1 /* arch/sparc64/kernel/kprobes.c
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <asm/signal.h>
11 #include <asm/cacheflush.h>
12 #include <asm/uaccess.h>
14 /* We do not have hardware single-stepping on sparc64.
15 * So we implement software single-stepping with breakpoint
16 * traps. The top-level scheme is similar to that used
17 * in the x86 kprobes implementation.
19 * In the kprobe->ainsn.insn[] array we store the original
20 * instruction at index zero and a break instruction at
23 * When we hit a kprobe we:
24 * - Run the pre-handler
25 * - Remember "regs->tnpc" and interrupt level stored in
26 * "regs->tstate" so we can restore them later
27 * - Disable PIL interrupts
28 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
29 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
30 * - Mark that we are actively in a kprobe
32 * At this point we wait for the second breakpoint at
33 * kprobe->ainsn.insn[1] to hit. When it does we:
34 * - Run the post-handler
35 * - Set regs->tpc to "remembered" regs->tnpc stored above,
36 * restore the PIL interrupt level in "regs->tstate" as well
37 * - Make any adjustments necessary to regs->tnpc in order
38 * to handle relative branches correctly. See below.
39 * - Mark that we are no longer actively in a kprobe.
42 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
43 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
45 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
47 p
->ainsn
.insn
[0] = *p
->addr
;
48 flushi(&p
->ainsn
.insn
[0]);
50 p
->ainsn
.insn
[1] = BREAKPOINT_INSTRUCTION_2
;
51 flushi(&p
->ainsn
.insn
[1]);
57 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
59 *p
->addr
= BREAKPOINT_INSTRUCTION
;
63 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
69 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
71 kcb
->prev_kprobe
.kp
= kprobe_running();
72 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
73 kcb
->prev_kprobe
.orig_tnpc
= kcb
->kprobe_orig_tnpc
;
74 kcb
->prev_kprobe
.orig_tstate_pil
= kcb
->kprobe_orig_tstate_pil
;
77 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
79 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
80 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
81 kcb
->kprobe_orig_tnpc
= kcb
->prev_kprobe
.orig_tnpc
;
82 kcb
->kprobe_orig_tstate_pil
= kcb
->prev_kprobe
.orig_tstate_pil
;
85 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
86 struct kprobe_ctlblk
*kcb
)
88 __get_cpu_var(current_kprobe
) = p
;
89 kcb
->kprobe_orig_tnpc
= regs
->tnpc
;
90 kcb
->kprobe_orig_tstate_pil
= (regs
->tstate
& TSTATE_PIL
);
93 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
94 struct kprobe_ctlblk
*kcb
)
96 regs
->tstate
|= TSTATE_PIL
;
98 /*single step inline, if it a breakpoint instruction*/
99 if (p
->opcode
== BREAKPOINT_INSTRUCTION
) {
100 regs
->tpc
= (unsigned long) p
->addr
;
101 regs
->tnpc
= kcb
->kprobe_orig_tnpc
;
103 regs
->tpc
= (unsigned long) &p
->ainsn
.insn
[0];
104 regs
->tnpc
= (unsigned long) &p
->ainsn
.insn
[1];
108 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
111 void *addr
= (void *) regs
->tpc
;
113 struct kprobe_ctlblk
*kcb
;
116 * We don't want to be preempted for the entire
117 * duration of kprobe processing
120 kcb
= get_kprobe_ctlblk();
122 if (kprobe_running()) {
123 p
= get_kprobe(addr
);
125 if (kcb
->kprobe_status
== KPROBE_HIT_SS
) {
126 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
127 kcb
->kprobe_orig_tstate_pil
);
130 /* We have reentered the kprobe_handler(), since
131 * another probe was hit while within the handler.
132 * We here save the original kprobes variables and
133 * just single step on the instruction of the new probe
134 * without calling any user handlers.
136 save_previous_kprobe(kcb
);
137 set_current_kprobe(p
, regs
, kcb
);
138 kprobes_inc_nmissed_count(p
);
139 kcb
->kprobe_status
= KPROBE_REENTER
;
140 prepare_singlestep(p
, regs
, kcb
);
143 if (*(u32
*)addr
!= BREAKPOINT_INSTRUCTION
) {
144 /* The breakpoint instruction was removed by
145 * another cpu right after we hit, no further
146 * handling of this interrupt is appropriate
151 p
= __get_cpu_var(current_kprobe
);
152 if (p
->break_handler
&& p
->break_handler(p
, regs
))
158 p
= get_kprobe(addr
);
160 if (*(u32
*)addr
!= BREAKPOINT_INSTRUCTION
) {
162 * The breakpoint instruction was removed right
163 * after we hit it. Another cpu has removed
164 * either a probepoint or a debugger breakpoint
165 * at this address. In either case, no further
166 * handling of this interrupt is appropriate.
170 /* Not one of ours: let kernel handle it */
174 set_current_kprobe(p
, regs
, kcb
);
175 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
176 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
180 prepare_singlestep(p
, regs
, kcb
);
181 kcb
->kprobe_status
= KPROBE_HIT_SS
;
185 preempt_enable_no_resched();
189 /* If INSN is a relative control transfer instruction,
190 * return the corrected branch destination value.
192 * regs->tpc and regs->tnpc still hold the values of the
193 * program counters at the time of trap due to the execution
194 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
197 static unsigned long __kprobes
relbranch_fixup(u32 insn
, struct kprobe
*p
,
198 struct pt_regs
*regs
)
200 unsigned long real_pc
= (unsigned long) p
->addr
;
202 /* Branch not taken, no mods necessary. */
203 if (regs
->tnpc
== regs
->tpc
+ 0x4UL
)
204 return real_pc
+ 0x8UL
;
206 /* The three cases are call, branch w/prediction,
207 * and traditional branch.
209 if ((insn
& 0xc0000000) == 0x40000000 ||
210 (insn
& 0xc1c00000) == 0x00400000 ||
211 (insn
& 0xc1c00000) == 0x00800000) {
212 unsigned long ainsn_addr
;
214 ainsn_addr
= (unsigned long) &p
->ainsn
.insn
[0];
216 /* The instruction did all the work for us
217 * already, just apply the offset to the correct
218 * instruction location.
220 return (real_pc
+ (regs
->tnpc
- ainsn_addr
));
223 /* It is jmpl or some other absolute PC modification instruction,
229 /* If INSN is an instruction which writes it's PC location
230 * into a destination register, fix that up.
232 static void __kprobes
retpc_fixup(struct pt_regs
*regs
, u32 insn
,
233 unsigned long real_pc
)
235 unsigned long *slot
= NULL
;
237 /* Simplest case is 'call', which always uses %o7 */
238 if ((insn
& 0xc0000000) == 0x40000000) {
239 slot
= ®s
->u_regs
[UREG_I7
];
242 /* 'jmpl' encodes the register inside of the opcode */
243 if ((insn
& 0xc1f80000) == 0x81c00000) {
244 unsigned long rd
= ((insn
>> 25) & 0x1f);
247 slot
= ®s
->u_regs
[rd
];
249 /* Hard case, it goes onto the stack. */
253 slot
= (unsigned long *)
254 (regs
->u_regs
[UREG_FP
] + STACK_BIAS
);
263 * Called after single-stepping. p->addr is the address of the
264 * instruction which has been replaced by the breakpoint
265 * instruction. To avoid the SMP problems that can occur when we
266 * temporarily put back the original opcode to single-step, we
267 * single-stepped a copy of the instruction. The address of this
268 * copy is &p->ainsn.insn[0].
270 * This function prepares to return from the post-single-step
273 static void __kprobes
resume_execution(struct kprobe
*p
,
274 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
276 u32 insn
= p
->ainsn
.insn
[0];
278 regs
->tnpc
= relbranch_fixup(insn
, p
, regs
);
280 /* This assignment must occur after relbranch_fixup() */
281 regs
->tpc
= kcb
->kprobe_orig_tnpc
;
283 retpc_fixup(regs
, insn
, (unsigned long) p
->addr
);
285 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
286 kcb
->kprobe_orig_tstate_pil
);
289 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
291 struct kprobe
*cur
= kprobe_running();
292 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
297 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
298 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
299 cur
->post_handler(cur
, regs
, 0);
302 resume_execution(cur
, regs
, kcb
);
304 /*Restore back the original saved kprobes variables and continue. */
305 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
306 restore_previous_kprobe(kcb
);
309 reset_current_kprobe();
311 preempt_enable_no_resched();
316 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
318 struct kprobe
*cur
= kprobe_running();
319 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
320 const struct exception_table_entry
*entry
;
322 switch(kcb
->kprobe_status
) {
326 * We are here because the instruction being single
327 * stepped caused a page fault. We reset the current
328 * kprobe and the tpc points back to the probe address
329 * and allow the page fault handler to continue as a
332 regs
->tpc
= (unsigned long)cur
->addr
;
333 regs
->tnpc
= kcb
->kprobe_orig_tnpc
;
334 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
335 kcb
->kprobe_orig_tstate_pil
);
336 if (kcb
->kprobe_status
== KPROBE_REENTER
)
337 restore_previous_kprobe(kcb
);
339 reset_current_kprobe();
340 preempt_enable_no_resched();
342 case KPROBE_HIT_ACTIVE
:
343 case KPROBE_HIT_SSDONE
:
345 * We increment the nmissed count for accounting,
346 * we can also use npre/npostfault count for accouting
347 * these specific fault cases.
349 kprobes_inc_nmissed_count(cur
);
352 * We come here because instructions in the pre/post
353 * handler caused the page_fault, this could happen
354 * if handler tries to access user space by
355 * copy_from_user(), get_user() etc. Let the
356 * user-specified handler try to fix it first.
358 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
362 * In case the user-specified fault handler returned
363 * zero, try to fix up.
366 entry
= search_exception_tables(regs
->tpc
);
368 regs
->tpc
= entry
->fixup
;
369 regs
->tnpc
= regs
->tpc
+ 4;
374 * fixup_exception() could not handle it,
375 * Let do_page_fault() fix it.
386 * Wrapper routine to for handling exceptions.
388 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
389 unsigned long val
, void *data
)
391 struct die_args
*args
= (struct die_args
*)data
;
392 int ret
= NOTIFY_DONE
;
394 if (args
->regs
&& user_mode(args
->regs
))
399 if (kprobe_handler(args
->regs
))
403 if (post_kprobe_handler(args
->regs
))
412 asmlinkage
void __kprobes
kprobe_trap(unsigned long trap_level
,
413 struct pt_regs
*regs
)
415 BUG_ON(trap_level
!= 0x170 && trap_level
!= 0x171);
417 if (user_mode(regs
)) {
419 bad_trap(regs
, trap_level
);
423 /* trap_level == 0x170 --> ta 0x70
424 * trap_level == 0x171 --> ta 0x71
426 if (notify_die((trap_level
== 0x170) ? DIE_DEBUG
: DIE_DEBUG_2
,
427 (trap_level
== 0x170) ? "debug" : "debug_2",
428 regs
, 0, trap_level
, SIGTRAP
) != NOTIFY_STOP
)
429 bad_trap(regs
, trap_level
);
432 /* Jprobes support. */
433 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
435 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
436 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
438 memcpy(&(kcb
->jprobe_saved_regs
), regs
, sizeof(*regs
));
440 regs
->tpc
= (unsigned long) jp
->entry
;
441 regs
->tnpc
= ((unsigned long) jp
->entry
) + 0x4UL
;
442 regs
->tstate
|= TSTATE_PIL
;
447 void __kprobes
jprobe_return(void)
449 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
450 register unsigned long orig_fp
asm("g1");
452 orig_fp
= kcb
->jprobe_saved_regs
.u_regs
[UREG_FP
];
453 __asm__
__volatile__("\n"
454 "1: cmp %%sp, %0\n\t"
455 "blu,a,pt %%xcc, 1b\n\t"
457 ".globl jprobe_return_trap_instruction\n"
458 "jprobe_return_trap_instruction:\n\t"
464 extern void jprobe_return_trap_instruction(void);
466 extern void __show_regs(struct pt_regs
* regs
);
468 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
470 u32
*addr
= (u32
*) regs
->tpc
;
471 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
473 if (addr
== (u32
*) jprobe_return_trap_instruction
) {
474 memcpy(regs
, &(kcb
->jprobe_saved_regs
), sizeof(*regs
));
475 preempt_enable_no_resched();
481 /* architecture specific initialization */
482 int arch_init_kprobes(void)