4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t
*p
)
173 if (p
->static_prio
< NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE
*4, p
->static_prio
);
176 return SCALE_PRIO(DEF_TIMESLICE
, p
->static_prio
);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
181 void __put_task_struct_cb(struct rcu_head
*rhp
)
183 __put_task_struct(container_of(rhp
, struct task_struct
, rcu
));
186 EXPORT_SYMBOL_GPL(__put_task_struct_cb
);
189 * These are the runqueue data structures:
192 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
194 typedef struct runqueue runqueue_t
;
197 unsigned int nr_active
;
198 unsigned long bitmap
[BITMAP_SIZE
];
199 struct list_head queue
[MAX_PRIO
];
203 * This is the main, per-CPU runqueue data structure.
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
216 unsigned long nr_running
;
218 unsigned long prio_bias
;
219 unsigned long cpu_load
[3];
221 unsigned long long nr_switches
;
224 * This is part of a global counter where only the total sum
225 * over all CPUs matters. A task can increase this counter on
226 * one CPU and if it got migrated afterwards it may decrease
227 * it on another CPU. Always updated under the runqueue lock:
229 unsigned long nr_uninterruptible
;
231 unsigned long expired_timestamp
;
232 unsigned long long timestamp_last_tick
;
234 struct mm_struct
*prev_mm
;
235 prio_array_t
*active
, *expired
, arrays
[2];
236 int best_expired_prio
;
240 struct sched_domain
*sd
;
242 /* For active balancing */
246 task_t
*migration_thread
;
247 struct list_head migration_queue
;
250 #ifdef CONFIG_SCHEDSTATS
252 struct sched_info rq_sched_info
;
254 /* sys_sched_yield() stats */
255 unsigned long yld_exp_empty
;
256 unsigned long yld_act_empty
;
257 unsigned long yld_both_empty
;
258 unsigned long yld_cnt
;
260 /* schedule() stats */
261 unsigned long sched_switch
;
262 unsigned long sched_cnt
;
263 unsigned long sched_goidle
;
265 /* try_to_wake_up() stats */
266 unsigned long ttwu_cnt
;
267 unsigned long ttwu_local
;
271 static DEFINE_PER_CPU(struct runqueue
, runqueues
);
274 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
275 * See detach_destroy_domains: synchronize_sched for details.
277 * The domain tree of any CPU may only be accessed from within
278 * preempt-disabled sections.
280 #define for_each_domain(cpu, domain) \
281 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
283 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
284 #define this_rq() (&__get_cpu_var(runqueues))
285 #define task_rq(p) cpu_rq(task_cpu(p))
286 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
288 #ifndef prepare_arch_switch
289 # define prepare_arch_switch(next) do { } while (0)
291 #ifndef finish_arch_switch
292 # define finish_arch_switch(prev) do { } while (0)
295 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
296 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
298 return rq
->curr
== p
;
301 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
305 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
307 #ifdef CONFIG_DEBUG_SPINLOCK
308 /* this is a valid case when another task releases the spinlock */
309 rq
->lock
.owner
= current
;
311 spin_unlock_irq(&rq
->lock
);
314 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
315 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
320 return rq
->curr
== p
;
324 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
328 * We can optimise this out completely for !SMP, because the
329 * SMP rebalancing from interrupt is the only thing that cares
334 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
335 spin_unlock_irq(&rq
->lock
);
337 spin_unlock(&rq
->lock
);
341 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
345 * After ->oncpu is cleared, the task can be moved to a different CPU.
346 * We must ensure this doesn't happen until the switch is completely
352 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
356 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
359 * task_rq_lock - lock the runqueue a given task resides on and disable
360 * interrupts. Note the ordering: we can safely lookup the task_rq without
361 * explicitly disabling preemption.
363 static inline runqueue_t
*task_rq_lock(task_t
*p
, unsigned long *flags
)
369 local_irq_save(*flags
);
371 spin_lock(&rq
->lock
);
372 if (unlikely(rq
!= task_rq(p
))) {
373 spin_unlock_irqrestore(&rq
->lock
, *flags
);
374 goto repeat_lock_task
;
379 static inline void task_rq_unlock(runqueue_t
*rq
, unsigned long *flags
)
382 spin_unlock_irqrestore(&rq
->lock
, *flags
);
385 #ifdef CONFIG_SCHEDSTATS
387 * bump this up when changing the output format or the meaning of an existing
388 * format, so that tools can adapt (or abort)
390 #define SCHEDSTAT_VERSION 12
392 static int show_schedstat(struct seq_file
*seq
, void *v
)
396 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
397 seq_printf(seq
, "timestamp %lu\n", jiffies
);
398 for_each_online_cpu(cpu
) {
399 runqueue_t
*rq
= cpu_rq(cpu
);
401 struct sched_domain
*sd
;
405 /* runqueue-specific stats */
407 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
408 cpu
, rq
->yld_both_empty
,
409 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
410 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
411 rq
->ttwu_cnt
, rq
->ttwu_local
,
412 rq
->rq_sched_info
.cpu_time
,
413 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
415 seq_printf(seq
, "\n");
418 /* domain-specific stats */
420 for_each_domain(cpu
, sd
) {
421 enum idle_type itype
;
422 char mask_str
[NR_CPUS
];
424 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
425 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
426 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
428 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
430 sd
->lb_balanced
[itype
],
431 sd
->lb_failed
[itype
],
432 sd
->lb_imbalance
[itype
],
433 sd
->lb_gained
[itype
],
434 sd
->lb_hot_gained
[itype
],
435 sd
->lb_nobusyq
[itype
],
436 sd
->lb_nobusyg
[itype
]);
438 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
439 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
440 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
441 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
442 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
450 static int schedstat_open(struct inode
*inode
, struct file
*file
)
452 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
453 char *buf
= kmalloc(size
, GFP_KERNEL
);
459 res
= single_open(file
, show_schedstat
, NULL
);
461 m
= file
->private_data
;
469 struct file_operations proc_schedstat_operations
= {
470 .open
= schedstat_open
,
473 .release
= single_release
,
476 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
477 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
478 #else /* !CONFIG_SCHEDSTATS */
479 # define schedstat_inc(rq, field) do { } while (0)
480 # define schedstat_add(rq, field, amt) do { } while (0)
484 * rq_lock - lock a given runqueue and disable interrupts.
486 static inline runqueue_t
*this_rq_lock(void)
493 spin_lock(&rq
->lock
);
498 #ifdef CONFIG_SCHEDSTATS
500 * Called when a process is dequeued from the active array and given
501 * the cpu. We should note that with the exception of interactive
502 * tasks, the expired queue will become the active queue after the active
503 * queue is empty, without explicitly dequeuing and requeuing tasks in the
504 * expired queue. (Interactive tasks may be requeued directly to the
505 * active queue, thus delaying tasks in the expired queue from running;
506 * see scheduler_tick()).
508 * This function is only called from sched_info_arrive(), rather than
509 * dequeue_task(). Even though a task may be queued and dequeued multiple
510 * times as it is shuffled about, we're really interested in knowing how
511 * long it was from the *first* time it was queued to the time that it
514 static inline void sched_info_dequeued(task_t
*t
)
516 t
->sched_info
.last_queued
= 0;
520 * Called when a task finally hits the cpu. We can now calculate how
521 * long it was waiting to run. We also note when it began so that we
522 * can keep stats on how long its timeslice is.
524 static void sched_info_arrive(task_t
*t
)
526 unsigned long now
= jiffies
, diff
= 0;
527 struct runqueue
*rq
= task_rq(t
);
529 if (t
->sched_info
.last_queued
)
530 diff
= now
- t
->sched_info
.last_queued
;
531 sched_info_dequeued(t
);
532 t
->sched_info
.run_delay
+= diff
;
533 t
->sched_info
.last_arrival
= now
;
534 t
->sched_info
.pcnt
++;
539 rq
->rq_sched_info
.run_delay
+= diff
;
540 rq
->rq_sched_info
.pcnt
++;
544 * Called when a process is queued into either the active or expired
545 * array. The time is noted and later used to determine how long we
546 * had to wait for us to reach the cpu. Since the expired queue will
547 * become the active queue after active queue is empty, without dequeuing
548 * and requeuing any tasks, we are interested in queuing to either. It
549 * is unusual but not impossible for tasks to be dequeued and immediately
550 * requeued in the same or another array: this can happen in sched_yield(),
551 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
554 * This function is only called from enqueue_task(), but also only updates
555 * the timestamp if it is already not set. It's assumed that
556 * sched_info_dequeued() will clear that stamp when appropriate.
558 static inline void sched_info_queued(task_t
*t
)
560 if (!t
->sched_info
.last_queued
)
561 t
->sched_info
.last_queued
= jiffies
;
565 * Called when a process ceases being the active-running process, either
566 * voluntarily or involuntarily. Now we can calculate how long we ran.
568 static inline void sched_info_depart(task_t
*t
)
570 struct runqueue
*rq
= task_rq(t
);
571 unsigned long diff
= jiffies
- t
->sched_info
.last_arrival
;
573 t
->sched_info
.cpu_time
+= diff
;
576 rq
->rq_sched_info
.cpu_time
+= diff
;
580 * Called when tasks are switched involuntarily due, typically, to expiring
581 * their time slice. (This may also be called when switching to or from
582 * the idle task.) We are only called when prev != next.
584 static inline void sched_info_switch(task_t
*prev
, task_t
*next
)
586 struct runqueue
*rq
= task_rq(prev
);
589 * prev now departs the cpu. It's not interesting to record
590 * stats about how efficient we were at scheduling the idle
593 if (prev
!= rq
->idle
)
594 sched_info_depart(prev
);
596 if (next
!= rq
->idle
)
597 sched_info_arrive(next
);
600 #define sched_info_queued(t) do { } while (0)
601 #define sched_info_switch(t, next) do { } while (0)
602 #endif /* CONFIG_SCHEDSTATS */
605 * Adding/removing a task to/from a priority array:
607 static void dequeue_task(struct task_struct
*p
, prio_array_t
*array
)
610 list_del(&p
->run_list
);
611 if (list_empty(array
->queue
+ p
->prio
))
612 __clear_bit(p
->prio
, array
->bitmap
);
615 static void enqueue_task(struct task_struct
*p
, prio_array_t
*array
)
617 sched_info_queued(p
);
618 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
619 __set_bit(p
->prio
, array
->bitmap
);
625 * Put task to the end of the run list without the overhead of dequeue
626 * followed by enqueue.
628 static void requeue_task(struct task_struct
*p
, prio_array_t
*array
)
630 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
633 static inline void enqueue_task_head(struct task_struct
*p
, prio_array_t
*array
)
635 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
636 __set_bit(p
->prio
, array
->bitmap
);
642 * effective_prio - return the priority that is based on the static
643 * priority but is modified by bonuses/penalties.
645 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
646 * into the -5 ... 0 ... +5 bonus/penalty range.
648 * We use 25% of the full 0...39 priority range so that:
650 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
651 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
653 * Both properties are important to certain workloads.
655 static int effective_prio(task_t
*p
)
662 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
664 prio
= p
->static_prio
- bonus
;
665 if (prio
< MAX_RT_PRIO
)
667 if (prio
> MAX_PRIO
-1)
673 static inline void inc_prio_bias(runqueue_t
*rq
, int prio
)
675 rq
->prio_bias
+= MAX_PRIO
- prio
;
678 static inline void dec_prio_bias(runqueue_t
*rq
, int prio
)
680 rq
->prio_bias
-= MAX_PRIO
- prio
;
683 static inline void inc_nr_running(task_t
*p
, runqueue_t
*rq
)
687 if (p
!= rq
->migration_thread
)
689 * The migration thread does the actual balancing. Do
690 * not bias by its priority as the ultra high priority
691 * will skew balancing adversely.
693 inc_prio_bias(rq
, p
->prio
);
695 inc_prio_bias(rq
, p
->static_prio
);
698 static inline void dec_nr_running(task_t
*p
, runqueue_t
*rq
)
702 if (p
!= rq
->migration_thread
)
703 dec_prio_bias(rq
, p
->prio
);
705 dec_prio_bias(rq
, p
->static_prio
);
708 static inline void inc_prio_bias(runqueue_t
*rq
, int prio
)
712 static inline void dec_prio_bias(runqueue_t
*rq
, int prio
)
716 static inline void inc_nr_running(task_t
*p
, runqueue_t
*rq
)
721 static inline void dec_nr_running(task_t
*p
, runqueue_t
*rq
)
728 * __activate_task - move a task to the runqueue.
730 static inline void __activate_task(task_t
*p
, runqueue_t
*rq
)
732 enqueue_task(p
, rq
->active
);
733 inc_nr_running(p
, rq
);
737 * __activate_idle_task - move idle task to the _front_ of runqueue.
739 static inline void __activate_idle_task(task_t
*p
, runqueue_t
*rq
)
741 enqueue_task_head(p
, rq
->active
);
742 inc_nr_running(p
, rq
);
745 static int recalc_task_prio(task_t
*p
, unsigned long long now
)
747 /* Caller must always ensure 'now >= p->timestamp' */
748 unsigned long long __sleep_time
= now
- p
->timestamp
;
749 unsigned long sleep_time
;
751 if (unlikely(p
->policy
== SCHED_BATCH
))
754 if (__sleep_time
> NS_MAX_SLEEP_AVG
)
755 sleep_time
= NS_MAX_SLEEP_AVG
;
757 sleep_time
= (unsigned long)__sleep_time
;
760 if (likely(sleep_time
> 0)) {
762 * User tasks that sleep a long time are categorised as
763 * idle and will get just interactive status to stay active &
764 * prevent them suddenly becoming cpu hogs and starving
767 if (p
->mm
&& p
->activated
!= -1 &&
768 sleep_time
> INTERACTIVE_SLEEP(p
)) {
769 p
->sleep_avg
= JIFFIES_TO_NS(MAX_SLEEP_AVG
-
773 * The lower the sleep avg a task has the more
774 * rapidly it will rise with sleep time.
776 sleep_time
*= (MAX_BONUS
- CURRENT_BONUS(p
)) ? : 1;
779 * Tasks waking from uninterruptible sleep are
780 * limited in their sleep_avg rise as they
781 * are likely to be waiting on I/O
783 if (p
->activated
== -1 && p
->mm
) {
784 if (p
->sleep_avg
>= INTERACTIVE_SLEEP(p
))
786 else if (p
->sleep_avg
+ sleep_time
>=
787 INTERACTIVE_SLEEP(p
)) {
788 p
->sleep_avg
= INTERACTIVE_SLEEP(p
);
794 * This code gives a bonus to interactive tasks.
796 * The boost works by updating the 'average sleep time'
797 * value here, based on ->timestamp. The more time a
798 * task spends sleeping, the higher the average gets -
799 * and the higher the priority boost gets as well.
801 p
->sleep_avg
+= sleep_time
;
803 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
804 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
808 return effective_prio(p
);
812 * activate_task - move a task to the runqueue and do priority recalculation
814 * Update all the scheduling statistics stuff. (sleep average
815 * calculation, priority modifiers, etc.)
817 static void activate_task(task_t
*p
, runqueue_t
*rq
, int local
)
819 unsigned long long now
;
824 /* Compensate for drifting sched_clock */
825 runqueue_t
*this_rq
= this_rq();
826 now
= (now
- this_rq
->timestamp_last_tick
)
827 + rq
->timestamp_last_tick
;
832 p
->prio
= recalc_task_prio(p
, now
);
835 * This checks to make sure it's not an uninterruptible task
836 * that is now waking up.
840 * Tasks which were woken up by interrupts (ie. hw events)
841 * are most likely of interactive nature. So we give them
842 * the credit of extending their sleep time to the period
843 * of time they spend on the runqueue, waiting for execution
844 * on a CPU, first time around:
850 * Normal first-time wakeups get a credit too for
851 * on-runqueue time, but it will be weighted down:
858 __activate_task(p
, rq
);
862 * deactivate_task - remove a task from the runqueue.
864 static void deactivate_task(struct task_struct
*p
, runqueue_t
*rq
)
866 dec_nr_running(p
, rq
);
867 dequeue_task(p
, p
->array
);
872 * resched_task - mark a task 'to be rescheduled now'.
874 * On UP this means the setting of the need_resched flag, on SMP it
875 * might also involve a cross-CPU call to trigger the scheduler on
879 static void resched_task(task_t
*p
)
883 assert_spin_locked(&task_rq(p
)->lock
);
885 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
888 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
891 if (cpu
== smp_processor_id())
894 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
896 if (!test_tsk_thread_flag(p
, TIF_POLLING_NRFLAG
))
897 smp_send_reschedule(cpu
);
900 static inline void resched_task(task_t
*p
)
902 assert_spin_locked(&task_rq(p
)->lock
);
903 set_tsk_need_resched(p
);
908 * task_curr - is this task currently executing on a CPU?
909 * @p: the task in question.
911 inline int task_curr(const task_t
*p
)
913 return cpu_curr(task_cpu(p
)) == p
;
918 struct list_head list
;
923 struct completion done
;
927 * The task's runqueue lock must be held.
928 * Returns true if you have to wait for migration thread.
930 static int migrate_task(task_t
*p
, int dest_cpu
, migration_req_t
*req
)
932 runqueue_t
*rq
= task_rq(p
);
935 * If the task is not on a runqueue (and not running), then
936 * it is sufficient to simply update the task's cpu field.
938 if (!p
->array
&& !task_running(rq
, p
)) {
939 set_task_cpu(p
, dest_cpu
);
943 init_completion(&req
->done
);
945 req
->dest_cpu
= dest_cpu
;
946 list_add(&req
->list
, &rq
->migration_queue
);
951 * wait_task_inactive - wait for a thread to unschedule.
953 * The caller must ensure that the task *will* unschedule sometime soon,
954 * else this function might spin for a *long* time. This function can't
955 * be called with interrupts off, or it may introduce deadlock with
956 * smp_call_function() if an IPI is sent by the same process we are
957 * waiting to become inactive.
959 void wait_task_inactive(task_t
*p
)
966 rq
= task_rq_lock(p
, &flags
);
967 /* Must be off runqueue entirely, not preempted. */
968 if (unlikely(p
->array
|| task_running(rq
, p
))) {
969 /* If it's preempted, we yield. It could be a while. */
970 preempted
= !task_running(rq
, p
);
971 task_rq_unlock(rq
, &flags
);
977 task_rq_unlock(rq
, &flags
);
981 * kick_process - kick a running thread to enter/exit the kernel
982 * @p: the to-be-kicked thread
984 * Cause a process which is running on another CPU to enter
985 * kernel-mode, without any delay. (to get signals handled.)
987 * NOTE: this function doesnt have to take the runqueue lock,
988 * because all it wants to ensure is that the remote task enters
989 * the kernel. If the IPI races and the task has been migrated
990 * to another CPU then no harm is done and the purpose has been
993 void kick_process(task_t
*p
)
999 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1000 smp_send_reschedule(cpu
);
1005 * Return a low guess at the load of a migration-source cpu.
1007 * We want to under-estimate the load of migration sources, to
1008 * balance conservatively.
1010 static unsigned long __source_load(int cpu
, int type
, enum idle_type idle
)
1012 runqueue_t
*rq
= cpu_rq(cpu
);
1013 unsigned long running
= rq
->nr_running
;
1014 unsigned long source_load
, cpu_load
= rq
->cpu_load
[type
-1],
1015 load_now
= running
* SCHED_LOAD_SCALE
;
1018 source_load
= load_now
;
1020 source_load
= min(cpu_load
, load_now
);
1022 if (running
> 1 || (idle
== NOT_IDLE
&& running
))
1024 * If we are busy rebalancing the load is biased by
1025 * priority to create 'nice' support across cpus. When
1026 * idle rebalancing we should only bias the source_load if
1027 * there is more than one task running on that queue to
1028 * prevent idle rebalance from trying to pull tasks from a
1029 * queue with only one running task.
1031 source_load
= source_load
* rq
->prio_bias
/ running
;
1036 static inline unsigned long source_load(int cpu
, int type
)
1038 return __source_load(cpu
, type
, NOT_IDLE
);
1042 * Return a high guess at the load of a migration-target cpu
1044 static inline unsigned long __target_load(int cpu
, int type
, enum idle_type idle
)
1046 runqueue_t
*rq
= cpu_rq(cpu
);
1047 unsigned long running
= rq
->nr_running
;
1048 unsigned long target_load
, cpu_load
= rq
->cpu_load
[type
-1],
1049 load_now
= running
* SCHED_LOAD_SCALE
;
1052 target_load
= load_now
;
1054 target_load
= max(cpu_load
, load_now
);
1056 if (running
> 1 || (idle
== NOT_IDLE
&& running
))
1057 target_load
= target_load
* rq
->prio_bias
/ running
;
1062 static inline unsigned long target_load(int cpu
, int type
)
1064 return __target_load(cpu
, type
, NOT_IDLE
);
1068 * find_idlest_group finds and returns the least busy CPU group within the
1071 static struct sched_group
*
1072 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1074 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1075 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1076 int load_idx
= sd
->forkexec_idx
;
1077 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1080 unsigned long load
, avg_load
;
1084 /* Skip over this group if it has no CPUs allowed */
1085 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1088 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1090 /* Tally up the load of all CPUs in the group */
1093 for_each_cpu_mask(i
, group
->cpumask
) {
1094 /* Bias balancing toward cpus of our domain */
1096 load
= source_load(i
, load_idx
);
1098 load
= target_load(i
, load_idx
);
1103 /* Adjust by relative CPU power of the group */
1104 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1107 this_load
= avg_load
;
1109 } else if (avg_load
< min_load
) {
1110 min_load
= avg_load
;
1114 group
= group
->next
;
1115 } while (group
!= sd
->groups
);
1117 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1123 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1126 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1129 unsigned long load
, min_load
= ULONG_MAX
;
1133 /* Traverse only the allowed CPUs */
1134 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1136 for_each_cpu_mask(i
, tmp
) {
1137 load
= source_load(i
, 0);
1139 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1149 * sched_balance_self: balance the current task (running on cpu) in domains
1150 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1153 * Balance, ie. select the least loaded group.
1155 * Returns the target CPU number, or the same CPU if no balancing is needed.
1157 * preempt must be disabled.
1159 static int sched_balance_self(int cpu
, int flag
)
1161 struct task_struct
*t
= current
;
1162 struct sched_domain
*tmp
, *sd
= NULL
;
1164 for_each_domain(cpu
, tmp
)
1165 if (tmp
->flags
& flag
)
1170 struct sched_group
*group
;
1175 group
= find_idlest_group(sd
, t
, cpu
);
1179 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1180 if (new_cpu
== -1 || new_cpu
== cpu
)
1183 /* Now try balancing at a lower domain level */
1187 weight
= cpus_weight(span
);
1188 for_each_domain(cpu
, tmp
) {
1189 if (weight
<= cpus_weight(tmp
->span
))
1191 if (tmp
->flags
& flag
)
1194 /* while loop will break here if sd == NULL */
1200 #endif /* CONFIG_SMP */
1203 * wake_idle() will wake a task on an idle cpu if task->cpu is
1204 * not idle and an idle cpu is available. The span of cpus to
1205 * search starts with cpus closest then further out as needed,
1206 * so we always favor a closer, idle cpu.
1208 * Returns the CPU we should wake onto.
1210 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1211 static int wake_idle(int cpu
, task_t
*p
)
1214 struct sched_domain
*sd
;
1220 for_each_domain(cpu
, sd
) {
1221 if (sd
->flags
& SD_WAKE_IDLE
) {
1222 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1223 for_each_cpu_mask(i
, tmp
) {
1234 static inline int wake_idle(int cpu
, task_t
*p
)
1241 * try_to_wake_up - wake up a thread
1242 * @p: the to-be-woken-up thread
1243 * @state: the mask of task states that can be woken
1244 * @sync: do a synchronous wakeup?
1246 * Put it on the run-queue if it's not already there. The "current"
1247 * thread is always on the run-queue (except when the actual
1248 * re-schedule is in progress), and as such you're allowed to do
1249 * the simpler "current->state = TASK_RUNNING" to mark yourself
1250 * runnable without the overhead of this.
1252 * returns failure only if the task is already active.
1254 static int try_to_wake_up(task_t
*p
, unsigned int state
, int sync
)
1256 int cpu
, this_cpu
, success
= 0;
1257 unsigned long flags
;
1261 unsigned long load
, this_load
;
1262 struct sched_domain
*sd
, *this_sd
= NULL
;
1266 rq
= task_rq_lock(p
, &flags
);
1267 old_state
= p
->state
;
1268 if (!(old_state
& state
))
1275 this_cpu
= smp_processor_id();
1278 if (unlikely(task_running(rq
, p
)))
1283 schedstat_inc(rq
, ttwu_cnt
);
1284 if (cpu
== this_cpu
) {
1285 schedstat_inc(rq
, ttwu_local
);
1289 for_each_domain(this_cpu
, sd
) {
1290 if (cpu_isset(cpu
, sd
->span
)) {
1291 schedstat_inc(sd
, ttwu_wake_remote
);
1297 if (p
->last_waker_cpu
!= this_cpu
)
1300 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1304 * Check for affine wakeup and passive balancing possibilities.
1307 int idx
= this_sd
->wake_idx
;
1308 unsigned int imbalance
;
1310 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1312 load
= source_load(cpu
, idx
);
1313 this_load
= target_load(this_cpu
, idx
);
1315 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1317 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1318 unsigned long tl
= this_load
;
1320 * If sync wakeup then subtract the (maximum possible)
1321 * effect of the currently running task from the load
1322 * of the current CPU:
1325 tl
-= SCHED_LOAD_SCALE
;
1328 tl
+ target_load(cpu
, idx
) <= SCHED_LOAD_SCALE
) ||
1329 100*(tl
+ SCHED_LOAD_SCALE
) <= imbalance
*load
) {
1331 * This domain has SD_WAKE_AFFINE and
1332 * p is cache cold in this domain, and
1333 * there is no bad imbalance.
1335 schedstat_inc(this_sd
, ttwu_move_affine
);
1341 * Start passive balancing when half the imbalance_pct
1344 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1345 if (imbalance
*this_load
<= 100*load
) {
1346 schedstat_inc(this_sd
, ttwu_move_balance
);
1352 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1354 new_cpu
= wake_idle(new_cpu
, p
);
1355 if (new_cpu
!= cpu
) {
1356 set_task_cpu(p
, new_cpu
);
1357 task_rq_unlock(rq
, &flags
);
1358 /* might preempt at this point */
1359 rq
= task_rq_lock(p
, &flags
);
1360 old_state
= p
->state
;
1361 if (!(old_state
& state
))
1366 this_cpu
= smp_processor_id();
1370 p
->last_waker_cpu
= this_cpu
;
1373 #endif /* CONFIG_SMP */
1374 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1375 rq
->nr_uninterruptible
--;
1377 * Tasks on involuntary sleep don't earn
1378 * sleep_avg beyond just interactive state.
1384 * Tasks that have marked their sleep as noninteractive get
1385 * woken up without updating their sleep average. (i.e. their
1386 * sleep is handled in a priority-neutral manner, no priority
1387 * boost and no penalty.)
1389 if (old_state
& TASK_NONINTERACTIVE
)
1390 __activate_task(p
, rq
);
1392 activate_task(p
, rq
, cpu
== this_cpu
);
1394 * Sync wakeups (i.e. those types of wakeups where the waker
1395 * has indicated that it will leave the CPU in short order)
1396 * don't trigger a preemption, if the woken up task will run on
1397 * this cpu. (in this case the 'I will reschedule' promise of
1398 * the waker guarantees that the freshly woken up task is going
1399 * to be considered on this CPU.)
1401 if (!sync
|| cpu
!= this_cpu
) {
1402 if (TASK_PREEMPTS_CURR(p
, rq
))
1403 resched_task(rq
->curr
);
1408 p
->state
= TASK_RUNNING
;
1410 task_rq_unlock(rq
, &flags
);
1415 int fastcall
wake_up_process(task_t
*p
)
1417 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1418 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1421 EXPORT_SYMBOL(wake_up_process
);
1423 int fastcall
wake_up_state(task_t
*p
, unsigned int state
)
1425 return try_to_wake_up(p
, state
, 0);
1429 * Perform scheduler related setup for a newly forked process p.
1430 * p is forked by current.
1432 void fastcall
sched_fork(task_t
*p
, int clone_flags
)
1434 int cpu
= get_cpu();
1437 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1439 set_task_cpu(p
, cpu
);
1442 * We mark the process as running here, but have not actually
1443 * inserted it onto the runqueue yet. This guarantees that
1444 * nobody will actually run it, and a signal or other external
1445 * event cannot wake it up and insert it on the runqueue either.
1447 p
->state
= TASK_RUNNING
;
1448 INIT_LIST_HEAD(&p
->run_list
);
1450 #ifdef CONFIG_SCHEDSTATS
1451 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1453 #if defined(CONFIG_SMP)
1454 p
->last_waker_cpu
= cpu
;
1455 #if defined(__ARCH_WANT_UNLOCKED_CTXSW)
1459 #ifdef CONFIG_PREEMPT
1460 /* Want to start with kernel preemption disabled. */
1461 task_thread_info(p
)->preempt_count
= 1;
1464 * Share the timeslice between parent and child, thus the
1465 * total amount of pending timeslices in the system doesn't change,
1466 * resulting in more scheduling fairness.
1468 local_irq_disable();
1469 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1471 * The remainder of the first timeslice might be recovered by
1472 * the parent if the child exits early enough.
1474 p
->first_time_slice
= 1;
1475 current
->time_slice
>>= 1;
1476 p
->timestamp
= sched_clock();
1477 if (unlikely(!current
->time_slice
)) {
1479 * This case is rare, it happens when the parent has only
1480 * a single jiffy left from its timeslice. Taking the
1481 * runqueue lock is not a problem.
1483 current
->time_slice
= 1;
1491 * wake_up_new_task - wake up a newly created task for the first time.
1493 * This function will do some initial scheduler statistics housekeeping
1494 * that must be done for every newly created context, then puts the task
1495 * on the runqueue and wakes it.
1497 void fastcall
wake_up_new_task(task_t
*p
, unsigned long clone_flags
)
1499 unsigned long flags
;
1501 runqueue_t
*rq
, *this_rq
;
1503 rq
= task_rq_lock(p
, &flags
);
1504 BUG_ON(p
->state
!= TASK_RUNNING
);
1505 this_cpu
= smp_processor_id();
1509 * We decrease the sleep average of forking parents
1510 * and children as well, to keep max-interactive tasks
1511 * from forking tasks that are max-interactive. The parent
1512 * (current) is done further down, under its lock.
1514 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1515 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1517 p
->prio
= effective_prio(p
);
1519 if (likely(cpu
== this_cpu
)) {
1520 if (!(clone_flags
& CLONE_VM
)) {
1522 * The VM isn't cloned, so we're in a good position to
1523 * do child-runs-first in anticipation of an exec. This
1524 * usually avoids a lot of COW overhead.
1526 if (unlikely(!current
->array
))
1527 __activate_task(p
, rq
);
1529 p
->prio
= current
->prio
;
1530 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1531 p
->array
= current
->array
;
1532 p
->array
->nr_active
++;
1533 inc_nr_running(p
, rq
);
1537 /* Run child last */
1538 __activate_task(p
, rq
);
1540 * We skip the following code due to cpu == this_cpu
1542 * task_rq_unlock(rq, &flags);
1543 * this_rq = task_rq_lock(current, &flags);
1547 this_rq
= cpu_rq(this_cpu
);
1550 * Not the local CPU - must adjust timestamp. This should
1551 * get optimised away in the !CONFIG_SMP case.
1553 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1554 + rq
->timestamp_last_tick
;
1555 __activate_task(p
, rq
);
1556 if (TASK_PREEMPTS_CURR(p
, rq
))
1557 resched_task(rq
->curr
);
1560 * Parent and child are on different CPUs, now get the
1561 * parent runqueue to update the parent's ->sleep_avg:
1563 task_rq_unlock(rq
, &flags
);
1564 this_rq
= task_rq_lock(current
, &flags
);
1566 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1567 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1568 task_rq_unlock(this_rq
, &flags
);
1572 * Potentially available exiting-child timeslices are
1573 * retrieved here - this way the parent does not get
1574 * penalized for creating too many threads.
1576 * (this cannot be used to 'generate' timeslices
1577 * artificially, because any timeslice recovered here
1578 * was given away by the parent in the first place.)
1580 void fastcall
sched_exit(task_t
*p
)
1582 unsigned long flags
;
1586 * If the child was a (relative-) CPU hog then decrease
1587 * the sleep_avg of the parent as well.
1589 rq
= task_rq_lock(p
->parent
, &flags
);
1590 if (p
->first_time_slice
&& task_cpu(p
) == task_cpu(p
->parent
)) {
1591 p
->parent
->time_slice
+= p
->time_slice
;
1592 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1593 p
->parent
->time_slice
= task_timeslice(p
);
1595 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1596 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1597 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1599 task_rq_unlock(rq
, &flags
);
1603 * prepare_task_switch - prepare to switch tasks
1604 * @rq: the runqueue preparing to switch
1605 * @next: the task we are going to switch to.
1607 * This is called with the rq lock held and interrupts off. It must
1608 * be paired with a subsequent finish_task_switch after the context
1611 * prepare_task_switch sets up locking and calls architecture specific
1614 static inline void prepare_task_switch(runqueue_t
*rq
, task_t
*next
)
1616 prepare_lock_switch(rq
, next
);
1617 prepare_arch_switch(next
);
1621 * finish_task_switch - clean up after a task-switch
1622 * @rq: runqueue associated with task-switch
1623 * @prev: the thread we just switched away from.
1625 * finish_task_switch must be called after the context switch, paired
1626 * with a prepare_task_switch call before the context switch.
1627 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1628 * and do any other architecture-specific cleanup actions.
1630 * Note that we may have delayed dropping an mm in context_switch(). If
1631 * so, we finish that here outside of the runqueue lock. (Doing it
1632 * with the lock held can cause deadlocks; see schedule() for
1635 static inline void finish_task_switch(runqueue_t
*rq
, task_t
*prev
)
1636 __releases(rq
->lock
)
1638 struct mm_struct
*mm
= rq
->prev_mm
;
1639 unsigned long prev_task_flags
;
1644 * A task struct has one reference for the use as "current".
1645 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1646 * calls schedule one last time. The schedule call will never return,
1647 * and the scheduled task must drop that reference.
1648 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1649 * still held, otherwise prev could be scheduled on another cpu, die
1650 * there before we look at prev->state, and then the reference would
1652 * Manfred Spraul <manfred@colorfullife.com>
1654 prev_task_flags
= prev
->flags
;
1655 finish_arch_switch(prev
);
1656 finish_lock_switch(rq
, prev
);
1659 if (unlikely(prev_task_flags
& PF_DEAD
))
1660 put_task_struct(prev
);
1664 * schedule_tail - first thing a freshly forked thread must call.
1665 * @prev: the thread we just switched away from.
1667 asmlinkage
void schedule_tail(task_t
*prev
)
1668 __releases(rq
->lock
)
1670 runqueue_t
*rq
= this_rq();
1671 finish_task_switch(rq
, prev
);
1672 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1673 /* In this case, finish_task_switch does not reenable preemption */
1676 if (current
->set_child_tid
)
1677 put_user(current
->pid
, current
->set_child_tid
);
1681 * context_switch - switch to the new MM and the new
1682 * thread's register state.
1685 task_t
* context_switch(runqueue_t
*rq
, task_t
*prev
, task_t
*next
)
1687 struct mm_struct
*mm
= next
->mm
;
1688 struct mm_struct
*oldmm
= prev
->active_mm
;
1690 if (unlikely(!mm
)) {
1691 next
->active_mm
= oldmm
;
1692 atomic_inc(&oldmm
->mm_count
);
1693 enter_lazy_tlb(oldmm
, next
);
1695 switch_mm(oldmm
, mm
, next
);
1697 if (unlikely(!prev
->mm
)) {
1698 prev
->active_mm
= NULL
;
1699 WARN_ON(rq
->prev_mm
);
1700 rq
->prev_mm
= oldmm
;
1703 /* Here we just switch the register state and the stack. */
1704 switch_to(prev
, next
, prev
);
1710 * nr_running, nr_uninterruptible and nr_context_switches:
1712 * externally visible scheduler statistics: current number of runnable
1713 * threads, current number of uninterruptible-sleeping threads, total
1714 * number of context switches performed since bootup.
1716 unsigned long nr_running(void)
1718 unsigned long i
, sum
= 0;
1720 for_each_online_cpu(i
)
1721 sum
+= cpu_rq(i
)->nr_running
;
1726 unsigned long nr_uninterruptible(void)
1728 unsigned long i
, sum
= 0;
1731 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1734 * Since we read the counters lockless, it might be slightly
1735 * inaccurate. Do not allow it to go below zero though:
1737 if (unlikely((long)sum
< 0))
1743 unsigned long long nr_context_switches(void)
1745 unsigned long long i
, sum
= 0;
1748 sum
+= cpu_rq(i
)->nr_switches
;
1753 unsigned long nr_iowait(void)
1755 unsigned long i
, sum
= 0;
1758 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1766 * double_rq_lock - safely lock two runqueues
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1771 static void double_rq_lock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1772 __acquires(rq1
->lock
)
1773 __acquires(rq2
->lock
)
1776 spin_lock(&rq1
->lock
);
1777 __acquire(rq2
->lock
); /* Fake it out ;) */
1780 spin_lock(&rq1
->lock
);
1781 spin_lock(&rq2
->lock
);
1783 spin_lock(&rq2
->lock
);
1784 spin_lock(&rq1
->lock
);
1790 * double_rq_unlock - safely unlock two runqueues
1792 * Note this does not restore interrupts like task_rq_unlock,
1793 * you need to do so manually after calling.
1795 static void double_rq_unlock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1796 __releases(rq1
->lock
)
1797 __releases(rq2
->lock
)
1799 spin_unlock(&rq1
->lock
);
1801 spin_unlock(&rq2
->lock
);
1803 __release(rq2
->lock
);
1807 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1809 static void double_lock_balance(runqueue_t
*this_rq
, runqueue_t
*busiest
)
1810 __releases(this_rq
->lock
)
1811 __acquires(busiest
->lock
)
1812 __acquires(this_rq
->lock
)
1814 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1815 if (busiest
< this_rq
) {
1816 spin_unlock(&this_rq
->lock
);
1817 spin_lock(&busiest
->lock
);
1818 spin_lock(&this_rq
->lock
);
1820 spin_lock(&busiest
->lock
);
1825 * If dest_cpu is allowed for this process, migrate the task to it.
1826 * This is accomplished by forcing the cpu_allowed mask to only
1827 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1828 * the cpu_allowed mask is restored.
1830 static void sched_migrate_task(task_t
*p
, int dest_cpu
)
1832 migration_req_t req
;
1834 unsigned long flags
;
1836 rq
= task_rq_lock(p
, &flags
);
1837 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1838 || unlikely(cpu_is_offline(dest_cpu
)))
1841 /* force the process onto the specified CPU */
1842 if (migrate_task(p
, dest_cpu
, &req
)) {
1843 /* Need to wait for migration thread (might exit: take ref). */
1844 struct task_struct
*mt
= rq
->migration_thread
;
1845 get_task_struct(mt
);
1846 task_rq_unlock(rq
, &flags
);
1847 wake_up_process(mt
);
1848 put_task_struct(mt
);
1849 wait_for_completion(&req
.done
);
1853 task_rq_unlock(rq
, &flags
);
1857 * sched_exec - execve() is a valuable balancing opportunity, because at
1858 * this point the task has the smallest effective memory and cache footprint.
1860 void sched_exec(void)
1862 int new_cpu
, this_cpu
= get_cpu();
1863 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
1865 if (new_cpu
!= this_cpu
)
1866 sched_migrate_task(current
, new_cpu
);
1870 * pull_task - move a task from a remote runqueue to the local runqueue.
1871 * Both runqueues must be locked.
1874 void pull_task(runqueue_t
*src_rq
, prio_array_t
*src_array
, task_t
*p
,
1875 runqueue_t
*this_rq
, prio_array_t
*this_array
, int this_cpu
)
1877 dequeue_task(p
, src_array
);
1878 dec_nr_running(p
, src_rq
);
1879 set_task_cpu(p
, this_cpu
);
1880 inc_nr_running(p
, this_rq
);
1881 enqueue_task(p
, this_array
);
1882 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
1883 + this_rq
->timestamp_last_tick
;
1885 * Note that idle threads have a prio of MAX_PRIO, for this test
1886 * to be always true for them.
1888 if (TASK_PREEMPTS_CURR(p
, this_rq
))
1889 resched_task(this_rq
->curr
);
1893 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1896 int can_migrate_task(task_t
*p
, runqueue_t
*rq
, int this_cpu
,
1897 struct sched_domain
*sd
, enum idle_type idle
,
1901 * We do not migrate tasks that are:
1902 * 1) running (obviously), or
1903 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1904 * 3) are cache-hot on their current CPU.
1906 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
1910 if (task_running(rq
, p
))
1914 * Aggressive migration if:
1915 * 1) task is cache cold, or
1916 * 2) too many balance attempts have failed.
1919 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
1922 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
1928 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1929 * as part of a balancing operation within "domain". Returns the number of
1932 * Called with both runqueues locked.
1934 static int move_tasks(runqueue_t
*this_rq
, int this_cpu
, runqueue_t
*busiest
,
1935 unsigned long max_nr_move
, struct sched_domain
*sd
,
1936 enum idle_type idle
, int *all_pinned
)
1938 prio_array_t
*array
, *dst_array
;
1939 struct list_head
*head
, *curr
;
1940 int idx
, pulled
= 0, pinned
= 0;
1943 if (max_nr_move
== 0)
1949 * We first consider expired tasks. Those will likely not be
1950 * executed in the near future, and they are most likely to
1951 * be cache-cold, thus switching CPUs has the least effect
1954 if (busiest
->expired
->nr_active
) {
1955 array
= busiest
->expired
;
1956 dst_array
= this_rq
->expired
;
1958 array
= busiest
->active
;
1959 dst_array
= this_rq
->active
;
1963 /* Start searching at priority 0: */
1967 idx
= sched_find_first_bit(array
->bitmap
);
1969 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
1970 if (idx
>= MAX_PRIO
) {
1971 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
1972 array
= busiest
->active
;
1973 dst_array
= this_rq
->active
;
1979 head
= array
->queue
+ idx
;
1982 tmp
= list_entry(curr
, task_t
, run_list
);
1986 if (!can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
1993 #ifdef CONFIG_SCHEDSTATS
1994 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
1995 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1998 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
2001 /* We only want to steal up to the prescribed number of tasks. */
2002 if (pulled
< max_nr_move
) {
2010 * Right now, this is the only place pull_task() is called,
2011 * so we can safely collect pull_task() stats here rather than
2012 * inside pull_task().
2014 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2017 *all_pinned
= pinned
;
2022 * find_busiest_group finds and returns the busiest CPU group within the
2023 * domain. It calculates and returns the number of tasks which should be
2024 * moved to restore balance via the imbalance parameter.
2026 static struct sched_group
*
2027 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2028 unsigned long *imbalance
, enum idle_type idle
, int *sd_idle
)
2030 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2031 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2032 unsigned long max_pull
;
2035 max_load
= this_load
= total_load
= total_pwr
= 0;
2036 if (idle
== NOT_IDLE
)
2037 load_idx
= sd
->busy_idx
;
2038 else if (idle
== NEWLY_IDLE
)
2039 load_idx
= sd
->newidle_idx
;
2041 load_idx
= sd
->idle_idx
;
2048 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2050 /* Tally up the load of all CPUs in the group */
2053 for_each_cpu_mask(i
, group
->cpumask
) {
2054 if (*sd_idle
&& !idle_cpu(i
))
2057 /* Bias balancing toward cpus of our domain */
2059 load
= __target_load(i
, load_idx
, idle
);
2061 load
= __source_load(i
, load_idx
, idle
);
2066 total_load
+= avg_load
;
2067 total_pwr
+= group
->cpu_power
;
2069 /* Adjust by relative CPU power of the group */
2070 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2073 this_load
= avg_load
;
2075 } else if (avg_load
> max_load
) {
2076 max_load
= avg_load
;
2079 group
= group
->next
;
2080 } while (group
!= sd
->groups
);
2082 if (!busiest
|| this_load
>= max_load
|| max_load
<= SCHED_LOAD_SCALE
)
2085 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2087 if (this_load
>= avg_load
||
2088 100*max_load
<= sd
->imbalance_pct
*this_load
)
2092 * We're trying to get all the cpus to the average_load, so we don't
2093 * want to push ourselves above the average load, nor do we wish to
2094 * reduce the max loaded cpu below the average load, as either of these
2095 * actions would just result in more rebalancing later, and ping-pong
2096 * tasks around. Thus we look for the minimum possible imbalance.
2097 * Negative imbalances (*we* are more loaded than anyone else) will
2098 * be counted as no imbalance for these purposes -- we can't fix that
2099 * by pulling tasks to us. Be careful of negative numbers as they'll
2100 * appear as very large values with unsigned longs.
2103 /* Don't want to pull so many tasks that a group would go idle */
2104 max_pull
= min(max_load
- avg_load
, max_load
- SCHED_LOAD_SCALE
);
2106 /* How much load to actually move to equalise the imbalance */
2107 *imbalance
= min(max_pull
* busiest
->cpu_power
,
2108 (avg_load
- this_load
) * this->cpu_power
)
2111 if (*imbalance
< SCHED_LOAD_SCALE
) {
2112 unsigned long pwr_now
= 0, pwr_move
= 0;
2115 if (max_load
- this_load
>= SCHED_LOAD_SCALE
*2) {
2121 * OK, we don't have enough imbalance to justify moving tasks,
2122 * however we may be able to increase total CPU power used by
2126 pwr_now
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
, max_load
);
2127 pwr_now
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
);
2128 pwr_now
/= SCHED_LOAD_SCALE
;
2130 /* Amount of load we'd subtract */
2131 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
2133 pwr_move
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
,
2136 /* Amount of load we'd add */
2137 if (max_load
*busiest
->cpu_power
<
2138 SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
)
2139 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
2141 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/this->cpu_power
;
2142 pwr_move
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
+ tmp
);
2143 pwr_move
/= SCHED_LOAD_SCALE
;
2145 /* Move if we gain throughput */
2146 if (pwr_move
<= pwr_now
)
2153 /* Get rid of the scaling factor, rounding down as we divide */
2154 *imbalance
= *imbalance
/ SCHED_LOAD_SCALE
;
2164 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2166 static runqueue_t
*find_busiest_queue(struct sched_group
*group
,
2167 enum idle_type idle
)
2169 unsigned long load
, max_load
= 0;
2170 runqueue_t
*busiest
= NULL
;
2173 for_each_cpu_mask(i
, group
->cpumask
) {
2174 load
= __source_load(i
, 0, idle
);
2176 if (load
> max_load
) {
2178 busiest
= cpu_rq(i
);
2186 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2187 * so long as it is large enough.
2189 #define MAX_PINNED_INTERVAL 512
2192 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2193 * tasks if there is an imbalance.
2195 * Called with this_rq unlocked.
2197 static int load_balance(int this_cpu
, runqueue_t
*this_rq
,
2198 struct sched_domain
*sd
, enum idle_type idle
)
2200 struct sched_group
*group
;
2201 runqueue_t
*busiest
;
2202 unsigned long imbalance
;
2203 int nr_moved
, all_pinned
= 0;
2204 int active_balance
= 0;
2207 if (idle
!= NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2210 schedstat_inc(sd
, lb_cnt
[idle
]);
2212 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
);
2214 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2218 busiest
= find_busiest_queue(group
, idle
);
2220 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2224 BUG_ON(busiest
== this_rq
);
2226 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2229 if (busiest
->nr_running
> 1) {
2231 * Attempt to move tasks. If find_busiest_group has found
2232 * an imbalance but busiest->nr_running <= 1, the group is
2233 * still unbalanced. nr_moved simply stays zero, so it is
2234 * correctly treated as an imbalance.
2236 double_rq_lock(this_rq
, busiest
);
2237 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2238 imbalance
, sd
, idle
, &all_pinned
);
2239 double_rq_unlock(this_rq
, busiest
);
2241 /* All tasks on this runqueue were pinned by CPU affinity */
2242 if (unlikely(all_pinned
))
2247 schedstat_inc(sd
, lb_failed
[idle
]);
2248 sd
->nr_balance_failed
++;
2250 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2252 spin_lock(&busiest
->lock
);
2254 /* don't kick the migration_thread, if the curr
2255 * task on busiest cpu can't be moved to this_cpu
2257 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2258 spin_unlock(&busiest
->lock
);
2260 goto out_one_pinned
;
2263 if (!busiest
->active_balance
) {
2264 busiest
->active_balance
= 1;
2265 busiest
->push_cpu
= this_cpu
;
2268 spin_unlock(&busiest
->lock
);
2270 wake_up_process(busiest
->migration_thread
);
2273 * We've kicked active balancing, reset the failure
2276 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2279 sd
->nr_balance_failed
= 0;
2281 if (likely(!active_balance
)) {
2282 /* We were unbalanced, so reset the balancing interval */
2283 sd
->balance_interval
= sd
->min_interval
;
2286 * If we've begun active balancing, start to back off. This
2287 * case may not be covered by the all_pinned logic if there
2288 * is only 1 task on the busy runqueue (because we don't call
2291 if (sd
->balance_interval
< sd
->max_interval
)
2292 sd
->balance_interval
*= 2;
2295 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2300 schedstat_inc(sd
, lb_balanced
[idle
]);
2302 sd
->nr_balance_failed
= 0;
2305 /* tune up the balancing interval */
2306 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2307 (sd
->balance_interval
< sd
->max_interval
))
2308 sd
->balance_interval
*= 2;
2310 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2316 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2317 * tasks if there is an imbalance.
2319 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2320 * this_rq is locked.
2322 static int load_balance_newidle(int this_cpu
, runqueue_t
*this_rq
,
2323 struct sched_domain
*sd
)
2325 struct sched_group
*group
;
2326 runqueue_t
*busiest
= NULL
;
2327 unsigned long imbalance
;
2331 if (sd
->flags
& SD_SHARE_CPUPOWER
)
2334 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2335 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
, &sd_idle
);
2337 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2341 busiest
= find_busiest_queue(group
, NEWLY_IDLE
);
2343 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2347 BUG_ON(busiest
== this_rq
);
2349 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2352 if (busiest
->nr_running
> 1) {
2353 /* Attempt to move tasks */
2354 double_lock_balance(this_rq
, busiest
);
2355 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2356 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2357 spin_unlock(&busiest
->lock
);
2361 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2362 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2365 sd
->nr_balance_failed
= 0;
2370 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2371 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2373 sd
->nr_balance_failed
= 0;
2378 * idle_balance is called by schedule() if this_cpu is about to become
2379 * idle. Attempts to pull tasks from other CPUs.
2381 static void idle_balance(int this_cpu
, runqueue_t
*this_rq
)
2383 struct sched_domain
*sd
;
2385 for_each_domain(this_cpu
, sd
) {
2386 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2387 if (load_balance_newidle(this_cpu
, this_rq
, sd
)) {
2388 /* We've pulled tasks over so stop searching */
2396 * active_load_balance is run by migration threads. It pushes running tasks
2397 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2398 * running on each physical CPU where possible, and avoids physical /
2399 * logical imbalances.
2401 * Called with busiest_rq locked.
2403 static void active_load_balance(runqueue_t
*busiest_rq
, int busiest_cpu
)
2405 struct sched_domain
*sd
;
2406 runqueue_t
*target_rq
;
2407 int target_cpu
= busiest_rq
->push_cpu
;
2409 if (busiest_rq
->nr_running
<= 1)
2410 /* no task to move */
2413 target_rq
= cpu_rq(target_cpu
);
2416 * This condition is "impossible", if it occurs
2417 * we need to fix it. Originally reported by
2418 * Bjorn Helgaas on a 128-cpu setup.
2420 BUG_ON(busiest_rq
== target_rq
);
2422 /* move a task from busiest_rq to target_rq */
2423 double_lock_balance(busiest_rq
, target_rq
);
2425 /* Search for an sd spanning us and the target CPU. */
2426 for_each_domain(target_cpu
, sd
)
2427 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2428 cpu_isset(busiest_cpu
, sd
->span
))
2431 if (unlikely(sd
== NULL
))
2434 schedstat_inc(sd
, alb_cnt
);
2436 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1, sd
, SCHED_IDLE
, NULL
))
2437 schedstat_inc(sd
, alb_pushed
);
2439 schedstat_inc(sd
, alb_failed
);
2441 spin_unlock(&target_rq
->lock
);
2445 * rebalance_tick will get called every timer tick, on every CPU.
2447 * It checks each scheduling domain to see if it is due to be balanced,
2448 * and initiates a balancing operation if so.
2450 * Balancing parameters are set up in arch_init_sched_domains.
2453 /* Don't have all balancing operations going off at once */
2454 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2456 static void rebalance_tick(int this_cpu
, runqueue_t
*this_rq
,
2457 enum idle_type idle
)
2459 unsigned long old_load
, this_load
;
2460 unsigned long j
= jiffies
+ CPU_OFFSET(this_cpu
);
2461 struct sched_domain
*sd
;
2464 this_load
= this_rq
->nr_running
* SCHED_LOAD_SCALE
;
2465 /* Update our load */
2466 for (i
= 0; i
< 3; i
++) {
2467 unsigned long new_load
= this_load
;
2469 old_load
= this_rq
->cpu_load
[i
];
2471 * Round up the averaging division if load is increasing. This
2472 * prevents us from getting stuck on 9 if the load is 10, for
2475 if (new_load
> old_load
)
2476 new_load
+= scale
-1;
2477 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2480 for_each_domain(this_cpu
, sd
) {
2481 unsigned long interval
;
2483 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2486 interval
= sd
->balance_interval
;
2487 if (idle
!= SCHED_IDLE
)
2488 interval
*= sd
->busy_factor
;
2490 /* scale ms to jiffies */
2491 interval
= msecs_to_jiffies(interval
);
2492 if (unlikely(!interval
))
2495 if (j
- sd
->last_balance
>= interval
) {
2496 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2498 * We've pulled tasks over so either we're no
2499 * longer idle, or one of our SMT siblings is
2504 sd
->last_balance
+= interval
;
2510 * on UP we do not need to balance between CPUs:
2512 static inline void rebalance_tick(int cpu
, runqueue_t
*rq
, enum idle_type idle
)
2515 static inline void idle_balance(int cpu
, runqueue_t
*rq
)
2520 static inline int wake_priority_sleeper(runqueue_t
*rq
)
2523 #ifdef CONFIG_SCHED_SMT
2524 spin_lock(&rq
->lock
);
2526 * If an SMT sibling task has been put to sleep for priority
2527 * reasons reschedule the idle task to see if it can now run.
2529 if (rq
->nr_running
) {
2530 resched_task(rq
->idle
);
2533 spin_unlock(&rq
->lock
);
2538 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2540 EXPORT_PER_CPU_SYMBOL(kstat
);
2543 * This is called on clock ticks and on context switches.
2544 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2546 static inline void update_cpu_clock(task_t
*p
, runqueue_t
*rq
,
2547 unsigned long long now
)
2549 unsigned long long last
= max(p
->timestamp
, rq
->timestamp_last_tick
);
2550 p
->sched_time
+= now
- last
;
2554 * Return current->sched_time plus any more ns on the sched_clock
2555 * that have not yet been banked.
2557 unsigned long long current_sched_time(const task_t
*tsk
)
2559 unsigned long long ns
;
2560 unsigned long flags
;
2561 local_irq_save(flags
);
2562 ns
= max(tsk
->timestamp
, task_rq(tsk
)->timestamp_last_tick
);
2563 ns
= tsk
->sched_time
+ (sched_clock() - ns
);
2564 local_irq_restore(flags
);
2569 * We place interactive tasks back into the active array, if possible.
2571 * To guarantee that this does not starve expired tasks we ignore the
2572 * interactivity of a task if the first expired task had to wait more
2573 * than a 'reasonable' amount of time. This deadline timeout is
2574 * load-dependent, as the frequency of array switched decreases with
2575 * increasing number of running tasks. We also ignore the interactivity
2576 * if a better static_prio task has expired:
2578 #define EXPIRED_STARVING(rq) \
2579 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2580 (jiffies - (rq)->expired_timestamp >= \
2581 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2582 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2585 * Account user cpu time to a process.
2586 * @p: the process that the cpu time gets accounted to
2587 * @hardirq_offset: the offset to subtract from hardirq_count()
2588 * @cputime: the cpu time spent in user space since the last update
2590 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2592 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2595 p
->utime
= cputime_add(p
->utime
, cputime
);
2597 /* Add user time to cpustat. */
2598 tmp
= cputime_to_cputime64(cputime
);
2599 if (TASK_NICE(p
) > 0)
2600 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2602 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2606 * Account system cpu time to a process.
2607 * @p: the process that the cpu time gets accounted to
2608 * @hardirq_offset: the offset to subtract from hardirq_count()
2609 * @cputime: the cpu time spent in kernel space since the last update
2611 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2614 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2615 runqueue_t
*rq
= this_rq();
2618 p
->stime
= cputime_add(p
->stime
, cputime
);
2620 /* Add system time to cpustat. */
2621 tmp
= cputime_to_cputime64(cputime
);
2622 if (hardirq_count() - hardirq_offset
)
2623 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2624 else if (softirq_count())
2625 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2626 else if (p
!= rq
->idle
)
2627 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2628 else if (atomic_read(&rq
->nr_iowait
) > 0)
2629 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2631 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2632 /* Account for system time used */
2633 acct_update_integrals(p
);
2637 * Account for involuntary wait time.
2638 * @p: the process from which the cpu time has been stolen
2639 * @steal: the cpu time spent in involuntary wait
2641 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
2643 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2644 cputime64_t tmp
= cputime_to_cputime64(steal
);
2645 runqueue_t
*rq
= this_rq();
2647 if (p
== rq
->idle
) {
2648 p
->stime
= cputime_add(p
->stime
, steal
);
2649 if (atomic_read(&rq
->nr_iowait
) > 0)
2650 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2652 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2654 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
2658 * This function gets called by the timer code, with HZ frequency.
2659 * We call it with interrupts disabled.
2661 * It also gets called by the fork code, when changing the parent's
2664 void scheduler_tick(void)
2666 int cpu
= smp_processor_id();
2667 runqueue_t
*rq
= this_rq();
2668 task_t
*p
= current
;
2669 unsigned long long now
= sched_clock();
2671 update_cpu_clock(p
, rq
, now
);
2673 rq
->timestamp_last_tick
= now
;
2675 if (p
== rq
->idle
) {
2676 if (wake_priority_sleeper(rq
))
2678 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
2682 /* Task might have expired already, but not scheduled off yet */
2683 if (p
->array
!= rq
->active
) {
2684 set_tsk_need_resched(p
);
2687 spin_lock(&rq
->lock
);
2689 * The task was running during this tick - update the
2690 * time slice counter. Note: we do not update a thread's
2691 * priority until it either goes to sleep or uses up its
2692 * timeslice. This makes it possible for interactive tasks
2693 * to use up their timeslices at their highest priority levels.
2697 * RR tasks need a special form of timeslice management.
2698 * FIFO tasks have no timeslices.
2700 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
2701 p
->time_slice
= task_timeslice(p
);
2702 p
->first_time_slice
= 0;
2703 set_tsk_need_resched(p
);
2705 /* put it at the end of the queue: */
2706 requeue_task(p
, rq
->active
);
2710 if (!--p
->time_slice
) {
2711 dequeue_task(p
, rq
->active
);
2712 set_tsk_need_resched(p
);
2713 p
->prio
= effective_prio(p
);
2714 p
->time_slice
= task_timeslice(p
);
2715 p
->first_time_slice
= 0;
2717 if (!rq
->expired_timestamp
)
2718 rq
->expired_timestamp
= jiffies
;
2719 if (!TASK_INTERACTIVE(p
) || EXPIRED_STARVING(rq
)) {
2720 enqueue_task(p
, rq
->expired
);
2721 if (p
->static_prio
< rq
->best_expired_prio
)
2722 rq
->best_expired_prio
= p
->static_prio
;
2724 enqueue_task(p
, rq
->active
);
2727 * Prevent a too long timeslice allowing a task to monopolize
2728 * the CPU. We do this by splitting up the timeslice into
2731 * Note: this does not mean the task's timeslices expire or
2732 * get lost in any way, they just might be preempted by
2733 * another task of equal priority. (one with higher
2734 * priority would have preempted this task already.) We
2735 * requeue this task to the end of the list on this priority
2736 * level, which is in essence a round-robin of tasks with
2739 * This only applies to tasks in the interactive
2740 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2742 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
2743 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
2744 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
2745 (p
->array
== rq
->active
)) {
2747 requeue_task(p
, rq
->active
);
2748 set_tsk_need_resched(p
);
2752 spin_unlock(&rq
->lock
);
2754 rebalance_tick(cpu
, rq
, NOT_IDLE
);
2757 #ifdef CONFIG_SCHED_SMT
2758 static inline void wakeup_busy_runqueue(runqueue_t
*rq
)
2760 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2761 if (rq
->curr
== rq
->idle
&& rq
->nr_running
)
2762 resched_task(rq
->idle
);
2765 static void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2767 struct sched_domain
*tmp
, *sd
= NULL
;
2768 cpumask_t sibling_map
;
2771 for_each_domain(this_cpu
, tmp
)
2772 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2779 * Unlock the current runqueue because we have to lock in
2780 * CPU order to avoid deadlocks. Caller knows that we might
2781 * unlock. We keep IRQs disabled.
2783 spin_unlock(&this_rq
->lock
);
2785 sibling_map
= sd
->span
;
2787 for_each_cpu_mask(i
, sibling_map
)
2788 spin_lock(&cpu_rq(i
)->lock
);
2790 * We clear this CPU from the mask. This both simplifies the
2791 * inner loop and keps this_rq locked when we exit:
2793 cpu_clear(this_cpu
, sibling_map
);
2795 for_each_cpu_mask(i
, sibling_map
) {
2796 runqueue_t
*smt_rq
= cpu_rq(i
);
2798 wakeup_busy_runqueue(smt_rq
);
2801 for_each_cpu_mask(i
, sibling_map
)
2802 spin_unlock(&cpu_rq(i
)->lock
);
2804 * We exit with this_cpu's rq still held and IRQs
2810 * number of 'lost' timeslices this task wont be able to fully
2811 * utilize, if another task runs on a sibling. This models the
2812 * slowdown effect of other tasks running on siblings:
2814 static inline unsigned long smt_slice(task_t
*p
, struct sched_domain
*sd
)
2816 return p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100;
2819 static int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2821 struct sched_domain
*tmp
, *sd
= NULL
;
2822 cpumask_t sibling_map
;
2823 prio_array_t
*array
;
2827 for_each_domain(this_cpu
, tmp
)
2828 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2835 * The same locking rules and details apply as for
2836 * wake_sleeping_dependent():
2838 spin_unlock(&this_rq
->lock
);
2839 sibling_map
= sd
->span
;
2840 for_each_cpu_mask(i
, sibling_map
)
2841 spin_lock(&cpu_rq(i
)->lock
);
2842 cpu_clear(this_cpu
, sibling_map
);
2845 * Establish next task to be run - it might have gone away because
2846 * we released the runqueue lock above:
2848 if (!this_rq
->nr_running
)
2850 array
= this_rq
->active
;
2851 if (!array
->nr_active
)
2852 array
= this_rq
->expired
;
2853 BUG_ON(!array
->nr_active
);
2855 p
= list_entry(array
->queue
[sched_find_first_bit(array
->bitmap
)].next
,
2858 for_each_cpu_mask(i
, sibling_map
) {
2859 runqueue_t
*smt_rq
= cpu_rq(i
);
2860 task_t
*smt_curr
= smt_rq
->curr
;
2862 /* Kernel threads do not participate in dependent sleeping */
2863 if (!p
->mm
|| !smt_curr
->mm
|| rt_task(p
))
2864 goto check_smt_task
;
2867 * If a user task with lower static priority than the
2868 * running task on the SMT sibling is trying to schedule,
2869 * delay it till there is proportionately less timeslice
2870 * left of the sibling task to prevent a lower priority
2871 * task from using an unfair proportion of the
2872 * physical cpu's resources. -ck
2874 if (rt_task(smt_curr
)) {
2876 * With real time tasks we run non-rt tasks only
2877 * per_cpu_gain% of the time.
2879 if ((jiffies
% DEF_TIMESLICE
) >
2880 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2883 if (smt_curr
->static_prio
< p
->static_prio
&&
2884 !TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2885 smt_slice(smt_curr
, sd
) > task_timeslice(p
))
2889 if ((!smt_curr
->mm
&& smt_curr
!= smt_rq
->idle
) ||
2893 wakeup_busy_runqueue(smt_rq
);
2898 * Reschedule a lower priority task on the SMT sibling for
2899 * it to be put to sleep, or wake it up if it has been put to
2900 * sleep for priority reasons to see if it should run now.
2903 if ((jiffies
% DEF_TIMESLICE
) >
2904 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2905 resched_task(smt_curr
);
2907 if (TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2908 smt_slice(p
, sd
) > task_timeslice(smt_curr
))
2909 resched_task(smt_curr
);
2911 wakeup_busy_runqueue(smt_rq
);
2915 for_each_cpu_mask(i
, sibling_map
)
2916 spin_unlock(&cpu_rq(i
)->lock
);
2920 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2924 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2930 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2932 void fastcall
add_preempt_count(int val
)
2937 BUG_ON((preempt_count() < 0));
2938 preempt_count() += val
;
2940 * Spinlock count overflowing soon?
2942 BUG_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
2944 EXPORT_SYMBOL(add_preempt_count
);
2946 void fastcall
sub_preempt_count(int val
)
2951 BUG_ON(val
> preempt_count());
2953 * Is the spinlock portion underflowing?
2955 BUG_ON((val
< PREEMPT_MASK
) && !(preempt_count() & PREEMPT_MASK
));
2956 preempt_count() -= val
;
2958 EXPORT_SYMBOL(sub_preempt_count
);
2963 * schedule() is the main scheduler function.
2965 asmlinkage
void __sched
schedule(void)
2968 task_t
*prev
, *next
;
2970 prio_array_t
*array
;
2971 struct list_head
*queue
;
2972 unsigned long long now
;
2973 unsigned long run_time
;
2974 int cpu
, idx
, new_prio
;
2977 * Test if we are atomic. Since do_exit() needs to call into
2978 * schedule() atomically, we ignore that path for now.
2979 * Otherwise, whine if we are scheduling when we should not be.
2981 if (likely(!current
->exit_state
)) {
2982 if (unlikely(in_atomic())) {
2983 printk(KERN_ERR
"scheduling while atomic: "
2985 current
->comm
, preempt_count(), current
->pid
);
2989 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2994 release_kernel_lock(prev
);
2995 need_resched_nonpreemptible
:
2999 * The idle thread is not allowed to schedule!
3000 * Remove this check after it has been exercised a bit.
3002 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
3003 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
3007 schedstat_inc(rq
, sched_cnt
);
3008 now
= sched_clock();
3009 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
3010 run_time
= now
- prev
->timestamp
;
3011 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
3014 run_time
= NS_MAX_SLEEP_AVG
;
3017 * Tasks charged proportionately less run_time at high sleep_avg to
3018 * delay them losing their interactive status
3020 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
3022 spin_lock_irq(&rq
->lock
);
3024 if (unlikely(prev
->flags
& PF_DEAD
))
3025 prev
->state
= EXIT_DEAD
;
3027 switch_count
= &prev
->nivcsw
;
3028 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3029 switch_count
= &prev
->nvcsw
;
3030 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3031 unlikely(signal_pending(prev
))))
3032 prev
->state
= TASK_RUNNING
;
3034 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
3035 rq
->nr_uninterruptible
++;
3036 deactivate_task(prev
, rq
);
3040 cpu
= smp_processor_id();
3041 if (unlikely(!rq
->nr_running
)) {
3043 idle_balance(cpu
, rq
);
3044 if (!rq
->nr_running
) {
3046 rq
->expired_timestamp
= 0;
3047 wake_sleeping_dependent(cpu
, rq
);
3049 * wake_sleeping_dependent() might have released
3050 * the runqueue, so break out if we got new
3053 if (!rq
->nr_running
)
3057 if (dependent_sleeper(cpu
, rq
)) {
3062 * dependent_sleeper() releases and reacquires the runqueue
3063 * lock, hence go into the idle loop if the rq went
3066 if (unlikely(!rq
->nr_running
))
3071 if (unlikely(!array
->nr_active
)) {
3073 * Switch the active and expired arrays.
3075 schedstat_inc(rq
, sched_switch
);
3076 rq
->active
= rq
->expired
;
3077 rq
->expired
= array
;
3079 rq
->expired_timestamp
= 0;
3080 rq
->best_expired_prio
= MAX_PRIO
;
3083 idx
= sched_find_first_bit(array
->bitmap
);
3084 queue
= array
->queue
+ idx
;
3085 next
= list_entry(queue
->next
, task_t
, run_list
);
3087 if (!rt_task(next
) && next
->activated
> 0) {
3088 unsigned long long delta
= now
- next
->timestamp
;
3089 if (unlikely((long long)(now
- next
->timestamp
) < 0))
3092 if (next
->activated
== 1)
3093 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
3095 array
= next
->array
;
3096 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
3098 if (unlikely(next
->prio
!= new_prio
)) {
3099 dequeue_task(next
, array
);
3100 next
->prio
= new_prio
;
3101 enqueue_task(next
, array
);
3103 requeue_task(next
, array
);
3105 next
->activated
= 0;
3107 if (next
== rq
->idle
)
3108 schedstat_inc(rq
, sched_goidle
);
3110 prefetch_stack(next
);
3111 clear_tsk_need_resched(prev
);
3112 rcu_qsctr_inc(task_cpu(prev
));
3114 update_cpu_clock(prev
, rq
, now
);
3116 prev
->sleep_avg
-= run_time
;
3117 if ((long)prev
->sleep_avg
<= 0)
3118 prev
->sleep_avg
= 0;
3119 prev
->timestamp
= prev
->last_ran
= now
;
3121 sched_info_switch(prev
, next
);
3122 if (likely(prev
!= next
)) {
3123 next
->timestamp
= now
;
3128 prepare_task_switch(rq
, next
);
3129 prev
= context_switch(rq
, prev
, next
);
3132 * this_rq must be evaluated again because prev may have moved
3133 * CPUs since it called schedule(), thus the 'rq' on its stack
3134 * frame will be invalid.
3136 finish_task_switch(this_rq(), prev
);
3138 spin_unlock_irq(&rq
->lock
);
3141 if (unlikely(reacquire_kernel_lock(prev
) < 0))
3142 goto need_resched_nonpreemptible
;
3143 preempt_enable_no_resched();
3144 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3148 EXPORT_SYMBOL(schedule
);
3150 #ifdef CONFIG_PREEMPT
3152 * this is is the entry point to schedule() from in-kernel preemption
3153 * off of preempt_enable. Kernel preemptions off return from interrupt
3154 * occur there and call schedule directly.
3156 asmlinkage
void __sched
preempt_schedule(void)
3158 struct thread_info
*ti
= current_thread_info();
3159 #ifdef CONFIG_PREEMPT_BKL
3160 struct task_struct
*task
= current
;
3161 int saved_lock_depth
;
3164 * If there is a non-zero preempt_count or interrupts are disabled,
3165 * we do not want to preempt the current task. Just return..
3167 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
3171 add_preempt_count(PREEMPT_ACTIVE
);
3173 * We keep the big kernel semaphore locked, but we
3174 * clear ->lock_depth so that schedule() doesnt
3175 * auto-release the semaphore:
3177 #ifdef CONFIG_PREEMPT_BKL
3178 saved_lock_depth
= task
->lock_depth
;
3179 task
->lock_depth
= -1;
3182 #ifdef CONFIG_PREEMPT_BKL
3183 task
->lock_depth
= saved_lock_depth
;
3185 sub_preempt_count(PREEMPT_ACTIVE
);
3187 /* we could miss a preemption opportunity between schedule and now */
3189 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3193 EXPORT_SYMBOL(preempt_schedule
);
3196 * this is is the entry point to schedule() from kernel preemption
3197 * off of irq context.
3198 * Note, that this is called and return with irqs disabled. This will
3199 * protect us against recursive calling from irq.
3201 asmlinkage
void __sched
preempt_schedule_irq(void)
3203 struct thread_info
*ti
= current_thread_info();
3204 #ifdef CONFIG_PREEMPT_BKL
3205 struct task_struct
*task
= current
;
3206 int saved_lock_depth
;
3208 /* Catch callers which need to be fixed*/
3209 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3212 add_preempt_count(PREEMPT_ACTIVE
);
3214 * We keep the big kernel semaphore locked, but we
3215 * clear ->lock_depth so that schedule() doesnt
3216 * auto-release the semaphore:
3218 #ifdef CONFIG_PREEMPT_BKL
3219 saved_lock_depth
= task
->lock_depth
;
3220 task
->lock_depth
= -1;
3224 local_irq_disable();
3225 #ifdef CONFIG_PREEMPT_BKL
3226 task
->lock_depth
= saved_lock_depth
;
3228 sub_preempt_count(PREEMPT_ACTIVE
);
3230 /* we could miss a preemption opportunity between schedule and now */
3232 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3236 #endif /* CONFIG_PREEMPT */
3238 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3241 task_t
*p
= curr
->private;
3242 return try_to_wake_up(p
, mode
, sync
);
3245 EXPORT_SYMBOL(default_wake_function
);
3248 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3249 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3250 * number) then we wake all the non-exclusive tasks and one exclusive task.
3252 * There are circumstances in which we can try to wake a task which has already
3253 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3254 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3256 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3257 int nr_exclusive
, int sync
, void *key
)
3259 struct list_head
*tmp
, *next
;
3261 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3264 curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3265 flags
= curr
->flags
;
3266 if (curr
->func(curr
, mode
, sync
, key
) &&
3267 (flags
& WQ_FLAG_EXCLUSIVE
) &&
3274 * __wake_up - wake up threads blocked on a waitqueue.
3276 * @mode: which threads
3277 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3278 * @key: is directly passed to the wakeup function
3280 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3281 int nr_exclusive
, void *key
)
3283 unsigned long flags
;
3285 spin_lock_irqsave(&q
->lock
, flags
);
3286 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3287 spin_unlock_irqrestore(&q
->lock
, flags
);
3290 EXPORT_SYMBOL(__wake_up
);
3293 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3295 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3297 __wake_up_common(q
, mode
, 1, 0, NULL
);
3301 * __wake_up_sync - wake up threads blocked on a waitqueue.
3303 * @mode: which threads
3304 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3306 * The sync wakeup differs that the waker knows that it will schedule
3307 * away soon, so while the target thread will be woken up, it will not
3308 * be migrated to another CPU - ie. the two threads are 'synchronized'
3309 * with each other. This can prevent needless bouncing between CPUs.
3311 * On UP it can prevent extra preemption.
3314 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3316 unsigned long flags
;
3322 if (unlikely(!nr_exclusive
))
3325 spin_lock_irqsave(&q
->lock
, flags
);
3326 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3327 spin_unlock_irqrestore(&q
->lock
, flags
);
3329 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3331 void fastcall
complete(struct completion
*x
)
3333 unsigned long flags
;
3335 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3337 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3339 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3341 EXPORT_SYMBOL(complete
);
3343 void fastcall
complete_all(struct completion
*x
)
3345 unsigned long flags
;
3347 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3348 x
->done
+= UINT_MAX
/2;
3349 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3351 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3353 EXPORT_SYMBOL(complete_all
);
3355 void fastcall __sched
wait_for_completion(struct completion
*x
)
3358 spin_lock_irq(&x
->wait
.lock
);
3360 DECLARE_WAITQUEUE(wait
, current
);
3362 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3363 __add_wait_queue_tail(&x
->wait
, &wait
);
3365 __set_current_state(TASK_UNINTERRUPTIBLE
);
3366 spin_unlock_irq(&x
->wait
.lock
);
3368 spin_lock_irq(&x
->wait
.lock
);
3370 __remove_wait_queue(&x
->wait
, &wait
);
3373 spin_unlock_irq(&x
->wait
.lock
);
3375 EXPORT_SYMBOL(wait_for_completion
);
3377 unsigned long fastcall __sched
3378 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3382 spin_lock_irq(&x
->wait
.lock
);
3384 DECLARE_WAITQUEUE(wait
, current
);
3386 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3387 __add_wait_queue_tail(&x
->wait
, &wait
);
3389 __set_current_state(TASK_UNINTERRUPTIBLE
);
3390 spin_unlock_irq(&x
->wait
.lock
);
3391 timeout
= schedule_timeout(timeout
);
3392 spin_lock_irq(&x
->wait
.lock
);
3394 __remove_wait_queue(&x
->wait
, &wait
);
3398 __remove_wait_queue(&x
->wait
, &wait
);
3402 spin_unlock_irq(&x
->wait
.lock
);
3405 EXPORT_SYMBOL(wait_for_completion_timeout
);
3407 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3413 spin_lock_irq(&x
->wait
.lock
);
3415 DECLARE_WAITQUEUE(wait
, current
);
3417 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3418 __add_wait_queue_tail(&x
->wait
, &wait
);
3420 if (signal_pending(current
)) {
3422 __remove_wait_queue(&x
->wait
, &wait
);
3425 __set_current_state(TASK_INTERRUPTIBLE
);
3426 spin_unlock_irq(&x
->wait
.lock
);
3428 spin_lock_irq(&x
->wait
.lock
);
3430 __remove_wait_queue(&x
->wait
, &wait
);
3434 spin_unlock_irq(&x
->wait
.lock
);
3438 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3440 unsigned long fastcall __sched
3441 wait_for_completion_interruptible_timeout(struct completion
*x
,
3442 unsigned long timeout
)
3446 spin_lock_irq(&x
->wait
.lock
);
3448 DECLARE_WAITQUEUE(wait
, current
);
3450 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3451 __add_wait_queue_tail(&x
->wait
, &wait
);
3453 if (signal_pending(current
)) {
3454 timeout
= -ERESTARTSYS
;
3455 __remove_wait_queue(&x
->wait
, &wait
);
3458 __set_current_state(TASK_INTERRUPTIBLE
);
3459 spin_unlock_irq(&x
->wait
.lock
);
3460 timeout
= schedule_timeout(timeout
);
3461 spin_lock_irq(&x
->wait
.lock
);
3463 __remove_wait_queue(&x
->wait
, &wait
);
3467 __remove_wait_queue(&x
->wait
, &wait
);
3471 spin_unlock_irq(&x
->wait
.lock
);
3474 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3477 #define SLEEP_ON_VAR \
3478 unsigned long flags; \
3479 wait_queue_t wait; \
3480 init_waitqueue_entry(&wait, current);
3482 #define SLEEP_ON_HEAD \
3483 spin_lock_irqsave(&q->lock,flags); \
3484 __add_wait_queue(q, &wait); \
3485 spin_unlock(&q->lock);
3487 #define SLEEP_ON_TAIL \
3488 spin_lock_irq(&q->lock); \
3489 __remove_wait_queue(q, &wait); \
3490 spin_unlock_irqrestore(&q->lock, flags);
3492 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3496 current
->state
= TASK_INTERRUPTIBLE
;
3503 EXPORT_SYMBOL(interruptible_sleep_on
);
3505 long fastcall __sched
3506 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3510 current
->state
= TASK_INTERRUPTIBLE
;
3513 timeout
= schedule_timeout(timeout
);
3519 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3521 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3525 current
->state
= TASK_UNINTERRUPTIBLE
;
3532 EXPORT_SYMBOL(sleep_on
);
3534 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3538 current
->state
= TASK_UNINTERRUPTIBLE
;
3541 timeout
= schedule_timeout(timeout
);
3547 EXPORT_SYMBOL(sleep_on_timeout
);
3549 void set_user_nice(task_t
*p
, long nice
)
3551 unsigned long flags
;
3552 prio_array_t
*array
;
3554 int old_prio
, new_prio
, delta
;
3556 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3559 * We have to be careful, if called from sys_setpriority(),
3560 * the task might be in the middle of scheduling on another CPU.
3562 rq
= task_rq_lock(p
, &flags
);
3564 * The RT priorities are set via sched_setscheduler(), but we still
3565 * allow the 'normal' nice value to be set - but as expected
3566 * it wont have any effect on scheduling until the task is
3567 * not SCHED_NORMAL/SCHED_BATCH:
3570 p
->static_prio
= NICE_TO_PRIO(nice
);
3575 dequeue_task(p
, array
);
3576 dec_prio_bias(rq
, p
->static_prio
);
3580 new_prio
= NICE_TO_PRIO(nice
);
3581 delta
= new_prio
- old_prio
;
3582 p
->static_prio
= NICE_TO_PRIO(nice
);
3586 enqueue_task(p
, array
);
3587 inc_prio_bias(rq
, p
->static_prio
);
3589 * If the task increased its priority or is running and
3590 * lowered its priority, then reschedule its CPU:
3592 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3593 resched_task(rq
->curr
);
3596 task_rq_unlock(rq
, &flags
);
3599 EXPORT_SYMBOL(set_user_nice
);
3602 * can_nice - check if a task can reduce its nice value
3606 int can_nice(const task_t
*p
, const int nice
)
3608 /* convert nice value [19,-20] to rlimit style value [1,40] */
3609 int nice_rlim
= 20 - nice
;
3610 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3611 capable(CAP_SYS_NICE
));
3614 #ifdef __ARCH_WANT_SYS_NICE
3617 * sys_nice - change the priority of the current process.
3618 * @increment: priority increment
3620 * sys_setpriority is a more generic, but much slower function that
3621 * does similar things.
3623 asmlinkage
long sys_nice(int increment
)
3629 * Setpriority might change our priority at the same moment.
3630 * We don't have to worry. Conceptually one call occurs first
3631 * and we have a single winner.
3633 if (increment
< -40)
3638 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3644 if (increment
< 0 && !can_nice(current
, nice
))
3647 retval
= security_task_setnice(current
, nice
);
3651 set_user_nice(current
, nice
);
3658 * task_prio - return the priority value of a given task.
3659 * @p: the task in question.
3661 * This is the priority value as seen by users in /proc.
3662 * RT tasks are offset by -200. Normal tasks are centered
3663 * around 0, value goes from -16 to +15.
3665 int task_prio(const task_t
*p
)
3667 return p
->prio
- MAX_RT_PRIO
;
3671 * task_nice - return the nice value of a given task.
3672 * @p: the task in question.
3674 int task_nice(const task_t
*p
)
3676 return TASK_NICE(p
);
3678 EXPORT_SYMBOL_GPL(task_nice
);
3681 * idle_cpu - is a given cpu idle currently?
3682 * @cpu: the processor in question.
3684 int idle_cpu(int cpu
)
3686 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3690 * idle_task - return the idle task for a given cpu.
3691 * @cpu: the processor in question.
3693 task_t
*idle_task(int cpu
)
3695 return cpu_rq(cpu
)->idle
;
3699 * find_process_by_pid - find a process with a matching PID value.
3700 * @pid: the pid in question.
3702 static inline task_t
*find_process_by_pid(pid_t pid
)
3704 return pid
? find_task_by_pid(pid
) : current
;
3707 /* Actually do priority change: must hold rq lock. */
3708 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
3712 p
->rt_priority
= prio
;
3713 if (policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) {
3714 p
->prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
3716 p
->prio
= p
->static_prio
;
3718 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3720 if (policy
== SCHED_BATCH
)
3726 * sched_setscheduler - change the scheduling policy and/or RT priority of
3728 * @p: the task in question.
3729 * @policy: new policy.
3730 * @param: structure containing the new RT priority.
3732 int sched_setscheduler(struct task_struct
*p
, int policy
,
3733 struct sched_param
*param
)
3736 int oldprio
, oldpolicy
= -1;
3737 prio_array_t
*array
;
3738 unsigned long flags
;
3742 /* double check policy once rq lock held */
3744 policy
= oldpolicy
= p
->policy
;
3745 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3746 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
)
3749 * Valid priorities for SCHED_FIFO and SCHED_RR are
3750 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3753 if (param
->sched_priority
< 0 ||
3754 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3755 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
3757 if ((policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
)
3758 != (param
->sched_priority
== 0))
3762 * Allow unprivileged RT tasks to decrease priority:
3764 if (!capable(CAP_SYS_NICE
)) {
3766 * can't change policy, except between SCHED_NORMAL
3769 if (((policy
!= SCHED_NORMAL
&& p
->policy
!= SCHED_BATCH
) &&
3770 (policy
!= SCHED_BATCH
&& p
->policy
!= SCHED_NORMAL
)) &&
3771 !p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3773 /* can't increase priority */
3774 if ((policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) &&
3775 param
->sched_priority
> p
->rt_priority
&&
3776 param
->sched_priority
>
3777 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3779 /* can't change other user's priorities */
3780 if ((current
->euid
!= p
->euid
) &&
3781 (current
->euid
!= p
->uid
))
3785 retval
= security_task_setscheduler(p
, policy
, param
);
3789 * To be able to change p->policy safely, the apropriate
3790 * runqueue lock must be held.
3792 rq
= task_rq_lock(p
, &flags
);
3793 /* recheck policy now with rq lock held */
3794 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3795 policy
= oldpolicy
= -1;
3796 task_rq_unlock(rq
, &flags
);
3801 deactivate_task(p
, rq
);
3803 __setscheduler(p
, policy
, param
->sched_priority
);
3805 __activate_task(p
, rq
);
3807 * Reschedule if we are currently running on this runqueue and
3808 * our priority decreased, or if we are not currently running on
3809 * this runqueue and our priority is higher than the current's
3811 if (task_running(rq
, p
)) {
3812 if (p
->prio
> oldprio
)
3813 resched_task(rq
->curr
);
3814 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3815 resched_task(rq
->curr
);
3817 task_rq_unlock(rq
, &flags
);
3820 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3823 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3826 struct sched_param lparam
;
3827 struct task_struct
*p
;
3829 if (!param
|| pid
< 0)
3831 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3833 read_lock_irq(&tasklist_lock
);
3834 p
= find_process_by_pid(pid
);
3836 read_unlock_irq(&tasklist_lock
);
3839 retval
= sched_setscheduler(p
, policy
, &lparam
);
3840 read_unlock_irq(&tasklist_lock
);
3845 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3846 * @pid: the pid in question.
3847 * @policy: new policy.
3848 * @param: structure containing the new RT priority.
3850 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
3851 struct sched_param __user
*param
)
3853 /* negative values for policy are not valid */
3857 return do_sched_setscheduler(pid
, policy
, param
);
3861 * sys_sched_setparam - set/change the RT priority of a thread
3862 * @pid: the pid in question.
3863 * @param: structure containing the new RT priority.
3865 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
3867 return do_sched_setscheduler(pid
, -1, param
);
3871 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3872 * @pid: the pid in question.
3874 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
3876 int retval
= -EINVAL
;
3883 read_lock(&tasklist_lock
);
3884 p
= find_process_by_pid(pid
);
3886 retval
= security_task_getscheduler(p
);
3890 read_unlock(&tasklist_lock
);
3897 * sys_sched_getscheduler - get the RT priority of a thread
3898 * @pid: the pid in question.
3899 * @param: structure containing the RT priority.
3901 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
3903 struct sched_param lp
;
3904 int retval
= -EINVAL
;
3907 if (!param
|| pid
< 0)
3910 read_lock(&tasklist_lock
);
3911 p
= find_process_by_pid(pid
);
3916 retval
= security_task_getscheduler(p
);
3920 lp
.sched_priority
= p
->rt_priority
;
3921 read_unlock(&tasklist_lock
);
3924 * This one might sleep, we cannot do it with a spinlock held ...
3926 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3932 read_unlock(&tasklist_lock
);
3936 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
3940 cpumask_t cpus_allowed
;
3943 read_lock(&tasklist_lock
);
3945 p
= find_process_by_pid(pid
);
3947 read_unlock(&tasklist_lock
);
3948 unlock_cpu_hotplug();
3953 * It is not safe to call set_cpus_allowed with the
3954 * tasklist_lock held. We will bump the task_struct's
3955 * usage count and then drop tasklist_lock.
3958 read_unlock(&tasklist_lock
);
3961 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
3962 !capable(CAP_SYS_NICE
))
3965 cpus_allowed
= cpuset_cpus_allowed(p
);
3966 cpus_and(new_mask
, new_mask
, cpus_allowed
);
3967 retval
= set_cpus_allowed(p
, new_mask
);
3971 unlock_cpu_hotplug();
3975 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3976 cpumask_t
*new_mask
)
3978 if (len
< sizeof(cpumask_t
)) {
3979 memset(new_mask
, 0, sizeof(cpumask_t
));
3980 } else if (len
> sizeof(cpumask_t
)) {
3981 len
= sizeof(cpumask_t
);
3983 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3987 * sys_sched_setaffinity - set the cpu affinity of a process
3988 * @pid: pid of the process
3989 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3990 * @user_mask_ptr: user-space pointer to the new cpu mask
3992 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
3993 unsigned long __user
*user_mask_ptr
)
3998 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4002 return sched_setaffinity(pid
, new_mask
);
4006 * Represents all cpu's present in the system
4007 * In systems capable of hotplug, this map could dynamically grow
4008 * as new cpu's are detected in the system via any platform specific
4009 * method, such as ACPI for e.g.
4012 cpumask_t cpu_present_map __read_mostly
;
4013 EXPORT_SYMBOL(cpu_present_map
);
4016 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4017 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4020 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4026 read_lock(&tasklist_lock
);
4029 p
= find_process_by_pid(pid
);
4034 cpus_and(*mask
, p
->cpus_allowed
, cpu_possible_map
);
4037 read_unlock(&tasklist_lock
);
4038 unlock_cpu_hotplug();
4046 * sys_sched_getaffinity - get the cpu affinity of a process
4047 * @pid: pid of the process
4048 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4049 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4051 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4052 unsigned long __user
*user_mask_ptr
)
4057 if (len
< sizeof(cpumask_t
))
4060 ret
= sched_getaffinity(pid
, &mask
);
4064 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4067 return sizeof(cpumask_t
);
4071 * sys_sched_yield - yield the current processor to other threads.
4073 * this function yields the current CPU by moving the calling thread
4074 * to the expired array. If there are no other threads running on this
4075 * CPU then this function will return.
4077 asmlinkage
long sys_sched_yield(void)
4079 runqueue_t
*rq
= this_rq_lock();
4080 prio_array_t
*array
= current
->array
;
4081 prio_array_t
*target
= rq
->expired
;
4083 schedstat_inc(rq
, yld_cnt
);
4085 * We implement yielding by moving the task into the expired
4088 * (special rule: RT tasks will just roundrobin in the active
4091 if (rt_task(current
))
4092 target
= rq
->active
;
4094 if (array
->nr_active
== 1) {
4095 schedstat_inc(rq
, yld_act_empty
);
4096 if (!rq
->expired
->nr_active
)
4097 schedstat_inc(rq
, yld_both_empty
);
4098 } else if (!rq
->expired
->nr_active
)
4099 schedstat_inc(rq
, yld_exp_empty
);
4101 if (array
!= target
) {
4102 dequeue_task(current
, array
);
4103 enqueue_task(current
, target
);
4106 * requeue_task is cheaper so perform that if possible.
4108 requeue_task(current
, array
);
4111 * Since we are going to call schedule() anyway, there's
4112 * no need to preempt or enable interrupts:
4114 __release(rq
->lock
);
4115 _raw_spin_unlock(&rq
->lock
);
4116 preempt_enable_no_resched();
4123 static inline void __cond_resched(void)
4126 * The BKS might be reacquired before we have dropped
4127 * PREEMPT_ACTIVE, which could trigger a second
4128 * cond_resched() call.
4130 if (unlikely(preempt_count()))
4133 add_preempt_count(PREEMPT_ACTIVE
);
4135 sub_preempt_count(PREEMPT_ACTIVE
);
4136 } while (need_resched());
4139 int __sched
cond_resched(void)
4141 if (need_resched()) {
4148 EXPORT_SYMBOL(cond_resched
);
4151 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4152 * call schedule, and on return reacquire the lock.
4154 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4155 * operations here to prevent schedule() from being called twice (once via
4156 * spin_unlock(), once by hand).
4158 int cond_resched_lock(spinlock_t
*lock
)
4162 if (need_lockbreak(lock
)) {
4168 if (need_resched()) {
4169 _raw_spin_unlock(lock
);
4170 preempt_enable_no_resched();
4178 EXPORT_SYMBOL(cond_resched_lock
);
4180 int __sched
cond_resched_softirq(void)
4182 BUG_ON(!in_softirq());
4184 if (need_resched()) {
4185 __local_bh_enable();
4193 EXPORT_SYMBOL(cond_resched_softirq
);
4197 * yield - yield the current processor to other threads.
4199 * this is a shortcut for kernel-space yielding - it marks the
4200 * thread runnable and calls sys_sched_yield().
4202 void __sched
yield(void)
4204 set_current_state(TASK_RUNNING
);
4208 EXPORT_SYMBOL(yield
);
4211 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4212 * that process accounting knows that this is a task in IO wait state.
4214 * But don't do that if it is a deliberate, throttling IO wait (this task
4215 * has set its backing_dev_info: the queue against which it should throttle)
4217 void __sched
io_schedule(void)
4219 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4221 atomic_inc(&rq
->nr_iowait
);
4223 atomic_dec(&rq
->nr_iowait
);
4226 EXPORT_SYMBOL(io_schedule
);
4228 long __sched
io_schedule_timeout(long timeout
)
4230 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4233 atomic_inc(&rq
->nr_iowait
);
4234 ret
= schedule_timeout(timeout
);
4235 atomic_dec(&rq
->nr_iowait
);
4240 * sys_sched_get_priority_max - return maximum RT priority.
4241 * @policy: scheduling class.
4243 * this syscall returns the maximum rt_priority that can be used
4244 * by a given scheduling class.
4246 asmlinkage
long sys_sched_get_priority_max(int policy
)
4253 ret
= MAX_USER_RT_PRIO
-1;
4264 * sys_sched_get_priority_min - return minimum RT priority.
4265 * @policy: scheduling class.
4267 * this syscall returns the minimum rt_priority that can be used
4268 * by a given scheduling class.
4270 asmlinkage
long sys_sched_get_priority_min(int policy
)
4287 * sys_sched_rr_get_interval - return the default timeslice of a process.
4288 * @pid: pid of the process.
4289 * @interval: userspace pointer to the timeslice value.
4291 * this syscall writes the default timeslice value of a given process
4292 * into the user-space timespec buffer. A value of '0' means infinity.
4295 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4297 int retval
= -EINVAL
;
4305 read_lock(&tasklist_lock
);
4306 p
= find_process_by_pid(pid
);
4310 retval
= security_task_getscheduler(p
);
4314 jiffies_to_timespec(p
->policy
& SCHED_FIFO
?
4315 0 : task_timeslice(p
), &t
);
4316 read_unlock(&tasklist_lock
);
4317 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4321 read_unlock(&tasklist_lock
);
4325 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4327 if (list_empty(&p
->children
)) return NULL
;
4328 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4331 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4333 if (p
->sibling
.prev
==&p
->parent
->children
) return NULL
;
4334 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4337 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4339 if (p
->sibling
.next
==&p
->parent
->children
) return NULL
;
4340 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4343 static void show_task(task_t
*p
)
4347 unsigned long free
= 0;
4348 static const char *stat_nam
[] = { "R", "S", "D", "T", "t", "Z", "X" };
4350 printk("%-13.13s ", p
->comm
);
4351 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4352 if (state
< ARRAY_SIZE(stat_nam
))
4353 printk(stat_nam
[state
]);
4356 #if (BITS_PER_LONG == 32)
4357 if (state
== TASK_RUNNING
)
4358 printk(" running ");
4360 printk(" %08lX ", thread_saved_pc(p
));
4362 if (state
== TASK_RUNNING
)
4363 printk(" running task ");
4365 printk(" %016lx ", thread_saved_pc(p
));
4367 #ifdef CONFIG_DEBUG_STACK_USAGE
4369 unsigned long *n
= end_of_stack(p
);
4372 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4375 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4376 if ((relative
= eldest_child(p
)))
4377 printk("%5d ", relative
->pid
);
4380 if ((relative
= younger_sibling(p
)))
4381 printk("%7d", relative
->pid
);
4384 if ((relative
= older_sibling(p
)))
4385 printk(" %5d", relative
->pid
);
4389 printk(" (L-TLB)\n");
4391 printk(" (NOTLB)\n");
4393 if (state
!= TASK_RUNNING
)
4394 show_stack(p
, NULL
);
4397 void show_state(void)
4401 #if (BITS_PER_LONG == 32)
4404 printk(" task PC pid father child younger older\n");
4408 printk(" task PC pid father child younger older\n");
4410 read_lock(&tasklist_lock
);
4411 do_each_thread(g
, p
) {
4413 * reset the NMI-timeout, listing all files on a slow
4414 * console might take alot of time:
4416 touch_nmi_watchdog();
4418 } while_each_thread(g
, p
);
4420 read_unlock(&tasklist_lock
);
4421 mutex_debug_show_all_locks();
4425 * init_idle - set up an idle thread for a given CPU
4426 * @idle: task in question
4427 * @cpu: cpu the idle task belongs to
4429 * NOTE: this function does not set the idle thread's NEED_RESCHED
4430 * flag, to make booting more robust.
4432 void __devinit
init_idle(task_t
*idle
, int cpu
)
4434 runqueue_t
*rq
= cpu_rq(cpu
);
4435 unsigned long flags
;
4437 idle
->sleep_avg
= 0;
4439 idle
->prio
= MAX_PRIO
;
4440 idle
->state
= TASK_RUNNING
;
4441 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4442 set_task_cpu(idle
, cpu
);
4444 spin_lock_irqsave(&rq
->lock
, flags
);
4445 rq
->curr
= rq
->idle
= idle
;
4446 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4449 spin_unlock_irqrestore(&rq
->lock
, flags
);
4451 /* Set the preempt count _outside_ the spinlocks! */
4452 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4453 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4455 task_thread_info(idle
)->preempt_count
= 0;
4460 * In a system that switches off the HZ timer nohz_cpu_mask
4461 * indicates which cpus entered this state. This is used
4462 * in the rcu update to wait only for active cpus. For system
4463 * which do not switch off the HZ timer nohz_cpu_mask should
4464 * always be CPU_MASK_NONE.
4466 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4470 * This is how migration works:
4472 * 1) we queue a migration_req_t structure in the source CPU's
4473 * runqueue and wake up that CPU's migration thread.
4474 * 2) we down() the locked semaphore => thread blocks.
4475 * 3) migration thread wakes up (implicitly it forces the migrated
4476 * thread off the CPU)
4477 * 4) it gets the migration request and checks whether the migrated
4478 * task is still in the wrong runqueue.
4479 * 5) if it's in the wrong runqueue then the migration thread removes
4480 * it and puts it into the right queue.
4481 * 6) migration thread up()s the semaphore.
4482 * 7) we wake up and the migration is done.
4486 * Change a given task's CPU affinity. Migrate the thread to a
4487 * proper CPU and schedule it away if the CPU it's executing on
4488 * is removed from the allowed bitmask.
4490 * NOTE: the caller must have a valid reference to the task, the
4491 * task must not exit() & deallocate itself prematurely. The
4492 * call is not atomic; no spinlocks may be held.
4494 int set_cpus_allowed(task_t
*p
, cpumask_t new_mask
)
4496 unsigned long flags
;
4498 migration_req_t req
;
4501 rq
= task_rq_lock(p
, &flags
);
4502 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4507 p
->cpus_allowed
= new_mask
;
4508 /* Can the task run on the task's current CPU? If so, we're done */
4509 if (cpu_isset(task_cpu(p
), new_mask
))
4512 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4513 /* Need help from migration thread: drop lock and wait. */
4514 task_rq_unlock(rq
, &flags
);
4515 wake_up_process(rq
->migration_thread
);
4516 wait_for_completion(&req
.done
);
4517 tlb_migrate_finish(p
->mm
);
4521 task_rq_unlock(rq
, &flags
);
4525 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4528 * Move (not current) task off this cpu, onto dest cpu. We're doing
4529 * this because either it can't run here any more (set_cpus_allowed()
4530 * away from this CPU, or CPU going down), or because we're
4531 * attempting to rebalance this task on exec (sched_exec).
4533 * So we race with normal scheduler movements, but that's OK, as long
4534 * as the task is no longer on this CPU.
4536 static void __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4538 runqueue_t
*rq_dest
, *rq_src
;
4540 if (unlikely(cpu_is_offline(dest_cpu
)))
4543 rq_src
= cpu_rq(src_cpu
);
4544 rq_dest
= cpu_rq(dest_cpu
);
4546 double_rq_lock(rq_src
, rq_dest
);
4547 /* Already moved. */
4548 if (task_cpu(p
) != src_cpu
)
4550 /* Affinity changed (again). */
4551 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4554 set_task_cpu(p
, dest_cpu
);
4557 * Sync timestamp with rq_dest's before activating.
4558 * The same thing could be achieved by doing this step
4559 * afterwards, and pretending it was a local activate.
4560 * This way is cleaner and logically correct.
4562 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4563 + rq_dest
->timestamp_last_tick
;
4564 deactivate_task(p
, rq_src
);
4565 activate_task(p
, rq_dest
, 0);
4566 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4567 resched_task(rq_dest
->curr
);
4571 double_rq_unlock(rq_src
, rq_dest
);
4575 * migration_thread - this is a highprio system thread that performs
4576 * thread migration by bumping thread off CPU then 'pushing' onto
4579 static int migration_thread(void *data
)
4582 int cpu
= (long)data
;
4585 BUG_ON(rq
->migration_thread
!= current
);
4587 set_current_state(TASK_INTERRUPTIBLE
);
4588 while (!kthread_should_stop()) {
4589 struct list_head
*head
;
4590 migration_req_t
*req
;
4594 spin_lock_irq(&rq
->lock
);
4596 if (cpu_is_offline(cpu
)) {
4597 spin_unlock_irq(&rq
->lock
);
4601 if (rq
->active_balance
) {
4602 active_load_balance(rq
, cpu
);
4603 rq
->active_balance
= 0;
4606 head
= &rq
->migration_queue
;
4608 if (list_empty(head
)) {
4609 spin_unlock_irq(&rq
->lock
);
4611 set_current_state(TASK_INTERRUPTIBLE
);
4614 req
= list_entry(head
->next
, migration_req_t
, list
);
4615 list_del_init(head
->next
);
4617 spin_unlock(&rq
->lock
);
4618 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4621 complete(&req
->done
);
4623 __set_current_state(TASK_RUNNING
);
4627 /* Wait for kthread_stop */
4628 set_current_state(TASK_INTERRUPTIBLE
);
4629 while (!kthread_should_stop()) {
4631 set_current_state(TASK_INTERRUPTIBLE
);
4633 __set_current_state(TASK_RUNNING
);
4637 #ifdef CONFIG_HOTPLUG_CPU
4638 /* Figure out where task on dead CPU should go, use force if neccessary. */
4639 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*tsk
)
4645 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4646 cpus_and(mask
, mask
, tsk
->cpus_allowed
);
4647 dest_cpu
= any_online_cpu(mask
);
4649 /* On any allowed CPU? */
4650 if (dest_cpu
== NR_CPUS
)
4651 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4653 /* No more Mr. Nice Guy. */
4654 if (dest_cpu
== NR_CPUS
) {
4655 cpus_setall(tsk
->cpus_allowed
);
4656 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4659 * Don't tell them about moving exiting tasks or
4660 * kernel threads (both mm NULL), since they never
4663 if (tsk
->mm
&& printk_ratelimit())
4664 printk(KERN_INFO
"process %d (%s) no "
4665 "longer affine to cpu%d\n",
4666 tsk
->pid
, tsk
->comm
, dead_cpu
);
4668 __migrate_task(tsk
, dead_cpu
, dest_cpu
);
4672 * While a dead CPU has no uninterruptible tasks queued at this point,
4673 * it might still have a nonzero ->nr_uninterruptible counter, because
4674 * for performance reasons the counter is not stricly tracking tasks to
4675 * their home CPUs. So we just add the counter to another CPU's counter,
4676 * to keep the global sum constant after CPU-down:
4678 static void migrate_nr_uninterruptible(runqueue_t
*rq_src
)
4680 runqueue_t
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
4681 unsigned long flags
;
4683 local_irq_save(flags
);
4684 double_rq_lock(rq_src
, rq_dest
);
4685 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
4686 rq_src
->nr_uninterruptible
= 0;
4687 double_rq_unlock(rq_src
, rq_dest
);
4688 local_irq_restore(flags
);
4691 /* Run through task list and migrate tasks from the dead cpu. */
4692 static void migrate_live_tasks(int src_cpu
)
4694 struct task_struct
*tsk
, *t
;
4696 write_lock_irq(&tasklist_lock
);
4698 do_each_thread(t
, tsk
) {
4702 if (task_cpu(tsk
) == src_cpu
)
4703 move_task_off_dead_cpu(src_cpu
, tsk
);
4704 } while_each_thread(t
, tsk
);
4706 write_unlock_irq(&tasklist_lock
);
4709 /* Schedules idle task to be the next runnable task on current CPU.
4710 * It does so by boosting its priority to highest possible and adding it to
4711 * the _front_ of runqueue. Used by CPU offline code.
4713 void sched_idle_next(void)
4715 int cpu
= smp_processor_id();
4716 runqueue_t
*rq
= this_rq();
4717 struct task_struct
*p
= rq
->idle
;
4718 unsigned long flags
;
4720 /* cpu has to be offline */
4721 BUG_ON(cpu_online(cpu
));
4723 /* Strictly not necessary since rest of the CPUs are stopped by now
4724 * and interrupts disabled on current cpu.
4726 spin_lock_irqsave(&rq
->lock
, flags
);
4728 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4729 /* Add idle task to _front_ of it's priority queue */
4730 __activate_idle_task(p
, rq
);
4732 spin_unlock_irqrestore(&rq
->lock
, flags
);
4735 /* Ensures that the idle task is using init_mm right before its cpu goes
4738 void idle_task_exit(void)
4740 struct mm_struct
*mm
= current
->active_mm
;
4742 BUG_ON(cpu_online(smp_processor_id()));
4745 switch_mm(mm
, &init_mm
, current
);
4749 static void migrate_dead(unsigned int dead_cpu
, task_t
*tsk
)
4751 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4753 /* Must be exiting, otherwise would be on tasklist. */
4754 BUG_ON(tsk
->exit_state
!= EXIT_ZOMBIE
&& tsk
->exit_state
!= EXIT_DEAD
);
4756 /* Cannot have done final schedule yet: would have vanished. */
4757 BUG_ON(tsk
->flags
& PF_DEAD
);
4759 get_task_struct(tsk
);
4762 * Drop lock around migration; if someone else moves it,
4763 * that's OK. No task can be added to this CPU, so iteration is
4766 spin_unlock_irq(&rq
->lock
);
4767 move_task_off_dead_cpu(dead_cpu
, tsk
);
4768 spin_lock_irq(&rq
->lock
);
4770 put_task_struct(tsk
);
4773 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4774 static void migrate_dead_tasks(unsigned int dead_cpu
)
4777 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4779 for (arr
= 0; arr
< 2; arr
++) {
4780 for (i
= 0; i
< MAX_PRIO
; i
++) {
4781 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
4782 while (!list_empty(list
))
4783 migrate_dead(dead_cpu
,
4784 list_entry(list
->next
, task_t
,
4789 #endif /* CONFIG_HOTPLUG_CPU */
4792 * migration_call - callback that gets triggered when a CPU is added.
4793 * Here we can start up the necessary migration thread for the new CPU.
4795 static int migration_call(struct notifier_block
*nfb
, unsigned long action
,
4798 int cpu
= (long)hcpu
;
4799 struct task_struct
*p
;
4800 struct runqueue
*rq
;
4801 unsigned long flags
;
4804 case CPU_UP_PREPARE
:
4805 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
4808 p
->flags
|= PF_NOFREEZE
;
4809 kthread_bind(p
, cpu
);
4810 /* Must be high prio: stop_machine expects to yield to it. */
4811 rq
= task_rq_lock(p
, &flags
);
4812 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4813 task_rq_unlock(rq
, &flags
);
4814 cpu_rq(cpu
)->migration_thread
= p
;
4817 /* Strictly unneccessary, as first user will wake it. */
4818 wake_up_process(cpu_rq(cpu
)->migration_thread
);
4820 #ifdef CONFIG_HOTPLUG_CPU
4821 case CPU_UP_CANCELED
:
4822 /* Unbind it from offline cpu so it can run. Fall thru. */
4823 kthread_bind(cpu_rq(cpu
)->migration_thread
,
4824 any_online_cpu(cpu_online_map
));
4825 kthread_stop(cpu_rq(cpu
)->migration_thread
);
4826 cpu_rq(cpu
)->migration_thread
= NULL
;
4829 migrate_live_tasks(cpu
);
4831 kthread_stop(rq
->migration_thread
);
4832 rq
->migration_thread
= NULL
;
4833 /* Idle task back to normal (off runqueue, low prio) */
4834 rq
= task_rq_lock(rq
->idle
, &flags
);
4835 deactivate_task(rq
->idle
, rq
);
4836 rq
->idle
->static_prio
= MAX_PRIO
;
4837 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
4838 migrate_dead_tasks(cpu
);
4839 task_rq_unlock(rq
, &flags
);
4840 migrate_nr_uninterruptible(rq
);
4841 BUG_ON(rq
->nr_running
!= 0);
4843 /* No need to migrate the tasks: it was best-effort if
4844 * they didn't do lock_cpu_hotplug(). Just wake up
4845 * the requestors. */
4846 spin_lock_irq(&rq
->lock
);
4847 while (!list_empty(&rq
->migration_queue
)) {
4848 migration_req_t
*req
;
4849 req
= list_entry(rq
->migration_queue
.next
,
4850 migration_req_t
, list
);
4851 list_del_init(&req
->list
);
4852 complete(&req
->done
);
4854 spin_unlock_irq(&rq
->lock
);
4861 /* Register at highest priority so that task migration (migrate_all_tasks)
4862 * happens before everything else.
4864 static struct notifier_block __devinitdata migration_notifier
= {
4865 .notifier_call
= migration_call
,
4869 int __init
migration_init(void)
4871 void *cpu
= (void *)(long)smp_processor_id();
4872 /* Start one for boot CPU. */
4873 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
4874 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
4875 register_cpu_notifier(&migration_notifier
);
4881 #undef SCHED_DOMAIN_DEBUG
4882 #ifdef SCHED_DOMAIN_DEBUG
4883 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
4888 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
4892 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
4897 struct sched_group
*group
= sd
->groups
;
4898 cpumask_t groupmask
;
4900 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
4901 cpus_clear(groupmask
);
4904 for (i
= 0; i
< level
+ 1; i
++)
4906 printk("domain %d: ", level
);
4908 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
4909 printk("does not load-balance\n");
4911 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
4915 printk("span %s\n", str
);
4917 if (!cpu_isset(cpu
, sd
->span
))
4918 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
4919 if (!cpu_isset(cpu
, group
->cpumask
))
4920 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
4923 for (i
= 0; i
< level
+ 2; i
++)
4929 printk(KERN_ERR
"ERROR: group is NULL\n");
4933 if (!group
->cpu_power
) {
4935 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
4938 if (!cpus_weight(group
->cpumask
)) {
4940 printk(KERN_ERR
"ERROR: empty group\n");
4943 if (cpus_intersects(groupmask
, group
->cpumask
)) {
4945 printk(KERN_ERR
"ERROR: repeated CPUs\n");
4948 cpus_or(groupmask
, groupmask
, group
->cpumask
);
4950 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
4953 group
= group
->next
;
4954 } while (group
!= sd
->groups
);
4957 if (!cpus_equal(sd
->span
, groupmask
))
4958 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
4964 if (!cpus_subset(groupmask
, sd
->span
))
4965 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
4971 #define sched_domain_debug(sd, cpu) {}
4974 static int sd_degenerate(struct sched_domain
*sd
)
4976 if (cpus_weight(sd
->span
) == 1)
4979 /* Following flags need at least 2 groups */
4980 if (sd
->flags
& (SD_LOAD_BALANCE
|
4981 SD_BALANCE_NEWIDLE
|
4984 if (sd
->groups
!= sd
->groups
->next
)
4988 /* Following flags don't use groups */
4989 if (sd
->flags
& (SD_WAKE_IDLE
|
4997 static int sd_parent_degenerate(struct sched_domain
*sd
,
4998 struct sched_domain
*parent
)
5000 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5002 if (sd_degenerate(parent
))
5005 if (!cpus_equal(sd
->span
, parent
->span
))
5008 /* Does parent contain flags not in child? */
5009 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5010 if (cflags
& SD_WAKE_AFFINE
)
5011 pflags
&= ~SD_WAKE_BALANCE
;
5012 /* Flags needing groups don't count if only 1 group in parent */
5013 if (parent
->groups
== parent
->groups
->next
) {
5014 pflags
&= ~(SD_LOAD_BALANCE
|
5015 SD_BALANCE_NEWIDLE
|
5019 if (~cflags
& pflags
)
5026 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5027 * hold the hotplug lock.
5029 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5031 runqueue_t
*rq
= cpu_rq(cpu
);
5032 struct sched_domain
*tmp
;
5034 /* Remove the sched domains which do not contribute to scheduling. */
5035 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5036 struct sched_domain
*parent
= tmp
->parent
;
5039 if (sd_parent_degenerate(tmp
, parent
))
5040 tmp
->parent
= parent
->parent
;
5043 if (sd
&& sd_degenerate(sd
))
5046 sched_domain_debug(sd
, cpu
);
5048 rcu_assign_pointer(rq
->sd
, sd
);
5051 /* cpus with isolated domains */
5052 static cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
5054 /* Setup the mask of cpus configured for isolated domains */
5055 static int __init
isolated_cpu_setup(char *str
)
5057 int ints
[NR_CPUS
], i
;
5059 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5060 cpus_clear(cpu_isolated_map
);
5061 for (i
= 1; i
<= ints
[0]; i
++)
5062 if (ints
[i
] < NR_CPUS
)
5063 cpu_set(ints
[i
], cpu_isolated_map
);
5067 __setup ("isolcpus=", isolated_cpu_setup
);
5070 * init_sched_build_groups takes an array of groups, the cpumask we wish
5071 * to span, and a pointer to a function which identifies what group a CPU
5072 * belongs to. The return value of group_fn must be a valid index into the
5073 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5074 * keep track of groups covered with a cpumask_t).
5076 * init_sched_build_groups will build a circular linked list of the groups
5077 * covered by the given span, and will set each group's ->cpumask correctly,
5078 * and ->cpu_power to 0.
5080 static void init_sched_build_groups(struct sched_group groups
[], cpumask_t span
,
5081 int (*group_fn
)(int cpu
))
5083 struct sched_group
*first
= NULL
, *last
= NULL
;
5084 cpumask_t covered
= CPU_MASK_NONE
;
5087 for_each_cpu_mask(i
, span
) {
5088 int group
= group_fn(i
);
5089 struct sched_group
*sg
= &groups
[group
];
5092 if (cpu_isset(i
, covered
))
5095 sg
->cpumask
= CPU_MASK_NONE
;
5098 for_each_cpu_mask(j
, span
) {
5099 if (group_fn(j
) != group
)
5102 cpu_set(j
, covered
);
5103 cpu_set(j
, sg
->cpumask
);
5114 #define SD_NODES_PER_DOMAIN 16
5117 * Self-tuning task migration cost measurement between source and target CPUs.
5119 * This is done by measuring the cost of manipulating buffers of varying
5120 * sizes. For a given buffer-size here are the steps that are taken:
5122 * 1) the source CPU reads+dirties a shared buffer
5123 * 2) the target CPU reads+dirties the same shared buffer
5125 * We measure how long they take, in the following 4 scenarios:
5127 * - source: CPU1, target: CPU2 | cost1
5128 * - source: CPU2, target: CPU1 | cost2
5129 * - source: CPU1, target: CPU1 | cost3
5130 * - source: CPU2, target: CPU2 | cost4
5132 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5133 * the cost of migration.
5135 * We then start off from a small buffer-size and iterate up to larger
5136 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5137 * doing a maximum search for the cost. (The maximum cost for a migration
5138 * normally occurs when the working set size is around the effective cache
5141 #define SEARCH_SCOPE 2
5142 #define MIN_CACHE_SIZE (64*1024U)
5143 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5144 #define ITERATIONS 1
5145 #define SIZE_THRESH 130
5146 #define COST_THRESH 130
5149 * The migration cost is a function of 'domain distance'. Domain
5150 * distance is the number of steps a CPU has to iterate down its
5151 * domain tree to share a domain with the other CPU. The farther
5152 * two CPUs are from each other, the larger the distance gets.
5154 * Note that we use the distance only to cache measurement results,
5155 * the distance value is not used numerically otherwise. When two
5156 * CPUs have the same distance it is assumed that the migration
5157 * cost is the same. (this is a simplification but quite practical)
5159 #define MAX_DOMAIN_DISTANCE 32
5161 static unsigned long long migration_cost
[MAX_DOMAIN_DISTANCE
] =
5162 { [ 0 ... MAX_DOMAIN_DISTANCE
-1 ] = -1LL };
5165 * Allow override of migration cost - in units of microseconds.
5166 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5167 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5169 static int __init
migration_cost_setup(char *str
)
5171 int ints
[MAX_DOMAIN_DISTANCE
+1], i
;
5173 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5175 printk("#ints: %d\n", ints
[0]);
5176 for (i
= 1; i
<= ints
[0]; i
++) {
5177 migration_cost
[i
-1] = (unsigned long long)ints
[i
]*1000;
5178 printk("migration_cost[%d]: %Ld\n", i
-1, migration_cost
[i
-1]);
5183 __setup ("migration_cost=", migration_cost_setup
);
5186 * Global multiplier (divisor) for migration-cutoff values,
5187 * in percentiles. E.g. use a value of 150 to get 1.5 times
5188 * longer cache-hot cutoff times.
5190 * (We scale it from 100 to 128 to long long handling easier.)
5193 #define MIGRATION_FACTOR_SCALE 128
5195 static unsigned int migration_factor
= MIGRATION_FACTOR_SCALE
;
5197 static int __init
setup_migration_factor(char *str
)
5199 get_option(&str
, &migration_factor
);
5200 migration_factor
= migration_factor
* MIGRATION_FACTOR_SCALE
/ 100;
5204 __setup("migration_factor=", setup_migration_factor
);
5207 * Estimated distance of two CPUs, measured via the number of domains
5208 * we have to pass for the two CPUs to be in the same span:
5210 static unsigned long domain_distance(int cpu1
, int cpu2
)
5212 unsigned long distance
= 0;
5213 struct sched_domain
*sd
;
5215 for_each_domain(cpu1
, sd
) {
5216 WARN_ON(!cpu_isset(cpu1
, sd
->span
));
5217 if (cpu_isset(cpu2
, sd
->span
))
5221 if (distance
>= MAX_DOMAIN_DISTANCE
) {
5223 distance
= MAX_DOMAIN_DISTANCE
-1;
5229 static unsigned int migration_debug
;
5231 static int __init
setup_migration_debug(char *str
)
5233 get_option(&str
, &migration_debug
);
5237 __setup("migration_debug=", setup_migration_debug
);
5240 * Maximum cache-size that the scheduler should try to measure.
5241 * Architectures with larger caches should tune this up during
5242 * bootup. Gets used in the domain-setup code (i.e. during SMP
5245 unsigned int max_cache_size
;
5247 static int __init
setup_max_cache_size(char *str
)
5249 get_option(&str
, &max_cache_size
);
5253 __setup("max_cache_size=", setup_max_cache_size
);
5256 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5257 * is the operation that is timed, so we try to generate unpredictable
5258 * cachemisses that still end up filling the L2 cache:
5260 static void touch_cache(void *__cache
, unsigned long __size
)
5262 unsigned long size
= __size
/sizeof(long), chunk1
= size
/3,
5264 unsigned long *cache
= __cache
;
5267 for (i
= 0; i
< size
/6; i
+= 8) {
5270 case 1: cache
[size
-1-i
]++;
5271 case 2: cache
[chunk1
-i
]++;
5272 case 3: cache
[chunk1
+i
]++;
5273 case 4: cache
[chunk2
-i
]++;
5274 case 5: cache
[chunk2
+i
]++;
5280 * Measure the cache-cost of one task migration. Returns in units of nsec.
5282 static unsigned long long measure_one(void *cache
, unsigned long size
,
5283 int source
, int target
)
5285 cpumask_t mask
, saved_mask
;
5286 unsigned long long t0
, t1
, t2
, t3
, cost
;
5288 saved_mask
= current
->cpus_allowed
;
5291 * Flush source caches to RAM and invalidate them:
5296 * Migrate to the source CPU:
5298 mask
= cpumask_of_cpu(source
);
5299 set_cpus_allowed(current
, mask
);
5300 WARN_ON(smp_processor_id() != source
);
5303 * Dirty the working set:
5306 touch_cache(cache
, size
);
5310 * Migrate to the target CPU, dirty the L2 cache and access
5311 * the shared buffer. (which represents the working set
5312 * of a migrated task.)
5314 mask
= cpumask_of_cpu(target
);
5315 set_cpus_allowed(current
, mask
);
5316 WARN_ON(smp_processor_id() != target
);
5319 touch_cache(cache
, size
);
5322 cost
= t1
-t0
+ t3
-t2
;
5324 if (migration_debug
>= 2)
5325 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5326 source
, target
, t1
-t0
, t1
-t0
, t3
-t2
, cost
);
5328 * Flush target caches to RAM and invalidate them:
5332 set_cpus_allowed(current
, saved_mask
);
5338 * Measure a series of task migrations and return the average
5339 * result. Since this code runs early during bootup the system
5340 * is 'undisturbed' and the average latency makes sense.
5342 * The algorithm in essence auto-detects the relevant cache-size,
5343 * so it will properly detect different cachesizes for different
5344 * cache-hierarchies, depending on how the CPUs are connected.
5346 * Architectures can prime the upper limit of the search range via
5347 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5349 static unsigned long long
5350 measure_cost(int cpu1
, int cpu2
, void *cache
, unsigned int size
)
5352 unsigned long long cost1
, cost2
;
5356 * Measure the migration cost of 'size' bytes, over an
5357 * average of 10 runs:
5359 * (We perturb the cache size by a small (0..4k)
5360 * value to compensate size/alignment related artifacts.
5361 * We also subtract the cost of the operation done on
5367 * dry run, to make sure we start off cache-cold on cpu1,
5368 * and to get any vmalloc pagefaults in advance:
5370 measure_one(cache
, size
, cpu1
, cpu2
);
5371 for (i
= 0; i
< ITERATIONS
; i
++)
5372 cost1
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu2
);
5374 measure_one(cache
, size
, cpu2
, cpu1
);
5375 for (i
= 0; i
< ITERATIONS
; i
++)
5376 cost1
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu1
);
5379 * (We measure the non-migrating [cached] cost on both
5380 * cpu1 and cpu2, to handle CPUs with different speeds)
5384 measure_one(cache
, size
, cpu1
, cpu1
);
5385 for (i
= 0; i
< ITERATIONS
; i
++)
5386 cost2
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu1
);
5388 measure_one(cache
, size
, cpu2
, cpu2
);
5389 for (i
= 0; i
< ITERATIONS
; i
++)
5390 cost2
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu2
);
5393 * Get the per-iteration migration cost:
5395 do_div(cost1
, 2*ITERATIONS
);
5396 do_div(cost2
, 2*ITERATIONS
);
5398 return cost1
- cost2
;
5401 static unsigned long long measure_migration_cost(int cpu1
, int cpu2
)
5403 unsigned long long max_cost
= 0, fluct
= 0, avg_fluct
= 0;
5404 unsigned int max_size
, size
, size_found
= 0;
5405 long long cost
= 0, prev_cost
;
5409 * Search from max_cache_size*5 down to 64K - the real relevant
5410 * cachesize has to lie somewhere inbetween.
5412 if (max_cache_size
) {
5413 max_size
= max(max_cache_size
* SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5414 size
= max(max_cache_size
/ SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5417 * Since we have no estimation about the relevant
5420 max_size
= DEFAULT_CACHE_SIZE
* SEARCH_SCOPE
;
5421 size
= MIN_CACHE_SIZE
;
5424 if (!cpu_online(cpu1
) || !cpu_online(cpu2
)) {
5425 printk("cpu %d and %d not both online!\n", cpu1
, cpu2
);
5430 * Allocate the working set:
5432 cache
= vmalloc(max_size
);
5434 printk("could not vmalloc %d bytes for cache!\n", 2*max_size
);
5435 return 1000000; // return 1 msec on very small boxen
5438 while (size
<= max_size
) {
5440 cost
= measure_cost(cpu1
, cpu2
, cache
, size
);
5446 if (max_cost
< cost
) {
5452 * Calculate average fluctuation, we use this to prevent
5453 * noise from triggering an early break out of the loop:
5455 fluct
= abs(cost
- prev_cost
);
5456 avg_fluct
= (avg_fluct
+ fluct
)/2;
5458 if (migration_debug
)
5459 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5461 (long)cost
/ 1000000,
5462 ((long)cost
/ 100000) % 10,
5463 (long)max_cost
/ 1000000,
5464 ((long)max_cost
/ 100000) % 10,
5465 domain_distance(cpu1
, cpu2
),
5469 * If we iterated at least 20% past the previous maximum,
5470 * and the cost has dropped by more than 20% already,
5471 * (taking fluctuations into account) then we assume to
5472 * have found the maximum and break out of the loop early:
5474 if (size_found
&& (size
*100 > size_found
*SIZE_THRESH
))
5475 if (cost
+avg_fluct
<= 0 ||
5476 max_cost
*100 > (cost
+avg_fluct
)*COST_THRESH
) {
5478 if (migration_debug
)
5479 printk("-> found max.\n");
5483 * Increase the cachesize in 10% steps:
5485 size
= size
* 10 / 9;
5488 if (migration_debug
)
5489 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5490 cpu1
, cpu2
, size_found
, max_cost
);
5495 * A task is considered 'cache cold' if at least 2 times
5496 * the worst-case cost of migration has passed.
5498 * (this limit is only listened to if the load-balancing
5499 * situation is 'nice' - if there is a large imbalance we
5500 * ignore it for the sake of CPU utilization and
5501 * processing fairness.)
5503 return 2 * max_cost
* migration_factor
/ MIGRATION_FACTOR_SCALE
;
5506 static void calibrate_migration_costs(const cpumask_t
*cpu_map
)
5508 int cpu1
= -1, cpu2
= -1, cpu
, orig_cpu
= raw_smp_processor_id();
5509 unsigned long j0
, j1
, distance
, max_distance
= 0;
5510 struct sched_domain
*sd
;
5515 * First pass - calculate the cacheflush times:
5517 for_each_cpu_mask(cpu1
, *cpu_map
) {
5518 for_each_cpu_mask(cpu2
, *cpu_map
) {
5521 distance
= domain_distance(cpu1
, cpu2
);
5522 max_distance
= max(max_distance
, distance
);
5524 * No result cached yet?
5526 if (migration_cost
[distance
] == -1LL)
5527 migration_cost
[distance
] =
5528 measure_migration_cost(cpu1
, cpu2
);
5532 * Second pass - update the sched domain hierarchy with
5533 * the new cache-hot-time estimations:
5535 for_each_cpu_mask(cpu
, *cpu_map
) {
5537 for_each_domain(cpu
, sd
) {
5538 sd
->cache_hot_time
= migration_cost
[distance
];
5545 if (migration_debug
)
5546 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5554 printk("migration_cost=");
5555 for (distance
= 0; distance
<= max_distance
; distance
++) {
5558 printk("%ld", (long)migration_cost
[distance
] / 1000);
5562 if (migration_debug
)
5563 printk("migration: %ld seconds\n", (j1
-j0
)/HZ
);
5566 * Move back to the original CPU. NUMA-Q gets confused
5567 * if we migrate to another quad during bootup.
5569 if (raw_smp_processor_id() != orig_cpu
) {
5570 cpumask_t mask
= cpumask_of_cpu(orig_cpu
),
5571 saved_mask
= current
->cpus_allowed
;
5573 set_cpus_allowed(current
, mask
);
5574 set_cpus_allowed(current
, saved_mask
);
5581 * find_next_best_node - find the next node to include in a sched_domain
5582 * @node: node whose sched_domain we're building
5583 * @used_nodes: nodes already in the sched_domain
5585 * Find the next node to include in a given scheduling domain. Simply
5586 * finds the closest node not already in the @used_nodes map.
5588 * Should use nodemask_t.
5590 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5592 int i
, n
, val
, min_val
, best_node
= 0;
5596 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5597 /* Start at @node */
5598 n
= (node
+ i
) % MAX_NUMNODES
;
5600 if (!nr_cpus_node(n
))
5603 /* Skip already used nodes */
5604 if (test_bit(n
, used_nodes
))
5607 /* Simple min distance search */
5608 val
= node_distance(node
, n
);
5610 if (val
< min_val
) {
5616 set_bit(best_node
, used_nodes
);
5621 * sched_domain_node_span - get a cpumask for a node's sched_domain
5622 * @node: node whose cpumask we're constructing
5623 * @size: number of nodes to include in this span
5625 * Given a node, construct a good cpumask for its sched_domain to span. It
5626 * should be one that prevents unnecessary balancing, but also spreads tasks
5629 static cpumask_t
sched_domain_node_span(int node
)
5632 cpumask_t span
, nodemask
;
5633 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5636 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5638 nodemask
= node_to_cpumask(node
);
5639 cpus_or(span
, span
, nodemask
);
5640 set_bit(node
, used_nodes
);
5642 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5643 int next_node
= find_next_best_node(node
, used_nodes
);
5644 nodemask
= node_to_cpumask(next_node
);
5645 cpus_or(span
, span
, nodemask
);
5653 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5654 * can switch it on easily if needed.
5656 #ifdef CONFIG_SCHED_SMT
5657 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5658 static struct sched_group sched_group_cpus
[NR_CPUS
];
5659 static int cpu_to_cpu_group(int cpu
)
5665 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5666 static struct sched_group sched_group_phys
[NR_CPUS
];
5667 static int cpu_to_phys_group(int cpu
)
5669 #ifdef CONFIG_SCHED_SMT
5670 return first_cpu(cpu_sibling_map
[cpu
]);
5678 * The init_sched_build_groups can't handle what we want to do with node
5679 * groups, so roll our own. Now each node has its own list of groups which
5680 * gets dynamically allocated.
5682 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5683 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5685 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5686 static struct sched_group
*sched_group_allnodes_bycpu
[NR_CPUS
];
5688 static int cpu_to_allnodes_group(int cpu
)
5690 return cpu_to_node(cpu
);
5695 * Build sched domains for a given set of cpus and attach the sched domains
5696 * to the individual cpus
5698 void build_sched_domains(const cpumask_t
*cpu_map
)
5702 struct sched_group
**sched_group_nodes
= NULL
;
5703 struct sched_group
*sched_group_allnodes
= NULL
;
5706 * Allocate the per-node list of sched groups
5708 sched_group_nodes
= kmalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5710 if (!sched_group_nodes
) {
5711 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5714 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5718 * Set up domains for cpus specified by the cpu_map.
5720 for_each_cpu_mask(i
, *cpu_map
) {
5722 struct sched_domain
*sd
= NULL
, *p
;
5723 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5725 cpus_and(nodemask
, nodemask
, *cpu_map
);
5728 if (cpus_weight(*cpu_map
)
5729 > SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5730 if (!sched_group_allnodes
) {
5731 sched_group_allnodes
5732 = kmalloc(sizeof(struct sched_group
)
5735 if (!sched_group_allnodes
) {
5737 "Can not alloc allnodes sched group\n");
5740 sched_group_allnodes_bycpu
[i
]
5741 = sched_group_allnodes
;
5743 sd
= &per_cpu(allnodes_domains
, i
);
5744 *sd
= SD_ALLNODES_INIT
;
5745 sd
->span
= *cpu_map
;
5746 group
= cpu_to_allnodes_group(i
);
5747 sd
->groups
= &sched_group_allnodes
[group
];
5752 sd
= &per_cpu(node_domains
, i
);
5754 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5756 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5760 sd
= &per_cpu(phys_domains
, i
);
5761 group
= cpu_to_phys_group(i
);
5763 sd
->span
= nodemask
;
5765 sd
->groups
= &sched_group_phys
[group
];
5767 #ifdef CONFIG_SCHED_SMT
5769 sd
= &per_cpu(cpu_domains
, i
);
5770 group
= cpu_to_cpu_group(i
);
5771 *sd
= SD_SIBLING_INIT
;
5772 sd
->span
= cpu_sibling_map
[i
];
5773 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5775 sd
->groups
= &sched_group_cpus
[group
];
5779 #ifdef CONFIG_SCHED_SMT
5780 /* Set up CPU (sibling) groups */
5781 for_each_cpu_mask(i
, *cpu_map
) {
5782 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5783 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5784 if (i
!= first_cpu(this_sibling_map
))
5787 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
5792 /* Set up physical groups */
5793 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5794 cpumask_t nodemask
= node_to_cpumask(i
);
5796 cpus_and(nodemask
, nodemask
, *cpu_map
);
5797 if (cpus_empty(nodemask
))
5800 init_sched_build_groups(sched_group_phys
, nodemask
,
5801 &cpu_to_phys_group
);
5805 /* Set up node groups */
5806 if (sched_group_allnodes
)
5807 init_sched_build_groups(sched_group_allnodes
, *cpu_map
,
5808 &cpu_to_allnodes_group
);
5810 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5811 /* Set up node groups */
5812 struct sched_group
*sg
, *prev
;
5813 cpumask_t nodemask
= node_to_cpumask(i
);
5814 cpumask_t domainspan
;
5815 cpumask_t covered
= CPU_MASK_NONE
;
5818 cpus_and(nodemask
, nodemask
, *cpu_map
);
5819 if (cpus_empty(nodemask
)) {
5820 sched_group_nodes
[i
] = NULL
;
5824 domainspan
= sched_domain_node_span(i
);
5825 cpus_and(domainspan
, domainspan
, *cpu_map
);
5827 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5828 sched_group_nodes
[i
] = sg
;
5829 for_each_cpu_mask(j
, nodemask
) {
5830 struct sched_domain
*sd
;
5831 sd
= &per_cpu(node_domains
, j
);
5833 if (sd
->groups
== NULL
) {
5834 /* Turn off balancing if we have no groups */
5840 "Can not alloc domain group for node %d\n", i
);
5844 sg
->cpumask
= nodemask
;
5845 cpus_or(covered
, covered
, nodemask
);
5848 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5849 cpumask_t tmp
, notcovered
;
5850 int n
= (i
+ j
) % MAX_NUMNODES
;
5852 cpus_complement(notcovered
, covered
);
5853 cpus_and(tmp
, notcovered
, *cpu_map
);
5854 cpus_and(tmp
, tmp
, domainspan
);
5855 if (cpus_empty(tmp
))
5858 nodemask
= node_to_cpumask(n
);
5859 cpus_and(tmp
, tmp
, nodemask
);
5860 if (cpus_empty(tmp
))
5863 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5866 "Can not alloc domain group for node %d\n", j
);
5871 cpus_or(covered
, covered
, tmp
);
5875 prev
->next
= sched_group_nodes
[i
];
5879 /* Calculate CPU power for physical packages and nodes */
5880 for_each_cpu_mask(i
, *cpu_map
) {
5882 struct sched_domain
*sd
;
5883 #ifdef CONFIG_SCHED_SMT
5884 sd
= &per_cpu(cpu_domains
, i
);
5885 power
= SCHED_LOAD_SCALE
;
5886 sd
->groups
->cpu_power
= power
;
5889 sd
= &per_cpu(phys_domains
, i
);
5890 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5891 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5892 sd
->groups
->cpu_power
= power
;
5895 sd
= &per_cpu(allnodes_domains
, i
);
5897 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5898 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5899 sd
->groups
->cpu_power
= power
;
5905 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5906 struct sched_group
*sg
= sched_group_nodes
[i
];
5912 for_each_cpu_mask(j
, sg
->cpumask
) {
5913 struct sched_domain
*sd
;
5916 sd
= &per_cpu(phys_domains
, j
);
5917 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5919 * Only add "power" once for each
5924 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5925 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5927 sg
->cpu_power
+= power
;
5930 if (sg
!= sched_group_nodes
[i
])
5935 /* Attach the domains */
5936 for_each_cpu_mask(i
, *cpu_map
) {
5937 struct sched_domain
*sd
;
5938 #ifdef CONFIG_SCHED_SMT
5939 sd
= &per_cpu(cpu_domains
, i
);
5941 sd
= &per_cpu(phys_domains
, i
);
5943 cpu_attach_domain(sd
, i
);
5946 * Tune cache-hot values:
5948 calibrate_migration_costs(cpu_map
);
5951 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5953 static void arch_init_sched_domains(const cpumask_t
*cpu_map
)
5955 cpumask_t cpu_default_map
;
5958 * Setup mask for cpus without special case scheduling requirements.
5959 * For now this just excludes isolated cpus, but could be used to
5960 * exclude other special cases in the future.
5962 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
5964 build_sched_domains(&cpu_default_map
);
5967 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
5973 for_each_cpu_mask(cpu
, *cpu_map
) {
5974 struct sched_group
*sched_group_allnodes
5975 = sched_group_allnodes_bycpu
[cpu
];
5976 struct sched_group
**sched_group_nodes
5977 = sched_group_nodes_bycpu
[cpu
];
5979 if (sched_group_allnodes
) {
5980 kfree(sched_group_allnodes
);
5981 sched_group_allnodes_bycpu
[cpu
] = NULL
;
5984 if (!sched_group_nodes
)
5987 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5988 cpumask_t nodemask
= node_to_cpumask(i
);
5989 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5991 cpus_and(nodemask
, nodemask
, *cpu_map
);
5992 if (cpus_empty(nodemask
))
6002 if (oldsg
!= sched_group_nodes
[i
])
6005 kfree(sched_group_nodes
);
6006 sched_group_nodes_bycpu
[cpu
] = NULL
;
6012 * Detach sched domains from a group of cpus specified in cpu_map
6013 * These cpus will now be attached to the NULL domain
6015 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6019 for_each_cpu_mask(i
, *cpu_map
)
6020 cpu_attach_domain(NULL
, i
);
6021 synchronize_sched();
6022 arch_destroy_sched_domains(cpu_map
);
6026 * Partition sched domains as specified by the cpumasks below.
6027 * This attaches all cpus from the cpumasks to the NULL domain,
6028 * waits for a RCU quiescent period, recalculates sched
6029 * domain information and then attaches them back to the
6030 * correct sched domains
6031 * Call with hotplug lock held
6033 void partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6035 cpumask_t change_map
;
6037 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6038 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6039 cpus_or(change_map
, *partition1
, *partition2
);
6041 /* Detach sched domains from all of the affected cpus */
6042 detach_destroy_domains(&change_map
);
6043 if (!cpus_empty(*partition1
))
6044 build_sched_domains(partition1
);
6045 if (!cpus_empty(*partition2
))
6046 build_sched_domains(partition2
);
6049 #ifdef CONFIG_HOTPLUG_CPU
6051 * Force a reinitialization of the sched domains hierarchy. The domains
6052 * and groups cannot be updated in place without racing with the balancing
6053 * code, so we temporarily attach all running cpus to the NULL domain
6054 * which will prevent rebalancing while the sched domains are recalculated.
6056 static int update_sched_domains(struct notifier_block
*nfb
,
6057 unsigned long action
, void *hcpu
)
6060 case CPU_UP_PREPARE
:
6061 case CPU_DOWN_PREPARE
:
6062 detach_destroy_domains(&cpu_online_map
);
6065 case CPU_UP_CANCELED
:
6066 case CPU_DOWN_FAILED
:
6070 * Fall through and re-initialise the domains.
6077 /* The hotplug lock is already held by cpu_up/cpu_down */
6078 arch_init_sched_domains(&cpu_online_map
);
6084 void __init
sched_init_smp(void)
6087 arch_init_sched_domains(&cpu_online_map
);
6088 unlock_cpu_hotplug();
6089 /* XXX: Theoretical race here - CPU may be hotplugged now */
6090 hotcpu_notifier(update_sched_domains
, 0);
6093 void __init
sched_init_smp(void)
6096 #endif /* CONFIG_SMP */
6098 int in_sched_functions(unsigned long addr
)
6100 /* Linker adds these: start and end of __sched functions */
6101 extern char __sched_text_start
[], __sched_text_end
[];
6102 return in_lock_functions(addr
) ||
6103 (addr
>= (unsigned long)__sched_text_start
6104 && addr
< (unsigned long)__sched_text_end
);
6107 void __init
sched_init(void)
6112 for (i
= 0; i
< NR_CPUS
; i
++) {
6113 prio_array_t
*array
;
6116 spin_lock_init(&rq
->lock
);
6118 rq
->active
= rq
->arrays
;
6119 rq
->expired
= rq
->arrays
+ 1;
6120 rq
->best_expired_prio
= MAX_PRIO
;
6124 for (j
= 1; j
< 3; j
++)
6125 rq
->cpu_load
[j
] = 0;
6126 rq
->active_balance
= 0;
6128 rq
->migration_thread
= NULL
;
6129 INIT_LIST_HEAD(&rq
->migration_queue
);
6131 atomic_set(&rq
->nr_iowait
, 0);
6133 for (j
= 0; j
< 2; j
++) {
6134 array
= rq
->arrays
+ j
;
6135 for (k
= 0; k
< MAX_PRIO
; k
++) {
6136 INIT_LIST_HEAD(array
->queue
+ k
);
6137 __clear_bit(k
, array
->bitmap
);
6139 // delimiter for bitsearch
6140 __set_bit(MAX_PRIO
, array
->bitmap
);
6145 * The boot idle thread does lazy MMU switching as well:
6147 atomic_inc(&init_mm
.mm_count
);
6148 enter_lazy_tlb(&init_mm
, current
);
6151 * Make us the idle thread. Technically, schedule() should not be
6152 * called from this thread, however somewhere below it might be,
6153 * but because we are the idle thread, we just pick up running again
6154 * when this runqueue becomes "idle".
6156 init_idle(current
, smp_processor_id());
6159 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6160 void __might_sleep(char *file
, int line
)
6162 #if defined(in_atomic)
6163 static unsigned long prev_jiffy
; /* ratelimiting */
6165 if ((in_atomic() || irqs_disabled()) &&
6166 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6167 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6169 prev_jiffy
= jiffies
;
6170 printk(KERN_ERR
"Debug: sleeping function called from invalid"
6171 " context at %s:%d\n", file
, line
);
6172 printk("in_atomic():%d, irqs_disabled():%d\n",
6173 in_atomic(), irqs_disabled());
6178 EXPORT_SYMBOL(__might_sleep
);
6181 #ifdef CONFIG_MAGIC_SYSRQ
6182 void normalize_rt_tasks(void)
6184 struct task_struct
*p
;
6185 prio_array_t
*array
;
6186 unsigned long flags
;
6189 read_lock_irq(&tasklist_lock
);
6190 for_each_process (p
) {
6194 rq
= task_rq_lock(p
, &flags
);
6198 deactivate_task(p
, task_rq(p
));
6199 __setscheduler(p
, SCHED_NORMAL
, 0);
6201 __activate_task(p
, task_rq(p
));
6202 resched_task(rq
->curr
);
6205 task_rq_unlock(rq
, &flags
);
6207 read_unlock_irq(&tasklist_lock
);
6210 #endif /* CONFIG_MAGIC_SYSRQ */
6214 * These functions are only useful for the IA64 MCA handling.
6216 * They can only be called when the whole system has been
6217 * stopped - every CPU needs to be quiescent, and no scheduling
6218 * activity can take place. Using them for anything else would
6219 * be a serious bug, and as a result, they aren't even visible
6220 * under any other configuration.
6224 * curr_task - return the current task for a given cpu.
6225 * @cpu: the processor in question.
6227 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6229 task_t
*curr_task(int cpu
)
6231 return cpu_curr(cpu
);
6235 * set_curr_task - set the current task for a given cpu.
6236 * @cpu: the processor in question.
6237 * @p: the task pointer to set.
6239 * Description: This function must only be used when non-maskable interrupts
6240 * are serviced on a separate stack. It allows the architecture to switch the
6241 * notion of the current task on a cpu in a non-blocking manner. This function
6242 * must be called with all CPU's synchronized, and interrupts disabled, the
6243 * and caller must save the original value of the current task (see
6244 * curr_task() above) and restore that value before reenabling interrupts and
6245 * re-starting the system.
6247 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6249 void set_curr_task(int cpu
, task_t
*p
)