Staging: rtl8192* needs semaphore.h
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / tree-log.c
blob4a9434b622ecfc0f571c32ea3abf54df3d878123
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
93 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root, struct inode *inode,
95 int inode_only);
96 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root,
98 struct btrfs_path *path, u64 objectid);
99 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root,
101 struct btrfs_root *log,
102 struct btrfs_path *path,
103 u64 dirid, int del_all);
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
133 static int start_log_trans(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root)
136 int ret;
138 mutex_lock(&root->log_mutex);
139 if (root->log_root) {
140 if (!root->log_start_pid) {
141 root->log_start_pid = current->pid;
142 root->log_multiple_pids = false;
143 } else if (root->log_start_pid != current->pid) {
144 root->log_multiple_pids = true;
147 root->log_batch++;
148 atomic_inc(&root->log_writers);
149 mutex_unlock(&root->log_mutex);
150 return 0;
152 root->log_multiple_pids = false;
153 root->log_start_pid = current->pid;
154 mutex_lock(&root->fs_info->tree_log_mutex);
155 if (!root->fs_info->log_root_tree) {
156 ret = btrfs_init_log_root_tree(trans, root->fs_info);
157 BUG_ON(ret);
159 if (!root->log_root) {
160 ret = btrfs_add_log_tree(trans, root);
161 BUG_ON(ret);
163 mutex_unlock(&root->fs_info->tree_log_mutex);
164 root->log_batch++;
165 atomic_inc(&root->log_writers);
166 mutex_unlock(&root->log_mutex);
167 return 0;
171 * returns 0 if there was a log transaction running and we were able
172 * to join, or returns -ENOENT if there were not transactions
173 * in progress
175 static int join_running_log_trans(struct btrfs_root *root)
177 int ret = -ENOENT;
179 smp_mb();
180 if (!root->log_root)
181 return -ENOENT;
183 mutex_lock(&root->log_mutex);
184 if (root->log_root) {
185 ret = 0;
186 atomic_inc(&root->log_writers);
188 mutex_unlock(&root->log_mutex);
189 return ret;
193 * This either makes the current running log transaction wait
194 * until you call btrfs_end_log_trans() or it makes any future
195 * log transactions wait until you call btrfs_end_log_trans()
197 int btrfs_pin_log_trans(struct btrfs_root *root)
199 int ret = -ENOENT;
201 mutex_lock(&root->log_mutex);
202 atomic_inc(&root->log_writers);
203 mutex_unlock(&root->log_mutex);
204 return ret;
208 * indicate we're done making changes to the log tree
209 * and wake up anyone waiting to do a sync
211 int btrfs_end_log_trans(struct btrfs_root *root)
213 if (atomic_dec_and_test(&root->log_writers)) {
214 smp_mb();
215 if (waitqueue_active(&root->log_writer_wait))
216 wake_up(&root->log_writer_wait);
218 return 0;
223 * the walk control struct is used to pass state down the chain when
224 * processing the log tree. The stage field tells us which part
225 * of the log tree processing we are currently doing. The others
226 * are state fields used for that specific part
228 struct walk_control {
229 /* should we free the extent on disk when done? This is used
230 * at transaction commit time while freeing a log tree
232 int free;
234 /* should we write out the extent buffer? This is used
235 * while flushing the log tree to disk during a sync
237 int write;
239 /* should we wait for the extent buffer io to finish? Also used
240 * while flushing the log tree to disk for a sync
242 int wait;
244 /* pin only walk, we record which extents on disk belong to the
245 * log trees
247 int pin;
249 /* what stage of the replay code we're currently in */
250 int stage;
252 /* the root we are currently replaying */
253 struct btrfs_root *replay_dest;
255 /* the trans handle for the current replay */
256 struct btrfs_trans_handle *trans;
258 /* the function that gets used to process blocks we find in the
259 * tree. Note the extent_buffer might not be up to date when it is
260 * passed in, and it must be checked or read if you need the data
261 * inside it
263 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
264 struct walk_control *wc, u64 gen);
268 * process_func used to pin down extents, write them or wait on them
270 static int process_one_buffer(struct btrfs_root *log,
271 struct extent_buffer *eb,
272 struct walk_control *wc, u64 gen)
274 if (wc->pin)
275 btrfs_pin_extent(log->fs_info->extent_root,
276 eb->start, eb->len, 0);
278 if (btrfs_buffer_uptodate(eb, gen)) {
279 if (wc->write)
280 btrfs_write_tree_block(eb);
281 if (wc->wait)
282 btrfs_wait_tree_block_writeback(eb);
284 return 0;
288 * Item overwrite used by replay and tree logging. eb, slot and key all refer
289 * to the src data we are copying out.
291 * root is the tree we are copying into, and path is a scratch
292 * path for use in this function (it should be released on entry and
293 * will be released on exit).
295 * If the key is already in the destination tree the existing item is
296 * overwritten. If the existing item isn't big enough, it is extended.
297 * If it is too large, it is truncated.
299 * If the key isn't in the destination yet, a new item is inserted.
301 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
302 struct btrfs_root *root,
303 struct btrfs_path *path,
304 struct extent_buffer *eb, int slot,
305 struct btrfs_key *key)
307 int ret;
308 u32 item_size;
309 u64 saved_i_size = 0;
310 int save_old_i_size = 0;
311 unsigned long src_ptr;
312 unsigned long dst_ptr;
313 int overwrite_root = 0;
315 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
316 overwrite_root = 1;
318 item_size = btrfs_item_size_nr(eb, slot);
319 src_ptr = btrfs_item_ptr_offset(eb, slot);
321 /* look for the key in the destination tree */
322 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
323 if (ret == 0) {
324 char *src_copy;
325 char *dst_copy;
326 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
327 path->slots[0]);
328 if (dst_size != item_size)
329 goto insert;
331 if (item_size == 0) {
332 btrfs_release_path(root, path);
333 return 0;
335 dst_copy = kmalloc(item_size, GFP_NOFS);
336 src_copy = kmalloc(item_size, GFP_NOFS);
338 read_extent_buffer(eb, src_copy, src_ptr, item_size);
340 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
341 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
342 item_size);
343 ret = memcmp(dst_copy, src_copy, item_size);
345 kfree(dst_copy);
346 kfree(src_copy);
348 * they have the same contents, just return, this saves
349 * us from cowing blocks in the destination tree and doing
350 * extra writes that may not have been done by a previous
351 * sync
353 if (ret == 0) {
354 btrfs_release_path(root, path);
355 return 0;
359 insert:
360 btrfs_release_path(root, path);
361 /* try to insert the key into the destination tree */
362 ret = btrfs_insert_empty_item(trans, root, path,
363 key, item_size);
365 /* make sure any existing item is the correct size */
366 if (ret == -EEXIST) {
367 u32 found_size;
368 found_size = btrfs_item_size_nr(path->nodes[0],
369 path->slots[0]);
370 if (found_size > item_size) {
371 btrfs_truncate_item(trans, root, path, item_size, 1);
372 } else if (found_size < item_size) {
373 ret = btrfs_extend_item(trans, root, path,
374 item_size - found_size);
375 BUG_ON(ret);
377 } else if (ret) {
378 BUG();
380 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
381 path->slots[0]);
383 /* don't overwrite an existing inode if the generation number
384 * was logged as zero. This is done when the tree logging code
385 * is just logging an inode to make sure it exists after recovery.
387 * Also, don't overwrite i_size on directories during replay.
388 * log replay inserts and removes directory items based on the
389 * state of the tree found in the subvolume, and i_size is modified
390 * as it goes
392 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
393 struct btrfs_inode_item *src_item;
394 struct btrfs_inode_item *dst_item;
396 src_item = (struct btrfs_inode_item *)src_ptr;
397 dst_item = (struct btrfs_inode_item *)dst_ptr;
399 if (btrfs_inode_generation(eb, src_item) == 0)
400 goto no_copy;
402 if (overwrite_root &&
403 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
404 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
405 save_old_i_size = 1;
406 saved_i_size = btrfs_inode_size(path->nodes[0],
407 dst_item);
411 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
412 src_ptr, item_size);
414 if (save_old_i_size) {
415 struct btrfs_inode_item *dst_item;
416 dst_item = (struct btrfs_inode_item *)dst_ptr;
417 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
420 /* make sure the generation is filled in */
421 if (key->type == BTRFS_INODE_ITEM_KEY) {
422 struct btrfs_inode_item *dst_item;
423 dst_item = (struct btrfs_inode_item *)dst_ptr;
424 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
425 btrfs_set_inode_generation(path->nodes[0], dst_item,
426 trans->transid);
429 no_copy:
430 btrfs_mark_buffer_dirty(path->nodes[0]);
431 btrfs_release_path(root, path);
432 return 0;
436 * simple helper to read an inode off the disk from a given root
437 * This can only be called for subvolume roots and not for the log
439 static noinline struct inode *read_one_inode(struct btrfs_root *root,
440 u64 objectid)
442 struct btrfs_key key;
443 struct inode *inode;
445 key.objectid = objectid;
446 key.type = BTRFS_INODE_ITEM_KEY;
447 key.offset = 0;
448 inode = btrfs_iget(root->fs_info->sb, &key, root);
449 if (IS_ERR(inode)) {
450 inode = NULL;
451 } else if (is_bad_inode(inode)) {
452 iput(inode);
453 inode = NULL;
455 return inode;
458 /* replays a single extent in 'eb' at 'slot' with 'key' into the
459 * subvolume 'root'. path is released on entry and should be released
460 * on exit.
462 * extents in the log tree have not been allocated out of the extent
463 * tree yet. So, this completes the allocation, taking a reference
464 * as required if the extent already exists or creating a new extent
465 * if it isn't in the extent allocation tree yet.
467 * The extent is inserted into the file, dropping any existing extents
468 * from the file that overlap the new one.
470 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
471 struct btrfs_root *root,
472 struct btrfs_path *path,
473 struct extent_buffer *eb, int slot,
474 struct btrfs_key *key)
476 int found_type;
477 u64 mask = root->sectorsize - 1;
478 u64 extent_end;
479 u64 alloc_hint;
480 u64 start = key->offset;
481 u64 saved_nbytes;
482 struct btrfs_file_extent_item *item;
483 struct inode *inode = NULL;
484 unsigned long size;
485 int ret = 0;
487 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
488 found_type = btrfs_file_extent_type(eb, item);
490 if (found_type == BTRFS_FILE_EXTENT_REG ||
491 found_type == BTRFS_FILE_EXTENT_PREALLOC)
492 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
493 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
494 size = btrfs_file_extent_inline_len(eb, item);
495 extent_end = (start + size + mask) & ~mask;
496 } else {
497 ret = 0;
498 goto out;
501 inode = read_one_inode(root, key->objectid);
502 if (!inode) {
503 ret = -EIO;
504 goto out;
508 * first check to see if we already have this extent in the
509 * file. This must be done before the btrfs_drop_extents run
510 * so we don't try to drop this extent.
512 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
513 start, 0);
515 if (ret == 0 &&
516 (found_type == BTRFS_FILE_EXTENT_REG ||
517 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
518 struct btrfs_file_extent_item cmp1;
519 struct btrfs_file_extent_item cmp2;
520 struct btrfs_file_extent_item *existing;
521 struct extent_buffer *leaf;
523 leaf = path->nodes[0];
524 existing = btrfs_item_ptr(leaf, path->slots[0],
525 struct btrfs_file_extent_item);
527 read_extent_buffer(eb, &cmp1, (unsigned long)item,
528 sizeof(cmp1));
529 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
530 sizeof(cmp2));
533 * we already have a pointer to this exact extent,
534 * we don't have to do anything
536 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
537 btrfs_release_path(root, path);
538 goto out;
541 btrfs_release_path(root, path);
543 saved_nbytes = inode_get_bytes(inode);
544 /* drop any overlapping extents */
545 ret = btrfs_drop_extents(trans, inode, start, extent_end,
546 &alloc_hint, 1);
547 BUG_ON(ret);
549 if (found_type == BTRFS_FILE_EXTENT_REG ||
550 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
551 u64 offset;
552 unsigned long dest_offset;
553 struct btrfs_key ins;
555 ret = btrfs_insert_empty_item(trans, root, path, key,
556 sizeof(*item));
557 BUG_ON(ret);
558 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
559 path->slots[0]);
560 copy_extent_buffer(path->nodes[0], eb, dest_offset,
561 (unsigned long)item, sizeof(*item));
563 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
564 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
565 ins.type = BTRFS_EXTENT_ITEM_KEY;
566 offset = key->offset - btrfs_file_extent_offset(eb, item);
568 if (ins.objectid > 0) {
569 u64 csum_start;
570 u64 csum_end;
571 LIST_HEAD(ordered_sums);
573 * is this extent already allocated in the extent
574 * allocation tree? If so, just add a reference
576 ret = btrfs_lookup_extent(root, ins.objectid,
577 ins.offset);
578 if (ret == 0) {
579 ret = btrfs_inc_extent_ref(trans, root,
580 ins.objectid, ins.offset,
581 0, root->root_key.objectid,
582 key->objectid, offset);
583 } else {
585 * insert the extent pointer in the extent
586 * allocation tree
588 ret = btrfs_alloc_logged_file_extent(trans,
589 root, root->root_key.objectid,
590 key->objectid, offset, &ins);
591 BUG_ON(ret);
593 btrfs_release_path(root, path);
595 if (btrfs_file_extent_compression(eb, item)) {
596 csum_start = ins.objectid;
597 csum_end = csum_start + ins.offset;
598 } else {
599 csum_start = ins.objectid +
600 btrfs_file_extent_offset(eb, item);
601 csum_end = csum_start +
602 btrfs_file_extent_num_bytes(eb, item);
605 ret = btrfs_lookup_csums_range(root->log_root,
606 csum_start, csum_end - 1,
607 &ordered_sums);
608 BUG_ON(ret);
609 while (!list_empty(&ordered_sums)) {
610 struct btrfs_ordered_sum *sums;
611 sums = list_entry(ordered_sums.next,
612 struct btrfs_ordered_sum,
613 list);
614 ret = btrfs_csum_file_blocks(trans,
615 root->fs_info->csum_root,
616 sums);
617 BUG_ON(ret);
618 list_del(&sums->list);
619 kfree(sums);
621 } else {
622 btrfs_release_path(root, path);
624 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
625 /* inline extents are easy, we just overwrite them */
626 ret = overwrite_item(trans, root, path, eb, slot, key);
627 BUG_ON(ret);
630 inode_set_bytes(inode, saved_nbytes);
631 btrfs_update_inode(trans, root, inode);
632 out:
633 if (inode)
634 iput(inode);
635 return ret;
639 * when cleaning up conflicts between the directory names in the
640 * subvolume, directory names in the log and directory names in the
641 * inode back references, we may have to unlink inodes from directories.
643 * This is a helper function to do the unlink of a specific directory
644 * item
646 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
647 struct btrfs_root *root,
648 struct btrfs_path *path,
649 struct inode *dir,
650 struct btrfs_dir_item *di)
652 struct inode *inode;
653 char *name;
654 int name_len;
655 struct extent_buffer *leaf;
656 struct btrfs_key location;
657 int ret;
659 leaf = path->nodes[0];
661 btrfs_dir_item_key_to_cpu(leaf, di, &location);
662 name_len = btrfs_dir_name_len(leaf, di);
663 name = kmalloc(name_len, GFP_NOFS);
664 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
665 btrfs_release_path(root, path);
667 inode = read_one_inode(root, location.objectid);
668 BUG_ON(!inode);
670 ret = link_to_fixup_dir(trans, root, path, location.objectid);
671 BUG_ON(ret);
673 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
674 BUG_ON(ret);
675 kfree(name);
677 iput(inode);
678 return ret;
682 * helper function to see if a given name and sequence number found
683 * in an inode back reference are already in a directory and correctly
684 * point to this inode
686 static noinline int inode_in_dir(struct btrfs_root *root,
687 struct btrfs_path *path,
688 u64 dirid, u64 objectid, u64 index,
689 const char *name, int name_len)
691 struct btrfs_dir_item *di;
692 struct btrfs_key location;
693 int match = 0;
695 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
696 index, name, name_len, 0);
697 if (di && !IS_ERR(di)) {
698 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
699 if (location.objectid != objectid)
700 goto out;
701 } else
702 goto out;
703 btrfs_release_path(root, path);
705 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
706 if (di && !IS_ERR(di)) {
707 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
708 if (location.objectid != objectid)
709 goto out;
710 } else
711 goto out;
712 match = 1;
713 out:
714 btrfs_release_path(root, path);
715 return match;
719 * helper function to check a log tree for a named back reference in
720 * an inode. This is used to decide if a back reference that is
721 * found in the subvolume conflicts with what we find in the log.
723 * inode backreferences may have multiple refs in a single item,
724 * during replay we process one reference at a time, and we don't
725 * want to delete valid links to a file from the subvolume if that
726 * link is also in the log.
728 static noinline int backref_in_log(struct btrfs_root *log,
729 struct btrfs_key *key,
730 char *name, int namelen)
732 struct btrfs_path *path;
733 struct btrfs_inode_ref *ref;
734 unsigned long ptr;
735 unsigned long ptr_end;
736 unsigned long name_ptr;
737 int found_name_len;
738 int item_size;
739 int ret;
740 int match = 0;
742 path = btrfs_alloc_path();
743 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
744 if (ret != 0)
745 goto out;
747 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
748 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
749 ptr_end = ptr + item_size;
750 while (ptr < ptr_end) {
751 ref = (struct btrfs_inode_ref *)ptr;
752 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
753 if (found_name_len == namelen) {
754 name_ptr = (unsigned long)(ref + 1);
755 ret = memcmp_extent_buffer(path->nodes[0], name,
756 name_ptr, namelen);
757 if (ret == 0) {
758 match = 1;
759 goto out;
762 ptr = (unsigned long)(ref + 1) + found_name_len;
764 out:
765 btrfs_free_path(path);
766 return match;
771 * replay one inode back reference item found in the log tree.
772 * eb, slot and key refer to the buffer and key found in the log tree.
773 * root is the destination we are replaying into, and path is for temp
774 * use by this function. (it should be released on return).
776 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
777 struct btrfs_root *root,
778 struct btrfs_root *log,
779 struct btrfs_path *path,
780 struct extent_buffer *eb, int slot,
781 struct btrfs_key *key)
783 struct inode *dir;
784 int ret;
785 struct btrfs_key location;
786 struct btrfs_inode_ref *ref;
787 struct btrfs_dir_item *di;
788 struct inode *inode;
789 char *name;
790 int namelen;
791 unsigned long ref_ptr;
792 unsigned long ref_end;
794 location.objectid = key->objectid;
795 location.type = BTRFS_INODE_ITEM_KEY;
796 location.offset = 0;
799 * it is possible that we didn't log all the parent directories
800 * for a given inode. If we don't find the dir, just don't
801 * copy the back ref in. The link count fixup code will take
802 * care of the rest
804 dir = read_one_inode(root, key->offset);
805 if (!dir)
806 return -ENOENT;
808 inode = read_one_inode(root, key->objectid);
809 BUG_ON(!inode);
811 ref_ptr = btrfs_item_ptr_offset(eb, slot);
812 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
814 again:
815 ref = (struct btrfs_inode_ref *)ref_ptr;
817 namelen = btrfs_inode_ref_name_len(eb, ref);
818 name = kmalloc(namelen, GFP_NOFS);
819 BUG_ON(!name);
821 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
823 /* if we already have a perfect match, we're done */
824 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
825 btrfs_inode_ref_index(eb, ref),
826 name, namelen)) {
827 goto out;
831 * look for a conflicting back reference in the metadata.
832 * if we find one we have to unlink that name of the file
833 * before we add our new link. Later on, we overwrite any
834 * existing back reference, and we don't want to create
835 * dangling pointers in the directory.
837 conflict_again:
838 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
839 if (ret == 0) {
840 char *victim_name;
841 int victim_name_len;
842 struct btrfs_inode_ref *victim_ref;
843 unsigned long ptr;
844 unsigned long ptr_end;
845 struct extent_buffer *leaf = path->nodes[0];
847 /* are we trying to overwrite a back ref for the root directory
848 * if so, just jump out, we're done
850 if (key->objectid == key->offset)
851 goto out_nowrite;
853 /* check all the names in this back reference to see
854 * if they are in the log. if so, we allow them to stay
855 * otherwise they must be unlinked as a conflict
857 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
858 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
859 while (ptr < ptr_end) {
860 victim_ref = (struct btrfs_inode_ref *)ptr;
861 victim_name_len = btrfs_inode_ref_name_len(leaf,
862 victim_ref);
863 victim_name = kmalloc(victim_name_len, GFP_NOFS);
864 BUG_ON(!victim_name);
866 read_extent_buffer(leaf, victim_name,
867 (unsigned long)(victim_ref + 1),
868 victim_name_len);
870 if (!backref_in_log(log, key, victim_name,
871 victim_name_len)) {
872 btrfs_inc_nlink(inode);
873 btrfs_release_path(root, path);
875 ret = btrfs_unlink_inode(trans, root, dir,
876 inode, victim_name,
877 victim_name_len);
878 kfree(victim_name);
879 btrfs_release_path(root, path);
880 goto conflict_again;
882 kfree(victim_name);
883 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
885 BUG_ON(ret);
887 btrfs_release_path(root, path);
889 /* look for a conflicting sequence number */
890 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
891 btrfs_inode_ref_index(eb, ref),
892 name, namelen, 0);
893 if (di && !IS_ERR(di)) {
894 ret = drop_one_dir_item(trans, root, path, dir, di);
895 BUG_ON(ret);
897 btrfs_release_path(root, path);
900 /* look for a conflicting name */
901 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
902 name, namelen, 0);
903 if (di && !IS_ERR(di)) {
904 ret = drop_one_dir_item(trans, root, path, dir, di);
905 BUG_ON(ret);
907 btrfs_release_path(root, path);
909 /* insert our name */
910 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
911 btrfs_inode_ref_index(eb, ref));
912 BUG_ON(ret);
914 btrfs_update_inode(trans, root, inode);
916 out:
917 ref_ptr = (unsigned long)(ref + 1) + namelen;
918 kfree(name);
919 if (ref_ptr < ref_end)
920 goto again;
922 /* finally write the back reference in the inode */
923 ret = overwrite_item(trans, root, path, eb, slot, key);
924 BUG_ON(ret);
926 out_nowrite:
927 btrfs_release_path(root, path);
928 iput(dir);
929 iput(inode);
930 return 0;
933 static int insert_orphan_item(struct btrfs_trans_handle *trans,
934 struct btrfs_root *root, u64 offset)
936 int ret;
937 ret = btrfs_find_orphan_item(root, offset);
938 if (ret > 0)
939 ret = btrfs_insert_orphan_item(trans, root, offset);
940 return ret;
945 * There are a few corners where the link count of the file can't
946 * be properly maintained during replay. So, instead of adding
947 * lots of complexity to the log code, we just scan the backrefs
948 * for any file that has been through replay.
950 * The scan will update the link count on the inode to reflect the
951 * number of back refs found. If it goes down to zero, the iput
952 * will free the inode.
954 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct inode *inode)
958 struct btrfs_path *path;
959 int ret;
960 struct btrfs_key key;
961 u64 nlink = 0;
962 unsigned long ptr;
963 unsigned long ptr_end;
964 int name_len;
966 key.objectid = inode->i_ino;
967 key.type = BTRFS_INODE_REF_KEY;
968 key.offset = (u64)-1;
970 path = btrfs_alloc_path();
972 while (1) {
973 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
974 if (ret < 0)
975 break;
976 if (ret > 0) {
977 if (path->slots[0] == 0)
978 break;
979 path->slots[0]--;
981 btrfs_item_key_to_cpu(path->nodes[0], &key,
982 path->slots[0]);
983 if (key.objectid != inode->i_ino ||
984 key.type != BTRFS_INODE_REF_KEY)
985 break;
986 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
987 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
988 path->slots[0]);
989 while (ptr < ptr_end) {
990 struct btrfs_inode_ref *ref;
992 ref = (struct btrfs_inode_ref *)ptr;
993 name_len = btrfs_inode_ref_name_len(path->nodes[0],
994 ref);
995 ptr = (unsigned long)(ref + 1) + name_len;
996 nlink++;
999 if (key.offset == 0)
1000 break;
1001 key.offset--;
1002 btrfs_release_path(root, path);
1004 btrfs_release_path(root, path);
1005 if (nlink != inode->i_nlink) {
1006 inode->i_nlink = nlink;
1007 btrfs_update_inode(trans, root, inode);
1009 BTRFS_I(inode)->index_cnt = (u64)-1;
1011 if (inode->i_nlink == 0) {
1012 if (S_ISDIR(inode->i_mode)) {
1013 ret = replay_dir_deletes(trans, root, NULL, path,
1014 inode->i_ino, 1);
1015 BUG_ON(ret);
1017 ret = insert_orphan_item(trans, root, inode->i_ino);
1018 BUG_ON(ret);
1020 btrfs_free_path(path);
1022 return 0;
1025 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1026 struct btrfs_root *root,
1027 struct btrfs_path *path)
1029 int ret;
1030 struct btrfs_key key;
1031 struct inode *inode;
1033 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1034 key.type = BTRFS_ORPHAN_ITEM_KEY;
1035 key.offset = (u64)-1;
1036 while (1) {
1037 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1038 if (ret < 0)
1039 break;
1041 if (ret == 1) {
1042 if (path->slots[0] == 0)
1043 break;
1044 path->slots[0]--;
1047 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1048 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1049 key.type != BTRFS_ORPHAN_ITEM_KEY)
1050 break;
1052 ret = btrfs_del_item(trans, root, path);
1053 BUG_ON(ret);
1055 btrfs_release_path(root, path);
1056 inode = read_one_inode(root, key.offset);
1057 BUG_ON(!inode);
1059 ret = fixup_inode_link_count(trans, root, inode);
1060 BUG_ON(ret);
1062 iput(inode);
1065 * fixup on a directory may create new entries,
1066 * make sure we always look for the highset possible
1067 * offset
1069 key.offset = (u64)-1;
1071 btrfs_release_path(root, path);
1072 return 0;
1077 * record a given inode in the fixup dir so we can check its link
1078 * count when replay is done. The link count is incremented here
1079 * so the inode won't go away until we check it
1081 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1082 struct btrfs_root *root,
1083 struct btrfs_path *path,
1084 u64 objectid)
1086 struct btrfs_key key;
1087 int ret = 0;
1088 struct inode *inode;
1090 inode = read_one_inode(root, objectid);
1091 BUG_ON(!inode);
1093 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1094 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1095 key.offset = objectid;
1097 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1099 btrfs_release_path(root, path);
1100 if (ret == 0) {
1101 btrfs_inc_nlink(inode);
1102 btrfs_update_inode(trans, root, inode);
1103 } else if (ret == -EEXIST) {
1104 ret = 0;
1105 } else {
1106 BUG();
1108 iput(inode);
1110 return ret;
1114 * when replaying the log for a directory, we only insert names
1115 * for inodes that actually exist. This means an fsync on a directory
1116 * does not implicitly fsync all the new files in it
1118 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1119 struct btrfs_root *root,
1120 struct btrfs_path *path,
1121 u64 dirid, u64 index,
1122 char *name, int name_len, u8 type,
1123 struct btrfs_key *location)
1125 struct inode *inode;
1126 struct inode *dir;
1127 int ret;
1129 inode = read_one_inode(root, location->objectid);
1130 if (!inode)
1131 return -ENOENT;
1133 dir = read_one_inode(root, dirid);
1134 if (!dir) {
1135 iput(inode);
1136 return -EIO;
1138 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1140 /* FIXME, put inode into FIXUP list */
1142 iput(inode);
1143 iput(dir);
1144 return ret;
1148 * take a single entry in a log directory item and replay it into
1149 * the subvolume.
1151 * if a conflicting item exists in the subdirectory already,
1152 * the inode it points to is unlinked and put into the link count
1153 * fix up tree.
1155 * If a name from the log points to a file or directory that does
1156 * not exist in the FS, it is skipped. fsyncs on directories
1157 * do not force down inodes inside that directory, just changes to the
1158 * names or unlinks in a directory.
1160 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1161 struct btrfs_root *root,
1162 struct btrfs_path *path,
1163 struct extent_buffer *eb,
1164 struct btrfs_dir_item *di,
1165 struct btrfs_key *key)
1167 char *name;
1168 int name_len;
1169 struct btrfs_dir_item *dst_di;
1170 struct btrfs_key found_key;
1171 struct btrfs_key log_key;
1172 struct inode *dir;
1173 u8 log_type;
1174 int exists;
1175 int ret;
1177 dir = read_one_inode(root, key->objectid);
1178 BUG_ON(!dir);
1180 name_len = btrfs_dir_name_len(eb, di);
1181 name = kmalloc(name_len, GFP_NOFS);
1182 log_type = btrfs_dir_type(eb, di);
1183 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1184 name_len);
1186 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1187 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1188 if (exists == 0)
1189 exists = 1;
1190 else
1191 exists = 0;
1192 btrfs_release_path(root, path);
1194 if (key->type == BTRFS_DIR_ITEM_KEY) {
1195 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1196 name, name_len, 1);
1197 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1198 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1199 key->objectid,
1200 key->offset, name,
1201 name_len, 1);
1202 } else {
1203 BUG();
1205 if (!dst_di || IS_ERR(dst_di)) {
1206 /* we need a sequence number to insert, so we only
1207 * do inserts for the BTRFS_DIR_INDEX_KEY types
1209 if (key->type != BTRFS_DIR_INDEX_KEY)
1210 goto out;
1211 goto insert;
1214 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1215 /* the existing item matches the logged item */
1216 if (found_key.objectid == log_key.objectid &&
1217 found_key.type == log_key.type &&
1218 found_key.offset == log_key.offset &&
1219 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1220 goto out;
1224 * don't drop the conflicting directory entry if the inode
1225 * for the new entry doesn't exist
1227 if (!exists)
1228 goto out;
1230 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1231 BUG_ON(ret);
1233 if (key->type == BTRFS_DIR_INDEX_KEY)
1234 goto insert;
1235 out:
1236 btrfs_release_path(root, path);
1237 kfree(name);
1238 iput(dir);
1239 return 0;
1241 insert:
1242 btrfs_release_path(root, path);
1243 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1244 name, name_len, log_type, &log_key);
1246 BUG_ON(ret && ret != -ENOENT);
1247 goto out;
1251 * find all the names in a directory item and reconcile them into
1252 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1253 * one name in a directory item, but the same code gets used for
1254 * both directory index types
1256 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1257 struct btrfs_root *root,
1258 struct btrfs_path *path,
1259 struct extent_buffer *eb, int slot,
1260 struct btrfs_key *key)
1262 int ret;
1263 u32 item_size = btrfs_item_size_nr(eb, slot);
1264 struct btrfs_dir_item *di;
1265 int name_len;
1266 unsigned long ptr;
1267 unsigned long ptr_end;
1269 ptr = btrfs_item_ptr_offset(eb, slot);
1270 ptr_end = ptr + item_size;
1271 while (ptr < ptr_end) {
1272 di = (struct btrfs_dir_item *)ptr;
1273 name_len = btrfs_dir_name_len(eb, di);
1274 ret = replay_one_name(trans, root, path, eb, di, key);
1275 BUG_ON(ret);
1276 ptr = (unsigned long)(di + 1);
1277 ptr += name_len;
1279 return 0;
1283 * directory replay has two parts. There are the standard directory
1284 * items in the log copied from the subvolume, and range items
1285 * created in the log while the subvolume was logged.
1287 * The range items tell us which parts of the key space the log
1288 * is authoritative for. During replay, if a key in the subvolume
1289 * directory is in a logged range item, but not actually in the log
1290 * that means it was deleted from the directory before the fsync
1291 * and should be removed.
1293 static noinline int find_dir_range(struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 u64 dirid, int key_type,
1296 u64 *start_ret, u64 *end_ret)
1298 struct btrfs_key key;
1299 u64 found_end;
1300 struct btrfs_dir_log_item *item;
1301 int ret;
1302 int nritems;
1304 if (*start_ret == (u64)-1)
1305 return 1;
1307 key.objectid = dirid;
1308 key.type = key_type;
1309 key.offset = *start_ret;
1311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1312 if (ret < 0)
1313 goto out;
1314 if (ret > 0) {
1315 if (path->slots[0] == 0)
1316 goto out;
1317 path->slots[0]--;
1319 if (ret != 0)
1320 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1322 if (key.type != key_type || key.objectid != dirid) {
1323 ret = 1;
1324 goto next;
1326 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1327 struct btrfs_dir_log_item);
1328 found_end = btrfs_dir_log_end(path->nodes[0], item);
1330 if (*start_ret >= key.offset && *start_ret <= found_end) {
1331 ret = 0;
1332 *start_ret = key.offset;
1333 *end_ret = found_end;
1334 goto out;
1336 ret = 1;
1337 next:
1338 /* check the next slot in the tree to see if it is a valid item */
1339 nritems = btrfs_header_nritems(path->nodes[0]);
1340 if (path->slots[0] >= nritems) {
1341 ret = btrfs_next_leaf(root, path);
1342 if (ret)
1343 goto out;
1344 } else {
1345 path->slots[0]++;
1348 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1350 if (key.type != key_type || key.objectid != dirid) {
1351 ret = 1;
1352 goto out;
1354 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1355 struct btrfs_dir_log_item);
1356 found_end = btrfs_dir_log_end(path->nodes[0], item);
1357 *start_ret = key.offset;
1358 *end_ret = found_end;
1359 ret = 0;
1360 out:
1361 btrfs_release_path(root, path);
1362 return ret;
1366 * this looks for a given directory item in the log. If the directory
1367 * item is not in the log, the item is removed and the inode it points
1368 * to is unlinked
1370 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_root *log,
1373 struct btrfs_path *path,
1374 struct btrfs_path *log_path,
1375 struct inode *dir,
1376 struct btrfs_key *dir_key)
1378 int ret;
1379 struct extent_buffer *eb;
1380 int slot;
1381 u32 item_size;
1382 struct btrfs_dir_item *di;
1383 struct btrfs_dir_item *log_di;
1384 int name_len;
1385 unsigned long ptr;
1386 unsigned long ptr_end;
1387 char *name;
1388 struct inode *inode;
1389 struct btrfs_key location;
1391 again:
1392 eb = path->nodes[0];
1393 slot = path->slots[0];
1394 item_size = btrfs_item_size_nr(eb, slot);
1395 ptr = btrfs_item_ptr_offset(eb, slot);
1396 ptr_end = ptr + item_size;
1397 while (ptr < ptr_end) {
1398 di = (struct btrfs_dir_item *)ptr;
1399 name_len = btrfs_dir_name_len(eb, di);
1400 name = kmalloc(name_len, GFP_NOFS);
1401 if (!name) {
1402 ret = -ENOMEM;
1403 goto out;
1405 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1406 name_len);
1407 log_di = NULL;
1408 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1409 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1410 dir_key->objectid,
1411 name, name_len, 0);
1412 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1413 log_di = btrfs_lookup_dir_index_item(trans, log,
1414 log_path,
1415 dir_key->objectid,
1416 dir_key->offset,
1417 name, name_len, 0);
1419 if (!log_di || IS_ERR(log_di)) {
1420 btrfs_dir_item_key_to_cpu(eb, di, &location);
1421 btrfs_release_path(root, path);
1422 btrfs_release_path(log, log_path);
1423 inode = read_one_inode(root, location.objectid);
1424 BUG_ON(!inode);
1426 ret = link_to_fixup_dir(trans, root,
1427 path, location.objectid);
1428 BUG_ON(ret);
1429 btrfs_inc_nlink(inode);
1430 ret = btrfs_unlink_inode(trans, root, dir, inode,
1431 name, name_len);
1432 BUG_ON(ret);
1433 kfree(name);
1434 iput(inode);
1436 /* there might still be more names under this key
1437 * check and repeat if required
1439 ret = btrfs_search_slot(NULL, root, dir_key, path,
1440 0, 0);
1441 if (ret == 0)
1442 goto again;
1443 ret = 0;
1444 goto out;
1446 btrfs_release_path(log, log_path);
1447 kfree(name);
1449 ptr = (unsigned long)(di + 1);
1450 ptr += name_len;
1452 ret = 0;
1453 out:
1454 btrfs_release_path(root, path);
1455 btrfs_release_path(log, log_path);
1456 return ret;
1460 * deletion replay happens before we copy any new directory items
1461 * out of the log or out of backreferences from inodes. It
1462 * scans the log to find ranges of keys that log is authoritative for,
1463 * and then scans the directory to find items in those ranges that are
1464 * not present in the log.
1466 * Anything we don't find in the log is unlinked and removed from the
1467 * directory.
1469 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_root *log,
1472 struct btrfs_path *path,
1473 u64 dirid, int del_all)
1475 u64 range_start;
1476 u64 range_end;
1477 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1478 int ret = 0;
1479 struct btrfs_key dir_key;
1480 struct btrfs_key found_key;
1481 struct btrfs_path *log_path;
1482 struct inode *dir;
1484 dir_key.objectid = dirid;
1485 dir_key.type = BTRFS_DIR_ITEM_KEY;
1486 log_path = btrfs_alloc_path();
1487 if (!log_path)
1488 return -ENOMEM;
1490 dir = read_one_inode(root, dirid);
1491 /* it isn't an error if the inode isn't there, that can happen
1492 * because we replay the deletes before we copy in the inode item
1493 * from the log
1495 if (!dir) {
1496 btrfs_free_path(log_path);
1497 return 0;
1499 again:
1500 range_start = 0;
1501 range_end = 0;
1502 while (1) {
1503 if (del_all)
1504 range_end = (u64)-1;
1505 else {
1506 ret = find_dir_range(log, path, dirid, key_type,
1507 &range_start, &range_end);
1508 if (ret != 0)
1509 break;
1512 dir_key.offset = range_start;
1513 while (1) {
1514 int nritems;
1515 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1516 0, 0);
1517 if (ret < 0)
1518 goto out;
1520 nritems = btrfs_header_nritems(path->nodes[0]);
1521 if (path->slots[0] >= nritems) {
1522 ret = btrfs_next_leaf(root, path);
1523 if (ret)
1524 break;
1526 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1527 path->slots[0]);
1528 if (found_key.objectid != dirid ||
1529 found_key.type != dir_key.type)
1530 goto next_type;
1532 if (found_key.offset > range_end)
1533 break;
1535 ret = check_item_in_log(trans, root, log, path,
1536 log_path, dir,
1537 &found_key);
1538 BUG_ON(ret);
1539 if (found_key.offset == (u64)-1)
1540 break;
1541 dir_key.offset = found_key.offset + 1;
1543 btrfs_release_path(root, path);
1544 if (range_end == (u64)-1)
1545 break;
1546 range_start = range_end + 1;
1549 next_type:
1550 ret = 0;
1551 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1552 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1553 dir_key.type = BTRFS_DIR_INDEX_KEY;
1554 btrfs_release_path(root, path);
1555 goto again;
1557 out:
1558 btrfs_release_path(root, path);
1559 btrfs_free_path(log_path);
1560 iput(dir);
1561 return ret;
1565 * the process_func used to replay items from the log tree. This
1566 * gets called in two different stages. The first stage just looks
1567 * for inodes and makes sure they are all copied into the subvolume.
1569 * The second stage copies all the other item types from the log into
1570 * the subvolume. The two stage approach is slower, but gets rid of
1571 * lots of complexity around inodes referencing other inodes that exist
1572 * only in the log (references come from either directory items or inode
1573 * back refs).
1575 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1576 struct walk_control *wc, u64 gen)
1578 int nritems;
1579 struct btrfs_path *path;
1580 struct btrfs_root *root = wc->replay_dest;
1581 struct btrfs_key key;
1582 u32 item_size;
1583 int level;
1584 int i;
1585 int ret;
1587 btrfs_read_buffer(eb, gen);
1589 level = btrfs_header_level(eb);
1591 if (level != 0)
1592 return 0;
1594 path = btrfs_alloc_path();
1595 BUG_ON(!path);
1597 nritems = btrfs_header_nritems(eb);
1598 for (i = 0; i < nritems; i++) {
1599 btrfs_item_key_to_cpu(eb, &key, i);
1600 item_size = btrfs_item_size_nr(eb, i);
1602 /* inode keys are done during the first stage */
1603 if (key.type == BTRFS_INODE_ITEM_KEY &&
1604 wc->stage == LOG_WALK_REPLAY_INODES) {
1605 struct btrfs_inode_item *inode_item;
1606 u32 mode;
1608 inode_item = btrfs_item_ptr(eb, i,
1609 struct btrfs_inode_item);
1610 mode = btrfs_inode_mode(eb, inode_item);
1611 if (S_ISDIR(mode)) {
1612 ret = replay_dir_deletes(wc->trans,
1613 root, log, path, key.objectid, 0);
1614 BUG_ON(ret);
1616 ret = overwrite_item(wc->trans, root, path,
1617 eb, i, &key);
1618 BUG_ON(ret);
1620 /* for regular files, make sure corresponding
1621 * orhpan item exist. extents past the new EOF
1622 * will be truncated later by orphan cleanup.
1624 if (S_ISREG(mode)) {
1625 ret = insert_orphan_item(wc->trans, root,
1626 key.objectid);
1627 BUG_ON(ret);
1630 ret = link_to_fixup_dir(wc->trans, root,
1631 path, key.objectid);
1632 BUG_ON(ret);
1634 if (wc->stage < LOG_WALK_REPLAY_ALL)
1635 continue;
1637 /* these keys are simply copied */
1638 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1639 ret = overwrite_item(wc->trans, root, path,
1640 eb, i, &key);
1641 BUG_ON(ret);
1642 } else if (key.type == BTRFS_INODE_REF_KEY) {
1643 ret = add_inode_ref(wc->trans, root, log, path,
1644 eb, i, &key);
1645 BUG_ON(ret && ret != -ENOENT);
1646 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1647 ret = replay_one_extent(wc->trans, root, path,
1648 eb, i, &key);
1649 BUG_ON(ret);
1650 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1651 key.type == BTRFS_DIR_INDEX_KEY) {
1652 ret = replay_one_dir_item(wc->trans, root, path,
1653 eb, i, &key);
1654 BUG_ON(ret);
1657 btrfs_free_path(path);
1658 return 0;
1661 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1662 struct btrfs_root *root,
1663 struct btrfs_path *path, int *level,
1664 struct walk_control *wc)
1666 u64 root_owner;
1667 u64 root_gen;
1668 u64 bytenr;
1669 u64 ptr_gen;
1670 struct extent_buffer *next;
1671 struct extent_buffer *cur;
1672 struct extent_buffer *parent;
1673 u32 blocksize;
1674 int ret = 0;
1676 WARN_ON(*level < 0);
1677 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1679 while (*level > 0) {
1680 WARN_ON(*level < 0);
1681 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1682 cur = path->nodes[*level];
1684 if (btrfs_header_level(cur) != *level)
1685 WARN_ON(1);
1687 if (path->slots[*level] >=
1688 btrfs_header_nritems(cur))
1689 break;
1691 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1692 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1693 blocksize = btrfs_level_size(root, *level - 1);
1695 parent = path->nodes[*level];
1696 root_owner = btrfs_header_owner(parent);
1697 root_gen = btrfs_header_generation(parent);
1699 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1701 wc->process_func(root, next, wc, ptr_gen);
1703 if (*level == 1) {
1704 path->slots[*level]++;
1705 if (wc->free) {
1706 btrfs_read_buffer(next, ptr_gen);
1708 btrfs_tree_lock(next);
1709 clean_tree_block(trans, root, next);
1710 btrfs_set_lock_blocking(next);
1711 btrfs_wait_tree_block_writeback(next);
1712 btrfs_tree_unlock(next);
1714 WARN_ON(root_owner !=
1715 BTRFS_TREE_LOG_OBJECTID);
1716 ret = btrfs_free_reserved_extent(root,
1717 bytenr, blocksize);
1718 BUG_ON(ret);
1720 free_extent_buffer(next);
1721 continue;
1723 btrfs_read_buffer(next, ptr_gen);
1725 WARN_ON(*level <= 0);
1726 if (path->nodes[*level-1])
1727 free_extent_buffer(path->nodes[*level-1]);
1728 path->nodes[*level-1] = next;
1729 *level = btrfs_header_level(next);
1730 path->slots[*level] = 0;
1731 cond_resched();
1733 WARN_ON(*level < 0);
1734 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1736 if (path->nodes[*level] == root->node)
1737 parent = path->nodes[*level];
1738 else
1739 parent = path->nodes[*level + 1];
1741 bytenr = path->nodes[*level]->start;
1743 blocksize = btrfs_level_size(root, *level);
1744 root_owner = btrfs_header_owner(parent);
1745 root_gen = btrfs_header_generation(parent);
1747 wc->process_func(root, path->nodes[*level], wc,
1748 btrfs_header_generation(path->nodes[*level]));
1750 if (wc->free) {
1751 next = path->nodes[*level];
1752 btrfs_tree_lock(next);
1753 clean_tree_block(trans, root, next);
1754 btrfs_set_lock_blocking(next);
1755 btrfs_wait_tree_block_writeback(next);
1756 btrfs_tree_unlock(next);
1758 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1759 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1760 BUG_ON(ret);
1762 free_extent_buffer(path->nodes[*level]);
1763 path->nodes[*level] = NULL;
1764 *level += 1;
1766 cond_resched();
1767 return 0;
1770 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1771 struct btrfs_root *root,
1772 struct btrfs_path *path, int *level,
1773 struct walk_control *wc)
1775 u64 root_owner;
1776 u64 root_gen;
1777 int i;
1778 int slot;
1779 int ret;
1781 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1782 slot = path->slots[i];
1783 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1784 struct extent_buffer *node;
1785 node = path->nodes[i];
1786 path->slots[i]++;
1787 *level = i;
1788 WARN_ON(*level == 0);
1789 return 0;
1790 } else {
1791 struct extent_buffer *parent;
1792 if (path->nodes[*level] == root->node)
1793 parent = path->nodes[*level];
1794 else
1795 parent = path->nodes[*level + 1];
1797 root_owner = btrfs_header_owner(parent);
1798 root_gen = btrfs_header_generation(parent);
1799 wc->process_func(root, path->nodes[*level], wc,
1800 btrfs_header_generation(path->nodes[*level]));
1801 if (wc->free) {
1802 struct extent_buffer *next;
1804 next = path->nodes[*level];
1806 btrfs_tree_lock(next);
1807 clean_tree_block(trans, root, next);
1808 btrfs_set_lock_blocking(next);
1809 btrfs_wait_tree_block_writeback(next);
1810 btrfs_tree_unlock(next);
1812 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1813 ret = btrfs_free_reserved_extent(root,
1814 path->nodes[*level]->start,
1815 path->nodes[*level]->len);
1816 BUG_ON(ret);
1818 free_extent_buffer(path->nodes[*level]);
1819 path->nodes[*level] = NULL;
1820 *level = i + 1;
1823 return 1;
1827 * drop the reference count on the tree rooted at 'snap'. This traverses
1828 * the tree freeing any blocks that have a ref count of zero after being
1829 * decremented.
1831 static int walk_log_tree(struct btrfs_trans_handle *trans,
1832 struct btrfs_root *log, struct walk_control *wc)
1834 int ret = 0;
1835 int wret;
1836 int level;
1837 struct btrfs_path *path;
1838 int i;
1839 int orig_level;
1841 path = btrfs_alloc_path();
1842 BUG_ON(!path);
1844 level = btrfs_header_level(log->node);
1845 orig_level = level;
1846 path->nodes[level] = log->node;
1847 extent_buffer_get(log->node);
1848 path->slots[level] = 0;
1850 while (1) {
1851 wret = walk_down_log_tree(trans, log, path, &level, wc);
1852 if (wret > 0)
1853 break;
1854 if (wret < 0)
1855 ret = wret;
1857 wret = walk_up_log_tree(trans, log, path, &level, wc);
1858 if (wret > 0)
1859 break;
1860 if (wret < 0)
1861 ret = wret;
1864 /* was the root node processed? if not, catch it here */
1865 if (path->nodes[orig_level]) {
1866 wc->process_func(log, path->nodes[orig_level], wc,
1867 btrfs_header_generation(path->nodes[orig_level]));
1868 if (wc->free) {
1869 struct extent_buffer *next;
1871 next = path->nodes[orig_level];
1873 btrfs_tree_lock(next);
1874 clean_tree_block(trans, log, next);
1875 btrfs_set_lock_blocking(next);
1876 btrfs_wait_tree_block_writeback(next);
1877 btrfs_tree_unlock(next);
1879 WARN_ON(log->root_key.objectid !=
1880 BTRFS_TREE_LOG_OBJECTID);
1881 ret = btrfs_free_reserved_extent(log, next->start,
1882 next->len);
1883 BUG_ON(ret);
1887 for (i = 0; i <= orig_level; i++) {
1888 if (path->nodes[i]) {
1889 free_extent_buffer(path->nodes[i]);
1890 path->nodes[i] = NULL;
1893 btrfs_free_path(path);
1894 return ret;
1898 * helper function to update the item for a given subvolumes log root
1899 * in the tree of log roots
1901 static int update_log_root(struct btrfs_trans_handle *trans,
1902 struct btrfs_root *log)
1904 int ret;
1906 if (log->log_transid == 1) {
1907 /* insert root item on the first sync */
1908 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1909 &log->root_key, &log->root_item);
1910 } else {
1911 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1912 &log->root_key, &log->root_item);
1914 return ret;
1917 static int wait_log_commit(struct btrfs_trans_handle *trans,
1918 struct btrfs_root *root, unsigned long transid)
1920 DEFINE_WAIT(wait);
1921 int index = transid % 2;
1924 * we only allow two pending log transactions at a time,
1925 * so we know that if ours is more than 2 older than the
1926 * current transaction, we're done
1928 do {
1929 prepare_to_wait(&root->log_commit_wait[index],
1930 &wait, TASK_UNINTERRUPTIBLE);
1931 mutex_unlock(&root->log_mutex);
1933 if (root->fs_info->last_trans_log_full_commit !=
1934 trans->transid && root->log_transid < transid + 2 &&
1935 atomic_read(&root->log_commit[index]))
1936 schedule();
1938 finish_wait(&root->log_commit_wait[index], &wait);
1939 mutex_lock(&root->log_mutex);
1940 } while (root->log_transid < transid + 2 &&
1941 atomic_read(&root->log_commit[index]));
1942 return 0;
1945 static int wait_for_writer(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root)
1948 DEFINE_WAIT(wait);
1949 while (atomic_read(&root->log_writers)) {
1950 prepare_to_wait(&root->log_writer_wait,
1951 &wait, TASK_UNINTERRUPTIBLE);
1952 mutex_unlock(&root->log_mutex);
1953 if (root->fs_info->last_trans_log_full_commit !=
1954 trans->transid && atomic_read(&root->log_writers))
1955 schedule();
1956 mutex_lock(&root->log_mutex);
1957 finish_wait(&root->log_writer_wait, &wait);
1959 return 0;
1963 * btrfs_sync_log does sends a given tree log down to the disk and
1964 * updates the super blocks to record it. When this call is done,
1965 * you know that any inodes previously logged are safely on disk only
1966 * if it returns 0.
1968 * Any other return value means you need to call btrfs_commit_transaction.
1969 * Some of the edge cases for fsyncing directories that have had unlinks
1970 * or renames done in the past mean that sometimes the only safe
1971 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1972 * that has happened.
1974 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1975 struct btrfs_root *root)
1977 int index1;
1978 int index2;
1979 int mark;
1980 int ret;
1981 struct btrfs_root *log = root->log_root;
1982 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1983 unsigned long log_transid = 0;
1985 mutex_lock(&root->log_mutex);
1986 index1 = root->log_transid % 2;
1987 if (atomic_read(&root->log_commit[index1])) {
1988 wait_log_commit(trans, root, root->log_transid);
1989 mutex_unlock(&root->log_mutex);
1990 return 0;
1992 atomic_set(&root->log_commit[index1], 1);
1994 /* wait for previous tree log sync to complete */
1995 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1996 wait_log_commit(trans, root, root->log_transid - 1);
1998 while (1) {
1999 unsigned long batch = root->log_batch;
2000 if (root->log_multiple_pids) {
2001 mutex_unlock(&root->log_mutex);
2002 schedule_timeout_uninterruptible(1);
2003 mutex_lock(&root->log_mutex);
2005 wait_for_writer(trans, root);
2006 if (batch == root->log_batch)
2007 break;
2010 /* bail out if we need to do a full commit */
2011 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2012 ret = -EAGAIN;
2013 mutex_unlock(&root->log_mutex);
2014 goto out;
2017 log_transid = root->log_transid;
2018 if (log_transid % 2 == 0)
2019 mark = EXTENT_DIRTY;
2020 else
2021 mark = EXTENT_NEW;
2023 /* we start IO on all the marked extents here, but we don't actually
2024 * wait for them until later.
2026 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2027 BUG_ON(ret);
2029 btrfs_set_root_node(&log->root_item, log->node);
2031 root->log_batch = 0;
2032 root->log_transid++;
2033 log->log_transid = root->log_transid;
2034 root->log_start_pid = 0;
2035 smp_mb();
2037 * IO has been started, blocks of the log tree have WRITTEN flag set
2038 * in their headers. new modifications of the log will be written to
2039 * new positions. so it's safe to allow log writers to go in.
2041 mutex_unlock(&root->log_mutex);
2043 mutex_lock(&log_root_tree->log_mutex);
2044 log_root_tree->log_batch++;
2045 atomic_inc(&log_root_tree->log_writers);
2046 mutex_unlock(&log_root_tree->log_mutex);
2048 ret = update_log_root(trans, log);
2049 BUG_ON(ret);
2051 mutex_lock(&log_root_tree->log_mutex);
2052 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2053 smp_mb();
2054 if (waitqueue_active(&log_root_tree->log_writer_wait))
2055 wake_up(&log_root_tree->log_writer_wait);
2058 index2 = log_root_tree->log_transid % 2;
2059 if (atomic_read(&log_root_tree->log_commit[index2])) {
2060 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2061 wait_log_commit(trans, log_root_tree,
2062 log_root_tree->log_transid);
2063 mutex_unlock(&log_root_tree->log_mutex);
2064 goto out;
2066 atomic_set(&log_root_tree->log_commit[index2], 1);
2068 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2069 wait_log_commit(trans, log_root_tree,
2070 log_root_tree->log_transid - 1);
2073 wait_for_writer(trans, log_root_tree);
2076 * now that we've moved on to the tree of log tree roots,
2077 * check the full commit flag again
2079 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2080 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2081 mutex_unlock(&log_root_tree->log_mutex);
2082 ret = -EAGAIN;
2083 goto out_wake_log_root;
2086 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2087 &log_root_tree->dirty_log_pages,
2088 EXTENT_DIRTY | EXTENT_NEW);
2089 BUG_ON(ret);
2090 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2092 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2093 log_root_tree->node->start);
2094 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2095 btrfs_header_level(log_root_tree->node));
2097 log_root_tree->log_batch = 0;
2098 log_root_tree->log_transid++;
2099 smp_mb();
2101 mutex_unlock(&log_root_tree->log_mutex);
2104 * nobody else is going to jump in and write the the ctree
2105 * super here because the log_commit atomic below is protecting
2106 * us. We must be called with a transaction handle pinning
2107 * the running transaction open, so a full commit can't hop
2108 * in and cause problems either.
2110 write_ctree_super(trans, root->fs_info->tree_root, 1);
2111 ret = 0;
2113 mutex_lock(&root->log_mutex);
2114 if (root->last_log_commit < log_transid)
2115 root->last_log_commit = log_transid;
2116 mutex_unlock(&root->log_mutex);
2118 out_wake_log_root:
2119 atomic_set(&log_root_tree->log_commit[index2], 0);
2120 smp_mb();
2121 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2122 wake_up(&log_root_tree->log_commit_wait[index2]);
2123 out:
2124 atomic_set(&root->log_commit[index1], 0);
2125 smp_mb();
2126 if (waitqueue_active(&root->log_commit_wait[index1]))
2127 wake_up(&root->log_commit_wait[index1]);
2128 return 0;
2132 * free all the extents used by the tree log. This should be called
2133 * at commit time of the full transaction
2135 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2137 int ret;
2138 struct btrfs_root *log;
2139 struct key;
2140 u64 start;
2141 u64 end;
2142 struct walk_control wc = {
2143 .free = 1,
2144 .process_func = process_one_buffer
2147 if (!root->log_root || root->fs_info->log_root_recovering)
2148 return 0;
2150 log = root->log_root;
2151 ret = walk_log_tree(trans, log, &wc);
2152 BUG_ON(ret);
2154 while (1) {
2155 ret = find_first_extent_bit(&log->dirty_log_pages,
2156 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2157 if (ret)
2158 break;
2160 clear_extent_bits(&log->dirty_log_pages, start, end,
2161 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2164 if (log->log_transid > 0) {
2165 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2166 &log->root_key);
2167 BUG_ON(ret);
2169 root->log_root = NULL;
2170 free_extent_buffer(log->node);
2171 kfree(log);
2172 return 0;
2176 * If both a file and directory are logged, and unlinks or renames are
2177 * mixed in, we have a few interesting corners:
2179 * create file X in dir Y
2180 * link file X to X.link in dir Y
2181 * fsync file X
2182 * unlink file X but leave X.link
2183 * fsync dir Y
2185 * After a crash we would expect only X.link to exist. But file X
2186 * didn't get fsync'd again so the log has back refs for X and X.link.
2188 * We solve this by removing directory entries and inode backrefs from the
2189 * log when a file that was logged in the current transaction is
2190 * unlinked. Any later fsync will include the updated log entries, and
2191 * we'll be able to reconstruct the proper directory items from backrefs.
2193 * This optimizations allows us to avoid relogging the entire inode
2194 * or the entire directory.
2196 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2197 struct btrfs_root *root,
2198 const char *name, int name_len,
2199 struct inode *dir, u64 index)
2201 struct btrfs_root *log;
2202 struct btrfs_dir_item *di;
2203 struct btrfs_path *path;
2204 int ret;
2205 int bytes_del = 0;
2207 if (BTRFS_I(dir)->logged_trans < trans->transid)
2208 return 0;
2210 ret = join_running_log_trans(root);
2211 if (ret)
2212 return 0;
2214 mutex_lock(&BTRFS_I(dir)->log_mutex);
2216 log = root->log_root;
2217 path = btrfs_alloc_path();
2218 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2219 name, name_len, -1);
2220 if (di && !IS_ERR(di)) {
2221 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2222 bytes_del += name_len;
2223 BUG_ON(ret);
2225 btrfs_release_path(log, path);
2226 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2227 index, name, name_len, -1);
2228 if (di && !IS_ERR(di)) {
2229 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2230 bytes_del += name_len;
2231 BUG_ON(ret);
2234 /* update the directory size in the log to reflect the names
2235 * we have removed
2237 if (bytes_del) {
2238 struct btrfs_key key;
2240 key.objectid = dir->i_ino;
2241 key.offset = 0;
2242 key.type = BTRFS_INODE_ITEM_KEY;
2243 btrfs_release_path(log, path);
2245 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2246 if (ret == 0) {
2247 struct btrfs_inode_item *item;
2248 u64 i_size;
2250 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2251 struct btrfs_inode_item);
2252 i_size = btrfs_inode_size(path->nodes[0], item);
2253 if (i_size > bytes_del)
2254 i_size -= bytes_del;
2255 else
2256 i_size = 0;
2257 btrfs_set_inode_size(path->nodes[0], item, i_size);
2258 btrfs_mark_buffer_dirty(path->nodes[0]);
2259 } else
2260 ret = 0;
2261 btrfs_release_path(log, path);
2264 btrfs_free_path(path);
2265 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2266 btrfs_end_log_trans(root);
2268 return 0;
2271 /* see comments for btrfs_del_dir_entries_in_log */
2272 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *root,
2274 const char *name, int name_len,
2275 struct inode *inode, u64 dirid)
2277 struct btrfs_root *log;
2278 u64 index;
2279 int ret;
2281 if (BTRFS_I(inode)->logged_trans < trans->transid)
2282 return 0;
2284 ret = join_running_log_trans(root);
2285 if (ret)
2286 return 0;
2287 log = root->log_root;
2288 mutex_lock(&BTRFS_I(inode)->log_mutex);
2290 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2291 dirid, &index);
2292 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2293 btrfs_end_log_trans(root);
2295 return ret;
2299 * creates a range item in the log for 'dirid'. first_offset and
2300 * last_offset tell us which parts of the key space the log should
2301 * be considered authoritative for.
2303 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2304 struct btrfs_root *log,
2305 struct btrfs_path *path,
2306 int key_type, u64 dirid,
2307 u64 first_offset, u64 last_offset)
2309 int ret;
2310 struct btrfs_key key;
2311 struct btrfs_dir_log_item *item;
2313 key.objectid = dirid;
2314 key.offset = first_offset;
2315 if (key_type == BTRFS_DIR_ITEM_KEY)
2316 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2317 else
2318 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2319 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2320 BUG_ON(ret);
2322 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2323 struct btrfs_dir_log_item);
2324 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2325 btrfs_mark_buffer_dirty(path->nodes[0]);
2326 btrfs_release_path(log, path);
2327 return 0;
2331 * log all the items included in the current transaction for a given
2332 * directory. This also creates the range items in the log tree required
2333 * to replay anything deleted before the fsync
2335 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2336 struct btrfs_root *root, struct inode *inode,
2337 struct btrfs_path *path,
2338 struct btrfs_path *dst_path, int key_type,
2339 u64 min_offset, u64 *last_offset_ret)
2341 struct btrfs_key min_key;
2342 struct btrfs_key max_key;
2343 struct btrfs_root *log = root->log_root;
2344 struct extent_buffer *src;
2345 int ret;
2346 int i;
2347 int nritems;
2348 u64 first_offset = min_offset;
2349 u64 last_offset = (u64)-1;
2351 log = root->log_root;
2352 max_key.objectid = inode->i_ino;
2353 max_key.offset = (u64)-1;
2354 max_key.type = key_type;
2356 min_key.objectid = inode->i_ino;
2357 min_key.type = key_type;
2358 min_key.offset = min_offset;
2360 path->keep_locks = 1;
2362 ret = btrfs_search_forward(root, &min_key, &max_key,
2363 path, 0, trans->transid);
2366 * we didn't find anything from this transaction, see if there
2367 * is anything at all
2369 if (ret != 0 || min_key.objectid != inode->i_ino ||
2370 min_key.type != key_type) {
2371 min_key.objectid = inode->i_ino;
2372 min_key.type = key_type;
2373 min_key.offset = (u64)-1;
2374 btrfs_release_path(root, path);
2375 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2376 if (ret < 0) {
2377 btrfs_release_path(root, path);
2378 return ret;
2380 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2382 /* if ret == 0 there are items for this type,
2383 * create a range to tell us the last key of this type.
2384 * otherwise, there are no items in this directory after
2385 * *min_offset, and we create a range to indicate that.
2387 if (ret == 0) {
2388 struct btrfs_key tmp;
2389 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2390 path->slots[0]);
2391 if (key_type == tmp.type)
2392 first_offset = max(min_offset, tmp.offset) + 1;
2394 goto done;
2397 /* go backward to find any previous key */
2398 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2399 if (ret == 0) {
2400 struct btrfs_key tmp;
2401 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2402 if (key_type == tmp.type) {
2403 first_offset = tmp.offset;
2404 ret = overwrite_item(trans, log, dst_path,
2405 path->nodes[0], path->slots[0],
2406 &tmp);
2409 btrfs_release_path(root, path);
2411 /* find the first key from this transaction again */
2412 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2413 if (ret != 0) {
2414 WARN_ON(1);
2415 goto done;
2419 * we have a block from this transaction, log every item in it
2420 * from our directory
2422 while (1) {
2423 struct btrfs_key tmp;
2424 src = path->nodes[0];
2425 nritems = btrfs_header_nritems(src);
2426 for (i = path->slots[0]; i < nritems; i++) {
2427 btrfs_item_key_to_cpu(src, &min_key, i);
2429 if (min_key.objectid != inode->i_ino ||
2430 min_key.type != key_type)
2431 goto done;
2432 ret = overwrite_item(trans, log, dst_path, src, i,
2433 &min_key);
2434 BUG_ON(ret);
2436 path->slots[0] = nritems;
2439 * look ahead to the next item and see if it is also
2440 * from this directory and from this transaction
2442 ret = btrfs_next_leaf(root, path);
2443 if (ret == 1) {
2444 last_offset = (u64)-1;
2445 goto done;
2447 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2448 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2449 last_offset = (u64)-1;
2450 goto done;
2452 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2453 ret = overwrite_item(trans, log, dst_path,
2454 path->nodes[0], path->slots[0],
2455 &tmp);
2457 BUG_ON(ret);
2458 last_offset = tmp.offset;
2459 goto done;
2462 done:
2463 *last_offset_ret = last_offset;
2464 btrfs_release_path(root, path);
2465 btrfs_release_path(log, dst_path);
2467 /* insert the log range keys to indicate where the log is valid */
2468 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2469 first_offset, last_offset);
2470 BUG_ON(ret);
2471 return 0;
2475 * logging directories is very similar to logging inodes, We find all the items
2476 * from the current transaction and write them to the log.
2478 * The recovery code scans the directory in the subvolume, and if it finds a
2479 * key in the range logged that is not present in the log tree, then it means
2480 * that dir entry was unlinked during the transaction.
2482 * In order for that scan to work, we must include one key smaller than
2483 * the smallest logged by this transaction and one key larger than the largest
2484 * key logged by this transaction.
2486 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2487 struct btrfs_root *root, struct inode *inode,
2488 struct btrfs_path *path,
2489 struct btrfs_path *dst_path)
2491 u64 min_key;
2492 u64 max_key;
2493 int ret;
2494 int key_type = BTRFS_DIR_ITEM_KEY;
2496 again:
2497 min_key = 0;
2498 max_key = 0;
2499 while (1) {
2500 ret = log_dir_items(trans, root, inode, path,
2501 dst_path, key_type, min_key,
2502 &max_key);
2503 BUG_ON(ret);
2504 if (max_key == (u64)-1)
2505 break;
2506 min_key = max_key + 1;
2509 if (key_type == BTRFS_DIR_ITEM_KEY) {
2510 key_type = BTRFS_DIR_INDEX_KEY;
2511 goto again;
2513 return 0;
2517 * a helper function to drop items from the log before we relog an
2518 * inode. max_key_type indicates the highest item type to remove.
2519 * This cannot be run for file data extents because it does not
2520 * free the extents they point to.
2522 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2523 struct btrfs_root *log,
2524 struct btrfs_path *path,
2525 u64 objectid, int max_key_type)
2527 int ret;
2528 struct btrfs_key key;
2529 struct btrfs_key found_key;
2531 key.objectid = objectid;
2532 key.type = max_key_type;
2533 key.offset = (u64)-1;
2535 while (1) {
2536 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2538 if (ret != 1)
2539 break;
2541 if (path->slots[0] == 0)
2542 break;
2544 path->slots[0]--;
2545 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2546 path->slots[0]);
2548 if (found_key.objectid != objectid)
2549 break;
2551 ret = btrfs_del_item(trans, log, path);
2552 BUG_ON(ret);
2553 btrfs_release_path(log, path);
2555 btrfs_release_path(log, path);
2556 return 0;
2559 static noinline int copy_items(struct btrfs_trans_handle *trans,
2560 struct btrfs_root *log,
2561 struct btrfs_path *dst_path,
2562 struct extent_buffer *src,
2563 int start_slot, int nr, int inode_only)
2565 unsigned long src_offset;
2566 unsigned long dst_offset;
2567 struct btrfs_file_extent_item *extent;
2568 struct btrfs_inode_item *inode_item;
2569 int ret;
2570 struct btrfs_key *ins_keys;
2571 u32 *ins_sizes;
2572 char *ins_data;
2573 int i;
2574 struct list_head ordered_sums;
2576 INIT_LIST_HEAD(&ordered_sums);
2578 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2579 nr * sizeof(u32), GFP_NOFS);
2580 ins_sizes = (u32 *)ins_data;
2581 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2583 for (i = 0; i < nr; i++) {
2584 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2585 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2587 ret = btrfs_insert_empty_items(trans, log, dst_path,
2588 ins_keys, ins_sizes, nr);
2589 BUG_ON(ret);
2591 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2592 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2593 dst_path->slots[0]);
2595 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2597 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2598 src_offset, ins_sizes[i]);
2600 if (inode_only == LOG_INODE_EXISTS &&
2601 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2602 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2603 dst_path->slots[0],
2604 struct btrfs_inode_item);
2605 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2607 /* set the generation to zero so the recover code
2608 * can tell the difference between an logging
2609 * just to say 'this inode exists' and a logging
2610 * to say 'update this inode with these values'
2612 btrfs_set_inode_generation(dst_path->nodes[0],
2613 inode_item, 0);
2615 /* take a reference on file data extents so that truncates
2616 * or deletes of this inode don't have to relog the inode
2617 * again
2619 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2620 int found_type;
2621 extent = btrfs_item_ptr(src, start_slot + i,
2622 struct btrfs_file_extent_item);
2624 found_type = btrfs_file_extent_type(src, extent);
2625 if (found_type == BTRFS_FILE_EXTENT_REG ||
2626 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2627 u64 ds, dl, cs, cl;
2628 ds = btrfs_file_extent_disk_bytenr(src,
2629 extent);
2630 /* ds == 0 is a hole */
2631 if (ds == 0)
2632 continue;
2634 dl = btrfs_file_extent_disk_num_bytes(src,
2635 extent);
2636 cs = btrfs_file_extent_offset(src, extent);
2637 cl = btrfs_file_extent_num_bytes(src,
2638 extent);
2639 if (btrfs_file_extent_compression(src,
2640 extent)) {
2641 cs = 0;
2642 cl = dl;
2645 ret = btrfs_lookup_csums_range(
2646 log->fs_info->csum_root,
2647 ds + cs, ds + cs + cl - 1,
2648 &ordered_sums);
2649 BUG_ON(ret);
2654 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2655 btrfs_release_path(log, dst_path);
2656 kfree(ins_data);
2659 * we have to do this after the loop above to avoid changing the
2660 * log tree while trying to change the log tree.
2662 while (!list_empty(&ordered_sums)) {
2663 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2664 struct btrfs_ordered_sum,
2665 list);
2666 ret = btrfs_csum_file_blocks(trans, log, sums);
2667 BUG_ON(ret);
2668 list_del(&sums->list);
2669 kfree(sums);
2671 return 0;
2674 /* log a single inode in the tree log.
2675 * At least one parent directory for this inode must exist in the tree
2676 * or be logged already.
2678 * Any items from this inode changed by the current transaction are copied
2679 * to the log tree. An extra reference is taken on any extents in this
2680 * file, allowing us to avoid a whole pile of corner cases around logging
2681 * blocks that have been removed from the tree.
2683 * See LOG_INODE_ALL and related defines for a description of what inode_only
2684 * does.
2686 * This handles both files and directories.
2688 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2689 struct btrfs_root *root, struct inode *inode,
2690 int inode_only)
2692 struct btrfs_path *path;
2693 struct btrfs_path *dst_path;
2694 struct btrfs_key min_key;
2695 struct btrfs_key max_key;
2696 struct btrfs_root *log = root->log_root;
2697 struct extent_buffer *src = NULL;
2698 u32 size;
2699 int ret;
2700 int nritems;
2701 int ins_start_slot = 0;
2702 int ins_nr;
2704 log = root->log_root;
2706 path = btrfs_alloc_path();
2707 dst_path = btrfs_alloc_path();
2709 min_key.objectid = inode->i_ino;
2710 min_key.type = BTRFS_INODE_ITEM_KEY;
2711 min_key.offset = 0;
2713 max_key.objectid = inode->i_ino;
2715 /* today the code can only do partial logging of directories */
2716 if (!S_ISDIR(inode->i_mode))
2717 inode_only = LOG_INODE_ALL;
2719 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2720 max_key.type = BTRFS_XATTR_ITEM_KEY;
2721 else
2722 max_key.type = (u8)-1;
2723 max_key.offset = (u64)-1;
2725 mutex_lock(&BTRFS_I(inode)->log_mutex);
2728 * a brute force approach to making sure we get the most uptodate
2729 * copies of everything.
2731 if (S_ISDIR(inode->i_mode)) {
2732 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2734 if (inode_only == LOG_INODE_EXISTS)
2735 max_key_type = BTRFS_XATTR_ITEM_KEY;
2736 ret = drop_objectid_items(trans, log, path,
2737 inode->i_ino, max_key_type);
2738 } else {
2739 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2741 BUG_ON(ret);
2742 path->keep_locks = 1;
2744 while (1) {
2745 ins_nr = 0;
2746 ret = btrfs_search_forward(root, &min_key, &max_key,
2747 path, 0, trans->transid);
2748 if (ret != 0)
2749 break;
2750 again:
2751 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2752 if (min_key.objectid != inode->i_ino)
2753 break;
2754 if (min_key.type > max_key.type)
2755 break;
2757 src = path->nodes[0];
2758 size = btrfs_item_size_nr(src, path->slots[0]);
2759 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2760 ins_nr++;
2761 goto next_slot;
2762 } else if (!ins_nr) {
2763 ins_start_slot = path->slots[0];
2764 ins_nr = 1;
2765 goto next_slot;
2768 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2769 ins_nr, inode_only);
2770 BUG_ON(ret);
2771 ins_nr = 1;
2772 ins_start_slot = path->slots[0];
2773 next_slot:
2775 nritems = btrfs_header_nritems(path->nodes[0]);
2776 path->slots[0]++;
2777 if (path->slots[0] < nritems) {
2778 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2779 path->slots[0]);
2780 goto again;
2782 if (ins_nr) {
2783 ret = copy_items(trans, log, dst_path, src,
2784 ins_start_slot,
2785 ins_nr, inode_only);
2786 BUG_ON(ret);
2787 ins_nr = 0;
2789 btrfs_release_path(root, path);
2791 if (min_key.offset < (u64)-1)
2792 min_key.offset++;
2793 else if (min_key.type < (u8)-1)
2794 min_key.type++;
2795 else if (min_key.objectid < (u64)-1)
2796 min_key.objectid++;
2797 else
2798 break;
2800 if (ins_nr) {
2801 ret = copy_items(trans, log, dst_path, src,
2802 ins_start_slot,
2803 ins_nr, inode_only);
2804 BUG_ON(ret);
2805 ins_nr = 0;
2807 WARN_ON(ins_nr);
2808 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2809 btrfs_release_path(root, path);
2810 btrfs_release_path(log, dst_path);
2811 ret = log_directory_changes(trans, root, inode, path, dst_path);
2812 BUG_ON(ret);
2814 BTRFS_I(inode)->logged_trans = trans->transid;
2815 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2817 btrfs_free_path(path);
2818 btrfs_free_path(dst_path);
2819 return 0;
2823 * follow the dentry parent pointers up the chain and see if any
2824 * of the directories in it require a full commit before they can
2825 * be logged. Returns zero if nothing special needs to be done or 1 if
2826 * a full commit is required.
2828 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2829 struct inode *inode,
2830 struct dentry *parent,
2831 struct super_block *sb,
2832 u64 last_committed)
2834 int ret = 0;
2835 struct btrfs_root *root;
2838 * for regular files, if its inode is already on disk, we don't
2839 * have to worry about the parents at all. This is because
2840 * we can use the last_unlink_trans field to record renames
2841 * and other fun in this file.
2843 if (S_ISREG(inode->i_mode) &&
2844 BTRFS_I(inode)->generation <= last_committed &&
2845 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2846 goto out;
2848 if (!S_ISDIR(inode->i_mode)) {
2849 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2850 goto out;
2851 inode = parent->d_inode;
2854 while (1) {
2855 BTRFS_I(inode)->logged_trans = trans->transid;
2856 smp_mb();
2858 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2859 root = BTRFS_I(inode)->root;
2862 * make sure any commits to the log are forced
2863 * to be full commits
2865 root->fs_info->last_trans_log_full_commit =
2866 trans->transid;
2867 ret = 1;
2868 break;
2871 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2872 break;
2874 if (IS_ROOT(parent))
2875 break;
2877 parent = parent->d_parent;
2878 inode = parent->d_inode;
2881 out:
2882 return ret;
2885 static int inode_in_log(struct btrfs_trans_handle *trans,
2886 struct inode *inode)
2888 struct btrfs_root *root = BTRFS_I(inode)->root;
2889 int ret = 0;
2891 mutex_lock(&root->log_mutex);
2892 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2893 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2894 ret = 1;
2895 mutex_unlock(&root->log_mutex);
2896 return ret;
2901 * helper function around btrfs_log_inode to make sure newly created
2902 * parent directories also end up in the log. A minimal inode and backref
2903 * only logging is done of any parent directories that are older than
2904 * the last committed transaction
2906 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2907 struct btrfs_root *root, struct inode *inode,
2908 struct dentry *parent, int exists_only)
2910 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2911 struct super_block *sb;
2912 int ret = 0;
2913 u64 last_committed = root->fs_info->last_trans_committed;
2915 sb = inode->i_sb;
2917 if (btrfs_test_opt(root, NOTREELOG)) {
2918 ret = 1;
2919 goto end_no_trans;
2922 if (root->fs_info->last_trans_log_full_commit >
2923 root->fs_info->last_trans_committed) {
2924 ret = 1;
2925 goto end_no_trans;
2928 if (root != BTRFS_I(inode)->root ||
2929 btrfs_root_refs(&root->root_item) == 0) {
2930 ret = 1;
2931 goto end_no_trans;
2934 ret = check_parent_dirs_for_sync(trans, inode, parent,
2935 sb, last_committed);
2936 if (ret)
2937 goto end_no_trans;
2939 if (inode_in_log(trans, inode)) {
2940 ret = BTRFS_NO_LOG_SYNC;
2941 goto end_no_trans;
2944 start_log_trans(trans, root);
2946 ret = btrfs_log_inode(trans, root, inode, inode_only);
2947 BUG_ON(ret);
2950 * for regular files, if its inode is already on disk, we don't
2951 * have to worry about the parents at all. This is because
2952 * we can use the last_unlink_trans field to record renames
2953 * and other fun in this file.
2955 if (S_ISREG(inode->i_mode) &&
2956 BTRFS_I(inode)->generation <= last_committed &&
2957 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2958 goto no_parent;
2960 inode_only = LOG_INODE_EXISTS;
2961 while (1) {
2962 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2963 break;
2965 inode = parent->d_inode;
2966 if (root != BTRFS_I(inode)->root)
2967 break;
2969 if (BTRFS_I(inode)->generation >
2970 root->fs_info->last_trans_committed) {
2971 ret = btrfs_log_inode(trans, root, inode, inode_only);
2972 BUG_ON(ret);
2974 if (IS_ROOT(parent))
2975 break;
2977 parent = parent->d_parent;
2979 no_parent:
2980 ret = 0;
2981 btrfs_end_log_trans(root);
2982 end_no_trans:
2983 return ret;
2987 * it is not safe to log dentry if the chunk root has added new
2988 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2989 * If this returns 1, you must commit the transaction to safely get your
2990 * data on disk.
2992 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2993 struct btrfs_root *root, struct dentry *dentry)
2995 return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2996 dentry->d_parent, 0);
3000 * should be called during mount to recover any replay any log trees
3001 * from the FS
3003 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3005 int ret;
3006 struct btrfs_path *path;
3007 struct btrfs_trans_handle *trans;
3008 struct btrfs_key key;
3009 struct btrfs_key found_key;
3010 struct btrfs_key tmp_key;
3011 struct btrfs_root *log;
3012 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3013 struct walk_control wc = {
3014 .process_func = process_one_buffer,
3015 .stage = 0,
3018 fs_info->log_root_recovering = 1;
3019 path = btrfs_alloc_path();
3020 BUG_ON(!path);
3022 trans = btrfs_start_transaction(fs_info->tree_root, 1);
3024 wc.trans = trans;
3025 wc.pin = 1;
3027 walk_log_tree(trans, log_root_tree, &wc);
3029 again:
3030 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3031 key.offset = (u64)-1;
3032 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3034 while (1) {
3035 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3036 if (ret < 0)
3037 break;
3038 if (ret > 0) {
3039 if (path->slots[0] == 0)
3040 break;
3041 path->slots[0]--;
3043 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3044 path->slots[0]);
3045 btrfs_release_path(log_root_tree, path);
3046 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3047 break;
3049 log = btrfs_read_fs_root_no_radix(log_root_tree,
3050 &found_key);
3051 BUG_ON(!log);
3054 tmp_key.objectid = found_key.offset;
3055 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3056 tmp_key.offset = (u64)-1;
3058 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3059 BUG_ON(!wc.replay_dest);
3061 wc.replay_dest->log_root = log;
3062 btrfs_record_root_in_trans(trans, wc.replay_dest);
3063 ret = walk_log_tree(trans, log, &wc);
3064 BUG_ON(ret);
3066 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3067 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3068 path);
3069 BUG_ON(ret);
3072 key.offset = found_key.offset - 1;
3073 wc.replay_dest->log_root = NULL;
3074 free_extent_buffer(log->node);
3075 free_extent_buffer(log->commit_root);
3076 kfree(log);
3078 if (found_key.offset == 0)
3079 break;
3081 btrfs_release_path(log_root_tree, path);
3083 /* step one is to pin it all, step two is to replay just inodes */
3084 if (wc.pin) {
3085 wc.pin = 0;
3086 wc.process_func = replay_one_buffer;
3087 wc.stage = LOG_WALK_REPLAY_INODES;
3088 goto again;
3090 /* step three is to replay everything */
3091 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3092 wc.stage++;
3093 goto again;
3096 btrfs_free_path(path);
3098 free_extent_buffer(log_root_tree->node);
3099 log_root_tree->log_root = NULL;
3100 fs_info->log_root_recovering = 0;
3102 /* step 4: commit the transaction, which also unpins the blocks */
3103 btrfs_commit_transaction(trans, fs_info->tree_root);
3105 kfree(log_root_tree);
3106 return 0;
3110 * there are some corner cases where we want to force a full
3111 * commit instead of allowing a directory to be logged.
3113 * They revolve around files there were unlinked from the directory, and
3114 * this function updates the parent directory so that a full commit is
3115 * properly done if it is fsync'd later after the unlinks are done.
3117 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3118 struct inode *dir, struct inode *inode,
3119 int for_rename)
3122 * when we're logging a file, if it hasn't been renamed
3123 * or unlinked, and its inode is fully committed on disk,
3124 * we don't have to worry about walking up the directory chain
3125 * to log its parents.
3127 * So, we use the last_unlink_trans field to put this transid
3128 * into the file. When the file is logged we check it and
3129 * don't log the parents if the file is fully on disk.
3131 if (S_ISREG(inode->i_mode))
3132 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3135 * if this directory was already logged any new
3136 * names for this file/dir will get recorded
3138 smp_mb();
3139 if (BTRFS_I(dir)->logged_trans == trans->transid)
3140 return;
3143 * if the inode we're about to unlink was logged,
3144 * the log will be properly updated for any new names
3146 if (BTRFS_I(inode)->logged_trans == trans->transid)
3147 return;
3150 * when renaming files across directories, if the directory
3151 * there we're unlinking from gets fsync'd later on, there's
3152 * no way to find the destination directory later and fsync it
3153 * properly. So, we have to be conservative and force commits
3154 * so the new name gets discovered.
3156 if (for_rename)
3157 goto record;
3159 /* we can safely do the unlink without any special recording */
3160 return;
3162 record:
3163 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3167 * Call this after adding a new name for a file and it will properly
3168 * update the log to reflect the new name.
3170 * It will return zero if all goes well, and it will return 1 if a
3171 * full transaction commit is required.
3173 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3174 struct inode *inode, struct inode *old_dir,
3175 struct dentry *parent)
3177 struct btrfs_root * root = BTRFS_I(inode)->root;
3180 * this will force the logging code to walk the dentry chain
3181 * up for the file
3183 if (S_ISREG(inode->i_mode))
3184 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3187 * if this inode hasn't been logged and directory we're renaming it
3188 * from hasn't been logged, we don't need to log it
3190 if (BTRFS_I(inode)->logged_trans <=
3191 root->fs_info->last_trans_committed &&
3192 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3193 root->fs_info->last_trans_committed))
3194 return 0;
3196 return btrfs_log_inode_parent(trans, root, inode, parent, 1);