imx31: define and use MX31_IO_ADDRESS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / reiserfs_fs.h
blobc96c1858fe2c404673810c33560ce0c56701d566
1 /*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
11 #ifndef _LINUX_REISER_FS_H
12 #define _LINUX_REISER_FS_H
14 #include <linux/types.h>
15 #include <linux/magic.h>
17 #ifdef __KERNEL__
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched.h>
21 #include <linux/workqueue.h>
22 #include <asm/unaligned.h>
23 #include <linux/bitops.h>
24 #include <linux/proc_fs.h>
25 #include <linux/smp_lock.h>
26 #include <linux/buffer_head.h>
27 #include <linux/reiserfs_fs_i.h>
28 #include <linux/reiserfs_fs_sb.h>
29 #endif
32 * include/linux/reiser_fs.h
34 * Reiser File System constants and structures
38 /* ioctl's command */
39 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
40 /* define following flags to be the same as in ext2, so that chattr(1),
41 lsattr(1) will work with us. */
42 #define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS
43 #define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS
44 #define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION
45 #define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION
47 #ifdef __KERNEL__
48 /* the 32 bit compat definitions with int argument */
49 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
50 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
51 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
52 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
53 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
56 * Locking primitives. The write lock is a per superblock
57 * special mutex that has properties close to the Big Kernel Lock
58 * which was used in the previous locking scheme.
60 void reiserfs_write_lock(struct super_block *s);
61 void reiserfs_write_unlock(struct super_block *s);
62 int reiserfs_write_lock_once(struct super_block *s);
63 void reiserfs_write_unlock_once(struct super_block *s, int lock_depth);
66 * Several mutexes depend on the write lock.
67 * However sometimes we want to relax the write lock while we hold
68 * these mutexes, according to the release/reacquire on schedule()
69 * properties of the Bkl that were used.
70 * Reiserfs performances and locking were based on this scheme.
71 * Now that the write lock is a mutex and not the bkl anymore, doing so
72 * may result in a deadlock:
74 * A acquire write_lock
75 * A acquire j_commit_mutex
76 * A release write_lock and wait for something
77 * B acquire write_lock
78 * B can't acquire j_commit_mutex and sleep
79 * A can't acquire write lock anymore
80 * deadlock
82 * What we do here is avoiding such deadlock by playing the same game
83 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
84 * we release the write lock, wait a bit and then retry.
86 * The mutexes concerned by this hack are:
87 * - The commit mutex of a journal list
88 * - The flush mutex
89 * - The journal lock
90 * - The inode mutex
92 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
93 struct super_block *s)
95 reiserfs_write_unlock(s);
96 mutex_lock(m);
97 reiserfs_write_lock(s);
101 * When we schedule, we usually want to also release the write lock,
102 * according to the previous bkl based locking scheme of reiserfs.
104 static inline void reiserfs_cond_resched(struct super_block *s)
106 if (need_resched()) {
107 reiserfs_write_unlock(s);
108 schedule();
109 reiserfs_write_lock(s);
113 struct fid;
115 /* in reading the #defines, it may help to understand that they employ
116 the following abbreviations:
118 B = Buffer
119 I = Item header
120 H = Height within the tree (should be changed to LEV)
121 N = Number of the item in the node
122 STAT = stat data
123 DEH = Directory Entry Header
124 EC = Entry Count
125 E = Entry number
126 UL = Unsigned Long
127 BLKH = BLocK Header
128 UNFM = UNForMatted node
129 DC = Disk Child
130 P = Path
132 These #defines are named by concatenating these abbreviations,
133 where first comes the arguments, and last comes the return value,
134 of the macro.
138 #define USE_INODE_GENERATION_COUNTER
140 #define REISERFS_PREALLOCATE
141 #define DISPLACE_NEW_PACKING_LOCALITIES
142 #define PREALLOCATION_SIZE 9
144 /* n must be power of 2 */
145 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
147 // to be ok for alpha and others we have to align structures to 8 byte
148 // boundary.
149 // FIXME: do not change 4 by anything else: there is code which relies on that
150 #define ROUND_UP(x) _ROUND_UP(x,8LL)
152 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
153 ** messages.
155 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
157 void __reiserfs_warning(struct super_block *s, const char *id,
158 const char *func, const char *fmt, ...);
159 #define reiserfs_warning(s, id, fmt, args...) \
160 __reiserfs_warning(s, id, __func__, fmt, ##args)
161 /* assertions handling */
163 /** always check a condition and panic if it's false. */
164 #define __RASSERT(cond, scond, format, args...) \
165 do { \
166 if (!(cond)) \
167 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
168 __FILE__ ":%i:%s: " format "\n", \
169 in_interrupt() ? -1 : task_pid_nr(current), \
170 __LINE__, __func__ , ##args); \
171 } while (0)
173 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
175 #if defined( CONFIG_REISERFS_CHECK )
176 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
177 #else
178 #define RFALSE( cond, format, args... ) do {;} while( 0 )
179 #endif
181 #define CONSTF __attribute_const__
183 * Disk Data Structures
186 /***************************************************************************/
187 /* SUPER BLOCK */
188 /***************************************************************************/
191 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
192 * the version in RAM is part of a larger structure containing fields never written to disk.
194 #define UNSET_HASH 0 // read_super will guess about, what hash names
195 // in directories were sorted with
196 #define TEA_HASH 1
197 #define YURA_HASH 2
198 #define R5_HASH 3
199 #define DEFAULT_HASH R5_HASH
201 struct journal_params {
202 __le32 jp_journal_1st_block; /* where does journal start from on its
203 * device */
204 __le32 jp_journal_dev; /* journal device st_rdev */
205 __le32 jp_journal_size; /* size of the journal */
206 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
207 __le32 jp_journal_magic; /* random value made on fs creation (this
208 * was sb_journal_block_count) */
209 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
210 * trans */
211 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
212 * commit be */
213 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
214 * be */
217 /* this is the super from 3.5.X, where X >= 10 */
218 struct reiserfs_super_block_v1 {
219 __le32 s_block_count; /* blocks count */
220 __le32 s_free_blocks; /* free blocks count */
221 __le32 s_root_block; /* root block number */
222 struct journal_params s_journal;
223 __le16 s_blocksize; /* block size */
224 __le16 s_oid_maxsize; /* max size of object id array, see
225 * get_objectid() commentary */
226 __le16 s_oid_cursize; /* current size of object id array */
227 __le16 s_umount_state; /* this is set to 1 when filesystem was
228 * umounted, to 2 - when not */
229 char s_magic[10]; /* reiserfs magic string indicates that
230 * file system is reiserfs:
231 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
232 __le16 s_fs_state; /* it is set to used by fsck to mark which
233 * phase of rebuilding is done */
234 __le32 s_hash_function_code; /* indicate, what hash function is being use
235 * to sort names in a directory*/
236 __le16 s_tree_height; /* height of disk tree */
237 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
238 * each block of file system */
239 __le16 s_version; /* this field is only reliable on filesystem
240 * with non-standard journal */
241 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
242 * device, we need to keep after
243 * making fs with non-standard journal */
244 } __attribute__ ((__packed__));
246 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
248 /* this is the on disk super block */
249 struct reiserfs_super_block {
250 struct reiserfs_super_block_v1 s_v1;
251 __le32 s_inode_generation;
252 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
253 unsigned char s_uuid[16]; /* filesystem unique identifier */
254 unsigned char s_label[16]; /* filesystem volume label */
255 __le16 s_mnt_count; /* Count of mounts since last fsck */
256 __le16 s_max_mnt_count; /* Maximum mounts before check */
257 __le32 s_lastcheck; /* Timestamp of last fsck */
258 __le32 s_check_interval; /* Interval between checks */
259 char s_unused[76]; /* zero filled by mkreiserfs and
260 * reiserfs_convert_objectid_map_v1()
261 * so any additions must be updated
262 * there as well. */
263 } __attribute__ ((__packed__));
265 #define SB_SIZE (sizeof(struct reiserfs_super_block))
267 #define REISERFS_VERSION_1 0
268 #define REISERFS_VERSION_2 2
270 // on-disk super block fields converted to cpu form
271 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
272 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
273 #define SB_BLOCKSIZE(s) \
274 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
275 #define SB_BLOCK_COUNT(s) \
276 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
277 #define SB_FREE_BLOCKS(s) \
278 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
279 #define SB_REISERFS_MAGIC(s) \
280 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
281 #define SB_ROOT_BLOCK(s) \
282 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
283 #define SB_TREE_HEIGHT(s) \
284 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
285 #define SB_REISERFS_STATE(s) \
286 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
287 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
288 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
290 #define PUT_SB_BLOCK_COUNT(s, val) \
291 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
292 #define PUT_SB_FREE_BLOCKS(s, val) \
293 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
294 #define PUT_SB_ROOT_BLOCK(s, val) \
295 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
296 #define PUT_SB_TREE_HEIGHT(s, val) \
297 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
298 #define PUT_SB_REISERFS_STATE(s, val) \
299 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
300 #define PUT_SB_VERSION(s, val) \
301 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
302 #define PUT_SB_BMAP_NR(s, val) \
303 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
305 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
306 #define SB_ONDISK_JOURNAL_SIZE(s) \
307 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
308 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
309 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
310 #define SB_ONDISK_JOURNAL_DEVICE(s) \
311 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
312 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
313 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
315 #define is_block_in_log_or_reserved_area(s, block) \
316 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
317 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
318 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
319 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
321 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
322 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
323 int is_reiserfs_jr(struct reiserfs_super_block *rs);
325 /* ReiserFS leaves the first 64k unused, so that partition labels have
326 enough space. If someone wants to write a fancy bootloader that
327 needs more than 64k, let us know, and this will be increased in size.
328 This number must be larger than than the largest block size on any
329 platform, or code will break. -Hans */
330 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
331 #define REISERFS_FIRST_BLOCK unused_define
332 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
334 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
335 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
337 // reiserfs internal error code (used by search_by_key adn fix_nodes))
338 #define CARRY_ON 0
339 #define REPEAT_SEARCH -1
340 #define IO_ERROR -2
341 #define NO_DISK_SPACE -3
342 #define NO_BALANCING_NEEDED (-4)
343 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
344 #define QUOTA_EXCEEDED -6
346 typedef __u32 b_blocknr_t;
347 typedef __le32 unp_t;
349 struct unfm_nodeinfo {
350 unp_t unfm_nodenum;
351 unsigned short unfm_freespace;
354 /* there are two formats of keys: 3.5 and 3.6
356 #define KEY_FORMAT_3_5 0
357 #define KEY_FORMAT_3_6 1
359 /* there are two stat datas */
360 #define STAT_DATA_V1 0
361 #define STAT_DATA_V2 1
363 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
365 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
368 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
370 return sb->s_fs_info;
373 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
374 * which overflows on large file systems. */
375 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
377 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
380 static inline int bmap_would_wrap(unsigned bmap_nr)
382 return bmap_nr > ((1LL << 16) - 1);
385 /** this says about version of key of all items (but stat data) the
386 object consists of */
387 #define get_inode_item_key_version( inode ) \
388 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
390 #define set_inode_item_key_version( inode, version ) \
391 ({ if((version)==KEY_FORMAT_3_6) \
392 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
393 else \
394 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
396 #define get_inode_sd_version(inode) \
397 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
399 #define set_inode_sd_version(inode, version) \
400 ({ if((version)==STAT_DATA_V2) \
401 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
402 else \
403 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
405 /* This is an aggressive tail suppression policy, I am hoping it
406 improves our benchmarks. The principle behind it is that percentage
407 space saving is what matters, not absolute space saving. This is
408 non-intuitive, but it helps to understand it if you consider that the
409 cost to access 4 blocks is not much more than the cost to access 1
410 block, if you have to do a seek and rotate. A tail risks a
411 non-linear disk access that is significant as a percentage of total
412 time cost for a 4 block file and saves an amount of space that is
413 less significant as a percentage of space, or so goes the hypothesis.
414 -Hans */
415 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
417 (!(n_tail_size)) || \
418 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
419 ( (n_file_size) >= (n_block_size) * 4 ) || \
420 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
421 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
422 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
423 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
424 ( ( (n_file_size) >= (n_block_size) ) && \
425 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
428 /* Another strategy for tails, this one means only create a tail if all the
429 file would fit into one DIRECT item.
430 Primary intention for this one is to increase performance by decreasing
431 seeking.
433 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
435 (!(n_tail_size)) || \
436 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
440 * values for s_umount_state field
442 #define REISERFS_VALID_FS 1
443 #define REISERFS_ERROR_FS 2
446 // there are 5 item types currently
448 #define TYPE_STAT_DATA 0
449 #define TYPE_INDIRECT 1
450 #define TYPE_DIRECT 2
451 #define TYPE_DIRENTRY 3
452 #define TYPE_MAXTYPE 3
453 #define TYPE_ANY 15 // FIXME: comment is required
455 /***************************************************************************/
456 /* KEY & ITEM HEAD */
457 /***************************************************************************/
460 // directories use this key as well as old files
462 struct offset_v1 {
463 __le32 k_offset;
464 __le32 k_uniqueness;
465 } __attribute__ ((__packed__));
467 struct offset_v2 {
468 __le64 v;
469 } __attribute__ ((__packed__));
471 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
473 __u8 type = le64_to_cpu(v2->v) >> 60;
474 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
477 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
479 v2->v =
480 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
483 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
485 return le64_to_cpu(v2->v) & (~0ULL >> 4);
488 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
490 offset &= (~0ULL >> 4);
491 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
494 /* Key of an item determines its location in the S+tree, and
495 is composed of 4 components */
496 struct reiserfs_key {
497 __le32 k_dir_id; /* packing locality: by default parent
498 directory object id */
499 __le32 k_objectid; /* object identifier */
500 union {
501 struct offset_v1 k_offset_v1;
502 struct offset_v2 k_offset_v2;
503 } __attribute__ ((__packed__)) u;
504 } __attribute__ ((__packed__));
506 struct in_core_key {
507 __u32 k_dir_id; /* packing locality: by default parent
508 directory object id */
509 __u32 k_objectid; /* object identifier */
510 __u64 k_offset;
511 __u8 k_type;
514 struct cpu_key {
515 struct in_core_key on_disk_key;
516 int version;
517 int key_length; /* 3 in all cases but direct2indirect and
518 indirect2direct conversion */
521 /* Our function for comparing keys can compare keys of different
522 lengths. It takes as a parameter the length of the keys it is to
523 compare. These defines are used in determining what is to be passed
524 to it as that parameter. */
525 #define REISERFS_FULL_KEY_LEN 4
526 #define REISERFS_SHORT_KEY_LEN 2
528 /* The result of the key compare */
529 #define FIRST_GREATER 1
530 #define SECOND_GREATER -1
531 #define KEYS_IDENTICAL 0
532 #define KEY_FOUND 1
533 #define KEY_NOT_FOUND 0
535 #define KEY_SIZE (sizeof(struct reiserfs_key))
536 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
538 /* return values for search_by_key and clones */
539 #define ITEM_FOUND 1
540 #define ITEM_NOT_FOUND 0
541 #define ENTRY_FOUND 1
542 #define ENTRY_NOT_FOUND 0
543 #define DIRECTORY_NOT_FOUND -1
544 #define REGULAR_FILE_FOUND -2
545 #define DIRECTORY_FOUND -3
546 #define BYTE_FOUND 1
547 #define BYTE_NOT_FOUND 0
548 #define FILE_NOT_FOUND -1
550 #define POSITION_FOUND 1
551 #define POSITION_NOT_FOUND 0
553 // return values for reiserfs_find_entry and search_by_entry_key
554 #define NAME_FOUND 1
555 #define NAME_NOT_FOUND 0
556 #define GOTO_PREVIOUS_ITEM 2
557 #define NAME_FOUND_INVISIBLE 3
559 /* Everything in the filesystem is stored as a set of items. The
560 item head contains the key of the item, its free space (for
561 indirect items) and specifies the location of the item itself
562 within the block. */
564 struct item_head {
565 /* Everything in the tree is found by searching for it based on
566 * its key.*/
567 struct reiserfs_key ih_key;
568 union {
569 /* The free space in the last unformatted node of an
570 indirect item if this is an indirect item. This
571 equals 0xFFFF iff this is a direct item or stat data
572 item. Note that the key, not this field, is used to
573 determine the item type, and thus which field this
574 union contains. */
575 __le16 ih_free_space_reserved;
576 /* Iff this is a directory item, this field equals the
577 number of directory entries in the directory item. */
578 __le16 ih_entry_count;
579 } __attribute__ ((__packed__)) u;
580 __le16 ih_item_len; /* total size of the item body */
581 __le16 ih_item_location; /* an offset to the item body
582 * within the block */
583 __le16 ih_version; /* 0 for all old items, 2 for new
584 ones. Highest bit is set by fsck
585 temporary, cleaned after all
586 done */
587 } __attribute__ ((__packed__));
588 /* size of item header */
589 #define IH_SIZE (sizeof(struct item_head))
591 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
592 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
593 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
594 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
595 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
597 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
598 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
599 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
600 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
601 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
603 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
605 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
606 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
608 /* these operate on indirect items, where you've got an array of ints
609 ** at a possibly unaligned location. These are a noop on ia32
611 ** p is the array of __u32, i is the index into the array, v is the value
612 ** to store there.
614 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
615 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
618 // in old version uniqueness field shows key type
620 #define V1_SD_UNIQUENESS 0
621 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
622 #define V1_DIRECT_UNIQUENESS 0xffffffff
623 #define V1_DIRENTRY_UNIQUENESS 500
624 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
627 // here are conversion routines
629 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
630 static inline int uniqueness2type(__u32 uniqueness)
632 switch ((int)uniqueness) {
633 case V1_SD_UNIQUENESS:
634 return TYPE_STAT_DATA;
635 case V1_INDIRECT_UNIQUENESS:
636 return TYPE_INDIRECT;
637 case V1_DIRECT_UNIQUENESS:
638 return TYPE_DIRECT;
639 case V1_DIRENTRY_UNIQUENESS:
640 return TYPE_DIRENTRY;
641 case V1_ANY_UNIQUENESS:
642 default:
643 return TYPE_ANY;
647 static inline __u32 type2uniqueness(int type) CONSTF;
648 static inline __u32 type2uniqueness(int type)
650 switch (type) {
651 case TYPE_STAT_DATA:
652 return V1_SD_UNIQUENESS;
653 case TYPE_INDIRECT:
654 return V1_INDIRECT_UNIQUENESS;
655 case TYPE_DIRECT:
656 return V1_DIRECT_UNIQUENESS;
657 case TYPE_DIRENTRY:
658 return V1_DIRENTRY_UNIQUENESS;
659 case TYPE_ANY:
660 default:
661 return V1_ANY_UNIQUENESS;
666 // key is pointer to on disk key which is stored in le, result is cpu,
667 // there is no way to get version of object from key, so, provide
668 // version to these defines
670 static inline loff_t le_key_k_offset(int version,
671 const struct reiserfs_key *key)
673 return (version == KEY_FORMAT_3_5) ?
674 le32_to_cpu(key->u.k_offset_v1.k_offset) :
675 offset_v2_k_offset(&(key->u.k_offset_v2));
678 static inline loff_t le_ih_k_offset(const struct item_head *ih)
680 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
683 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
685 return (version == KEY_FORMAT_3_5) ?
686 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
687 offset_v2_k_type(&(key->u.k_offset_v2));
690 static inline loff_t le_ih_k_type(const struct item_head *ih)
692 return le_key_k_type(ih_version(ih), &(ih->ih_key));
695 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
696 loff_t offset)
698 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
699 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
702 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
704 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
707 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
708 int type)
710 (version == KEY_FORMAT_3_5) ?
711 (void)(key->u.k_offset_v1.k_uniqueness =
712 cpu_to_le32(type2uniqueness(type)))
713 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
716 static inline void set_le_ih_k_type(struct item_head *ih, int type)
718 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
721 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
723 return le_key_k_type(version, key) == TYPE_DIRENTRY;
726 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
728 return le_key_k_type(version, key) == TYPE_DIRECT;
731 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
733 return le_key_k_type(version, key) == TYPE_INDIRECT;
736 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
738 return le_key_k_type(version, key) == TYPE_STAT_DATA;
742 // item header has version.
744 static inline int is_direntry_le_ih(struct item_head *ih)
746 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
749 static inline int is_direct_le_ih(struct item_head *ih)
751 return is_direct_le_key(ih_version(ih), &ih->ih_key);
754 static inline int is_indirect_le_ih(struct item_head *ih)
756 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
759 static inline int is_statdata_le_ih(struct item_head *ih)
761 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
765 // key is pointer to cpu key, result is cpu
767 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
769 return key->on_disk_key.k_offset;
772 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
774 return key->on_disk_key.k_type;
777 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
779 key->on_disk_key.k_offset = offset;
782 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
784 key->on_disk_key.k_type = type;
787 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
789 key->on_disk_key.k_offset--;
792 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
793 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
794 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
795 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
797 /* are these used ? */
798 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
799 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
800 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
801 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
803 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
804 (!COMP_SHORT_KEYS(ih, key) && \
805 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
807 /* maximal length of item */
808 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
809 #define MIN_ITEM_LEN 1
811 /* object identifier for root dir */
812 #define REISERFS_ROOT_OBJECTID 2
813 #define REISERFS_ROOT_PARENT_OBJECTID 1
815 extern struct reiserfs_key root_key;
818 * Picture represents a leaf of the S+tree
819 * ______________________________________________________
820 * | | Array of | | |
821 * |Block | Object-Item | F r e e | Objects- |
822 * | head | Headers | S p a c e | Items |
823 * |______|_______________|___________________|___________|
826 /* Header of a disk block. More precisely, header of a formatted leaf
827 or internal node, and not the header of an unformatted node. */
828 struct block_head {
829 __le16 blk_level; /* Level of a block in the tree. */
830 __le16 blk_nr_item; /* Number of keys/items in a block. */
831 __le16 blk_free_space; /* Block free space in bytes. */
832 __le16 blk_reserved;
833 /* dump this in v4/planA */
834 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
837 #define BLKH_SIZE (sizeof(struct block_head))
838 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
839 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
840 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
841 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
842 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
843 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
844 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
845 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
846 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
847 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
850 * values for blk_level field of the struct block_head
853 #define FREE_LEVEL 0 /* when node gets removed from the tree its
854 blk_level is set to FREE_LEVEL. It is then
855 used to see whether the node is still in the
856 tree */
858 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
860 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
861 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
862 /* Number of items that are in buffer. */
863 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
864 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
865 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
867 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
868 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
869 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
871 /* Get right delimiting key. -- little endian */
872 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
874 /* Does the buffer contain a disk leaf. */
875 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
877 /* Does the buffer contain a disk internal node */
878 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
879 && B_LEVEL(bh) <= MAX_HEIGHT)
881 /***************************************************************************/
882 /* STAT DATA */
883 /***************************************************************************/
886 // old stat data is 32 bytes long. We are going to distinguish new one by
887 // different size
889 struct stat_data_v1 {
890 __le16 sd_mode; /* file type, permissions */
891 __le16 sd_nlink; /* number of hard links */
892 __le16 sd_uid; /* owner */
893 __le16 sd_gid; /* group */
894 __le32 sd_size; /* file size */
895 __le32 sd_atime; /* time of last access */
896 __le32 sd_mtime; /* time file was last modified */
897 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
898 union {
899 __le32 sd_rdev;
900 __le32 sd_blocks; /* number of blocks file uses */
901 } __attribute__ ((__packed__)) u;
902 __le32 sd_first_direct_byte; /* first byte of file which is stored
903 in a direct item: except that if it
904 equals 1 it is a symlink and if it
905 equals ~(__u32)0 there is no
906 direct item. The existence of this
907 field really grates on me. Let's
908 replace it with a macro based on
909 sd_size and our tail suppression
910 policy. Someday. -Hans */
911 } __attribute__ ((__packed__));
913 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
914 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
915 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
916 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
917 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
918 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
919 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
920 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
921 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
922 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
923 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
924 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
925 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
926 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
927 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
928 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
929 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
930 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
931 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
932 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
933 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
934 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
935 #define sd_v1_first_direct_byte(sdp) \
936 (le32_to_cpu((sdp)->sd_first_direct_byte))
937 #define set_sd_v1_first_direct_byte(sdp,v) \
938 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
940 /* inode flags stored in sd_attrs (nee sd_reserved) */
942 /* we want common flags to have the same values as in ext2,
943 so chattr(1) will work without problems */
944 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
945 #define REISERFS_APPEND_FL FS_APPEND_FL
946 #define REISERFS_SYNC_FL FS_SYNC_FL
947 #define REISERFS_NOATIME_FL FS_NOATIME_FL
948 #define REISERFS_NODUMP_FL FS_NODUMP_FL
949 #define REISERFS_SECRM_FL FS_SECRM_FL
950 #define REISERFS_UNRM_FL FS_UNRM_FL
951 #define REISERFS_COMPR_FL FS_COMPR_FL
952 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
954 /* persistent flags that file inherits from the parent directory */
955 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
956 REISERFS_SYNC_FL | \
957 REISERFS_NOATIME_FL | \
958 REISERFS_NODUMP_FL | \
959 REISERFS_SECRM_FL | \
960 REISERFS_COMPR_FL | \
961 REISERFS_NOTAIL_FL )
963 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
964 address blocks) */
965 struct stat_data {
966 __le16 sd_mode; /* file type, permissions */
967 __le16 sd_attrs; /* persistent inode flags */
968 __le32 sd_nlink; /* number of hard links */
969 __le64 sd_size; /* file size */
970 __le32 sd_uid; /* owner */
971 __le32 sd_gid; /* group */
972 __le32 sd_atime; /* time of last access */
973 __le32 sd_mtime; /* time file was last modified */
974 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
975 __le32 sd_blocks;
976 union {
977 __le32 sd_rdev;
978 __le32 sd_generation;
979 //__le32 sd_first_direct_byte;
980 /* first byte of file which is stored in a
981 direct item: except that if it equals 1
982 it is a symlink and if it equals
983 ~(__u32)0 there is no direct item. The
984 existence of this field really grates
985 on me. Let's replace it with a macro
986 based on sd_size and our tail
987 suppression policy? */
988 } __attribute__ ((__packed__)) u;
989 } __attribute__ ((__packed__));
991 // this is 44 bytes long
993 #define SD_SIZE (sizeof(struct stat_data))
994 #define SD_V2_SIZE SD_SIZE
995 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
996 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
997 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
998 /* sd_reserved */
999 /* set_sd_reserved */
1000 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1001 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1002 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1003 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1004 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1005 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1006 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1007 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1008 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1009 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1010 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1011 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1012 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1013 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1014 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1015 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1016 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1017 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1018 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1019 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1020 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1021 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1023 /***************************************************************************/
1024 /* DIRECTORY STRUCTURE */
1025 /***************************************************************************/
1027 Picture represents the structure of directory items
1028 ________________________________________________
1029 | Array of | | | | | |
1030 | directory |N-1| N-2 | .... | 1st |0th|
1031 | entry headers | | | | | |
1032 |_______________|___|_____|________|_______|___|
1033 <---- directory entries ------>
1035 First directory item has k_offset component 1. We store "." and ".."
1036 in one item, always, we never split "." and ".." into differing
1037 items. This makes, among other things, the code for removing
1038 directories simpler. */
1039 #define SD_OFFSET 0
1040 #define SD_UNIQUENESS 0
1041 #define DOT_OFFSET 1
1042 #define DOT_DOT_OFFSET 2
1043 #define DIRENTRY_UNIQUENESS 500
1045 /* */
1046 #define FIRST_ITEM_OFFSET 1
1049 Q: How to get key of object pointed to by entry from entry?
1051 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1052 of object, entry points to */
1054 /* NOT IMPLEMENTED:
1055 Directory will someday contain stat data of object */
1057 struct reiserfs_de_head {
1058 __le32 deh_offset; /* third component of the directory entry key */
1059 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1060 by directory entry */
1061 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1062 __le16 deh_location; /* offset of name in the whole item */
1063 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1064 entry is hidden (unlinked) */
1065 } __attribute__ ((__packed__));
1066 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1067 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1068 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1069 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1070 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1071 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1073 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1074 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1075 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1076 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1077 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1079 /* empty directory contains two entries "." and ".." and their headers */
1080 #define EMPTY_DIR_SIZE \
1081 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1083 /* old format directories have this size when empty */
1084 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1086 #define DEH_Statdata 0 /* not used now */
1087 #define DEH_Visible 2
1089 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1090 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1091 # define ADDR_UNALIGNED_BITS (3)
1092 #endif
1094 /* These are only used to manipulate deh_state.
1095 * Because of this, we'll use the ext2_ bit routines,
1096 * since they are little endian */
1097 #ifdef ADDR_UNALIGNED_BITS
1099 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1100 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1102 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1103 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1104 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1106 #else
1108 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1109 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1110 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1112 #endif
1114 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1115 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1116 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1117 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1119 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1120 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1121 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1123 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1124 __le32 par_dirid, __le32 par_objid);
1125 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1126 __le32 par_dirid, __le32 par_objid);
1128 /* array of the entry headers */
1129 /* get item body */
1130 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1131 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1133 /* length of the directory entry in directory item. This define
1134 calculates length of i-th directory entry using directory entry
1135 locations from dir entry head. When it calculates length of 0-th
1136 directory entry, it uses length of whole item in place of entry
1137 location of the non-existent following entry in the calculation.
1138 See picture above.*/
1140 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1141 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1143 static inline int entry_length(const struct buffer_head *bh,
1144 const struct item_head *ih, int pos_in_item)
1146 struct reiserfs_de_head *deh;
1148 deh = B_I_DEH(bh, ih) + pos_in_item;
1149 if (pos_in_item)
1150 return deh_location(deh - 1) - deh_location(deh);
1152 return ih_item_len(ih) - deh_location(deh);
1155 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1156 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1158 /* name by bh, ih and entry_num */
1159 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1161 // two entries per block (at least)
1162 #define REISERFS_MAX_NAME(block_size) 255
1164 /* this structure is used for operations on directory entries. It is
1165 not a disk structure. */
1166 /* When reiserfs_find_entry or search_by_entry_key find directory
1167 entry, they return filled reiserfs_dir_entry structure */
1168 struct reiserfs_dir_entry {
1169 struct buffer_head *de_bh;
1170 int de_item_num;
1171 struct item_head *de_ih;
1172 int de_entry_num;
1173 struct reiserfs_de_head *de_deh;
1174 int de_entrylen;
1175 int de_namelen;
1176 char *de_name;
1177 unsigned long *de_gen_number_bit_string;
1179 __u32 de_dir_id;
1180 __u32 de_objectid;
1182 struct cpu_key de_entry_key;
1185 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1187 /* pointer to file name, stored in entry */
1188 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1190 /* length of name */
1191 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1192 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1194 /* hash value occupies bits from 7 up to 30 */
1195 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1196 /* generation number occupies 7 bits starting from 0 up to 6 */
1197 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1198 #define MAX_GENERATION_NUMBER 127
1200 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1203 * Picture represents an internal node of the reiserfs tree
1204 * ______________________________________________________
1205 * | | Array of | Array of | Free |
1206 * |block | keys | pointers | space |
1207 * | head | N | N+1 | |
1208 * |______|_______________|___________________|___________|
1211 /***************************************************************************/
1212 /* DISK CHILD */
1213 /***************************************************************************/
1214 /* Disk child pointer: The pointer from an internal node of the tree
1215 to a node that is on disk. */
1216 struct disk_child {
1217 __le32 dc_block_number; /* Disk child's block number. */
1218 __le16 dc_size; /* Disk child's used space. */
1219 __le16 dc_reserved;
1222 #define DC_SIZE (sizeof(struct disk_child))
1223 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1224 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1225 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1226 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1228 /* Get disk child by buffer header and position in the tree node. */
1229 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
1230 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1232 /* Get disk child number by buffer header and position in the tree node. */
1233 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1234 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1235 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1237 /* maximal value of field child_size in structure disk_child */
1238 /* child size is the combined size of all items and their headers */
1239 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1241 /* amount of used space in buffer (not including block head) */
1242 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1244 /* max and min number of keys in internal node */
1245 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1246 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1248 /***************************************************************************/
1249 /* PATH STRUCTURES AND DEFINES */
1250 /***************************************************************************/
1252 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1253 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1254 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1255 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1256 position of the block_number of the next node if it is looking through an internal node. If it
1257 is looking through a leaf node bin_search will find the position of the item which has key either
1258 equal to given key, or which is the maximal key less than the given key. */
1260 struct path_element {
1261 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1262 int pe_position; /* Position in the tree node which is placed in the */
1263 /* buffer above. */
1266 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1267 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1268 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1270 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1271 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1273 /* We need to keep track of who the ancestors of nodes are. When we
1274 perform a search we record which nodes were visited while
1275 descending the tree looking for the node we searched for. This list
1276 of nodes is called the path. This information is used while
1277 performing balancing. Note that this path information may become
1278 invalid, and this means we must check it when using it to see if it
1279 is still valid. You'll need to read search_by_key and the comments
1280 in it, especially about decrement_counters_in_path(), to understand
1281 this structure.
1283 Paths make the code so much harder to work with and debug.... An
1284 enormous number of bugs are due to them, and trying to write or modify
1285 code that uses them just makes my head hurt. They are based on an
1286 excessive effort to avoid disturbing the precious VFS code.:-( The
1287 gods only know how we are going to SMP the code that uses them.
1288 znodes are the way! */
1290 #define PATH_READA 0x1 /* do read ahead */
1291 #define PATH_READA_BACK 0x2 /* read backwards */
1293 struct treepath {
1294 int path_length; /* Length of the array above. */
1295 int reada;
1296 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1297 int pos_in_item;
1300 #define pos_in_item(path) ((path)->pos_in_item)
1302 #define INITIALIZE_PATH(var) \
1303 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1305 /* Get path element by path and path position. */
1306 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
1308 /* Get buffer header at the path by path and path position. */
1309 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1311 /* Get position in the element at the path by path and path position. */
1312 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1314 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1315 /* you know, to the person who didn't
1316 write this the macro name does not
1317 at first suggest what it does.
1318 Maybe POSITION_FROM_PATH_END? Or
1319 maybe we should just focus on
1320 dumping paths... -Hans */
1321 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1323 #define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1325 /* in do_balance leaf has h == 0 in contrast with path structure,
1326 where root has level == 0. That is why we need these defines */
1327 #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
1328 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1329 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1330 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1332 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1334 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1335 #define get_ih(path) PATH_PITEM_HEAD(path)
1336 #define get_item_pos(path) PATH_LAST_POSITION(path)
1337 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1338 #define item_moved(ih,path) comp_items(ih, path)
1339 #define path_changed(ih,path) comp_items (ih, path)
1341 /***************************************************************************/
1342 /* MISC */
1343 /***************************************************************************/
1345 /* Size of pointer to the unformatted node. */
1346 #define UNFM_P_SIZE (sizeof(unp_t))
1347 #define UNFM_P_SHIFT 2
1349 // in in-core inode key is stored on le form
1350 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1352 #define MAX_UL_INT 0xffffffff
1353 #define MAX_INT 0x7ffffff
1354 #define MAX_US_INT 0xffff
1356 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1357 #define U32_MAX (~(__u32)0)
1359 static inline loff_t max_reiserfs_offset(struct inode *inode)
1361 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1362 return (loff_t) U32_MAX;
1364 return (loff_t) ((~(__u64) 0) >> 4);
1367 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1368 #define MAX_KEY_OBJECTID MAX_UL_INT
1370 #define MAX_B_NUM MAX_UL_INT
1371 #define MAX_FC_NUM MAX_US_INT
1373 /* the purpose is to detect overflow of an unsigned short */
1374 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1376 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1377 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1378 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1380 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1381 #define get_generation(s) atomic_read (&fs_generation(s))
1382 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1383 #define __fs_changed(gen,s) (gen != get_generation (s))
1384 #define fs_changed(gen,s) \
1385 ({ \
1386 reiserfs_cond_resched(s); \
1387 __fs_changed(gen, s); \
1390 /***************************************************************************/
1391 /* FIXATE NODES */
1392 /***************************************************************************/
1394 #define VI_TYPE_LEFT_MERGEABLE 1
1395 #define VI_TYPE_RIGHT_MERGEABLE 2
1397 /* To make any changes in the tree we always first find node, that
1398 contains item to be changed/deleted or place to insert a new
1399 item. We call this node S. To do balancing we need to decide what
1400 we will shift to left/right neighbor, or to a new node, where new
1401 item will be etc. To make this analysis simpler we build virtual
1402 node. Virtual node is an array of items, that will replace items of
1403 node S. (For instance if we are going to delete an item, virtual
1404 node does not contain it). Virtual node keeps information about
1405 item sizes and types, mergeability of first and last items, sizes
1406 of all entries in directory item. We use this array of items when
1407 calculating what we can shift to neighbors and how many nodes we
1408 have to have if we do not any shiftings, if we shift to left/right
1409 neighbor or to both. */
1410 struct virtual_item {
1411 int vi_index; // index in the array of item operations
1412 unsigned short vi_type; // left/right mergeability
1413 unsigned short vi_item_len; /* length of item that it will have after balancing */
1414 struct item_head *vi_ih;
1415 const char *vi_item; // body of item (old or new)
1416 const void *vi_new_data; // 0 always but paste mode
1417 void *vi_uarea; // item specific area
1420 struct virtual_node {
1421 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
1422 unsigned short vn_nr_item; /* number of items in virtual node */
1423 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1424 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1425 short vn_affected_item_num;
1426 short vn_pos_in_item;
1427 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
1428 const void *vn_data;
1429 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1432 /* used by directory items when creating virtual nodes */
1433 struct direntry_uarea {
1434 int flags;
1435 __u16 entry_count;
1436 __u16 entry_sizes[1];
1437 } __attribute__ ((__packed__));
1439 /***************************************************************************/
1440 /* TREE BALANCE */
1441 /***************************************************************************/
1443 /* This temporary structure is used in tree balance algorithms, and
1444 constructed as we go to the extent that its various parts are
1445 needed. It contains arrays of nodes that can potentially be
1446 involved in the balancing of node S, and parameters that define how
1447 each of the nodes must be balanced. Note that in these algorithms
1448 for balancing the worst case is to need to balance the current node
1449 S and the left and right neighbors and all of their parents plus
1450 create a new node. We implement S1 balancing for the leaf nodes
1451 and S0 balancing for the internal nodes (S1 and S0 are defined in
1452 our papers.)*/
1454 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1456 /* maximum number of FEB blocknrs on a single level */
1457 #define MAX_AMOUNT_NEEDED 2
1459 /* someday somebody will prefix every field in this struct with tb_ */
1460 struct tree_balance {
1461 int tb_mode;
1462 int need_balance_dirty;
1463 struct super_block *tb_sb;
1464 struct reiserfs_transaction_handle *transaction_handle;
1465 struct treepath *tb_path;
1466 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1467 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
1468 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1469 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1470 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1471 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1473 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1474 cur_blknum. */
1475 struct buffer_head *used[MAX_FEB_SIZE];
1476 struct buffer_head *thrown[MAX_FEB_SIZE];
1477 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1478 shifted to the left in order to balance the
1479 current node; for leaves includes item that
1480 will be partially shifted; for internal
1481 nodes, it is the number of child pointers
1482 rather than items. It includes the new item
1483 being created. The code sometimes subtracts
1484 one to get the number of wholly shifted
1485 items for other purposes. */
1486 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1487 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1488 S[h] to its item number within the node CFL[h] */
1489 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1490 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1491 S[h]. A negative value means removing. */
1492 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1493 balancing on the level h of the tree. If 0 then S is
1494 being deleted, if 1 then S is remaining and no new nodes
1495 are being created, if 2 or 3 then 1 or 2 new nodes is
1496 being created */
1498 /* fields that are used only for balancing leaves of the tree */
1499 int cur_blknum; /* number of empty blocks having been already allocated */
1500 int s0num; /* number of items that fall into left most node when S[0] splits */
1501 int s1num; /* number of items that fall into first new node when S[0] splits */
1502 int s2num; /* number of items that fall into second new node when S[0] splits */
1503 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1504 /* most liquid item that cannot be shifted from S[0] entirely */
1505 /* if -1 then nothing will be partially shifted */
1506 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1507 /* most liquid item that cannot be shifted from S[0] entirely */
1508 /* if -1 then nothing will be partially shifted */
1509 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1510 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1511 int s2bytes;
1512 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1513 char *vn_buf; /* kmalloced memory. Used to create
1514 virtual node and keep map of
1515 dirtied bitmap blocks */
1516 int vn_buf_size; /* size of the vn_buf */
1517 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
1519 int fs_gen; /* saved value of `reiserfs_generation' counter
1520 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1521 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1522 struct in_core_key key; /* key pointer, to pass to block allocator or
1523 another low-level subsystem */
1524 #endif
1527 /* These are modes of balancing */
1529 /* When inserting an item. */
1530 #define M_INSERT 'i'
1531 /* When inserting into (directories only) or appending onto an already
1532 existant item. */
1533 #define M_PASTE 'p'
1534 /* When deleting an item. */
1535 #define M_DELETE 'd'
1536 /* When truncating an item or removing an entry from a (directory) item. */
1537 #define M_CUT 'c'
1539 /* used when balancing on leaf level skipped (in reiserfsck) */
1540 #define M_INTERNAL 'n'
1542 /* When further balancing is not needed, then do_balance does not need
1543 to be called. */
1544 #define M_SKIP_BALANCING 's'
1545 #define M_CONVERT 'v'
1547 /* modes of leaf_move_items */
1548 #define LEAF_FROM_S_TO_L 0
1549 #define LEAF_FROM_S_TO_R 1
1550 #define LEAF_FROM_R_TO_L 2
1551 #define LEAF_FROM_L_TO_R 3
1552 #define LEAF_FROM_S_TO_SNEW 4
1554 #define FIRST_TO_LAST 0
1555 #define LAST_TO_FIRST 1
1557 /* used in do_balance for passing parent of node information that has
1558 been gotten from tb struct */
1559 struct buffer_info {
1560 struct tree_balance *tb;
1561 struct buffer_head *bi_bh;
1562 struct buffer_head *bi_parent;
1563 int bi_position;
1566 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
1568 return tb ? tb->tb_sb : NULL;
1571 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
1573 return bi ? sb_from_tb(bi->tb) : NULL;
1576 /* there are 4 types of items: stat data, directory item, indirect, direct.
1577 +-------------------+------------+--------------+------------+
1578 | | k_offset | k_uniqueness | mergeable? |
1579 +-------------------+------------+--------------+------------+
1580 | stat data | 0 | 0 | no |
1581 +-------------------+------------+--------------+------------+
1582 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1583 | non 1st directory | hash value | | yes |
1584 | item | | | |
1585 +-------------------+------------+--------------+------------+
1586 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1587 +-------------------+------------+--------------+------------+
1588 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1589 +-------------------+------------+--------------+------------+
1592 struct item_operations {
1593 int (*bytes_number) (struct item_head * ih, int block_size);
1594 void (*decrement_key) (struct cpu_key *);
1595 int (*is_left_mergeable) (struct reiserfs_key * ih,
1596 unsigned long bsize);
1597 void (*print_item) (struct item_head *, char *item);
1598 void (*check_item) (struct item_head *, char *item);
1600 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1601 int is_affected, int insert_size);
1602 int (*check_left) (struct virtual_item * vi, int free,
1603 int start_skip, int end_skip);
1604 int (*check_right) (struct virtual_item * vi, int free);
1605 int (*part_size) (struct virtual_item * vi, int from, int to);
1606 int (*unit_num) (struct virtual_item * vi);
1607 void (*print_vi) (struct virtual_item * vi);
1610 extern struct item_operations *item_ops[TYPE_ANY + 1];
1612 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1613 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1614 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1615 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1616 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1617 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1618 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1619 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1620 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1621 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1623 #define COMP_SHORT_KEYS comp_short_keys
1625 /* number of blocks pointed to by the indirect item */
1626 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
1628 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1629 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1631 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1633 /* get the item header */
1634 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1636 /* get key */
1637 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1639 /* get the key */
1640 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1642 /* get item body */
1643 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1645 /* get the stat data by the buffer header and the item order */
1646 #define B_N_STAT_DATA(bh,nr) \
1647 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1649 /* following defines use reiserfs buffer header and item header */
1651 /* get stat-data */
1652 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1654 // this is 3976 for size==4096
1655 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1657 /* indirect items consist of entries which contain blocknrs, pos
1658 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1659 blocknr contained by the entry pos points to */
1660 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1661 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1663 struct reiserfs_iget_args {
1664 __u32 objectid;
1665 __u32 dirid;
1668 /***************************************************************************/
1669 /* FUNCTION DECLARATIONS */
1670 /***************************************************************************/
1672 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1674 #define journal_trans_half(blocksize) \
1675 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1677 /* journal.c see journal.c for all the comments here */
1679 /* first block written in a commit. */
1680 struct reiserfs_journal_desc {
1681 __le32 j_trans_id; /* id of commit */
1682 __le32 j_len; /* length of commit. len +1 is the commit block */
1683 __le32 j_mount_id; /* mount id of this trans */
1684 __le32 j_realblock[1]; /* real locations for each block */
1687 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1688 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1689 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1691 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1692 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1693 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1695 /* last block written in a commit */
1696 struct reiserfs_journal_commit {
1697 __le32 j_trans_id; /* must match j_trans_id from the desc block */
1698 __le32 j_len; /* ditto */
1699 __le32 j_realblock[1]; /* real locations for each block */
1702 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1703 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1704 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1706 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1707 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1709 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1710 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1711 ** and this transaction does not need to be replayed.
1713 struct reiserfs_journal_header {
1714 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
1715 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
1716 __le32 j_mount_id;
1717 /* 12 */ struct journal_params jh_journal;
1720 /* biggest tunable defines are right here */
1721 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1722 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1723 #define JOURNAL_TRANS_MIN_DEFAULT 256
1724 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1725 #define JOURNAL_MIN_RATIO 2
1726 #define JOURNAL_MAX_COMMIT_AGE 30
1727 #define JOURNAL_MAX_TRANS_AGE 30
1728 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1729 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
1730 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
1731 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
1733 #ifdef CONFIG_QUOTA
1734 /* We need to update data and inode (atime) */
1735 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1736 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1737 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1738 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1739 /* same as with INIT */
1740 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1741 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1742 #else
1743 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1744 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1745 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1746 #endif
1748 /* both of these can be as low as 1, or as high as you want. The min is the
1749 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1750 ** as needed, and released when transactions are committed. On release, if
1751 ** the current number of nodes is > max, the node is freed, otherwise,
1752 ** it is put on a free list for faster use later.
1754 #define REISERFS_MIN_BITMAP_NODES 10
1755 #define REISERFS_MAX_BITMAP_NODES 100
1757 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1758 #define JBH_HASH_MASK 8191
1760 #define _jhashfn(sb,block) \
1761 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1762 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1763 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1765 // We need these to make journal.c code more readable
1766 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1767 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1768 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1770 enum reiserfs_bh_state_bits {
1771 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1772 BH_JDirty_wait,
1773 BH_JNew, /* disk block was taken off free list before
1774 * being in a finished transaction, or
1775 * written to disk. Can be reused immed. */
1776 BH_JPrepared,
1777 BH_JRestore_dirty,
1778 BH_JTest, // debugging only will go away
1781 BUFFER_FNS(JDirty, journaled);
1782 TAS_BUFFER_FNS(JDirty, journaled);
1783 BUFFER_FNS(JDirty_wait, journal_dirty);
1784 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1785 BUFFER_FNS(JNew, journal_new);
1786 TAS_BUFFER_FNS(JNew, journal_new);
1787 BUFFER_FNS(JPrepared, journal_prepared);
1788 TAS_BUFFER_FNS(JPrepared, journal_prepared);
1789 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1790 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1791 BUFFER_FNS(JTest, journal_test);
1792 TAS_BUFFER_FNS(JTest, journal_test);
1795 ** transaction handle which is passed around for all journal calls
1797 struct reiserfs_transaction_handle {
1798 struct super_block *t_super; /* super for this FS when journal_begin was
1799 called. saves calls to reiserfs_get_super
1800 also used by nested transactions to make
1801 sure they are nesting on the right FS
1802 _must_ be first in the handle
1804 int t_refcount;
1805 int t_blocks_logged; /* number of blocks this writer has logged */
1806 int t_blocks_allocated; /* number of blocks this writer allocated */
1807 unsigned int t_trans_id; /* sanity check, equals the current trans id */
1808 void *t_handle_save; /* save existing current->journal_info */
1809 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1810 should be displaced from others */
1811 struct list_head t_list;
1814 /* used to keep track of ordered and tail writes, attached to the buffer
1815 * head through b_journal_head.
1817 struct reiserfs_jh {
1818 struct reiserfs_journal_list *jl;
1819 struct buffer_head *bh;
1820 struct list_head list;
1823 void reiserfs_free_jh(struct buffer_head *bh);
1824 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1825 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1826 int journal_mark_dirty(struct reiserfs_transaction_handle *,
1827 struct super_block *, struct buffer_head *bh);
1829 static inline int reiserfs_file_data_log(struct inode *inode)
1831 if (reiserfs_data_log(inode->i_sb) ||
1832 (REISERFS_I(inode)->i_flags & i_data_log))
1833 return 1;
1834 return 0;
1837 static inline int reiserfs_transaction_running(struct super_block *s)
1839 struct reiserfs_transaction_handle *th = current->journal_info;
1840 if (th && th->t_super == s)
1841 return 1;
1842 if (th && th->t_super == NULL)
1843 BUG();
1844 return 0;
1847 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1849 return th->t_blocks_allocated - th->t_blocks_logged;
1852 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1853 super_block
1855 int count);
1856 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1857 int reiserfs_commit_page(struct inode *inode, struct page *page,
1858 unsigned from, unsigned to);
1859 int reiserfs_flush_old_commits(struct super_block *);
1860 int reiserfs_commit_for_inode(struct inode *);
1861 int reiserfs_inode_needs_commit(struct inode *);
1862 void reiserfs_update_inode_transaction(struct inode *);
1863 void reiserfs_wait_on_write_block(struct super_block *s);
1864 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1865 void reiserfs_allow_writes(struct super_block *s);
1866 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1867 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1868 int wait);
1869 void reiserfs_restore_prepared_buffer(struct super_block *,
1870 struct buffer_head *bh);
1871 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1872 unsigned int);
1873 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1874 int journal_release_error(struct reiserfs_transaction_handle *,
1875 struct super_block *);
1876 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1877 unsigned long);
1878 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1879 unsigned long);
1880 int journal_mark_freed(struct reiserfs_transaction_handle *,
1881 struct super_block *, b_blocknr_t blocknr);
1882 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1883 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
1884 int bit_nr, int searchall, b_blocknr_t *next);
1885 int journal_begin(struct reiserfs_transaction_handle *,
1886 struct super_block *sb, unsigned long);
1887 int journal_join_abort(struct reiserfs_transaction_handle *,
1888 struct super_block *sb, unsigned long);
1889 void reiserfs_abort_journal(struct super_block *sb, int errno);
1890 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1891 int reiserfs_allocate_list_bitmaps(struct super_block *s,
1892 struct reiserfs_list_bitmap *, unsigned int);
1894 void add_save_link(struct reiserfs_transaction_handle *th,
1895 struct inode *inode, int truncate);
1896 int remove_save_link(struct inode *inode, int truncate);
1898 /* objectid.c */
1899 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1900 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1901 __u32 objectid_to_release);
1902 int reiserfs_convert_objectid_map_v1(struct super_block *);
1904 /* stree.c */
1905 int B_IS_IN_TREE(const struct buffer_head *);
1906 extern void copy_item_head(struct item_head *to,
1907 const struct item_head *from);
1909 // first key is in cpu form, second - le
1910 extern int comp_short_keys(const struct reiserfs_key *le_key,
1911 const struct cpu_key *cpu_key);
1912 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1914 // both are in le form
1915 extern int comp_le_keys(const struct reiserfs_key *,
1916 const struct reiserfs_key *);
1917 extern int comp_short_le_keys(const struct reiserfs_key *,
1918 const struct reiserfs_key *);
1921 // get key version from on disk key - kludge
1923 static inline int le_key_version(const struct reiserfs_key *key)
1925 int type;
1927 type = offset_v2_k_type(&(key->u.k_offset_v2));
1928 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1929 && type != TYPE_DIRENTRY)
1930 return KEY_FORMAT_3_5;
1932 return KEY_FORMAT_3_6;
1936 static inline void copy_key(struct reiserfs_key *to,
1937 const struct reiserfs_key *from)
1939 memcpy(to, from, KEY_SIZE);
1942 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
1943 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
1944 const struct super_block *sb);
1945 int search_by_key(struct super_block *, const struct cpu_key *,
1946 struct treepath *, int);
1947 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1948 int search_for_position_by_key(struct super_block *sb,
1949 const struct cpu_key *cpu_key,
1950 struct treepath *search_path);
1951 extern void decrement_bcount(struct buffer_head *bh);
1952 void decrement_counters_in_path(struct treepath *search_path);
1953 void pathrelse(struct treepath *search_path);
1954 int reiserfs_check_path(struct treepath *p);
1955 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
1957 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1958 struct treepath *path,
1959 const struct cpu_key *key,
1960 struct item_head *ih,
1961 struct inode *inode, const char *body);
1963 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1964 struct treepath *path,
1965 const struct cpu_key *key,
1966 struct inode *inode,
1967 const char *body, int paste_size);
1969 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1970 struct treepath *path,
1971 struct cpu_key *key,
1972 struct inode *inode,
1973 struct page *page, loff_t new_file_size);
1975 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1976 struct treepath *path,
1977 const struct cpu_key *key,
1978 struct inode *inode, struct buffer_head *un_bh);
1980 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1981 struct inode *inode, struct reiserfs_key *key);
1982 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1983 struct inode *inode);
1984 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1985 struct inode *inode, struct page *,
1986 int update_timestamps);
1988 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1989 #define file_size(inode) ((inode)->i_size)
1990 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1992 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1993 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1995 void padd_item(char *item, int total_length, int length);
1997 /* inode.c */
1998 /* args for the create parameter of reiserfs_get_block */
1999 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
2000 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
2001 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
2002 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
2003 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
2004 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
2006 void reiserfs_read_locked_inode(struct inode *inode,
2007 struct reiserfs_iget_args *args);
2008 int reiserfs_find_actor(struct inode *inode, void *p);
2009 int reiserfs_init_locked_inode(struct inode *inode, void *p);
2010 void reiserfs_delete_inode(struct inode *inode);
2011 int reiserfs_write_inode(struct inode *inode, int);
2012 int reiserfs_get_block(struct inode *inode, sector_t block,
2013 struct buffer_head *bh_result, int create);
2014 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2015 int fh_len, int fh_type);
2016 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2017 int fh_len, int fh_type);
2018 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
2019 int connectable);
2021 int reiserfs_truncate_file(struct inode *, int update_timestamps);
2022 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2023 int type, int key_length);
2024 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2025 int version,
2026 loff_t offset, int type, int length, int entry_count);
2027 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2029 struct reiserfs_security_handle;
2030 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
2031 struct inode *dir, int mode,
2032 const char *symname, loff_t i_size,
2033 struct dentry *dentry, struct inode *inode,
2034 struct reiserfs_security_handle *security);
2036 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
2037 struct inode *inode, loff_t size);
2039 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
2040 struct inode *inode)
2042 reiserfs_update_sd_size(th, inode, inode->i_size);
2045 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2046 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
2047 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2049 /* namei.c */
2050 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2051 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
2052 struct treepath *path, struct reiserfs_dir_entry *de);
2053 struct dentry *reiserfs_get_parent(struct dentry *);
2055 #ifdef CONFIG_REISERFS_PROC_INFO
2056 int reiserfs_proc_info_init(struct super_block *sb);
2057 int reiserfs_proc_info_done(struct super_block *sb);
2058 int reiserfs_proc_info_global_init(void);
2059 int reiserfs_proc_info_global_done(void);
2061 #define PROC_EXP( e ) e
2063 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2064 #define PROC_INFO_MAX( sb, field, value ) \
2065 __PINFO( sb ).field = \
2066 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2067 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2068 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2069 #define PROC_INFO_BH_STAT( sb, bh, level ) \
2070 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2071 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2072 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2073 #else
2074 static inline int reiserfs_proc_info_init(struct super_block *sb)
2076 return 0;
2079 static inline int reiserfs_proc_info_done(struct super_block *sb)
2081 return 0;
2084 static inline int reiserfs_proc_info_global_init(void)
2086 return 0;
2089 static inline int reiserfs_proc_info_global_done(void)
2091 return 0;
2094 #define PROC_EXP( e )
2095 #define VOID_V ( ( void ) 0 )
2096 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2097 #define PROC_INFO_INC( sb, field ) VOID_V
2098 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2099 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2100 #endif
2102 /* dir.c */
2103 extern const struct inode_operations reiserfs_dir_inode_operations;
2104 extern const struct inode_operations reiserfs_symlink_inode_operations;
2105 extern const struct inode_operations reiserfs_special_inode_operations;
2106 extern const struct file_operations reiserfs_dir_operations;
2107 int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
2109 /* tail_conversion.c */
2110 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2111 struct treepath *, struct buffer_head *, loff_t);
2112 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2113 struct page *, struct treepath *, const struct cpu_key *,
2114 loff_t, char *);
2115 void reiserfs_unmap_buffer(struct buffer_head *);
2117 /* file.c */
2118 extern const struct inode_operations reiserfs_file_inode_operations;
2119 extern const struct file_operations reiserfs_file_operations;
2120 extern const struct address_space_operations reiserfs_address_space_operations;
2122 /* fix_nodes.c */
2124 int fix_nodes(int n_op_mode, struct tree_balance *tb,
2125 struct item_head *ins_ih, const void *);
2126 void unfix_nodes(struct tree_balance *);
2128 /* prints.c */
2129 void __reiserfs_panic(struct super_block *s, const char *id,
2130 const char *function, const char *fmt, ...)
2131 __attribute__ ((noreturn));
2132 #define reiserfs_panic(s, id, fmt, args...) \
2133 __reiserfs_panic(s, id, __func__, fmt, ##args)
2134 void __reiserfs_error(struct super_block *s, const char *id,
2135 const char *function, const char *fmt, ...);
2136 #define reiserfs_error(s, id, fmt, args...) \
2137 __reiserfs_error(s, id, __func__, fmt, ##args)
2138 void reiserfs_info(struct super_block *s, const char *fmt, ...);
2139 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2140 void print_indirect_item(struct buffer_head *bh, int item_num);
2141 void store_print_tb(struct tree_balance *tb);
2142 void print_cur_tb(char *mes);
2143 void print_de(struct reiserfs_dir_entry *de);
2144 void print_bi(struct buffer_info *bi, char *mes);
2145 #define PRINT_LEAF_ITEMS 1 /* print all items */
2146 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2147 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2148 void print_block(struct buffer_head *bh, ...);
2149 void print_bmap(struct super_block *s, int silent);
2150 void print_bmap_block(int i, char *data, int size, int silent);
2151 /*void print_super_block (struct super_block * s, char * mes);*/
2152 void print_objectid_map(struct super_block *s);
2153 void print_block_head(struct buffer_head *bh, char *mes);
2154 void check_leaf(struct buffer_head *bh);
2155 void check_internal(struct buffer_head *bh);
2156 void print_statistics(struct super_block *s);
2157 char *reiserfs_hashname(int code);
2159 /* lbalance.c */
2160 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2161 int mov_bytes, struct buffer_head *Snew);
2162 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2163 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2164 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2165 int del_num, int del_bytes);
2166 void leaf_insert_into_buf(struct buffer_info *bi, int before,
2167 struct item_head *inserted_item_ih,
2168 const char *inserted_item_body, int zeros_number);
2169 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2170 int pos_in_item, int paste_size, const char *body,
2171 int zeros_number);
2172 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2173 int pos_in_item, int cut_size);
2174 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2175 int new_entry_count, struct reiserfs_de_head *new_dehs,
2176 const char *records, int paste_size);
2177 /* ibalance.c */
2178 int balance_internal(struct tree_balance *, int, int, struct item_head *,
2179 struct buffer_head **);
2181 /* do_balance.c */
2182 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2183 struct buffer_head *bh, int flag);
2184 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2185 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2187 void do_balance(struct tree_balance *tb, struct item_head *ih,
2188 const char *body, int flag);
2189 void reiserfs_invalidate_buffer(struct tree_balance *tb,
2190 struct buffer_head *bh);
2192 int get_left_neighbor_position(struct tree_balance *tb, int h);
2193 int get_right_neighbor_position(struct tree_balance *tb, int h);
2194 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2195 struct buffer_head *, int);
2196 void make_empty_node(struct buffer_info *);
2197 struct buffer_head *get_FEB(struct tree_balance *);
2199 /* bitmap.c */
2201 /* structure contains hints for block allocator, and it is a container for
2202 * arguments, such as node, search path, transaction_handle, etc. */
2203 struct __reiserfs_blocknr_hint {
2204 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
2205 sector_t block; /* file offset, in blocks */
2206 struct in_core_key key;
2207 struct treepath *path; /* search path, used by allocator to deternine search_start by
2208 * various ways */
2209 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2210 * bitmap blocks changes */
2211 b_blocknr_t beg, end;
2212 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2213 * between different block allocator procedures
2214 * (determine_search_start() and others) */
2215 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2216 * function that do actual allocation */
2218 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2219 * formatted/unformatted blocks with/without preallocation */
2220 unsigned preallocate:1;
2223 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2225 int reiserfs_parse_alloc_options(struct super_block *, char *);
2226 void reiserfs_init_alloc_options(struct super_block *s);
2229 * given a directory, this will tell you what packing locality
2230 * to use for a new object underneat it. The locality is returned
2231 * in disk byte order (le).
2233 __le32 reiserfs_choose_packing(struct inode *dir);
2235 int reiserfs_init_bitmap_cache(struct super_block *sb);
2236 void reiserfs_free_bitmap_cache(struct super_block *sb);
2237 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2238 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2239 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2240 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2241 b_blocknr_t, int for_unformatted);
2242 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2243 int);
2244 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2245 b_blocknr_t * new_blocknrs,
2246 int amount_needed)
2248 reiserfs_blocknr_hint_t hint = {
2249 .th = tb->transaction_handle,
2250 .path = tb->tb_path,
2251 .inode = NULL,
2252 .key = tb->key,
2253 .block = 0,
2254 .formatted_node = 1
2256 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2260 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2261 *th, struct inode *inode,
2262 b_blocknr_t * new_blocknrs,
2263 struct treepath *path,
2264 sector_t block)
2266 reiserfs_blocknr_hint_t hint = {
2267 .th = th,
2268 .path = path,
2269 .inode = inode,
2270 .block = block,
2271 .formatted_node = 0,
2272 .preallocate = 0
2274 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2277 #ifdef REISERFS_PREALLOCATE
2278 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2279 *th, struct inode *inode,
2280 b_blocknr_t * new_blocknrs,
2281 struct treepath *path,
2282 sector_t block)
2284 reiserfs_blocknr_hint_t hint = {
2285 .th = th,
2286 .path = path,
2287 .inode = inode,
2288 .block = block,
2289 .formatted_node = 0,
2290 .preallocate = 1
2292 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2295 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2296 struct inode *inode);
2297 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2298 #endif
2300 /* hashes.c */
2301 __u32 keyed_hash(const signed char *msg, int len);
2302 __u32 yura_hash(const signed char *msg, int len);
2303 __u32 r5_hash(const signed char *msg, int len);
2305 /* the ext2 bit routines adjust for big or little endian as
2306 ** appropriate for the arch, so in our laziness we use them rather
2307 ** than using the bit routines they call more directly. These
2308 ** routines must be used when changing on disk bitmaps. */
2309 #define reiserfs_test_and_set_le_bit ext2_set_bit
2310 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2311 #define reiserfs_test_le_bit ext2_test_bit
2312 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2314 /* sometimes reiserfs_truncate may require to allocate few new blocks
2315 to perform indirect2direct conversion. People probably used to
2316 think, that truncate should work without problems on a filesystem
2317 without free disk space. They may complain that they can not
2318 truncate due to lack of free disk space. This spare space allows us
2319 to not worry about it. 500 is probably too much, but it should be
2320 absolutely safe */
2321 #define SPARE_SPACE 500
2323 /* prototypes from ioctl.c */
2324 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2325 long reiserfs_compat_ioctl(struct file *filp,
2326 unsigned int cmd, unsigned long arg);
2327 int reiserfs_unpack(struct inode *inode, struct file *filp);
2329 #endif /* __KERNEL__ */
2331 #endif /* _LINUX_REISER_FS_H */