[PATCH] device-mapper statistics: basic
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sys.c
blobd09cac23fdfd6460daa501f6f549e69f762f2391
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
34 #include <linux/compat.h>
35 #include <linux/syscalls.h>
36 #include <linux/kprobes.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/unistd.h>
42 #ifndef SET_UNALIGN_CTL
43 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
44 #endif
45 #ifndef GET_UNALIGN_CTL
46 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
47 #endif
48 #ifndef SET_FPEMU_CTL
49 # define SET_FPEMU_CTL(a,b) (-EINVAL)
50 #endif
51 #ifndef GET_FPEMU_CTL
52 # define GET_FPEMU_CTL(a,b) (-EINVAL)
53 #endif
54 #ifndef SET_FPEXC_CTL
55 # define SET_FPEXC_CTL(a,b) (-EINVAL)
56 #endif
57 #ifndef GET_FPEXC_CTL
58 # define GET_FPEXC_CTL(a,b) (-EINVAL)
59 #endif
62 * this is where the system-wide overflow UID and GID are defined, for
63 * architectures that now have 32-bit UID/GID but didn't in the past
66 int overflowuid = DEFAULT_OVERFLOWUID;
67 int overflowgid = DEFAULT_OVERFLOWGID;
69 #ifdef CONFIG_UID16
70 EXPORT_SYMBOL(overflowuid);
71 EXPORT_SYMBOL(overflowgid);
72 #endif
75 * the same as above, but for filesystems which can only store a 16-bit
76 * UID and GID. as such, this is needed on all architectures
79 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
80 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
82 EXPORT_SYMBOL(fs_overflowuid);
83 EXPORT_SYMBOL(fs_overflowgid);
86 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
89 int C_A_D = 1;
90 int cad_pid = 1;
93 * Notifier list for kernel code which wants to be called
94 * at shutdown. This is used to stop any idling DMA operations
95 * and the like.
98 static struct notifier_block *reboot_notifier_list;
99 static DEFINE_RWLOCK(notifier_lock);
102 * notifier_chain_register - Add notifier to a notifier chain
103 * @list: Pointer to root list pointer
104 * @n: New entry in notifier chain
106 * Adds a notifier to a notifier chain.
108 * Currently always returns zero.
111 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
113 write_lock(&notifier_lock);
114 while(*list)
116 if(n->priority > (*list)->priority)
117 break;
118 list= &((*list)->next);
120 n->next = *list;
121 *list=n;
122 write_unlock(&notifier_lock);
123 return 0;
126 EXPORT_SYMBOL(notifier_chain_register);
129 * notifier_chain_unregister - Remove notifier from a notifier chain
130 * @nl: Pointer to root list pointer
131 * @n: New entry in notifier chain
133 * Removes a notifier from a notifier chain.
135 * Returns zero on success, or %-ENOENT on failure.
138 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
140 write_lock(&notifier_lock);
141 while((*nl)!=NULL)
143 if((*nl)==n)
145 *nl=n->next;
146 write_unlock(&notifier_lock);
147 return 0;
149 nl=&((*nl)->next);
151 write_unlock(&notifier_lock);
152 return -ENOENT;
155 EXPORT_SYMBOL(notifier_chain_unregister);
158 * notifier_call_chain - Call functions in a notifier chain
159 * @n: Pointer to root pointer of notifier chain
160 * @val: Value passed unmodified to notifier function
161 * @v: Pointer passed unmodified to notifier function
163 * Calls each function in a notifier chain in turn.
165 * If the return value of the notifier can be and'd
166 * with %NOTIFY_STOP_MASK, then notifier_call_chain
167 * will return immediately, with the return value of
168 * the notifier function which halted execution.
169 * Otherwise, the return value is the return value
170 * of the last notifier function called.
173 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
175 int ret=NOTIFY_DONE;
176 struct notifier_block *nb = *n;
178 while(nb)
180 ret=nb->notifier_call(nb,val,v);
181 if(ret&NOTIFY_STOP_MASK)
183 return ret;
185 nb=nb->next;
187 return ret;
190 EXPORT_SYMBOL(notifier_call_chain);
193 * register_reboot_notifier - Register function to be called at reboot time
194 * @nb: Info about notifier function to be called
196 * Registers a function with the list of functions
197 * to be called at reboot time.
199 * Currently always returns zero, as notifier_chain_register
200 * always returns zero.
203 int register_reboot_notifier(struct notifier_block * nb)
205 return notifier_chain_register(&reboot_notifier_list, nb);
208 EXPORT_SYMBOL(register_reboot_notifier);
211 * unregister_reboot_notifier - Unregister previously registered reboot notifier
212 * @nb: Hook to be unregistered
214 * Unregisters a previously registered reboot
215 * notifier function.
217 * Returns zero on success, or %-ENOENT on failure.
220 int unregister_reboot_notifier(struct notifier_block * nb)
222 return notifier_chain_unregister(&reboot_notifier_list, nb);
225 EXPORT_SYMBOL(unregister_reboot_notifier);
227 #ifndef CONFIG_SECURITY
228 int capable(int cap)
230 if (cap_raised(current->cap_effective, cap)) {
231 current->flags |= PF_SUPERPRIV;
232 return 1;
234 return 0;
236 EXPORT_SYMBOL(capable);
237 #endif
239 static int set_one_prio(struct task_struct *p, int niceval, int error)
241 int no_nice;
243 if (p->uid != current->euid &&
244 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
245 error = -EPERM;
246 goto out;
248 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
249 error = -EACCES;
250 goto out;
252 no_nice = security_task_setnice(p, niceval);
253 if (no_nice) {
254 error = no_nice;
255 goto out;
257 if (error == -ESRCH)
258 error = 0;
259 set_user_nice(p, niceval);
260 out:
261 return error;
264 asmlinkage long sys_setpriority(int which, int who, int niceval)
266 struct task_struct *g, *p;
267 struct user_struct *user;
268 int error = -EINVAL;
270 if (which > 2 || which < 0)
271 goto out;
273 /* normalize: avoid signed division (rounding problems) */
274 error = -ESRCH;
275 if (niceval < -20)
276 niceval = -20;
277 if (niceval > 19)
278 niceval = 19;
280 read_lock(&tasklist_lock);
281 switch (which) {
282 case PRIO_PROCESS:
283 if (!who)
284 who = current->pid;
285 p = find_task_by_pid(who);
286 if (p)
287 error = set_one_prio(p, niceval, error);
288 break;
289 case PRIO_PGRP:
290 if (!who)
291 who = process_group(current);
292 do_each_task_pid(who, PIDTYPE_PGID, p) {
293 error = set_one_prio(p, niceval, error);
294 } while_each_task_pid(who, PIDTYPE_PGID, p);
295 break;
296 case PRIO_USER:
297 user = current->user;
298 if (!who)
299 who = current->uid;
300 else
301 if ((who != current->uid) && !(user = find_user(who)))
302 goto out_unlock; /* No processes for this user */
304 do_each_thread(g, p)
305 if (p->uid == who)
306 error = set_one_prio(p, niceval, error);
307 while_each_thread(g, p);
308 if (who != current->uid)
309 free_uid(user); /* For find_user() */
310 break;
312 out_unlock:
313 read_unlock(&tasklist_lock);
314 out:
315 return error;
319 * Ugh. To avoid negative return values, "getpriority()" will
320 * not return the normal nice-value, but a negated value that
321 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
322 * to stay compatible.
324 asmlinkage long sys_getpriority(int which, int who)
326 struct task_struct *g, *p;
327 struct user_struct *user;
328 long niceval, retval = -ESRCH;
330 if (which > 2 || which < 0)
331 return -EINVAL;
333 read_lock(&tasklist_lock);
334 switch (which) {
335 case PRIO_PROCESS:
336 if (!who)
337 who = current->pid;
338 p = find_task_by_pid(who);
339 if (p) {
340 niceval = 20 - task_nice(p);
341 if (niceval > retval)
342 retval = niceval;
344 break;
345 case PRIO_PGRP:
346 if (!who)
347 who = process_group(current);
348 do_each_task_pid(who, PIDTYPE_PGID, p) {
349 niceval = 20 - task_nice(p);
350 if (niceval > retval)
351 retval = niceval;
352 } while_each_task_pid(who, PIDTYPE_PGID, p);
353 break;
354 case PRIO_USER:
355 user = current->user;
356 if (!who)
357 who = current->uid;
358 else
359 if ((who != current->uid) && !(user = find_user(who)))
360 goto out_unlock; /* No processes for this user */
362 do_each_thread(g, p)
363 if (p->uid == who) {
364 niceval = 20 - task_nice(p);
365 if (niceval > retval)
366 retval = niceval;
368 while_each_thread(g, p);
369 if (who != current->uid)
370 free_uid(user); /* for find_user() */
371 break;
373 out_unlock:
374 read_unlock(&tasklist_lock);
376 return retval;
380 * emergency_restart - reboot the system
382 * Without shutting down any hardware or taking any locks
383 * reboot the system. This is called when we know we are in
384 * trouble so this is our best effort to reboot. This is
385 * safe to call in interrupt context.
387 void emergency_restart(void)
389 machine_emergency_restart();
391 EXPORT_SYMBOL_GPL(emergency_restart);
393 void kernel_restart_prepare(char *cmd)
395 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
396 system_state = SYSTEM_RESTART;
397 device_shutdown();
401 * kernel_restart - reboot the system
402 * @cmd: pointer to buffer containing command to execute for restart
403 * or %NULL
405 * Shutdown everything and perform a clean reboot.
406 * This is not safe to call in interrupt context.
408 void kernel_restart(char *cmd)
410 kernel_restart_prepare(cmd);
411 if (!cmd) {
412 printk(KERN_EMERG "Restarting system.\n");
413 } else {
414 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
416 printk(".\n");
417 machine_restart(cmd);
419 EXPORT_SYMBOL_GPL(kernel_restart);
422 * kernel_kexec - reboot the system
424 * Move into place and start executing a preloaded standalone
425 * executable. If nothing was preloaded return an error.
427 void kernel_kexec(void)
429 #ifdef CONFIG_KEXEC
430 struct kimage *image;
431 image = xchg(&kexec_image, 0);
432 if (!image) {
433 return;
435 kernel_restart_prepare(NULL);
436 printk(KERN_EMERG "Starting new kernel\n");
437 machine_shutdown();
438 machine_kexec(image);
439 #endif
441 EXPORT_SYMBOL_GPL(kernel_kexec);
444 * kernel_halt - halt the system
446 * Shutdown everything and perform a clean system halt.
448 void kernel_halt_prepare(void)
450 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
451 system_state = SYSTEM_HALT;
452 device_shutdown();
454 void kernel_halt(void)
456 kernel_halt_prepare();
457 printk(KERN_EMERG "System halted.\n");
458 machine_halt();
460 EXPORT_SYMBOL_GPL(kernel_halt);
463 * kernel_power_off - power_off the system
465 * Shutdown everything and perform a clean system power_off.
467 void kernel_power_off_prepare(void)
469 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
470 system_state = SYSTEM_POWER_OFF;
471 device_shutdown();
473 void kernel_power_off(void)
475 kernel_power_off_prepare();
476 printk(KERN_EMERG "Power down.\n");
477 machine_power_off();
479 EXPORT_SYMBOL_GPL(kernel_power_off);
482 * Reboot system call: for obvious reasons only root may call it,
483 * and even root needs to set up some magic numbers in the registers
484 * so that some mistake won't make this reboot the whole machine.
485 * You can also set the meaning of the ctrl-alt-del-key here.
487 * reboot doesn't sync: do that yourself before calling this.
489 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
491 char buffer[256];
493 /* We only trust the superuser with rebooting the system. */
494 if (!capable(CAP_SYS_BOOT))
495 return -EPERM;
497 /* For safety, we require "magic" arguments. */
498 if (magic1 != LINUX_REBOOT_MAGIC1 ||
499 (magic2 != LINUX_REBOOT_MAGIC2 &&
500 magic2 != LINUX_REBOOT_MAGIC2A &&
501 magic2 != LINUX_REBOOT_MAGIC2B &&
502 magic2 != LINUX_REBOOT_MAGIC2C))
503 return -EINVAL;
505 /* Instead of trying to make the power_off code look like
506 * halt when pm_power_off is not set do it the easy way.
508 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
509 cmd = LINUX_REBOOT_CMD_HALT;
511 lock_kernel();
512 switch (cmd) {
513 case LINUX_REBOOT_CMD_RESTART:
514 kernel_restart(NULL);
515 break;
517 case LINUX_REBOOT_CMD_CAD_ON:
518 C_A_D = 1;
519 break;
521 case LINUX_REBOOT_CMD_CAD_OFF:
522 C_A_D = 0;
523 break;
525 case LINUX_REBOOT_CMD_HALT:
526 kernel_halt();
527 unlock_kernel();
528 do_exit(0);
529 break;
531 case LINUX_REBOOT_CMD_POWER_OFF:
532 kernel_power_off();
533 unlock_kernel();
534 do_exit(0);
535 break;
537 case LINUX_REBOOT_CMD_RESTART2:
538 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
539 unlock_kernel();
540 return -EFAULT;
542 buffer[sizeof(buffer) - 1] = '\0';
544 kernel_restart(buffer);
545 break;
547 case LINUX_REBOOT_CMD_KEXEC:
548 kernel_kexec();
549 unlock_kernel();
550 return -EINVAL;
552 #ifdef CONFIG_SOFTWARE_SUSPEND
553 case LINUX_REBOOT_CMD_SW_SUSPEND:
555 int ret = software_suspend();
556 unlock_kernel();
557 return ret;
559 #endif
561 default:
562 unlock_kernel();
563 return -EINVAL;
565 unlock_kernel();
566 return 0;
569 static void deferred_cad(void *dummy)
571 kernel_restart(NULL);
575 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
576 * As it's called within an interrupt, it may NOT sync: the only choice
577 * is whether to reboot at once, or just ignore the ctrl-alt-del.
579 void ctrl_alt_del(void)
581 static DECLARE_WORK(cad_work, deferred_cad, NULL);
583 if (C_A_D)
584 schedule_work(&cad_work);
585 else
586 kill_proc(cad_pid, SIGINT, 1);
591 * Unprivileged users may change the real gid to the effective gid
592 * or vice versa. (BSD-style)
594 * If you set the real gid at all, or set the effective gid to a value not
595 * equal to the real gid, then the saved gid is set to the new effective gid.
597 * This makes it possible for a setgid program to completely drop its
598 * privileges, which is often a useful assertion to make when you are doing
599 * a security audit over a program.
601 * The general idea is that a program which uses just setregid() will be
602 * 100% compatible with BSD. A program which uses just setgid() will be
603 * 100% compatible with POSIX with saved IDs.
605 * SMP: There are not races, the GIDs are checked only by filesystem
606 * operations (as far as semantic preservation is concerned).
608 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
610 int old_rgid = current->gid;
611 int old_egid = current->egid;
612 int new_rgid = old_rgid;
613 int new_egid = old_egid;
614 int retval;
616 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
617 if (retval)
618 return retval;
620 if (rgid != (gid_t) -1) {
621 if ((old_rgid == rgid) ||
622 (current->egid==rgid) ||
623 capable(CAP_SETGID))
624 new_rgid = rgid;
625 else
626 return -EPERM;
628 if (egid != (gid_t) -1) {
629 if ((old_rgid == egid) ||
630 (current->egid == egid) ||
631 (current->sgid == egid) ||
632 capable(CAP_SETGID))
633 new_egid = egid;
634 else {
635 return -EPERM;
638 if (new_egid != old_egid)
640 current->mm->dumpable = suid_dumpable;
641 smp_wmb();
643 if (rgid != (gid_t) -1 ||
644 (egid != (gid_t) -1 && egid != old_rgid))
645 current->sgid = new_egid;
646 current->fsgid = new_egid;
647 current->egid = new_egid;
648 current->gid = new_rgid;
649 key_fsgid_changed(current);
650 proc_id_connector(current, PROC_EVENT_GID);
651 return 0;
655 * setgid() is implemented like SysV w/ SAVED_IDS
657 * SMP: Same implicit races as above.
659 asmlinkage long sys_setgid(gid_t gid)
661 int old_egid = current->egid;
662 int retval;
664 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
665 if (retval)
666 return retval;
668 if (capable(CAP_SETGID))
670 if(old_egid != gid)
672 current->mm->dumpable = suid_dumpable;
673 smp_wmb();
675 current->gid = current->egid = current->sgid = current->fsgid = gid;
677 else if ((gid == current->gid) || (gid == current->sgid))
679 if(old_egid != gid)
681 current->mm->dumpable = suid_dumpable;
682 smp_wmb();
684 current->egid = current->fsgid = gid;
686 else
687 return -EPERM;
689 key_fsgid_changed(current);
690 proc_id_connector(current, PROC_EVENT_GID);
691 return 0;
694 static int set_user(uid_t new_ruid, int dumpclear)
696 struct user_struct *new_user;
698 new_user = alloc_uid(new_ruid);
699 if (!new_user)
700 return -EAGAIN;
702 if (atomic_read(&new_user->processes) >=
703 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
704 new_user != &root_user) {
705 free_uid(new_user);
706 return -EAGAIN;
709 switch_uid(new_user);
711 if(dumpclear)
713 current->mm->dumpable = suid_dumpable;
714 smp_wmb();
716 current->uid = new_ruid;
717 return 0;
721 * Unprivileged users may change the real uid to the effective uid
722 * or vice versa. (BSD-style)
724 * If you set the real uid at all, or set the effective uid to a value not
725 * equal to the real uid, then the saved uid is set to the new effective uid.
727 * This makes it possible for a setuid program to completely drop its
728 * privileges, which is often a useful assertion to make when you are doing
729 * a security audit over a program.
731 * The general idea is that a program which uses just setreuid() will be
732 * 100% compatible with BSD. A program which uses just setuid() will be
733 * 100% compatible with POSIX with saved IDs.
735 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
737 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
738 int retval;
740 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
741 if (retval)
742 return retval;
744 new_ruid = old_ruid = current->uid;
745 new_euid = old_euid = current->euid;
746 old_suid = current->suid;
748 if (ruid != (uid_t) -1) {
749 new_ruid = ruid;
750 if ((old_ruid != ruid) &&
751 (current->euid != ruid) &&
752 !capable(CAP_SETUID))
753 return -EPERM;
756 if (euid != (uid_t) -1) {
757 new_euid = euid;
758 if ((old_ruid != euid) &&
759 (current->euid != euid) &&
760 (current->suid != euid) &&
761 !capable(CAP_SETUID))
762 return -EPERM;
765 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
766 return -EAGAIN;
768 if (new_euid != old_euid)
770 current->mm->dumpable = suid_dumpable;
771 smp_wmb();
773 current->fsuid = current->euid = new_euid;
774 if (ruid != (uid_t) -1 ||
775 (euid != (uid_t) -1 && euid != old_ruid))
776 current->suid = current->euid;
777 current->fsuid = current->euid;
779 key_fsuid_changed(current);
780 proc_id_connector(current, PROC_EVENT_UID);
782 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
788 * setuid() is implemented like SysV with SAVED_IDS
790 * Note that SAVED_ID's is deficient in that a setuid root program
791 * like sendmail, for example, cannot set its uid to be a normal
792 * user and then switch back, because if you're root, setuid() sets
793 * the saved uid too. If you don't like this, blame the bright people
794 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
795 * will allow a root program to temporarily drop privileges and be able to
796 * regain them by swapping the real and effective uid.
798 asmlinkage long sys_setuid(uid_t uid)
800 int old_euid = current->euid;
801 int old_ruid, old_suid, new_ruid, new_suid;
802 int retval;
804 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
805 if (retval)
806 return retval;
808 old_ruid = new_ruid = current->uid;
809 old_suid = current->suid;
810 new_suid = old_suid;
812 if (capable(CAP_SETUID)) {
813 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
814 return -EAGAIN;
815 new_suid = uid;
816 } else if ((uid != current->uid) && (uid != new_suid))
817 return -EPERM;
819 if (old_euid != uid)
821 current->mm->dumpable = suid_dumpable;
822 smp_wmb();
824 current->fsuid = current->euid = uid;
825 current->suid = new_suid;
827 key_fsuid_changed(current);
828 proc_id_connector(current, PROC_EVENT_UID);
830 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
835 * This function implements a generic ability to update ruid, euid,
836 * and suid. This allows you to implement the 4.4 compatible seteuid().
838 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
840 int old_ruid = current->uid;
841 int old_euid = current->euid;
842 int old_suid = current->suid;
843 int retval;
845 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
846 if (retval)
847 return retval;
849 if (!capable(CAP_SETUID)) {
850 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
851 (ruid != current->euid) && (ruid != current->suid))
852 return -EPERM;
853 if ((euid != (uid_t) -1) && (euid != current->uid) &&
854 (euid != current->euid) && (euid != current->suid))
855 return -EPERM;
856 if ((suid != (uid_t) -1) && (suid != current->uid) &&
857 (suid != current->euid) && (suid != current->suid))
858 return -EPERM;
860 if (ruid != (uid_t) -1) {
861 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
862 return -EAGAIN;
864 if (euid != (uid_t) -1) {
865 if (euid != current->euid)
867 current->mm->dumpable = suid_dumpable;
868 smp_wmb();
870 current->euid = euid;
872 current->fsuid = current->euid;
873 if (suid != (uid_t) -1)
874 current->suid = suid;
876 key_fsuid_changed(current);
877 proc_id_connector(current, PROC_EVENT_UID);
879 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
882 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
884 int retval;
886 if (!(retval = put_user(current->uid, ruid)) &&
887 !(retval = put_user(current->euid, euid)))
888 retval = put_user(current->suid, suid);
890 return retval;
894 * Same as above, but for rgid, egid, sgid.
896 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
898 int retval;
900 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
901 if (retval)
902 return retval;
904 if (!capable(CAP_SETGID)) {
905 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
906 (rgid != current->egid) && (rgid != current->sgid))
907 return -EPERM;
908 if ((egid != (gid_t) -1) && (egid != current->gid) &&
909 (egid != current->egid) && (egid != current->sgid))
910 return -EPERM;
911 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
912 (sgid != current->egid) && (sgid != current->sgid))
913 return -EPERM;
915 if (egid != (gid_t) -1) {
916 if (egid != current->egid)
918 current->mm->dumpable = suid_dumpable;
919 smp_wmb();
921 current->egid = egid;
923 current->fsgid = current->egid;
924 if (rgid != (gid_t) -1)
925 current->gid = rgid;
926 if (sgid != (gid_t) -1)
927 current->sgid = sgid;
929 key_fsgid_changed(current);
930 proc_id_connector(current, PROC_EVENT_GID);
931 return 0;
934 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
936 int retval;
938 if (!(retval = put_user(current->gid, rgid)) &&
939 !(retval = put_user(current->egid, egid)))
940 retval = put_user(current->sgid, sgid);
942 return retval;
947 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
948 * is used for "access()" and for the NFS daemon (letting nfsd stay at
949 * whatever uid it wants to). It normally shadows "euid", except when
950 * explicitly set by setfsuid() or for access..
952 asmlinkage long sys_setfsuid(uid_t uid)
954 int old_fsuid;
956 old_fsuid = current->fsuid;
957 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
958 return old_fsuid;
960 if (uid == current->uid || uid == current->euid ||
961 uid == current->suid || uid == current->fsuid ||
962 capable(CAP_SETUID))
964 if (uid != old_fsuid)
966 current->mm->dumpable = suid_dumpable;
967 smp_wmb();
969 current->fsuid = uid;
972 key_fsuid_changed(current);
973 proc_id_connector(current, PROC_EVENT_UID);
975 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
977 return old_fsuid;
981 * Samma på svenska..
983 asmlinkage long sys_setfsgid(gid_t gid)
985 int old_fsgid;
987 old_fsgid = current->fsgid;
988 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
989 return old_fsgid;
991 if (gid == current->gid || gid == current->egid ||
992 gid == current->sgid || gid == current->fsgid ||
993 capable(CAP_SETGID))
995 if (gid != old_fsgid)
997 current->mm->dumpable = suid_dumpable;
998 smp_wmb();
1000 current->fsgid = gid;
1001 key_fsgid_changed(current);
1002 proc_id_connector(current, PROC_EVENT_GID);
1004 return old_fsgid;
1007 asmlinkage long sys_times(struct tms __user * tbuf)
1010 * In the SMP world we might just be unlucky and have one of
1011 * the times increment as we use it. Since the value is an
1012 * atomically safe type this is just fine. Conceptually its
1013 * as if the syscall took an instant longer to occur.
1015 if (tbuf) {
1016 struct tms tmp;
1017 cputime_t utime, stime, cutime, cstime;
1019 #ifdef CONFIG_SMP
1020 if (thread_group_empty(current)) {
1022 * Single thread case without the use of any locks.
1024 * We may race with release_task if two threads are
1025 * executing. However, release task first adds up the
1026 * counters (__exit_signal) before removing the task
1027 * from the process tasklist (__unhash_process).
1028 * __exit_signal also acquires and releases the
1029 * siglock which results in the proper memory ordering
1030 * so that the list modifications are always visible
1031 * after the counters have been updated.
1033 * If the counters have been updated by the second thread
1034 * but the thread has not yet been removed from the list
1035 * then the other branch will be executing which will
1036 * block on tasklist_lock until the exit handling of the
1037 * other task is finished.
1039 * This also implies that the sighand->siglock cannot
1040 * be held by another processor. So we can also
1041 * skip acquiring that lock.
1043 utime = cputime_add(current->signal->utime, current->utime);
1044 stime = cputime_add(current->signal->utime, current->stime);
1045 cutime = current->signal->cutime;
1046 cstime = current->signal->cstime;
1047 } else
1048 #endif
1051 /* Process with multiple threads */
1052 struct task_struct *tsk = current;
1053 struct task_struct *t;
1055 read_lock(&tasklist_lock);
1056 utime = tsk->signal->utime;
1057 stime = tsk->signal->stime;
1058 t = tsk;
1059 do {
1060 utime = cputime_add(utime, t->utime);
1061 stime = cputime_add(stime, t->stime);
1062 t = next_thread(t);
1063 } while (t != tsk);
1066 * While we have tasklist_lock read-locked, no dying thread
1067 * can be updating current->signal->[us]time. Instead,
1068 * we got their counts included in the live thread loop.
1069 * However, another thread can come in right now and
1070 * do a wait call that updates current->signal->c[us]time.
1071 * To make sure we always see that pair updated atomically,
1072 * we take the siglock around fetching them.
1074 spin_lock_irq(&tsk->sighand->siglock);
1075 cutime = tsk->signal->cutime;
1076 cstime = tsk->signal->cstime;
1077 spin_unlock_irq(&tsk->sighand->siglock);
1078 read_unlock(&tasklist_lock);
1080 tmp.tms_utime = cputime_to_clock_t(utime);
1081 tmp.tms_stime = cputime_to_clock_t(stime);
1082 tmp.tms_cutime = cputime_to_clock_t(cutime);
1083 tmp.tms_cstime = cputime_to_clock_t(cstime);
1084 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1085 return -EFAULT;
1087 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1091 * This needs some heavy checking ...
1092 * I just haven't the stomach for it. I also don't fully
1093 * understand sessions/pgrp etc. Let somebody who does explain it.
1095 * OK, I think I have the protection semantics right.... this is really
1096 * only important on a multi-user system anyway, to make sure one user
1097 * can't send a signal to a process owned by another. -TYT, 12/12/91
1099 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1100 * LBT 04.03.94
1103 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1105 struct task_struct *p;
1106 struct task_struct *group_leader = current->group_leader;
1107 int err = -EINVAL;
1109 if (!pid)
1110 pid = group_leader->pid;
1111 if (!pgid)
1112 pgid = pid;
1113 if (pgid < 0)
1114 return -EINVAL;
1116 /* From this point forward we keep holding onto the tasklist lock
1117 * so that our parent does not change from under us. -DaveM
1119 write_lock_irq(&tasklist_lock);
1121 err = -ESRCH;
1122 p = find_task_by_pid(pid);
1123 if (!p)
1124 goto out;
1126 err = -EINVAL;
1127 if (!thread_group_leader(p))
1128 goto out;
1130 if (p->real_parent == group_leader) {
1131 err = -EPERM;
1132 if (p->signal->session != group_leader->signal->session)
1133 goto out;
1134 err = -EACCES;
1135 if (p->did_exec)
1136 goto out;
1137 } else {
1138 err = -ESRCH;
1139 if (p != group_leader)
1140 goto out;
1143 err = -EPERM;
1144 if (p->signal->leader)
1145 goto out;
1147 if (pgid != pid) {
1148 struct task_struct *p;
1150 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1151 if (p->signal->session == group_leader->signal->session)
1152 goto ok_pgid;
1153 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1154 goto out;
1157 ok_pgid:
1158 err = security_task_setpgid(p, pgid);
1159 if (err)
1160 goto out;
1162 if (process_group(p) != pgid) {
1163 detach_pid(p, PIDTYPE_PGID);
1164 p->signal->pgrp = pgid;
1165 attach_pid(p, PIDTYPE_PGID, pgid);
1168 err = 0;
1169 out:
1170 /* All paths lead to here, thus we are safe. -DaveM */
1171 write_unlock_irq(&tasklist_lock);
1172 return err;
1175 asmlinkage long sys_getpgid(pid_t pid)
1177 if (!pid) {
1178 return process_group(current);
1179 } else {
1180 int retval;
1181 struct task_struct *p;
1183 read_lock(&tasklist_lock);
1184 p = find_task_by_pid(pid);
1186 retval = -ESRCH;
1187 if (p) {
1188 retval = security_task_getpgid(p);
1189 if (!retval)
1190 retval = process_group(p);
1192 read_unlock(&tasklist_lock);
1193 return retval;
1197 #ifdef __ARCH_WANT_SYS_GETPGRP
1199 asmlinkage long sys_getpgrp(void)
1201 /* SMP - assuming writes are word atomic this is fine */
1202 return process_group(current);
1205 #endif
1207 asmlinkage long sys_getsid(pid_t pid)
1209 if (!pid) {
1210 return current->signal->session;
1211 } else {
1212 int retval;
1213 struct task_struct *p;
1215 read_lock(&tasklist_lock);
1216 p = find_task_by_pid(pid);
1218 retval = -ESRCH;
1219 if(p) {
1220 retval = security_task_getsid(p);
1221 if (!retval)
1222 retval = p->signal->session;
1224 read_unlock(&tasklist_lock);
1225 return retval;
1229 asmlinkage long sys_setsid(void)
1231 struct task_struct *group_leader = current->group_leader;
1232 struct pid *pid;
1233 int err = -EPERM;
1235 down(&tty_sem);
1236 write_lock_irq(&tasklist_lock);
1238 pid = find_pid(PIDTYPE_PGID, group_leader->pid);
1239 if (pid)
1240 goto out;
1242 group_leader->signal->leader = 1;
1243 __set_special_pids(group_leader->pid, group_leader->pid);
1244 group_leader->signal->tty = NULL;
1245 group_leader->signal->tty_old_pgrp = 0;
1246 err = process_group(group_leader);
1247 out:
1248 write_unlock_irq(&tasklist_lock);
1249 up(&tty_sem);
1250 return err;
1254 * Supplementary group IDs
1257 /* init to 2 - one for init_task, one to ensure it is never freed */
1258 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1260 struct group_info *groups_alloc(int gidsetsize)
1262 struct group_info *group_info;
1263 int nblocks;
1264 int i;
1266 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1267 /* Make sure we always allocate at least one indirect block pointer */
1268 nblocks = nblocks ? : 1;
1269 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1270 if (!group_info)
1271 return NULL;
1272 group_info->ngroups = gidsetsize;
1273 group_info->nblocks = nblocks;
1274 atomic_set(&group_info->usage, 1);
1276 if (gidsetsize <= NGROUPS_SMALL) {
1277 group_info->blocks[0] = group_info->small_block;
1278 } else {
1279 for (i = 0; i < nblocks; i++) {
1280 gid_t *b;
1281 b = (void *)__get_free_page(GFP_USER);
1282 if (!b)
1283 goto out_undo_partial_alloc;
1284 group_info->blocks[i] = b;
1287 return group_info;
1289 out_undo_partial_alloc:
1290 while (--i >= 0) {
1291 free_page((unsigned long)group_info->blocks[i]);
1293 kfree(group_info);
1294 return NULL;
1297 EXPORT_SYMBOL(groups_alloc);
1299 void groups_free(struct group_info *group_info)
1301 if (group_info->blocks[0] != group_info->small_block) {
1302 int i;
1303 for (i = 0; i < group_info->nblocks; i++)
1304 free_page((unsigned long)group_info->blocks[i]);
1306 kfree(group_info);
1309 EXPORT_SYMBOL(groups_free);
1311 /* export the group_info to a user-space array */
1312 static int groups_to_user(gid_t __user *grouplist,
1313 struct group_info *group_info)
1315 int i;
1316 int count = group_info->ngroups;
1318 for (i = 0; i < group_info->nblocks; i++) {
1319 int cp_count = min(NGROUPS_PER_BLOCK, count);
1320 int off = i * NGROUPS_PER_BLOCK;
1321 int len = cp_count * sizeof(*grouplist);
1323 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1324 return -EFAULT;
1326 count -= cp_count;
1328 return 0;
1331 /* fill a group_info from a user-space array - it must be allocated already */
1332 static int groups_from_user(struct group_info *group_info,
1333 gid_t __user *grouplist)
1335 int i;
1336 int count = group_info->ngroups;
1338 for (i = 0; i < group_info->nblocks; i++) {
1339 int cp_count = min(NGROUPS_PER_BLOCK, count);
1340 int off = i * NGROUPS_PER_BLOCK;
1341 int len = cp_count * sizeof(*grouplist);
1343 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1344 return -EFAULT;
1346 count -= cp_count;
1348 return 0;
1351 /* a simple Shell sort */
1352 static void groups_sort(struct group_info *group_info)
1354 int base, max, stride;
1355 int gidsetsize = group_info->ngroups;
1357 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1358 ; /* nothing */
1359 stride /= 3;
1361 while (stride) {
1362 max = gidsetsize - stride;
1363 for (base = 0; base < max; base++) {
1364 int left = base;
1365 int right = left + stride;
1366 gid_t tmp = GROUP_AT(group_info, right);
1368 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1369 GROUP_AT(group_info, right) =
1370 GROUP_AT(group_info, left);
1371 right = left;
1372 left -= stride;
1374 GROUP_AT(group_info, right) = tmp;
1376 stride /= 3;
1380 /* a simple bsearch */
1381 int groups_search(struct group_info *group_info, gid_t grp)
1383 int left, right;
1385 if (!group_info)
1386 return 0;
1388 left = 0;
1389 right = group_info->ngroups;
1390 while (left < right) {
1391 int mid = (left+right)/2;
1392 int cmp = grp - GROUP_AT(group_info, mid);
1393 if (cmp > 0)
1394 left = mid + 1;
1395 else if (cmp < 0)
1396 right = mid;
1397 else
1398 return 1;
1400 return 0;
1403 /* validate and set current->group_info */
1404 int set_current_groups(struct group_info *group_info)
1406 int retval;
1407 struct group_info *old_info;
1409 retval = security_task_setgroups(group_info);
1410 if (retval)
1411 return retval;
1413 groups_sort(group_info);
1414 get_group_info(group_info);
1416 task_lock(current);
1417 old_info = current->group_info;
1418 current->group_info = group_info;
1419 task_unlock(current);
1421 put_group_info(old_info);
1423 return 0;
1426 EXPORT_SYMBOL(set_current_groups);
1428 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1430 int i = 0;
1433 * SMP: Nobody else can change our grouplist. Thus we are
1434 * safe.
1437 if (gidsetsize < 0)
1438 return -EINVAL;
1440 /* no need to grab task_lock here; it cannot change */
1441 get_group_info(current->group_info);
1442 i = current->group_info->ngroups;
1443 if (gidsetsize) {
1444 if (i > gidsetsize) {
1445 i = -EINVAL;
1446 goto out;
1448 if (groups_to_user(grouplist, current->group_info)) {
1449 i = -EFAULT;
1450 goto out;
1453 out:
1454 put_group_info(current->group_info);
1455 return i;
1459 * SMP: Our groups are copy-on-write. We can set them safely
1460 * without another task interfering.
1463 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1465 struct group_info *group_info;
1466 int retval;
1468 if (!capable(CAP_SETGID))
1469 return -EPERM;
1470 if ((unsigned)gidsetsize > NGROUPS_MAX)
1471 return -EINVAL;
1473 group_info = groups_alloc(gidsetsize);
1474 if (!group_info)
1475 return -ENOMEM;
1476 retval = groups_from_user(group_info, grouplist);
1477 if (retval) {
1478 put_group_info(group_info);
1479 return retval;
1482 retval = set_current_groups(group_info);
1483 put_group_info(group_info);
1485 return retval;
1489 * Check whether we're fsgid/egid or in the supplemental group..
1491 int in_group_p(gid_t grp)
1493 int retval = 1;
1494 if (grp != current->fsgid) {
1495 get_group_info(current->group_info);
1496 retval = groups_search(current->group_info, grp);
1497 put_group_info(current->group_info);
1499 return retval;
1502 EXPORT_SYMBOL(in_group_p);
1504 int in_egroup_p(gid_t grp)
1506 int retval = 1;
1507 if (grp != current->egid) {
1508 get_group_info(current->group_info);
1509 retval = groups_search(current->group_info, grp);
1510 put_group_info(current->group_info);
1512 return retval;
1515 EXPORT_SYMBOL(in_egroup_p);
1517 DECLARE_RWSEM(uts_sem);
1519 EXPORT_SYMBOL(uts_sem);
1521 asmlinkage long sys_newuname(struct new_utsname __user * name)
1523 int errno = 0;
1525 down_read(&uts_sem);
1526 if (copy_to_user(name,&system_utsname,sizeof *name))
1527 errno = -EFAULT;
1528 up_read(&uts_sem);
1529 return errno;
1532 asmlinkage long sys_sethostname(char __user *name, int len)
1534 int errno;
1535 char tmp[__NEW_UTS_LEN];
1537 if (!capable(CAP_SYS_ADMIN))
1538 return -EPERM;
1539 if (len < 0 || len > __NEW_UTS_LEN)
1540 return -EINVAL;
1541 down_write(&uts_sem);
1542 errno = -EFAULT;
1543 if (!copy_from_user(tmp, name, len)) {
1544 memcpy(system_utsname.nodename, tmp, len);
1545 system_utsname.nodename[len] = 0;
1546 errno = 0;
1548 up_write(&uts_sem);
1549 return errno;
1552 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1554 asmlinkage long sys_gethostname(char __user *name, int len)
1556 int i, errno;
1558 if (len < 0)
1559 return -EINVAL;
1560 down_read(&uts_sem);
1561 i = 1 + strlen(system_utsname.nodename);
1562 if (i > len)
1563 i = len;
1564 errno = 0;
1565 if (copy_to_user(name, system_utsname.nodename, i))
1566 errno = -EFAULT;
1567 up_read(&uts_sem);
1568 return errno;
1571 #endif
1574 * Only setdomainname; getdomainname can be implemented by calling
1575 * uname()
1577 asmlinkage long sys_setdomainname(char __user *name, int len)
1579 int errno;
1580 char tmp[__NEW_UTS_LEN];
1582 if (!capable(CAP_SYS_ADMIN))
1583 return -EPERM;
1584 if (len < 0 || len > __NEW_UTS_LEN)
1585 return -EINVAL;
1587 down_write(&uts_sem);
1588 errno = -EFAULT;
1589 if (!copy_from_user(tmp, name, len)) {
1590 memcpy(system_utsname.domainname, tmp, len);
1591 system_utsname.domainname[len] = 0;
1592 errno = 0;
1594 up_write(&uts_sem);
1595 return errno;
1598 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1600 if (resource >= RLIM_NLIMITS)
1601 return -EINVAL;
1602 else {
1603 struct rlimit value;
1604 task_lock(current->group_leader);
1605 value = current->signal->rlim[resource];
1606 task_unlock(current->group_leader);
1607 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1611 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1614 * Back compatibility for getrlimit. Needed for some apps.
1617 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1619 struct rlimit x;
1620 if (resource >= RLIM_NLIMITS)
1621 return -EINVAL;
1623 task_lock(current->group_leader);
1624 x = current->signal->rlim[resource];
1625 task_unlock(current->group_leader);
1626 if(x.rlim_cur > 0x7FFFFFFF)
1627 x.rlim_cur = 0x7FFFFFFF;
1628 if(x.rlim_max > 0x7FFFFFFF)
1629 x.rlim_max = 0x7FFFFFFF;
1630 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1633 #endif
1635 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1637 struct rlimit new_rlim, *old_rlim;
1638 int retval;
1640 if (resource >= RLIM_NLIMITS)
1641 return -EINVAL;
1642 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1643 return -EFAULT;
1644 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1645 return -EINVAL;
1646 old_rlim = current->signal->rlim + resource;
1647 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1648 !capable(CAP_SYS_RESOURCE))
1649 return -EPERM;
1650 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1651 return -EPERM;
1653 retval = security_task_setrlimit(resource, &new_rlim);
1654 if (retval)
1655 return retval;
1657 task_lock(current->group_leader);
1658 *old_rlim = new_rlim;
1659 task_unlock(current->group_leader);
1661 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1662 (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1663 new_rlim.rlim_cur <= cputime_to_secs(
1664 current->signal->it_prof_expires))) {
1665 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1666 read_lock(&tasklist_lock);
1667 spin_lock_irq(&current->sighand->siglock);
1668 set_process_cpu_timer(current, CPUCLOCK_PROF,
1669 &cputime, NULL);
1670 spin_unlock_irq(&current->sighand->siglock);
1671 read_unlock(&tasklist_lock);
1674 return 0;
1678 * It would make sense to put struct rusage in the task_struct,
1679 * except that would make the task_struct be *really big*. After
1680 * task_struct gets moved into malloc'ed memory, it would
1681 * make sense to do this. It will make moving the rest of the information
1682 * a lot simpler! (Which we're not doing right now because we're not
1683 * measuring them yet).
1685 * This expects to be called with tasklist_lock read-locked or better,
1686 * and the siglock not locked. It may momentarily take the siglock.
1688 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1689 * races with threads incrementing their own counters. But since word
1690 * reads are atomic, we either get new values or old values and we don't
1691 * care which for the sums. We always take the siglock to protect reading
1692 * the c* fields from p->signal from races with exit.c updating those
1693 * fields when reaping, so a sample either gets all the additions of a
1694 * given child after it's reaped, or none so this sample is before reaping.
1697 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1699 struct task_struct *t;
1700 unsigned long flags;
1701 cputime_t utime, stime;
1703 memset((char *) r, 0, sizeof *r);
1705 if (unlikely(!p->signal))
1706 return;
1708 utime = stime = cputime_zero;
1710 switch (who) {
1711 case RUSAGE_BOTH:
1712 case RUSAGE_CHILDREN:
1713 spin_lock_irqsave(&p->sighand->siglock, flags);
1714 utime = p->signal->cutime;
1715 stime = p->signal->cstime;
1716 r->ru_nvcsw = p->signal->cnvcsw;
1717 r->ru_nivcsw = p->signal->cnivcsw;
1718 r->ru_minflt = p->signal->cmin_flt;
1719 r->ru_majflt = p->signal->cmaj_flt;
1720 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1722 if (who == RUSAGE_CHILDREN)
1723 break;
1725 case RUSAGE_SELF:
1726 utime = cputime_add(utime, p->signal->utime);
1727 stime = cputime_add(stime, p->signal->stime);
1728 r->ru_nvcsw += p->signal->nvcsw;
1729 r->ru_nivcsw += p->signal->nivcsw;
1730 r->ru_minflt += p->signal->min_flt;
1731 r->ru_majflt += p->signal->maj_flt;
1732 t = p;
1733 do {
1734 utime = cputime_add(utime, t->utime);
1735 stime = cputime_add(stime, t->stime);
1736 r->ru_nvcsw += t->nvcsw;
1737 r->ru_nivcsw += t->nivcsw;
1738 r->ru_minflt += t->min_flt;
1739 r->ru_majflt += t->maj_flt;
1740 t = next_thread(t);
1741 } while (t != p);
1742 break;
1744 default:
1745 BUG();
1748 cputime_to_timeval(utime, &r->ru_utime);
1749 cputime_to_timeval(stime, &r->ru_stime);
1752 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1754 struct rusage r;
1755 read_lock(&tasklist_lock);
1756 k_getrusage(p, who, &r);
1757 read_unlock(&tasklist_lock);
1758 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1761 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1763 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1764 return -EINVAL;
1765 return getrusage(current, who, ru);
1768 asmlinkage long sys_umask(int mask)
1770 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1771 return mask;
1774 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1775 unsigned long arg4, unsigned long arg5)
1777 long error;
1779 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1780 if (error)
1781 return error;
1783 switch (option) {
1784 case PR_SET_PDEATHSIG:
1785 if (!valid_signal(arg2)) {
1786 error = -EINVAL;
1787 break;
1789 current->pdeath_signal = arg2;
1790 break;
1791 case PR_GET_PDEATHSIG:
1792 error = put_user(current->pdeath_signal, (int __user *)arg2);
1793 break;
1794 case PR_GET_DUMPABLE:
1795 error = current->mm->dumpable;
1796 break;
1797 case PR_SET_DUMPABLE:
1798 if (arg2 < 0 || arg2 > 2) {
1799 error = -EINVAL;
1800 break;
1802 current->mm->dumpable = arg2;
1803 break;
1805 case PR_SET_UNALIGN:
1806 error = SET_UNALIGN_CTL(current, arg2);
1807 break;
1808 case PR_GET_UNALIGN:
1809 error = GET_UNALIGN_CTL(current, arg2);
1810 break;
1811 case PR_SET_FPEMU:
1812 error = SET_FPEMU_CTL(current, arg2);
1813 break;
1814 case PR_GET_FPEMU:
1815 error = GET_FPEMU_CTL(current, arg2);
1816 break;
1817 case PR_SET_FPEXC:
1818 error = SET_FPEXC_CTL(current, arg2);
1819 break;
1820 case PR_GET_FPEXC:
1821 error = GET_FPEXC_CTL(current, arg2);
1822 break;
1823 case PR_GET_TIMING:
1824 error = PR_TIMING_STATISTICAL;
1825 break;
1826 case PR_SET_TIMING:
1827 if (arg2 == PR_TIMING_STATISTICAL)
1828 error = 0;
1829 else
1830 error = -EINVAL;
1831 break;
1833 case PR_GET_KEEPCAPS:
1834 if (current->keep_capabilities)
1835 error = 1;
1836 break;
1837 case PR_SET_KEEPCAPS:
1838 if (arg2 != 0 && arg2 != 1) {
1839 error = -EINVAL;
1840 break;
1842 current->keep_capabilities = arg2;
1843 break;
1844 case PR_SET_NAME: {
1845 struct task_struct *me = current;
1846 unsigned char ncomm[sizeof(me->comm)];
1848 ncomm[sizeof(me->comm)-1] = 0;
1849 if (strncpy_from_user(ncomm, (char __user *)arg2,
1850 sizeof(me->comm)-1) < 0)
1851 return -EFAULT;
1852 set_task_comm(me, ncomm);
1853 return 0;
1855 case PR_GET_NAME: {
1856 struct task_struct *me = current;
1857 unsigned char tcomm[sizeof(me->comm)];
1859 get_task_comm(tcomm, me);
1860 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1861 return -EFAULT;
1862 return 0;
1864 default:
1865 error = -EINVAL;
1866 break;
1868 return error;