superblock: move pin_sb_for_writeback() to fs/super.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / super.c
blobe63c754447ce05431655b0026195c3ec33e00c3a
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include "internal.h"
38 LIST_HEAD(super_blocks);
39 DEFINE_SPINLOCK(sb_lock);
41 /**
42 * alloc_super - create new superblock
43 * @type: filesystem type superblock should belong to
45 * Allocates and initializes a new &struct super_block. alloc_super()
46 * returns a pointer new superblock or %NULL if allocation had failed.
48 static struct super_block *alloc_super(struct file_system_type *type)
50 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
51 static const struct super_operations default_op;
53 if (s) {
54 if (security_sb_alloc(s)) {
55 kfree(s);
56 s = NULL;
57 goto out;
59 #ifdef CONFIG_SMP
60 s->s_files = alloc_percpu(struct list_head);
61 if (!s->s_files) {
62 security_sb_free(s);
63 kfree(s);
64 s = NULL;
65 goto out;
66 } else {
67 int i;
69 for_each_possible_cpu(i)
70 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
72 #else
73 INIT_LIST_HEAD(&s->s_files);
74 #endif
75 s->s_bdi = &default_backing_dev_info;
76 INIT_LIST_HEAD(&s->s_instances);
77 INIT_HLIST_BL_HEAD(&s->s_anon);
78 INIT_LIST_HEAD(&s->s_inodes);
79 INIT_LIST_HEAD(&s->s_dentry_lru);
80 INIT_LIST_HEAD(&s->s_inode_lru);
81 spin_lock_init(&s->s_inode_lru_lock);
82 init_rwsem(&s->s_umount);
83 mutex_init(&s->s_lock);
84 lockdep_set_class(&s->s_umount, &type->s_umount_key);
86 * The locking rules for s_lock are up to the
87 * filesystem. For example ext3fs has different
88 * lock ordering than usbfs:
90 lockdep_set_class(&s->s_lock, &type->s_lock_key);
92 * sget() can have s_umount recursion.
94 * When it cannot find a suitable sb, it allocates a new
95 * one (this one), and tries again to find a suitable old
96 * one.
98 * In case that succeeds, it will acquire the s_umount
99 * lock of the old one. Since these are clearly distrinct
100 * locks, and this object isn't exposed yet, there's no
101 * risk of deadlocks.
103 * Annotate this by putting this lock in a different
104 * subclass.
106 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
107 s->s_count = 1;
108 atomic_set(&s->s_active, 1);
109 mutex_init(&s->s_vfs_rename_mutex);
110 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
111 mutex_init(&s->s_dquot.dqio_mutex);
112 mutex_init(&s->s_dquot.dqonoff_mutex);
113 init_rwsem(&s->s_dquot.dqptr_sem);
114 init_waitqueue_head(&s->s_wait_unfrozen);
115 s->s_maxbytes = MAX_NON_LFS;
116 s->s_op = &default_op;
117 s->s_time_gran = 1000000000;
118 s->cleancache_poolid = -1;
120 out:
121 return s;
125 * destroy_super - frees a superblock
126 * @s: superblock to free
128 * Frees a superblock.
130 static inline void destroy_super(struct super_block *s)
132 #ifdef CONFIG_SMP
133 free_percpu(s->s_files);
134 #endif
135 security_sb_free(s);
136 kfree(s->s_subtype);
137 kfree(s->s_options);
138 kfree(s);
141 /* Superblock refcounting */
144 * Drop a superblock's refcount. The caller must hold sb_lock.
146 void __put_super(struct super_block *sb)
148 if (!--sb->s_count) {
149 list_del_init(&sb->s_list);
150 destroy_super(sb);
155 * put_super - drop a temporary reference to superblock
156 * @sb: superblock in question
158 * Drops a temporary reference, frees superblock if there's no
159 * references left.
161 void put_super(struct super_block *sb)
163 spin_lock(&sb_lock);
164 __put_super(sb);
165 spin_unlock(&sb_lock);
170 * deactivate_locked_super - drop an active reference to superblock
171 * @s: superblock to deactivate
173 * Drops an active reference to superblock, converting it into a temprory
174 * one if there is no other active references left. In that case we
175 * tell fs driver to shut it down and drop the temporary reference we
176 * had just acquired.
178 * Caller holds exclusive lock on superblock; that lock is released.
180 void deactivate_locked_super(struct super_block *s)
182 struct file_system_type *fs = s->s_type;
183 if (atomic_dec_and_test(&s->s_active)) {
184 cleancache_flush_fs(s);
185 fs->kill_sb(s);
187 * We need to call rcu_barrier so all the delayed rcu free
188 * inodes are flushed before we release the fs module.
190 rcu_barrier();
191 put_filesystem(fs);
192 put_super(s);
193 } else {
194 up_write(&s->s_umount);
198 EXPORT_SYMBOL(deactivate_locked_super);
201 * deactivate_super - drop an active reference to superblock
202 * @s: superblock to deactivate
204 * Variant of deactivate_locked_super(), except that superblock is *not*
205 * locked by caller. If we are going to drop the final active reference,
206 * lock will be acquired prior to that.
208 void deactivate_super(struct super_block *s)
210 if (!atomic_add_unless(&s->s_active, -1, 1)) {
211 down_write(&s->s_umount);
212 deactivate_locked_super(s);
216 EXPORT_SYMBOL(deactivate_super);
219 * grab_super - acquire an active reference
220 * @s: reference we are trying to make active
222 * Tries to acquire an active reference. grab_super() is used when we
223 * had just found a superblock in super_blocks or fs_type->fs_supers
224 * and want to turn it into a full-blown active reference. grab_super()
225 * is called with sb_lock held and drops it. Returns 1 in case of
226 * success, 0 if we had failed (superblock contents was already dead or
227 * dying when grab_super() had been called).
229 static int grab_super(struct super_block *s) __releases(sb_lock)
231 if (atomic_inc_not_zero(&s->s_active)) {
232 spin_unlock(&sb_lock);
233 return 1;
235 /* it's going away */
236 s->s_count++;
237 spin_unlock(&sb_lock);
238 /* wait for it to die */
239 down_write(&s->s_umount);
240 up_write(&s->s_umount);
241 put_super(s);
242 return 0;
246 * grab_super_passive - acquire a passive reference
247 * @s: reference we are trying to grab
249 * Tries to acquire a passive reference. This is used in places where we
250 * cannot take an active reference but we need to ensure that the
251 * superblock does not go away while we are working on it. It returns
252 * false if a reference was not gained, and returns true with the s_umount
253 * lock held in read mode if a reference is gained. On successful return,
254 * the caller must drop the s_umount lock and the passive reference when
255 * done.
257 bool grab_super_passive(struct super_block *sb)
259 spin_lock(&sb_lock);
260 if (list_empty(&sb->s_instances)) {
261 spin_unlock(&sb_lock);
262 return false;
265 sb->s_count++;
266 spin_unlock(&sb_lock);
268 if (down_read_trylock(&sb->s_umount)) {
269 if (sb->s_root)
270 return true;
271 up_read(&sb->s_umount);
274 put_super(sb);
275 return false;
279 * Superblock locking. We really ought to get rid of these two.
281 void lock_super(struct super_block * sb)
283 get_fs_excl();
284 mutex_lock(&sb->s_lock);
287 void unlock_super(struct super_block * sb)
289 put_fs_excl();
290 mutex_unlock(&sb->s_lock);
293 EXPORT_SYMBOL(lock_super);
294 EXPORT_SYMBOL(unlock_super);
297 * generic_shutdown_super - common helper for ->kill_sb()
298 * @sb: superblock to kill
300 * generic_shutdown_super() does all fs-independent work on superblock
301 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
302 * that need destruction out of superblock, call generic_shutdown_super()
303 * and release aforementioned objects. Note: dentries and inodes _are_
304 * taken care of and do not need specific handling.
306 * Upon calling this function, the filesystem may no longer alter or
307 * rearrange the set of dentries belonging to this super_block, nor may it
308 * change the attachments of dentries to inodes.
310 void generic_shutdown_super(struct super_block *sb)
312 const struct super_operations *sop = sb->s_op;
315 if (sb->s_root) {
316 shrink_dcache_for_umount(sb);
317 sync_filesystem(sb);
318 get_fs_excl();
319 sb->s_flags &= ~MS_ACTIVE;
321 fsnotify_unmount_inodes(&sb->s_inodes);
323 evict_inodes(sb);
325 if (sop->put_super)
326 sop->put_super(sb);
328 if (!list_empty(&sb->s_inodes)) {
329 printk("VFS: Busy inodes after unmount of %s. "
330 "Self-destruct in 5 seconds. Have a nice day...\n",
331 sb->s_id);
333 put_fs_excl();
335 spin_lock(&sb_lock);
336 /* should be initialized for __put_super_and_need_restart() */
337 list_del_init(&sb->s_instances);
338 spin_unlock(&sb_lock);
339 up_write(&sb->s_umount);
342 EXPORT_SYMBOL(generic_shutdown_super);
345 * sget - find or create a superblock
346 * @type: filesystem type superblock should belong to
347 * @test: comparison callback
348 * @set: setup callback
349 * @data: argument to each of them
351 struct super_block *sget(struct file_system_type *type,
352 int (*test)(struct super_block *,void *),
353 int (*set)(struct super_block *,void *),
354 void *data)
356 struct super_block *s = NULL;
357 struct super_block *old;
358 int err;
360 retry:
361 spin_lock(&sb_lock);
362 if (test) {
363 list_for_each_entry(old, &type->fs_supers, s_instances) {
364 if (!test(old, data))
365 continue;
366 if (!grab_super(old))
367 goto retry;
368 if (s) {
369 up_write(&s->s_umount);
370 destroy_super(s);
371 s = NULL;
373 down_write(&old->s_umount);
374 if (unlikely(!(old->s_flags & MS_BORN))) {
375 deactivate_locked_super(old);
376 goto retry;
378 return old;
381 if (!s) {
382 spin_unlock(&sb_lock);
383 s = alloc_super(type);
384 if (!s)
385 return ERR_PTR(-ENOMEM);
386 goto retry;
389 err = set(s, data);
390 if (err) {
391 spin_unlock(&sb_lock);
392 up_write(&s->s_umount);
393 destroy_super(s);
394 return ERR_PTR(err);
396 s->s_type = type;
397 strlcpy(s->s_id, type->name, sizeof(s->s_id));
398 list_add_tail(&s->s_list, &super_blocks);
399 list_add(&s->s_instances, &type->fs_supers);
400 spin_unlock(&sb_lock);
401 get_filesystem(type);
402 return s;
405 EXPORT_SYMBOL(sget);
407 void drop_super(struct super_block *sb)
409 up_read(&sb->s_umount);
410 put_super(sb);
413 EXPORT_SYMBOL(drop_super);
416 * sync_supers - helper for periodic superblock writeback
418 * Call the write_super method if present on all dirty superblocks in
419 * the system. This is for the periodic writeback used by most older
420 * filesystems. For data integrity superblock writeback use
421 * sync_filesystems() instead.
423 * Note: check the dirty flag before waiting, so we don't
424 * hold up the sync while mounting a device. (The newly
425 * mounted device won't need syncing.)
427 void sync_supers(void)
429 struct super_block *sb, *p = NULL;
431 spin_lock(&sb_lock);
432 list_for_each_entry(sb, &super_blocks, s_list) {
433 if (list_empty(&sb->s_instances))
434 continue;
435 if (sb->s_op->write_super && sb->s_dirt) {
436 sb->s_count++;
437 spin_unlock(&sb_lock);
439 down_read(&sb->s_umount);
440 if (sb->s_root && sb->s_dirt)
441 sb->s_op->write_super(sb);
442 up_read(&sb->s_umount);
444 spin_lock(&sb_lock);
445 if (p)
446 __put_super(p);
447 p = sb;
450 if (p)
451 __put_super(p);
452 spin_unlock(&sb_lock);
456 * iterate_supers - call function for all active superblocks
457 * @f: function to call
458 * @arg: argument to pass to it
460 * Scans the superblock list and calls given function, passing it
461 * locked superblock and given argument.
463 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
465 struct super_block *sb, *p = NULL;
467 spin_lock(&sb_lock);
468 list_for_each_entry(sb, &super_blocks, s_list) {
469 if (list_empty(&sb->s_instances))
470 continue;
471 sb->s_count++;
472 spin_unlock(&sb_lock);
474 down_read(&sb->s_umount);
475 if (sb->s_root)
476 f(sb, arg);
477 up_read(&sb->s_umount);
479 spin_lock(&sb_lock);
480 if (p)
481 __put_super(p);
482 p = sb;
484 if (p)
485 __put_super(p);
486 spin_unlock(&sb_lock);
490 * iterate_supers_type - call function for superblocks of given type
491 * @type: fs type
492 * @f: function to call
493 * @arg: argument to pass to it
495 * Scans the superblock list and calls given function, passing it
496 * locked superblock and given argument.
498 void iterate_supers_type(struct file_system_type *type,
499 void (*f)(struct super_block *, void *), void *arg)
501 struct super_block *sb, *p = NULL;
503 spin_lock(&sb_lock);
504 list_for_each_entry(sb, &type->fs_supers, s_instances) {
505 sb->s_count++;
506 spin_unlock(&sb_lock);
508 down_read(&sb->s_umount);
509 if (sb->s_root)
510 f(sb, arg);
511 up_read(&sb->s_umount);
513 spin_lock(&sb_lock);
514 if (p)
515 __put_super(p);
516 p = sb;
518 if (p)
519 __put_super(p);
520 spin_unlock(&sb_lock);
523 EXPORT_SYMBOL(iterate_supers_type);
526 * get_super - get the superblock of a device
527 * @bdev: device to get the superblock for
529 * Scans the superblock list and finds the superblock of the file system
530 * mounted on the device given. %NULL is returned if no match is found.
533 struct super_block *get_super(struct block_device *bdev)
535 struct super_block *sb;
537 if (!bdev)
538 return NULL;
540 spin_lock(&sb_lock);
541 rescan:
542 list_for_each_entry(sb, &super_blocks, s_list) {
543 if (list_empty(&sb->s_instances))
544 continue;
545 if (sb->s_bdev == bdev) {
546 sb->s_count++;
547 spin_unlock(&sb_lock);
548 down_read(&sb->s_umount);
549 /* still alive? */
550 if (sb->s_root)
551 return sb;
552 up_read(&sb->s_umount);
553 /* nope, got unmounted */
554 spin_lock(&sb_lock);
555 __put_super(sb);
556 goto rescan;
559 spin_unlock(&sb_lock);
560 return NULL;
563 EXPORT_SYMBOL(get_super);
566 * get_active_super - get an active reference to the superblock of a device
567 * @bdev: device to get the superblock for
569 * Scans the superblock list and finds the superblock of the file system
570 * mounted on the device given. Returns the superblock with an active
571 * reference or %NULL if none was found.
573 struct super_block *get_active_super(struct block_device *bdev)
575 struct super_block *sb;
577 if (!bdev)
578 return NULL;
580 restart:
581 spin_lock(&sb_lock);
582 list_for_each_entry(sb, &super_blocks, s_list) {
583 if (list_empty(&sb->s_instances))
584 continue;
585 if (sb->s_bdev == bdev) {
586 if (grab_super(sb)) /* drops sb_lock */
587 return sb;
588 else
589 goto restart;
592 spin_unlock(&sb_lock);
593 return NULL;
596 struct super_block *user_get_super(dev_t dev)
598 struct super_block *sb;
600 spin_lock(&sb_lock);
601 rescan:
602 list_for_each_entry(sb, &super_blocks, s_list) {
603 if (list_empty(&sb->s_instances))
604 continue;
605 if (sb->s_dev == dev) {
606 sb->s_count++;
607 spin_unlock(&sb_lock);
608 down_read(&sb->s_umount);
609 /* still alive? */
610 if (sb->s_root)
611 return sb;
612 up_read(&sb->s_umount);
613 /* nope, got unmounted */
614 spin_lock(&sb_lock);
615 __put_super(sb);
616 goto rescan;
619 spin_unlock(&sb_lock);
620 return NULL;
624 * do_remount_sb - asks filesystem to change mount options.
625 * @sb: superblock in question
626 * @flags: numeric part of options
627 * @data: the rest of options
628 * @force: whether or not to force the change
630 * Alters the mount options of a mounted file system.
632 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
634 int retval;
635 int remount_ro;
637 if (sb->s_frozen != SB_UNFROZEN)
638 return -EBUSY;
640 #ifdef CONFIG_BLOCK
641 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
642 return -EACCES;
643 #endif
645 if (flags & MS_RDONLY)
646 acct_auto_close(sb);
647 shrink_dcache_sb(sb);
648 sync_filesystem(sb);
650 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
652 /* If we are remounting RDONLY and current sb is read/write,
653 make sure there are no rw files opened */
654 if (remount_ro) {
655 if (force)
656 mark_files_ro(sb);
657 else if (!fs_may_remount_ro(sb))
658 return -EBUSY;
661 if (sb->s_op->remount_fs) {
662 retval = sb->s_op->remount_fs(sb, &flags, data);
663 if (retval)
664 return retval;
666 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
669 * Some filesystems modify their metadata via some other path than the
670 * bdev buffer cache (eg. use a private mapping, or directories in
671 * pagecache, etc). Also file data modifications go via their own
672 * mappings. So If we try to mount readonly then copy the filesystem
673 * from bdev, we could get stale data, so invalidate it to give a best
674 * effort at coherency.
676 if (remount_ro && sb->s_bdev)
677 invalidate_bdev(sb->s_bdev);
678 return 0;
681 static void do_emergency_remount(struct work_struct *work)
683 struct super_block *sb, *p = NULL;
685 spin_lock(&sb_lock);
686 list_for_each_entry(sb, &super_blocks, s_list) {
687 if (list_empty(&sb->s_instances))
688 continue;
689 sb->s_count++;
690 spin_unlock(&sb_lock);
691 down_write(&sb->s_umount);
692 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
694 * What lock protects sb->s_flags??
696 do_remount_sb(sb, MS_RDONLY, NULL, 1);
698 up_write(&sb->s_umount);
699 spin_lock(&sb_lock);
700 if (p)
701 __put_super(p);
702 p = sb;
704 if (p)
705 __put_super(p);
706 spin_unlock(&sb_lock);
707 kfree(work);
708 printk("Emergency Remount complete\n");
711 void emergency_remount(void)
713 struct work_struct *work;
715 work = kmalloc(sizeof(*work), GFP_ATOMIC);
716 if (work) {
717 INIT_WORK(work, do_emergency_remount);
718 schedule_work(work);
723 * Unnamed block devices are dummy devices used by virtual
724 * filesystems which don't use real block-devices. -- jrs
727 static DEFINE_IDA(unnamed_dev_ida);
728 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
729 static int unnamed_dev_start = 0; /* don't bother trying below it */
731 int get_anon_bdev(dev_t *p)
733 int dev;
734 int error;
736 retry:
737 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
738 return -ENOMEM;
739 spin_lock(&unnamed_dev_lock);
740 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
741 if (!error)
742 unnamed_dev_start = dev + 1;
743 spin_unlock(&unnamed_dev_lock);
744 if (error == -EAGAIN)
745 /* We raced and lost with another CPU. */
746 goto retry;
747 else if (error)
748 return -EAGAIN;
750 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
751 spin_lock(&unnamed_dev_lock);
752 ida_remove(&unnamed_dev_ida, dev);
753 if (unnamed_dev_start > dev)
754 unnamed_dev_start = dev;
755 spin_unlock(&unnamed_dev_lock);
756 return -EMFILE;
758 *p = MKDEV(0, dev & MINORMASK);
759 return 0;
761 EXPORT_SYMBOL(get_anon_bdev);
763 void free_anon_bdev(dev_t dev)
765 int slot = MINOR(dev);
766 spin_lock(&unnamed_dev_lock);
767 ida_remove(&unnamed_dev_ida, slot);
768 if (slot < unnamed_dev_start)
769 unnamed_dev_start = slot;
770 spin_unlock(&unnamed_dev_lock);
772 EXPORT_SYMBOL(free_anon_bdev);
774 int set_anon_super(struct super_block *s, void *data)
776 int error = get_anon_bdev(&s->s_dev);
777 if (!error)
778 s->s_bdi = &noop_backing_dev_info;
779 return error;
782 EXPORT_SYMBOL(set_anon_super);
784 void kill_anon_super(struct super_block *sb)
786 dev_t dev = sb->s_dev;
787 generic_shutdown_super(sb);
788 free_anon_bdev(dev);
791 EXPORT_SYMBOL(kill_anon_super);
793 void kill_litter_super(struct super_block *sb)
795 if (sb->s_root)
796 d_genocide(sb->s_root);
797 kill_anon_super(sb);
800 EXPORT_SYMBOL(kill_litter_super);
802 static int ns_test_super(struct super_block *sb, void *data)
804 return sb->s_fs_info == data;
807 static int ns_set_super(struct super_block *sb, void *data)
809 sb->s_fs_info = data;
810 return set_anon_super(sb, NULL);
813 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
814 void *data, int (*fill_super)(struct super_block *, void *, int))
816 struct super_block *sb;
818 sb = sget(fs_type, ns_test_super, ns_set_super, data);
819 if (IS_ERR(sb))
820 return ERR_CAST(sb);
822 if (!sb->s_root) {
823 int err;
824 sb->s_flags = flags;
825 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
826 if (err) {
827 deactivate_locked_super(sb);
828 return ERR_PTR(err);
831 sb->s_flags |= MS_ACTIVE;
834 return dget(sb->s_root);
837 EXPORT_SYMBOL(mount_ns);
839 #ifdef CONFIG_BLOCK
840 static int set_bdev_super(struct super_block *s, void *data)
842 s->s_bdev = data;
843 s->s_dev = s->s_bdev->bd_dev;
846 * We set the bdi here to the queue backing, file systems can
847 * overwrite this in ->fill_super()
849 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
850 return 0;
853 static int test_bdev_super(struct super_block *s, void *data)
855 return (void *)s->s_bdev == data;
858 struct dentry *mount_bdev(struct file_system_type *fs_type,
859 int flags, const char *dev_name, void *data,
860 int (*fill_super)(struct super_block *, void *, int))
862 struct block_device *bdev;
863 struct super_block *s;
864 fmode_t mode = FMODE_READ | FMODE_EXCL;
865 int error = 0;
867 if (!(flags & MS_RDONLY))
868 mode |= FMODE_WRITE;
870 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
871 if (IS_ERR(bdev))
872 return ERR_CAST(bdev);
875 * once the super is inserted into the list by sget, s_umount
876 * will protect the lockfs code from trying to start a snapshot
877 * while we are mounting
879 mutex_lock(&bdev->bd_fsfreeze_mutex);
880 if (bdev->bd_fsfreeze_count > 0) {
881 mutex_unlock(&bdev->bd_fsfreeze_mutex);
882 error = -EBUSY;
883 goto error_bdev;
885 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
886 mutex_unlock(&bdev->bd_fsfreeze_mutex);
887 if (IS_ERR(s))
888 goto error_s;
890 if (s->s_root) {
891 if ((flags ^ s->s_flags) & MS_RDONLY) {
892 deactivate_locked_super(s);
893 error = -EBUSY;
894 goto error_bdev;
898 * s_umount nests inside bd_mutex during
899 * __invalidate_device(). blkdev_put() acquires
900 * bd_mutex and can't be called under s_umount. Drop
901 * s_umount temporarily. This is safe as we're
902 * holding an active reference.
904 up_write(&s->s_umount);
905 blkdev_put(bdev, mode);
906 down_write(&s->s_umount);
907 } else {
908 char b[BDEVNAME_SIZE];
910 s->s_flags = flags | MS_NOSEC;
911 s->s_mode = mode;
912 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
913 sb_set_blocksize(s, block_size(bdev));
914 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
915 if (error) {
916 deactivate_locked_super(s);
917 goto error;
920 s->s_flags |= MS_ACTIVE;
921 bdev->bd_super = s;
924 return dget(s->s_root);
926 error_s:
927 error = PTR_ERR(s);
928 error_bdev:
929 blkdev_put(bdev, mode);
930 error:
931 return ERR_PTR(error);
933 EXPORT_SYMBOL(mount_bdev);
935 void kill_block_super(struct super_block *sb)
937 struct block_device *bdev = sb->s_bdev;
938 fmode_t mode = sb->s_mode;
940 bdev->bd_super = NULL;
941 generic_shutdown_super(sb);
942 sync_blockdev(bdev);
943 WARN_ON_ONCE(!(mode & FMODE_EXCL));
944 blkdev_put(bdev, mode | FMODE_EXCL);
947 EXPORT_SYMBOL(kill_block_super);
948 #endif
950 struct dentry *mount_nodev(struct file_system_type *fs_type,
951 int flags, void *data,
952 int (*fill_super)(struct super_block *, void *, int))
954 int error;
955 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
957 if (IS_ERR(s))
958 return ERR_CAST(s);
960 s->s_flags = flags;
962 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
963 if (error) {
964 deactivate_locked_super(s);
965 return ERR_PTR(error);
967 s->s_flags |= MS_ACTIVE;
968 return dget(s->s_root);
970 EXPORT_SYMBOL(mount_nodev);
972 static int compare_single(struct super_block *s, void *p)
974 return 1;
977 struct dentry *mount_single(struct file_system_type *fs_type,
978 int flags, void *data,
979 int (*fill_super)(struct super_block *, void *, int))
981 struct super_block *s;
982 int error;
984 s = sget(fs_type, compare_single, set_anon_super, NULL);
985 if (IS_ERR(s))
986 return ERR_CAST(s);
987 if (!s->s_root) {
988 s->s_flags = flags;
989 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
990 if (error) {
991 deactivate_locked_super(s);
992 return ERR_PTR(error);
994 s->s_flags |= MS_ACTIVE;
995 } else {
996 do_remount_sb(s, flags, data, 0);
998 return dget(s->s_root);
1000 EXPORT_SYMBOL(mount_single);
1002 struct dentry *
1003 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1005 struct dentry *root;
1006 struct super_block *sb;
1007 char *secdata = NULL;
1008 int error = -ENOMEM;
1010 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1011 secdata = alloc_secdata();
1012 if (!secdata)
1013 goto out;
1015 error = security_sb_copy_data(data, secdata);
1016 if (error)
1017 goto out_free_secdata;
1020 root = type->mount(type, flags, name, data);
1021 if (IS_ERR(root)) {
1022 error = PTR_ERR(root);
1023 goto out_free_secdata;
1025 sb = root->d_sb;
1026 BUG_ON(!sb);
1027 WARN_ON(!sb->s_bdi);
1028 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1029 sb->s_flags |= MS_BORN;
1031 error = security_sb_kern_mount(sb, flags, secdata);
1032 if (error)
1033 goto out_sb;
1036 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1037 * but s_maxbytes was an unsigned long long for many releases. Throw
1038 * this warning for a little while to try and catch filesystems that
1039 * violate this rule.
1041 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1042 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1044 up_write(&sb->s_umount);
1045 free_secdata(secdata);
1046 return root;
1047 out_sb:
1048 dput(root);
1049 deactivate_locked_super(sb);
1050 out_free_secdata:
1051 free_secdata(secdata);
1052 out:
1053 return ERR_PTR(error);
1057 * freeze_super - lock the filesystem and force it into a consistent state
1058 * @sb: the super to lock
1060 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1061 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1062 * -EBUSY.
1064 int freeze_super(struct super_block *sb)
1066 int ret;
1068 atomic_inc(&sb->s_active);
1069 down_write(&sb->s_umount);
1070 if (sb->s_frozen) {
1071 deactivate_locked_super(sb);
1072 return -EBUSY;
1075 if (sb->s_flags & MS_RDONLY) {
1076 sb->s_frozen = SB_FREEZE_TRANS;
1077 smp_wmb();
1078 up_write(&sb->s_umount);
1079 return 0;
1082 sb->s_frozen = SB_FREEZE_WRITE;
1083 smp_wmb();
1085 sync_filesystem(sb);
1087 sb->s_frozen = SB_FREEZE_TRANS;
1088 smp_wmb();
1090 sync_blockdev(sb->s_bdev);
1091 if (sb->s_op->freeze_fs) {
1092 ret = sb->s_op->freeze_fs(sb);
1093 if (ret) {
1094 printk(KERN_ERR
1095 "VFS:Filesystem freeze failed\n");
1096 sb->s_frozen = SB_UNFROZEN;
1097 deactivate_locked_super(sb);
1098 return ret;
1101 up_write(&sb->s_umount);
1102 return 0;
1104 EXPORT_SYMBOL(freeze_super);
1107 * thaw_super -- unlock filesystem
1108 * @sb: the super to thaw
1110 * Unlocks the filesystem and marks it writeable again after freeze_super().
1112 int thaw_super(struct super_block *sb)
1114 int error;
1116 down_write(&sb->s_umount);
1117 if (sb->s_frozen == SB_UNFROZEN) {
1118 up_write(&sb->s_umount);
1119 return -EINVAL;
1122 if (sb->s_flags & MS_RDONLY)
1123 goto out;
1125 if (sb->s_op->unfreeze_fs) {
1126 error = sb->s_op->unfreeze_fs(sb);
1127 if (error) {
1128 printk(KERN_ERR
1129 "VFS:Filesystem thaw failed\n");
1130 sb->s_frozen = SB_FREEZE_TRANS;
1131 up_write(&sb->s_umount);
1132 return error;
1136 out:
1137 sb->s_frozen = SB_UNFROZEN;
1138 smp_wmb();
1139 wake_up(&sb->s_wait_unfrozen);
1140 deactivate_locked_super(sb);
1142 return 0;
1144 EXPORT_SYMBOL(thaw_super);