imx31: define and use MX31_IO_ADDRESS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / perf_event.h
blobc66b34f75eea5f82662cbe3dcba81198248ee56e
1 /*
2 * Performance events:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
26 * attr.type
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
36 PERF_TYPE_MAX, /* non-ABI */
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
44 enum perf_hw_id {
46 * Common hardware events, generalized by the kernel:
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
56 PERF_COUNT_HW_MAX, /* non-ABI */
60 * Generalized hardware cache events:
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
66 enum perf_hw_cache_id {
67 PERF_COUNT_HW_CACHE_L1D = 0,
68 PERF_COUNT_HW_CACHE_L1I = 1,
69 PERF_COUNT_HW_CACHE_LL = 2,
70 PERF_COUNT_HW_CACHE_DTLB = 3,
71 PERF_COUNT_HW_CACHE_ITLB = 4,
72 PERF_COUNT_HW_CACHE_BPU = 5,
74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
77 enum perf_hw_cache_op_id {
78 PERF_COUNT_HW_CACHE_OP_READ = 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
85 enum perf_hw_cache_op_result_id {
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
96 * well):
98 enum perf_sw_ids {
99 PERF_COUNT_SW_CPU_CLOCK = 0,
100 PERF_COUNT_SW_TASK_CLOCK = 1,
101 PERF_COUNT_SW_PAGE_FAULTS = 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
107 PERF_COUNT_SW_EMULATION_FAULTS = 8,
109 PERF_COUNT_SW_MAX, /* non-ABI */
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
116 enum perf_event_sample_format {
117 PERF_SAMPLE_IP = 1U << 0,
118 PERF_SAMPLE_TID = 1U << 1,
119 PERF_SAMPLE_TIME = 1U << 2,
120 PERF_SAMPLE_ADDR = 1U << 3,
121 PERF_SAMPLE_READ = 1U << 4,
122 PERF_SAMPLE_CALLCHAIN = 1U << 5,
123 PERF_SAMPLE_ID = 1U << 6,
124 PERF_SAMPLE_CPU = 1U << 7,
125 PERF_SAMPLE_PERIOD = 1U << 8,
126 PERF_SAMPLE_STREAM_ID = 1U << 9,
127 PERF_SAMPLE_RAW = 1U << 10,
129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
136 * struct read_format {
137 * { u64 value;
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
143 * { u64 nr;
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
146 * { u64 value;
147 * { u64 id; } && PERF_FORMAT_ID
148 * } cntr[nr];
149 * } && PERF_FORMAT_GROUP
150 * };
152 enum perf_event_read_format {
153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
155 PERF_FORMAT_ID = 1U << 2,
156 PERF_FORMAT_GROUP = 1U << 3,
158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
164 * Hardware event_id to monitor via a performance monitoring event:
166 struct perf_event_attr {
169 * Major type: hardware/software/tracepoint/etc.
171 __u32 type;
174 * Size of the attr structure, for fwd/bwd compat.
176 __u32 size;
179 * Type specific configuration information.
181 __u64 config;
183 union {
184 __u64 sample_period;
185 __u64 sample_freq;
188 __u64 sample_type;
189 __u64 read_format;
191 __u64 disabled : 1, /* off by default */
192 inherit : 1, /* children inherit it */
193 pinned : 1, /* must always be on PMU */
194 exclusive : 1, /* only group on PMU */
195 exclude_user : 1, /* don't count user */
196 exclude_kernel : 1, /* ditto kernel */
197 exclude_hv : 1, /* ditto hypervisor */
198 exclude_idle : 1, /* don't count when idle */
199 mmap : 1, /* include mmap data */
200 comm : 1, /* include comm data */
201 freq : 1, /* use freq, not period */
202 inherit_stat : 1, /* per task counts */
203 enable_on_exec : 1, /* next exec enables */
204 task : 1, /* trace fork/exit */
205 watermark : 1, /* wakeup_watermark */
207 __reserved_1 : 49;
209 union {
210 __u32 wakeup_events; /* wakeup every n events */
211 __u32 wakeup_watermark; /* bytes before wakeup */
214 __u32 __reserved_2;
216 __u64 bp_addr;
217 __u32 bp_type;
218 __u32 bp_len;
222 * Ioctls that can be done on a perf event fd:
224 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
225 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
226 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
227 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
228 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
229 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
230 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
232 enum perf_event_ioc_flags {
233 PERF_IOC_FLAG_GROUP = 1U << 0,
237 * Structure of the page that can be mapped via mmap
239 struct perf_event_mmap_page {
240 __u32 version; /* version number of this structure */
241 __u32 compat_version; /* lowest version this is compat with */
244 * Bits needed to read the hw events in user-space.
246 * u32 seq;
247 * s64 count;
249 * do {
250 * seq = pc->lock;
252 * barrier()
253 * if (pc->index) {
254 * count = pmc_read(pc->index - 1);
255 * count += pc->offset;
256 * } else
257 * goto regular_read;
259 * barrier();
260 * } while (pc->lock != seq);
262 * NOTE: for obvious reason this only works on self-monitoring
263 * processes.
265 __u32 lock; /* seqlock for synchronization */
266 __u32 index; /* hardware event identifier */
267 __s64 offset; /* add to hardware event value */
268 __u64 time_enabled; /* time event active */
269 __u64 time_running; /* time event on cpu */
272 * Hole for extension of the self monitor capabilities
275 __u64 __reserved[123]; /* align to 1k */
278 * Control data for the mmap() data buffer.
280 * User-space reading the @data_head value should issue an rmb(), on
281 * SMP capable platforms, after reading this value -- see
282 * perf_event_wakeup().
284 * When the mapping is PROT_WRITE the @data_tail value should be
285 * written by userspace to reflect the last read data. In this case
286 * the kernel will not over-write unread data.
288 __u64 data_head; /* head in the data section */
289 __u64 data_tail; /* user-space written tail */
292 #define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0)
293 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
294 #define PERF_RECORD_MISC_KERNEL (1 << 0)
295 #define PERF_RECORD_MISC_USER (2 << 0)
296 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
298 struct perf_event_header {
299 __u32 type;
300 __u16 misc;
301 __u16 size;
304 enum perf_event_type {
307 * The MMAP events record the PROT_EXEC mappings so that we can
308 * correlate userspace IPs to code. They have the following structure:
310 * struct {
311 * struct perf_event_header header;
313 * u32 pid, tid;
314 * u64 addr;
315 * u64 len;
316 * u64 pgoff;
317 * char filename[];
318 * };
320 PERF_RECORD_MMAP = 1,
323 * struct {
324 * struct perf_event_header header;
325 * u64 id;
326 * u64 lost;
327 * };
329 PERF_RECORD_LOST = 2,
332 * struct {
333 * struct perf_event_header header;
335 * u32 pid, tid;
336 * char comm[];
337 * };
339 PERF_RECORD_COMM = 3,
342 * struct {
343 * struct perf_event_header header;
344 * u32 pid, ppid;
345 * u32 tid, ptid;
346 * u64 time;
347 * };
349 PERF_RECORD_EXIT = 4,
352 * struct {
353 * struct perf_event_header header;
354 * u64 time;
355 * u64 id;
356 * u64 stream_id;
357 * };
359 PERF_RECORD_THROTTLE = 5,
360 PERF_RECORD_UNTHROTTLE = 6,
363 * struct {
364 * struct perf_event_header header;
365 * u32 pid, ppid;
366 * u32 tid, ptid;
367 * u64 time;
368 * };
370 PERF_RECORD_FORK = 7,
373 * struct {
374 * struct perf_event_header header;
375 * u32 pid, tid;
377 * struct read_format values;
378 * };
380 PERF_RECORD_READ = 8,
383 * struct {
384 * struct perf_event_header header;
386 * { u64 ip; } && PERF_SAMPLE_IP
387 * { u32 pid, tid; } && PERF_SAMPLE_TID
388 * { u64 time; } && PERF_SAMPLE_TIME
389 * { u64 addr; } && PERF_SAMPLE_ADDR
390 * { u64 id; } && PERF_SAMPLE_ID
391 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
392 * { u32 cpu, res; } && PERF_SAMPLE_CPU
393 * { u64 period; } && PERF_SAMPLE_PERIOD
395 * { struct read_format values; } && PERF_SAMPLE_READ
397 * { u64 nr,
398 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
401 * # The RAW record below is opaque data wrt the ABI
403 * # That is, the ABI doesn't make any promises wrt to
404 * # the stability of its content, it may vary depending
405 * # on event, hardware, kernel version and phase of
406 * # the moon.
408 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
411 * { u32 size;
412 * char data[size];}&& PERF_SAMPLE_RAW
413 * };
415 PERF_RECORD_SAMPLE = 9,
417 PERF_RECORD_MAX, /* non-ABI */
420 enum perf_callchain_context {
421 PERF_CONTEXT_HV = (__u64)-32,
422 PERF_CONTEXT_KERNEL = (__u64)-128,
423 PERF_CONTEXT_USER = (__u64)-512,
425 PERF_CONTEXT_GUEST = (__u64)-2048,
426 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
427 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
429 PERF_CONTEXT_MAX = (__u64)-4095,
432 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
433 #define PERF_FLAG_FD_OUTPUT (1U << 1)
435 #ifdef __KERNEL__
437 * Kernel-internal data types and definitions:
440 #ifdef CONFIG_PERF_EVENTS
441 # include <asm/perf_event.h>
442 #endif
444 #ifdef CONFIG_HAVE_HW_BREAKPOINT
445 #include <asm/hw_breakpoint.h>
446 #endif
448 #include <linux/list.h>
449 #include <linux/mutex.h>
450 #include <linux/rculist.h>
451 #include <linux/rcupdate.h>
452 #include <linux/spinlock.h>
453 #include <linux/hrtimer.h>
454 #include <linux/fs.h>
455 #include <linux/pid_namespace.h>
456 #include <linux/workqueue.h>
457 #include <asm/atomic.h>
459 #define PERF_MAX_STACK_DEPTH 255
461 struct perf_callchain_entry {
462 __u64 nr;
463 __u64 ip[PERF_MAX_STACK_DEPTH];
466 struct perf_raw_record {
467 u32 size;
468 void *data;
471 struct task_struct;
474 * struct hw_perf_event - performance event hardware details:
476 struct hw_perf_event {
477 #ifdef CONFIG_PERF_EVENTS
478 union {
479 struct { /* hardware */
480 u64 config;
481 unsigned long config_base;
482 unsigned long event_base;
483 int idx;
485 struct { /* software */
486 s64 remaining;
487 struct hrtimer hrtimer;
489 #ifdef CONFIG_HAVE_HW_BREAKPOINT
490 union { /* breakpoint */
491 struct arch_hw_breakpoint info;
493 #endif
495 atomic64_t prev_count;
496 u64 sample_period;
497 u64 last_period;
498 atomic64_t period_left;
499 u64 interrupts;
501 u64 freq_count;
502 u64 freq_interrupts;
503 u64 freq_stamp;
504 #endif
507 struct perf_event;
510 * struct pmu - generic performance monitoring unit
512 struct pmu {
513 int (*enable) (struct perf_event *event);
514 void (*disable) (struct perf_event *event);
515 void (*read) (struct perf_event *event);
516 void (*unthrottle) (struct perf_event *event);
520 * enum perf_event_active_state - the states of a event
522 enum perf_event_active_state {
523 PERF_EVENT_STATE_ERROR = -2,
524 PERF_EVENT_STATE_OFF = -1,
525 PERF_EVENT_STATE_INACTIVE = 0,
526 PERF_EVENT_STATE_ACTIVE = 1,
529 struct file;
531 struct perf_mmap_data {
532 struct rcu_head rcu_head;
533 #ifdef CONFIG_PERF_USE_VMALLOC
534 struct work_struct work;
535 #endif
536 int data_order;
537 int nr_pages; /* nr of data pages */
538 int writable; /* are we writable */
539 int nr_locked; /* nr pages mlocked */
541 atomic_t poll; /* POLL_ for wakeups */
542 atomic_t events; /* event_id limit */
544 atomic_long_t head; /* write position */
545 atomic_long_t done_head; /* completed head */
547 atomic_t lock; /* concurrent writes */
548 atomic_t wakeup; /* needs a wakeup */
549 atomic_t lost; /* nr records lost */
551 long watermark; /* wakeup watermark */
553 struct perf_event_mmap_page *user_page;
554 void *data_pages[0];
557 struct perf_pending_entry {
558 struct perf_pending_entry *next;
559 void (*func)(struct perf_pending_entry *);
562 struct perf_sample_data;
564 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
565 struct perf_sample_data *,
566 struct pt_regs *regs);
569 * struct perf_event - performance event kernel representation:
571 struct perf_event {
572 #ifdef CONFIG_PERF_EVENTS
573 struct list_head group_entry;
574 struct list_head event_entry;
575 struct list_head sibling_list;
576 int nr_siblings;
577 struct perf_event *group_leader;
578 struct perf_event *output;
579 const struct pmu *pmu;
581 enum perf_event_active_state state;
582 atomic64_t count;
585 * These are the total time in nanoseconds that the event
586 * has been enabled (i.e. eligible to run, and the task has
587 * been scheduled in, if this is a per-task event)
588 * and running (scheduled onto the CPU), respectively.
590 * They are computed from tstamp_enabled, tstamp_running and
591 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
593 u64 total_time_enabled;
594 u64 total_time_running;
597 * These are timestamps used for computing total_time_enabled
598 * and total_time_running when the event is in INACTIVE or
599 * ACTIVE state, measured in nanoseconds from an arbitrary point
600 * in time.
601 * tstamp_enabled: the notional time when the event was enabled
602 * tstamp_running: the notional time when the event was scheduled on
603 * tstamp_stopped: in INACTIVE state, the notional time when the
604 * event was scheduled off.
606 u64 tstamp_enabled;
607 u64 tstamp_running;
608 u64 tstamp_stopped;
610 struct perf_event_attr attr;
611 struct hw_perf_event hw;
613 struct perf_event_context *ctx;
614 struct file *filp;
617 * These accumulate total time (in nanoseconds) that children
618 * events have been enabled and running, respectively.
620 atomic64_t child_total_time_enabled;
621 atomic64_t child_total_time_running;
624 * Protect attach/detach and child_list:
626 struct mutex child_mutex;
627 struct list_head child_list;
628 struct perf_event *parent;
630 int oncpu;
631 int cpu;
633 struct list_head owner_entry;
634 struct task_struct *owner;
636 /* mmap bits */
637 struct mutex mmap_mutex;
638 atomic_t mmap_count;
639 struct perf_mmap_data *data;
641 /* poll related */
642 wait_queue_head_t waitq;
643 struct fasync_struct *fasync;
645 /* delayed work for NMIs and such */
646 int pending_wakeup;
647 int pending_kill;
648 int pending_disable;
649 struct perf_pending_entry pending;
651 atomic_t event_limit;
653 void (*destroy)(struct perf_event *);
654 struct rcu_head rcu_head;
656 struct pid_namespace *ns;
657 u64 id;
659 perf_overflow_handler_t overflow_handler;
661 #ifdef CONFIG_EVENT_PROFILE
662 struct event_filter *filter;
663 #endif
665 #endif /* CONFIG_PERF_EVENTS */
669 * struct perf_event_context - event context structure
671 * Used as a container for task events and CPU events as well:
673 struct perf_event_context {
675 * Protect the states of the events in the list,
676 * nr_active, and the list:
678 raw_spinlock_t lock;
680 * Protect the list of events. Locking either mutex or lock
681 * is sufficient to ensure the list doesn't change; to change
682 * the list you need to lock both the mutex and the spinlock.
684 struct mutex mutex;
686 struct list_head group_list;
687 struct list_head event_list;
688 int nr_events;
689 int nr_active;
690 int is_active;
691 int nr_stat;
692 atomic_t refcount;
693 struct task_struct *task;
696 * Context clock, runs when context enabled.
698 u64 time;
699 u64 timestamp;
702 * These fields let us detect when two contexts have both
703 * been cloned (inherited) from a common ancestor.
705 struct perf_event_context *parent_ctx;
706 u64 parent_gen;
707 u64 generation;
708 int pin_count;
709 struct rcu_head rcu_head;
713 * struct perf_event_cpu_context - per cpu event context structure
715 struct perf_cpu_context {
716 struct perf_event_context ctx;
717 struct perf_event_context *task_ctx;
718 int active_oncpu;
719 int max_pertask;
720 int exclusive;
723 * Recursion avoidance:
725 * task, softirq, irq, nmi context
727 int recursion[4];
730 struct perf_output_handle {
731 struct perf_event *event;
732 struct perf_mmap_data *data;
733 unsigned long head;
734 unsigned long offset;
735 int nmi;
736 int sample;
737 int locked;
740 #ifdef CONFIG_PERF_EVENTS
743 * Set by architecture code:
745 extern int perf_max_events;
747 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
749 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
750 extern void perf_event_task_sched_out(struct task_struct *task,
751 struct task_struct *next, int cpu);
752 extern void perf_event_task_tick(struct task_struct *task, int cpu);
753 extern int perf_event_init_task(struct task_struct *child);
754 extern void perf_event_exit_task(struct task_struct *child);
755 extern void perf_event_free_task(struct task_struct *task);
756 extern void set_perf_event_pending(void);
757 extern void perf_event_do_pending(void);
758 extern void perf_event_print_debug(void);
759 extern void __perf_disable(void);
760 extern bool __perf_enable(void);
761 extern void perf_disable(void);
762 extern void perf_enable(void);
763 extern int perf_event_task_disable(void);
764 extern int perf_event_task_enable(void);
765 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
766 struct perf_cpu_context *cpuctx,
767 struct perf_event_context *ctx, int cpu);
768 extern void perf_event_update_userpage(struct perf_event *event);
769 extern int perf_event_release_kernel(struct perf_event *event);
770 extern struct perf_event *
771 perf_event_create_kernel_counter(struct perf_event_attr *attr,
772 int cpu,
773 pid_t pid,
774 perf_overflow_handler_t callback);
775 extern u64 perf_event_read_value(struct perf_event *event,
776 u64 *enabled, u64 *running);
778 struct perf_sample_data {
779 u64 type;
781 u64 ip;
782 struct {
783 u32 pid;
784 u32 tid;
785 } tid_entry;
786 u64 time;
787 u64 addr;
788 u64 id;
789 u64 stream_id;
790 struct {
791 u32 cpu;
792 u32 reserved;
793 } cpu_entry;
794 u64 period;
795 struct perf_callchain_entry *callchain;
796 struct perf_raw_record *raw;
799 extern void perf_output_sample(struct perf_output_handle *handle,
800 struct perf_event_header *header,
801 struct perf_sample_data *data,
802 struct perf_event *event);
803 extern void perf_prepare_sample(struct perf_event_header *header,
804 struct perf_sample_data *data,
805 struct perf_event *event,
806 struct pt_regs *regs);
808 extern int perf_event_overflow(struct perf_event *event, int nmi,
809 struct perf_sample_data *data,
810 struct pt_regs *regs);
813 * Return 1 for a software event, 0 for a hardware event
815 static inline int is_software_event(struct perf_event *event)
817 return (event->attr.type != PERF_TYPE_RAW) &&
818 (event->attr.type != PERF_TYPE_HARDWARE) &&
819 (event->attr.type != PERF_TYPE_HW_CACHE);
822 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
824 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
826 static inline void
827 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
829 if (atomic_read(&perf_swevent_enabled[event_id]))
830 __perf_sw_event(event_id, nr, nmi, regs, addr);
833 extern void __perf_event_mmap(struct vm_area_struct *vma);
835 static inline void perf_event_mmap(struct vm_area_struct *vma)
837 if (vma->vm_flags & VM_EXEC)
838 __perf_event_mmap(vma);
841 extern void perf_event_comm(struct task_struct *tsk);
842 extern void perf_event_fork(struct task_struct *tsk);
844 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
846 extern int sysctl_perf_event_paranoid;
847 extern int sysctl_perf_event_mlock;
848 extern int sysctl_perf_event_sample_rate;
850 extern void perf_event_init(void);
851 extern void perf_tp_event(int event_id, u64 addr, u64 count,
852 void *record, int entry_size);
853 extern void perf_bp_event(struct perf_event *event, void *data);
855 #ifndef perf_misc_flags
856 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
857 PERF_RECORD_MISC_KERNEL)
858 #define perf_instruction_pointer(regs) instruction_pointer(regs)
859 #endif
861 extern int perf_output_begin(struct perf_output_handle *handle,
862 struct perf_event *event, unsigned int size,
863 int nmi, int sample);
864 extern void perf_output_end(struct perf_output_handle *handle);
865 extern void perf_output_copy(struct perf_output_handle *handle,
866 const void *buf, unsigned int len);
867 extern int perf_swevent_get_recursion_context(void);
868 extern void perf_swevent_put_recursion_context(int rctx);
869 extern void perf_event_enable(struct perf_event *event);
870 extern void perf_event_disable(struct perf_event *event);
871 #else
872 static inline void
873 perf_event_task_sched_in(struct task_struct *task, int cpu) { }
874 static inline void
875 perf_event_task_sched_out(struct task_struct *task,
876 struct task_struct *next, int cpu) { }
877 static inline void
878 perf_event_task_tick(struct task_struct *task, int cpu) { }
879 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
880 static inline void perf_event_exit_task(struct task_struct *child) { }
881 static inline void perf_event_free_task(struct task_struct *task) { }
882 static inline void perf_event_do_pending(void) { }
883 static inline void perf_event_print_debug(void) { }
884 static inline void perf_disable(void) { }
885 static inline void perf_enable(void) { }
886 static inline int perf_event_task_disable(void) { return -EINVAL; }
887 static inline int perf_event_task_enable(void) { return -EINVAL; }
889 static inline void
890 perf_sw_event(u32 event_id, u64 nr, int nmi,
891 struct pt_regs *regs, u64 addr) { }
892 static inline void
893 perf_bp_event(struct perf_event *event, void *data) { }
895 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
896 static inline void perf_event_comm(struct task_struct *tsk) { }
897 static inline void perf_event_fork(struct task_struct *tsk) { }
898 static inline void perf_event_init(void) { }
899 static inline int perf_swevent_get_recursion_context(void) { return -1; }
900 static inline void perf_swevent_put_recursion_context(int rctx) { }
901 static inline void perf_event_enable(struct perf_event *event) { }
902 static inline void perf_event_disable(struct perf_event *event) { }
903 #endif
905 #define perf_output_put(handle, x) \
906 perf_output_copy((handle), &(x), sizeof(x))
908 #endif /* __KERNEL__ */
909 #endif /* _LINUX_PERF_EVENT_H */