *c = NULL;
2907 struct hlist_node *tmp;
2909 tag = hpsa_tag_discard_error_bits(raw_tag);
2910 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2911 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2912 finish_cmd(c, raw_tag);
2913 return next_command(h);
2916 bad_tag(h, h->nr_cmds + 1, raw_tag);
2917 return next_command(h);
2920 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2922 struct ctlr_info *h = dev_id;
2923 unsigned long flags;
2924 u32 raw_tag;
2926 if (interrupt_not_for_us(h))
2927 return IRQ_NONE;
2928 spin_lock_irqsave(&h->lock, flags);
2929 while (interrupt_pending(h)) {
2930 raw_tag = get_next_completion(h);
2931 while (raw_tag != FIFO_EMPTY) {
2932 if (hpsa_tag_contains_index(raw_tag))
2933 raw_tag = process_indexed_cmd(h, raw_tag);
2934 else
2935 raw_tag = process_nonindexed_cmd(h, raw_tag);
2938 spin_unlock_irqrestore(&h->lock, flags);
2939 return IRQ_HANDLED;
2942 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2944 struct ctlr_info *h = dev_id;
2945 unsigned long flags;
2946 u32 raw_tag;
2948 spin_lock_irqsave(&h->lock, flags);
2949 raw_tag = get_next_completion(h);
2950 while (raw_tag != FIFO_EMPTY) {
2951 if (hpsa_tag_contains_index(raw_tag))
2952 raw_tag = process_indexed_cmd(h, raw_tag);
2953 else
2954 raw_tag = process_nonindexed_cmd(h, raw_tag);
2956 spin_unlock_irqrestore(&h->lock, flags);
2957 return IRQ_HANDLED;
2960 /* Send a message CDB to the firmware. */
2961 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2962 unsigned char type)
2964 struct Command {
2965 struct CommandListHeader CommandHeader;
2966 struct RequestBlock Request;
2967 struct ErrDescriptor ErrorDescriptor;
2969 struct Command *cmd;
2970 static const size_t cmd_sz = sizeof(*cmd) +
2971 sizeof(cmd->ErrorDescriptor);
2972 dma_addr_t paddr64;
2973 uint32_t paddr32, tag;
2974 void __iomem *vaddr;
2975 int i, err;
2977 vaddr = pci_ioremap_bar(pdev, 0);
2978 if (vaddr == NULL)
2979 return -ENOMEM;
2981 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2982 * CCISS commands, so they must be allocated from the lower 4GiB of
2983 * memory.
2985 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2986 if (err) {
2987 iounmap(vaddr);
2988 return -ENOMEM;
2991 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2992 if (cmd == NULL) {
2993 iounmap(vaddr);
2994 return -ENOMEM;
2997 /* This must fit, because of the 32-bit consistent DMA mask. Also,
2998 * although there's no guarantee, we assume that the address is at
2999 * least 4-byte aligned (most likely, it's page-aligned).
3001 paddr32 = paddr64;
3003 cmd->CommandHeader.ReplyQueue = 0;
3004 cmd->CommandHeader.SGList = 0;
3005 cmd->CommandHeader.SGTotal = 0;
3006 cmd->CommandHeader.Tag.lower = paddr32;
3007 cmd->CommandHeader.Tag.upper = 0;
3008 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3010 cmd->Request.CDBLen = 16;
3011 cmd->Request.Type.Type = TYPE_MSG;
3012 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3013 cmd->Request.Type.Direction = XFER_NONE;
3014 cmd->Request.Timeout = 0; /* Don't time out */
3015 cmd->Request.CDB[0] = opcode;
3016 cmd->Request.CDB[1] = type;
3017 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3018 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3019 cmd->ErrorDescriptor.Addr.upper = 0;
3020 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3022 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3024 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3025 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3026 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3027 break;
3028 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3031 iounmap(vaddr);
3033 /* we leak the DMA buffer here ... no choice since the controller could
3034 * still complete the command.
3036 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3037 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3038 opcode, type);
3039 return -ETIMEDOUT;
3042 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3044 if (tag & HPSA_ERROR_BIT) {
3045 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3046 opcode, type);
3047 return -EIO;
3050 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3051 opcode, type);
3052 return 0;
3055 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3056 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3058 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3060 /* the #defines are stolen from drivers/pci/msi.h. */
3061 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3062 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3064 int pos;
3065 u16 control = 0;
3067 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3068 if (pos) {
3069 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3070 if (control & PCI_MSI_FLAGS_ENABLE) {
3071 dev_info(&pdev->dev, "resetting MSI\n");
3072 pci_write_config_word(pdev, msi_control_reg(pos),
3073 control & ~PCI_MSI_FLAGS_ENABLE);
3077 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3078 if (pos) {
3079 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3080 if (control & PCI_MSIX_FLAGS_ENABLE) {
3081 dev_info(&pdev->dev, "resetting MSI-X\n");
3082 pci_write_config_word(pdev, msi_control_reg(pos),
3083 control & ~PCI_MSIX_FLAGS_ENABLE);
3087 return 0;
3090 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3091 void * __iomem vaddr, bool use_doorbell)
3093 u16 pmcsr;
3094 int pos;
3096 if (use_doorbell) {
3097 /* For everything after the P600, the PCI power state method
3098 * of resetting the controller doesn't work, so we have this
3099 * other way using the doorbell register.
3101 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3102 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3103 msleep(1000);
3104 } else { /* Try to do it the PCI power state way */
3106 /* Quoting from the Open CISS Specification: "The Power
3107 * Management Control/Status Register (CSR) controls the power
3108 * state of the device. The normal operating state is D0,
3109 * CSR=00h. The software off state is D3, CSR=03h. To reset
3110 * the controller, place the interface device in D3 then to D0,
3111 * this causes a secondary PCI reset which will reset the
3112 * controller." */
3114 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3115 if (pos == 0) {
3116 dev_err(&pdev->dev,
3117 "hpsa_reset_controller: "
3118 "PCI PM not supported\n");
3119 return -ENODEV;
3121 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3122 /* enter the D3hot power management state */
3123 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3124 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3125 pmcsr |= PCI_D3hot;
3126 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3128 msleep(500);
3130 /* enter the D0 power management state */
3131 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3132 pmcsr |= PCI_D0;
3133 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3135 msleep(500);
3137 return 0;
3140 /* This does a hard reset of the controller using PCI power management
3141 * states or the using the doorbell register.
3143 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3145 u16 saved_config_space[32];
3146 u64 cfg_offset;
3147 u32 cfg_base_addr;
3148 u64 cfg_base_addr_index;
3149 void __iomem *vaddr;
3150 unsigned long paddr;
3151 u32 misc_fw_support, active_transport;
3152 int rc, i;
3153 struct CfgTable __iomem *cfgtable;
3154 bool use_doorbell;
3155 u32 board_id;
3157 /* For controllers as old as the P600, this is very nearly
3158 * the same thing as
3160 * pci_save_state(pci_dev);
3161 * pci_set_power_state(pci_dev, PCI_D3hot);
3162 * pci_set_power_state(pci_dev, PCI_D0);
3163 * pci_restore_state(pci_dev);
3165 * but we can't use these nice canned kernel routines on
3166 * kexec, because they also check the MSI/MSI-X state in PCI
3167 * configuration space and do the wrong thing when it is
3168 * set/cleared. Also, the pci_save/restore_state functions
3169 * violate the ordering requirements for restoring the
3170 * configuration space from the CCISS document (see the
3171 * comment below). So we roll our own ....
3173 * For controllers newer than the P600, the pci power state
3174 * method of resetting doesn't work so we have another way
3175 * using the doorbell register.
3178 /* Exclude 640x boards. These are two pci devices in one slot
3179 * which share a battery backed cache module. One controls the
3180 * cache, the other accesses the cache through the one that controls
3181 * it. If we reset the one controlling the cache, the other will
3182 * likely not be happy. Just forbid resetting this conjoined mess.
3183 * The 640x isn't really supported by hpsa anyway.
3185 hpsa_lookup_board_id(pdev, &board_id);
3186 if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3187 return -ENOTSUPP;
3189 for (i = 0; i < 32; i++)
3190 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3193 /* find the first memory BAR, so we can find the cfg table */
3194 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3195 if (rc)
3196 return rc;
3197 vaddr = remap_pci_mem(paddr, 0x250);
3198 if (!vaddr)
3199 return -ENOMEM;
3201 /* find cfgtable in order to check if reset via doorbell is supported */
3202 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3203 &cfg_base_addr_index, &cfg_offset);
3204 if (rc)
3205 goto unmap_vaddr;
3206 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3207 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3208 if (!cfgtable) {
3209 rc = -ENOMEM;
3210 goto unmap_vaddr;
3213 /* If reset via doorbell register is supported, use that. */
3214 misc_fw_support = readl(&cfgtable->misc_fw_support);
3215 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3217 /* The doorbell reset seems to cause lockups on some Smart
3218 * Arrays (e.g. P410, P410i, maybe others). Until this is
3219 * fixed or at least isolated, avoid the doorbell reset.
3221 use_doorbell = 0;
3223 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3224 if (rc)
3225 goto unmap_cfgtable;
3227 /* Restore the PCI configuration space. The Open CISS
3228 * Specification says, "Restore the PCI Configuration
3229 * Registers, offsets 00h through 60h. It is important to
3230 * restore the command register, 16-bits at offset 04h,
3231 * last. Do not restore the configuration status register,
3232 * 16-bits at offset 06h." Note that the offset is 2*i.
3234 for (i = 0; i < 32; i++) {
3235 if (i == 2 || i == 3)
3236 continue;
3237 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3239 wmb();
3240 pci_write_config_word(pdev, 4, saved_config_space[2]);
3242 /* Some devices (notably the HP Smart Array 5i Controller)
3243 need a little pause here */
3244 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3246 /* Controller should be in simple mode at this point. If it's not,
3247 * It means we're on one of those controllers which doesn't support
3248 * the doorbell reset method and on which the PCI power management reset
3249 * method doesn't work (P800, for example.)
3250 * In those cases, pretend the reset worked and hope for the best.
3252 active_transport = readl(&cfgtable->TransportActive);
3253 if (active_transport & PERFORMANT_MODE) {
3254 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3255 " proceeding anyway.\n");
3256 rc = -ENOTSUPP;
3259 unmap_cfgtable:
3260 iounmap(cfgtable);
3262 unmap_vaddr:
3263 iounmap(vaddr);
3264 return rc;
3268 * We cannot read the structure directly, for portability we must use
3269 * the io functions.
3270 * This is for debug only.
3272 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3274 #ifdef HPSA_DEBUG
3275 int i;
3276 char temp_name[17];
3278 dev_info(dev, "Controller Configuration information\n");
3279 dev_info(dev, "------------------------------------\n");
3280 for (i = 0; i < 4; i++)
3281 temp_name[i] = readb(&(tb->Signature[i]));
3282 temp_name[4] = '\0';
3283 dev_info(dev, " Signature = %s\n", temp_name);
3284 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3285 dev_info(dev, " Transport methods supported = 0x%x\n",
3286 readl(&(tb->TransportSupport)));
3287 dev_info(dev, " Transport methods active = 0x%x\n",
3288 readl(&(tb->TransportActive)));
3289 dev_info(dev, " Requested transport Method = 0x%x\n",
3290 readl(&(tb->HostWrite.TransportRequest)));
3291 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3292 readl(&(tb->HostWrite.CoalIntDelay)));
3293 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3294 readl(&(tb->HostWrite.CoalIntCount)));
3295 dev_info(dev, " Max outstanding commands = 0x%d\n",
3296 readl(&(tb->CmdsOutMax)));
3297 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3298 for (i = 0; i < 16; i++)
3299 temp_name[i] = readb(&(tb->ServerName[i]));
3300 temp_name[16] = '\0';
3301 dev_info(dev, " Server Name = %s\n", temp_name);
3302 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3303 readl(&(tb->HeartBeat)));
3304 #endif /* HPSA_DEBUG */
3307 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3309 int i, offset, mem_type, bar_type;
3311 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3312 return 0;
3313 offset = 0;
3314 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3315 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3316 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3317 offset += 4;
3318 else {
3319 mem_type = pci_resource_flags(pdev, i) &
3320 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3321 switch (mem_type) {
3322 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3323 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3324 offset += 4; /* 32 bit */
3325 break;
3326 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3327 offset += 8;
3328 break;
3329 default: /* reserved in PCI 2.2 */
3330 dev_warn(&pdev->dev,
3331 "base address is invalid\n");
3332 return -1;
3333 break;
3336 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3337 return i + 1;
3339 return -1;
3342 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3343 * controllers that are capable. If not, we use IO-APIC mode.
3346 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3348 #ifdef CONFIG_PCI_MSI
3349 int err;
3350 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3351 {0, 2}, {0, 3}
3354 /* Some boards advertise MSI but don't really support it */
3355 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3356 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3357 goto default_int_mode;
3358 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3359 dev_info(&h->pdev->dev, "MSIX\n");
3360 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3361 if (!err) {
3362 h->intr[0] = hpsa_msix_entries[0].vector;
3363 h->intr[1] = hpsa_msix_entries[1].vector;
3364 h->intr[2] = hpsa_msix_entries[2].vector;
3365 h->intr[3] = hpsa_msix_entries[3].vector;
3366 h->msix_vector = 1;
3367 return;
3369 if (err > 0) {
3370 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3371 "available\n", err);
3372 goto default_int_mode;
3373 } else {
3374 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3375 err);
3376 goto default_int_mode;
3379 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3380 dev_info(&h->pdev->dev, "MSI\n");
3381 if (!pci_enable_msi(h->pdev))
3382 h->msi_vector = 1;
3383 else
3384 dev_warn(&h->pdev->dev, "MSI init failed\n");
3386 default_int_mode:
3387 #endif /* CONFIG_PCI_MSI */
3388 /* if we get here we're going to use the default interrupt mode */
3389 h->intr[PERF_MODE_INT] = h->pdev->irq;
3392 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3394 int i;
3395 u32 subsystem_vendor_id, subsystem_device_id;
3397 subsystem_vendor_id = pdev->subsystem_vendor;
3398 subsystem_device_id = pdev->subsystem_device;
3399 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3400 subsystem_vendor_id;
3402 for (i = 0; i < ARRAY_SIZE(products); i++)
3403 if (*board_id == products[i].board_id)
3404 return i;
3406 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3407 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3408 !hpsa_allow_any) {
3409 dev_warn(&pdev->dev, "unrecognized board ID: "
3410 "0x%08x, ignoring.\n", *board_id);
3411 return -ENODEV;
3413 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3416 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3418 u16 command;
3420 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3421 return ((command & PCI_COMMAND_MEMORY) == 0);
3424 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3425 unsigned long *memory_bar)
3427 int i;
3429 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3430 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3431 /* addressing mode bits already removed */
3432 *memory_bar = pci_resource_start(pdev, i);
3433 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3434 *memory_bar);
3435 return 0;
3437 dev_warn(&pdev->dev, "no memory BAR found\n");
3438 return -ENODEV;
3441 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3443 int i;
3444 u32 scratchpad;
3446 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3447 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3448 if (scratchpad == HPSA_FIRMWARE_READY)
3449 return 0;
3450 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3452 dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3453 return -ENODEV;
3456 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3457 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3458 u64 *cfg_offset)
3460 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3461 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3462 *cfg_base_addr &= (u32) 0x0000ffff;
3463 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3464 if (*cfg_base_addr_index == -1) {
3465 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3466 return -ENODEV;
3468 return 0;
3471 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3473 u64 cfg_offset;
3474 u32 cfg_base_addr;
3475 u64 cfg_base_addr_index;
3476 u32 trans_offset;
3477 int rc;
3479 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3480 &cfg_base_addr_index, &cfg_offset);
3481 if (rc)
3482 return rc;
3483 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3484 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3485 if (!h->cfgtable)
3486 return -ENOMEM;
3487 /* Find performant mode table. */
3488 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3489 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3490 cfg_base_addr_index)+cfg_offset+trans_offset,
3491 sizeof(*h->transtable));
3492 if (!h->transtable)
3493 return -ENOMEM;
3494 return 0;
3497 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3499 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3500 if (h->max_commands < 16) {
3501 dev_warn(&h->pdev->dev, "Controller reports "
3502 "max supported commands of %d, an obvious lie. "
3503 "Using 16. Ensure that firmware is up to date.\n",
3504 h->max_commands);
3505 h->max_commands = 16;
3509 /* Interrogate the hardware for some limits:
3510 * max commands, max SG elements without chaining, and with chaining,
3511 * SG chain block size, etc.
3513 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3515 hpsa_get_max_perf_mode_cmds(h);
3516 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3517 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3519 * Limit in-command s/g elements to 32 save dma'able memory.
3520 * Howvever spec says if 0, use 31
3522 h->max_cmd_sg_entries = 31;
3523 if (h->maxsgentries > 512) {
3524 h->max_cmd_sg_entries = 32;
3525 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3526 h->maxsgentries--; /* save one for chain pointer */
3527 } else {
3528 h->maxsgentries = 31; /* default to traditional values */
3529 h->chainsize = 0;
3533 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3535 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3536 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3537 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3538 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3539 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3540 return false;
3542 return true;
3545 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3546 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3548 #ifdef CONFIG_X86
3549 u32 prefetch;
3551 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3552 prefetch |= 0x100;
3553 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3554 #endif
3557 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3558 * in a prefetch beyond physical memory.
3560 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3562 u32 dma_prefetch;
3564 if (h->board_id != 0x3225103C)
3565 return;
3566 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3567 dma_prefetch |= 0x8000;
3568 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3571 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3573 int i;
3575 /* under certain very rare conditions, this can take awhile.
3576 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3577 * as we enter this code.)
3579 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3580 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3581 break;
3582 /* delay and try again */
3583 msleep(10);
3587 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3589 u32 trans_support;
3591 trans_support = readl(&(h->cfgtable->TransportSupport));
3592 if (!(trans_support & SIMPLE_MODE))
3593 return -ENOTSUPP;
3595 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3596 /* Update the field, and then ring the doorbell */
3597 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3598 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3599 hpsa_wait_for_mode_change_ack(h);
3600 print_cfg_table(&h->pdev->dev, h->cfgtable);
3601 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3602 dev_warn(&h->pdev->dev,
3603 "unable to get board into simple mode\n");
3604 return -ENODEV;
3606 return 0;
3609 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3611 int prod_index, err;
3613 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3614 if (prod_index < 0)
3615 return -ENODEV;
3616 h->product_name = products[prod_index].product_name;
3617 h->access = *(products[prod_index].access);
3619 if (hpsa_board_disabled(h->pdev)) {
3620 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3621 return -ENODEV;
3623 err = pci_enable_device(h->pdev);
3624 if (err) {
3625 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3626 return err;
3629 err = pci_request_regions(h->pdev, "hpsa");
3630 if (err) {
3631 dev_err(&h->pdev->dev,
3632 "cannot obtain PCI resources, aborting\n");
3633 return err;
3635 hpsa_interrupt_mode(h);
3636 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3637 if (err)
3638 goto err_out_free_res;
3639 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3640 if (!h->vaddr) {
3641 err = -ENOMEM;
3642 goto err_out_free_res;
3644 err = hpsa_wait_for_board_ready(h);
3645 if (err)
3646 goto err_out_free_res;
3647 err = hpsa_find_cfgtables(h);
3648 if (err)
3649 goto err_out_free_res;
3650 hpsa_find_board_params(h);
3652 if (!hpsa_CISS_signature_present(h)) {
3653 err = -ENODEV;
3654 goto err_out_free_res;
3656 hpsa_enable_scsi_prefetch(h);
3657 hpsa_p600_dma_prefetch_quirk(h);
3658 err = hpsa_enter_simple_mode(h);
3659 if (err)
3660 goto err_out_free_res;
3661 return 0;
3663 err_out_free_res:
3664 if (h->transtable)
3665 iounmap(h->transtable);
3666 if (h->cfgtable)
3667 iounmap(h->cfgtable);
3668 if (h->vaddr)
3669 iounmap(h->vaddr);
3671 * Deliberately omit pci_disable_device(): it does something nasty to
3672 * Smart Array controllers that pci_enable_device does not undo
3674 pci_release_regions(h->pdev);
3675 return err;
3678 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3680 int rc;
3682 #define HBA_INQUIRY_BYTE_COUNT 64
3683 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3684 if (!h->hba_inquiry_data)
3685 return;
3686 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3687 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3688 if (rc != 0) {
3689 kfree(h->hba_inquiry_data);
3690 h->hba_inquiry_data = NULL;
3694 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3696 int rc, i;
3698 if (!reset_devices)
3699 return 0;
3701 /* Reset the controller with a PCI power-cycle or via doorbell */
3702 rc = hpsa_kdump_hard_reset_controller(pdev);
3704 /* -ENOTSUPP here means we cannot reset the controller
3705 * but it's already (and still) up and running in
3706 * "performant mode". Or, it might be 640x, which can't reset
3707 * due to concerns about shared bbwc between 6402/6404 pair.
3709 if (rc == -ENOTSUPP)
3710 return 0; /* just try to do the kdump anyhow. */
3711 if (rc)
3712 return -ENODEV;
3713 if (hpsa_reset_msi(pdev))
3714 return -ENODEV;
3716 /* Now try to get the controller to respond to a no-op */
3717 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3718 if (hpsa_noop(pdev) == 0)
3719 break;
3720 else
3721 dev_warn(&pdev->dev, "no-op failed%s\n",
3722 (i < 11 ? "; re-trying" : ""));
3724 return 0;
3727 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3728 const struct pci_device_id *ent)
3730 int dac, rc;
3731 struct ctlr_info *h;
3733 if (number_of_controllers == 0)
3734 printk(KERN_INFO DRIVER_NAME "\n");
3736 rc = hpsa_init_reset_devices(pdev);
3737 if (rc)
3738 return rc;
3740 /* Command structures must be aligned on a 32-byte boundary because
3741 * the 5 lower bits of the address are used by the hardware. and by
3742 * the driver. See comments in hpsa.h for more info.
3744 #define COMMANDLIST_ALIGNMENT 32
3745 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3746 h = kzalloc(sizeof(*h), GFP_KERNEL);
3747 if (!h)
3748 return -ENOMEM;
3750 h->pdev = pdev;
3751 h->busy_initializing = 1;
3752 INIT_HLIST_HEAD(&h->cmpQ);
3753 INIT_HLIST_HEAD(&h->reqQ);
3754 rc = hpsa_pci_init(h);
3755 if (rc != 0)
3756 goto clean1;
3758 sprintf(h->devname, "hpsa%d", number_of_controllers);
3759 h->ctlr = number_of_controllers;
3760 number_of_controllers++;
3762 /* configure PCI DMA stuff */
3763 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3764 if (rc == 0) {
3765 dac = 1;
3766 } else {
3767 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3768 if (rc == 0) {
3769 dac = 0;
3770 } else {
3771 dev_err(&pdev->dev, "no suitable DMA available\n");
3772 goto clean1;
3776 /* make sure the board interrupts are off */
3777 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3779 if (h->msix_vector || h->msi_vector)
3780 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3781 IRQF_DISABLED, h->devname, h);
3782 else
3783 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3784 IRQF_DISABLED, h->devname, h);
3785 if (rc) {
3786 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3787 h->intr[PERF_MODE_INT], h->devname);
3788 goto clean2;
3791 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3792 h->devname, pdev->device,
3793 h->intr[PERF_MODE_INT], dac ? "" : " not");
3795 h->cmd_pool_bits =
3796 kmalloc(((h->nr_cmds + BITS_PER_LONG -
3797 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3798 h->cmd_pool = pci_alloc_consistent(h->pdev,
3799 h->nr_cmds * sizeof(*h->cmd_pool),
3800 &(h->cmd_pool_dhandle));
3801 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3802 h->nr_cmds * sizeof(*h->errinfo_pool),
3803 &(h->errinfo_pool_dhandle));
3804 if ((h->cmd_pool_bits == NULL)
3805 || (h->cmd_pool == NULL)
3806 || (h->errinfo_pool == NULL)) {
3807 dev_err(&pdev->dev, "out of memory");
3808 rc = -ENOMEM;
3809 goto clean4;
3811 if (hpsa_allocate_sg_chain_blocks(h))
3812 goto clean4;
3813 spin_lock_init(&h->lock);
3814 spin_lock_init(&h->scan_lock);
3815 init_waitqueue_head(&h->scan_wait_queue);
3816 h->scan_finished = 1; /* no scan currently in progress */
3818 pci_set_drvdata(pdev, h);
3819 memset(h->cmd_pool_bits, 0,
3820 ((h->nr_cmds + BITS_PER_LONG -
3821 1) / BITS_PER_LONG) * sizeof(unsigned long));
3823 hpsa_scsi_setup(h);
3825 /* Turn the interrupts on so we can service requests */
3826 h->access.set_intr_mask(h, HPSA_INTR_ON);
3828 hpsa_put_ctlr_into_performant_mode(h);
3829 hpsa_hba_inquiry(h);
3830 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
3831 h->busy_initializing = 0;
3832 return 1;
3834 clean4:
3835 hpsa_free_sg_chain_blocks(h);
3836 kfree(h->cmd_pool_bits);
3837 if (h->cmd_pool)
3838 pci_free_consistent(h->pdev,
3839 h->nr_cmds * sizeof(struct CommandList),
3840 h->cmd_pool, h->cmd_pool_dhandle);
3841 if (h->errinfo_pool)
3842 pci_free_consistent(h->pdev,
3843 h->nr_cmds * sizeof(struct ErrorInfo),
3844 h->errinfo_pool,
3845 h->errinfo_pool_dhandle);
3846 free_irq(h->intr[PERF_MODE_INT], h);
3847 clean2:
3848 clean1:
3849 h->busy_initializing = 0;
3850 kfree(h);
3851 return rc;
3854 static void hpsa_flush_cache(struct ctlr_info *h)
3856 char *flush_buf;
3857 struct CommandList *c;
3859 flush_buf = kzalloc(4, GFP_KERNEL);
3860 if (!flush_buf)
3861 return;
3863 c = cmd_special_alloc(h);
3864 if (!c) {
3865 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3866 goto out_of_memory;
3868 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3869 RAID_CTLR_LUNID, TYPE_CMD);
3870 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3871 if (c->err_info->CommandStatus != 0)
3872 dev_warn(&h->pdev->dev,
3873 "error flushing cache on controller\n");
3874 cmd_special_free(h, c);
3875 out_of_memory:
3876 kfree(flush_buf);
3879 static void hpsa_shutdown(struct pci_dev *pdev)
3881 struct ctlr_info *h;
3883 h = pci_get_drvdata(pdev);
3884 /* Turn board interrupts off and send the flush cache command
3885 * sendcmd will turn off interrupt, and send the flush...
3886 * To write all data in the battery backed cache to disks
3888 hpsa_flush_cache(h);
3889 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3890 free_irq(h->intr[PERF_MODE_INT], h);
3891 #ifdef CONFIG_PCI_MSI
3892 if (h->msix_vector)
3893 pci_disable_msix(h->pdev);
3894 else if (h->msi_vector)
3895 pci_disable_msi(h->pdev);
3896 #endif /* CONFIG_PCI_MSI */
3899 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3901 struct ctlr_info *h;
3903 if (pci_get_drvdata(pdev) == NULL) {
3904 dev_err(&pdev->dev, "unable to remove device \n");
3905 return;
3907 h = pci_get_drvdata(pdev);
3908 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
3909 hpsa_shutdown(pdev);
3910 iounmap(h->vaddr);
3911 iounmap(h->transtable);
3912 iounmap(h->cfgtable);
3913 hpsa_free_sg_chain_blocks(h);
3914 pci_free_consistent(h->pdev,
3915 h->nr_cmds * sizeof(struct CommandList),
3916 h->cmd_pool, h->cmd_pool_dhandle);
3917 pci_free_consistent(h->pdev,
3918 h->nr_cmds * sizeof(struct ErrorInfo),
3919 h->errinfo_pool, h->errinfo_pool_dhandle);
3920 pci_free_consistent(h->pdev, h->reply_pool_size,
3921 h->reply_pool, h->reply_pool_dhandle);
3922 kfree(h->cmd_pool_bits);
3923 kfree(h->blockFetchTable);
3924 kfree(h->hba_inquiry_data);
3926 * Deliberately omit pci_disable_device(): it does something nasty to
3927 * Smart Array controllers that pci_enable_device does not undo
3929 pci_release_regions(pdev);
3930 pci_set_drvdata(pdev, NULL);
3931 kfree(h);
3934 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3935 __attribute__((unused)) pm_message_t state)
3937 return -ENOSYS;
3940 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3942 return -ENOSYS;
3945 static struct pci_driver hpsa_pci_driver = {
3946 .name = "hpsa",
3947 .probe = hpsa_init_one,
3948 .remove = __devexit_p(hpsa_remove_one),
3949 .id_table = hpsa_pci_device_id, /* id_table */
3950 .shutdown = hpsa_shutdown,
3951 .suspend = hpsa_suspend,
3952 .resume = hpsa_resume,
3955 /* Fill in bucket_map[], given nsgs (the max number of
3956 * scatter gather elements supported) and bucket[],
3957 * which is an array of 8 integers. The bucket[] array
3958 * contains 8 different DMA transfer sizes (in 16
3959 * byte increments) which the controller uses to fetch
3960 * commands. This function fills in bucket_map[], which
3961 * maps a given number of scatter gather elements to one of
3962 * the 8 DMA transfer sizes. The point of it is to allow the
3963 * controller to only do as much DMA as needed to fetch the
3964 * command, with the DMA transfer size encoded in the lower
3965 * bits of the command address.
3967 static void calc_bucket_map(int bucket[], int num_buckets,
3968 int nsgs, int *bucket_map)
3970 int i, j, b, size;
3972 /* even a command with 0 SGs requires 4 blocks */
3973 #define MINIMUM_TRANSFER_BLOCKS 4
3974 #define NUM_BUCKETS 8
3975 /* Note, bucket_map must have nsgs+1 entries. */
3976 for (i = 0; i <= nsgs; i++) {
3977 /* Compute size of a command with i SG entries */
3978 size = i + MINIMUM_TRANSFER_BLOCKS;
3979 b = num_buckets; /* Assume the biggest bucket */
3980 /* Find the bucket that is just big enough */
3981 for (j = 0; j < 8; j++) {
3982 if (bucket[j] >= size) {
3983 b = j;
3984 break;
3987 /* for a command with i SG entries, use bucket b. */
3988 bucket_map[i] = b;
3992 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
3994 int i;
3995 unsigned long register_value;
3997 /* This is a bit complicated. There are 8 registers on
3998 * the controller which we write to to tell it 8 different
3999 * sizes of commands which there may be. It's a way of
4000 * reducing the DMA done to fetch each command. Encoded into
4001 * each command's tag are 3 bits which communicate to the controller
4002 * which of the eight sizes that command fits within. The size of
4003 * each command depends on how many scatter gather entries there are.
4004 * Each SG entry requires 16 bytes. The eight registers are programmed
4005 * with the number of 16-byte blocks a command of that size requires.
4006 * The smallest command possible requires 5 such 16 byte blocks.
4007 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4008 * blocks. Note, this only extends to the SG entries contained
4009 * within the command block, and does not extend to chained blocks
4010 * of SG elements. bft[] contains the eight values we write to
4011 * the registers. They are not evenly distributed, but have more
4012 * sizes for small commands, and fewer sizes for larger commands.
4014 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4015 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4016 /* 5 = 1 s/g entry or 4k
4017 * 6 = 2 s/g entry or 8k
4018 * 8 = 4 s/g entry or 16k
4019 * 10 = 6 s/g entry or 24k
4022 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4024 /* Controller spec: zero out this buffer. */
4025 memset(h->reply_pool, 0, h->reply_pool_size);
4026 h->reply_pool_head = h->reply_pool;
4028 bft[7] = h->max_sg_entries + 4;
4029 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4030 for (i = 0; i < 8; i++)
4031 writel(bft[i], &h->transtable->BlockFetch[i]);
4033 /* size of controller ring buffer */
4034 writel(h->max_commands, &h->transtable->RepQSize);
4035 writel(1, &h->transtable->RepQCount);
4036 writel(0, &h->transtable->RepQCtrAddrLow32);
4037 writel(0, &h->transtable->RepQCtrAddrHigh32);
4038 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4039 writel(0, &h->transtable->RepQAddr0High32);
4040 writel(CFGTBL_Trans_Performant,
4041 &(h->cfgtable->HostWrite.TransportRequest));
4042 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4043 hpsa_wait_for_mode_change_ack(h);
4044 register_value = readl(&(h->cfgtable->TransportActive));
4045 if (!(register_value & CFGTBL_Trans_Performant)) {
4046 dev_warn(&h->pdev->dev, "unable to get board into"
4047 " performant mode\n");
4048 return;
4052 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4054 u32 trans_support;
4056 trans_support = readl(&(h->cfgtable->TransportSupport));
4057 if (!(trans_support & PERFORMANT_MODE))
4058 return;
4060 hpsa_get_max_perf_mode_cmds(h);
4061 h->max_sg_entries = 32;
4062 /* Performant mode ring buffer and supporting data structures */
4063 h->reply_pool_size = h->max_commands * sizeof(u64);
4064 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4065 &(h->reply_pool_dhandle));
4067 /* Need a block fetch table for performant mode */
4068 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4069 sizeof(u32)), GFP_KERNEL);
4071 if ((h->reply_pool == NULL)
4072 || (h->blockFetchTable == NULL))
4073 goto clean_up;
4075 hpsa_enter_performant_mode(h);
4077 /* Change the access methods to the performant access methods */
4078 h->access = SA5_performant_access;
4079 h->transMethod = CFGTBL_Trans_Performant;
4081 return;
4083 clean_up:
4084 if (h->reply_pool)
4085 pci_free_consistent(h->pdev, h->reply_pool_size,
4086 h->reply_pool, h->reply_pool_dhandle);
4087 kfree(h->blockFetchTable);
4091 * This is it. Register the PCI driver information for the cards we control
4092 * the OS will call our registered routines when it finds one of our cards.
4094 static int __init hpsa_init(void)
4096 return pci_register_driver(&hpsa_pci_driver);
4099 static void __exit hpsa_cleanup(void)
4101 pci_unregister_driver(&hpsa_pci_driver);
4104 module_init(hpsa_init);
4105 module_exit(hpsa_cleanup);