imx31: define and use MX31_IO_ADDRESS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / percpu.h
blobcf5efbcf716c8cecf74d4d315e2619f6fdcfa1f4
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
4 #include <linux/preempt.h>
5 #include <linux/slab.h> /* For kmalloc() */
6 #include <linux/smp.h>
7 #include <linux/cpumask.h>
8 #include <linux/pfn.h>
10 #include <asm/percpu.h>
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE 0
17 #endif
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23 #endif
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
29 #define get_cpu_var(var) (*({ \
30 extern int simple_identifier_##var(void); \
31 preempt_disable(); \
32 &__get_cpu_var(var); }))
33 #define put_cpu_var(var) preempt_enable()
35 #ifdef CONFIG_SMP
37 /* minimum unit size, also is the maximum supported allocation size */
38 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
41 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
42 * back on the first chunk for dynamic percpu allocation if arch is
43 * manually allocating and mapping it for faster access (as a part of
44 * large page mapping for example).
46 * The following values give between one and two pages of free space
47 * after typical minimal boot (2-way SMP, single disk and NIC) with
48 * both defconfig and a distro config on x86_64 and 32. More
49 * intelligent way to determine this would be nice.
51 #if BITS_PER_LONG > 32
52 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
53 #else
54 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
55 #endif
57 extern void *pcpu_base_addr;
58 extern const unsigned long *pcpu_unit_offsets;
60 struct pcpu_group_info {
61 int nr_units; /* aligned # of units */
62 unsigned long base_offset; /* base address offset */
63 unsigned int *cpu_map; /* unit->cpu map, empty
64 * entries contain NR_CPUS */
67 struct pcpu_alloc_info {
68 size_t static_size;
69 size_t reserved_size;
70 size_t dyn_size;
71 size_t unit_size;
72 size_t atom_size;
73 size_t alloc_size;
74 size_t __ai_size; /* internal, don't use */
75 int nr_groups; /* 0 if grouping unnecessary */
76 struct pcpu_group_info groups[];
79 enum pcpu_fc {
80 PCPU_FC_AUTO,
81 PCPU_FC_EMBED,
82 PCPU_FC_PAGE,
84 PCPU_FC_NR,
86 extern const char *pcpu_fc_names[PCPU_FC_NR];
88 extern enum pcpu_fc pcpu_chosen_fc;
90 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
91 size_t align);
92 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
93 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
94 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
96 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
97 int nr_units);
98 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
100 extern struct pcpu_alloc_info * __init pcpu_build_alloc_info(
101 size_t reserved_size, ssize_t dyn_size,
102 size_t atom_size,
103 pcpu_fc_cpu_distance_fn_t cpu_distance_fn);
105 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
106 void *base_addr);
108 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
109 extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
110 size_t atom_size,
111 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
112 pcpu_fc_alloc_fn_t alloc_fn,
113 pcpu_fc_free_fn_t free_fn);
114 #endif
116 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
117 extern int __init pcpu_page_first_chunk(size_t reserved_size,
118 pcpu_fc_alloc_fn_t alloc_fn,
119 pcpu_fc_free_fn_t free_fn,
120 pcpu_fc_populate_pte_fn_t populate_pte_fn);
121 #endif
124 * Use this to get to a cpu's version of the per-cpu object
125 * dynamically allocated. Non-atomic access to the current CPU's
126 * version should probably be combined with get_cpu()/put_cpu().
128 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
130 extern void *__alloc_reserved_percpu(size_t size, size_t align);
131 extern void *__alloc_percpu(size_t size, size_t align);
132 extern void free_percpu(void *__pdata);
133 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
135 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
136 extern void __init setup_per_cpu_areas(void);
137 #endif
139 #else /* CONFIG_SMP */
141 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
143 static inline void *__alloc_percpu(size_t size, size_t align)
146 * Can't easily make larger alignment work with kmalloc. WARN
147 * on it. Larger alignment should only be used for module
148 * percpu sections on SMP for which this path isn't used.
150 WARN_ON_ONCE(align > SMP_CACHE_BYTES);
151 return kzalloc(size, GFP_KERNEL);
154 static inline void free_percpu(void *p)
156 kfree(p);
159 static inline phys_addr_t per_cpu_ptr_to_phys(void *addr)
161 return __pa(addr);
164 static inline void __init setup_per_cpu_areas(void) { }
166 static inline void *pcpu_lpage_remapped(void *kaddr)
168 return NULL;
171 #endif /* CONFIG_SMP */
173 #define alloc_percpu(type) \
174 (typeof(type) *)__alloc_percpu(sizeof(type), __alignof__(type))
177 * Optional methods for optimized non-lvalue per-cpu variable access.
179 * @var can be a percpu variable or a field of it and its size should
180 * equal char, int or long. percpu_read() evaluates to a lvalue and
181 * all others to void.
183 * These operations are guaranteed to be atomic w.r.t. preemption.
184 * The generic versions use plain get/put_cpu_var(). Archs are
185 * encouraged to implement single-instruction alternatives which don't
186 * require preemption protection.
188 #ifndef percpu_read
189 # define percpu_read(var) \
190 ({ \
191 typeof(per_cpu_var(var)) __tmp_var__; \
192 __tmp_var__ = get_cpu_var(var); \
193 put_cpu_var(var); \
194 __tmp_var__; \
196 #endif
198 #define __percpu_generic_to_op(var, val, op) \
199 do { \
200 get_cpu_var(var) op val; \
201 put_cpu_var(var); \
202 } while (0)
204 #ifndef percpu_write
205 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
206 #endif
208 #ifndef percpu_add
209 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
210 #endif
212 #ifndef percpu_sub
213 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
214 #endif
216 #ifndef percpu_and
217 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
218 #endif
220 #ifndef percpu_or
221 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
222 #endif
224 #ifndef percpu_xor
225 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
226 #endif
229 * Branching function to split up a function into a set of functions that
230 * are called for different scalar sizes of the objects handled.
233 extern void __bad_size_call_parameter(void);
235 #define __pcpu_size_call_return(stem, variable) \
236 ({ typeof(variable) pscr_ret__; \
237 switch(sizeof(variable)) { \
238 case 1: pscr_ret__ = stem##1(variable);break; \
239 case 2: pscr_ret__ = stem##2(variable);break; \
240 case 4: pscr_ret__ = stem##4(variable);break; \
241 case 8: pscr_ret__ = stem##8(variable);break; \
242 default: \
243 __bad_size_call_parameter();break; \
245 pscr_ret__; \
248 #define __pcpu_size_call(stem, variable, ...) \
249 do { \
250 switch(sizeof(variable)) { \
251 case 1: stem##1(variable, __VA_ARGS__);break; \
252 case 2: stem##2(variable, __VA_ARGS__);break; \
253 case 4: stem##4(variable, __VA_ARGS__);break; \
254 case 8: stem##8(variable, __VA_ARGS__);break; \
255 default: \
256 __bad_size_call_parameter();break; \
258 } while (0)
261 * Optimized manipulation for memory allocated through the per cpu
262 * allocator or for addresses of per cpu variables (can be determined
263 * using per_cpu_var(xx).
265 * These operation guarantee exclusivity of access for other operations
266 * on the *same* processor. The assumption is that per cpu data is only
267 * accessed by a single processor instance (the current one).
269 * The first group is used for accesses that must be done in a
270 * preemption safe way since we know that the context is not preempt
271 * safe. Interrupts may occur. If the interrupt modifies the variable
272 * too then RMW actions will not be reliable.
274 * The arch code can provide optimized functions in two ways:
276 * 1. Override the function completely. F.e. define this_cpu_add().
277 * The arch must then ensure that the various scalar format passed
278 * are handled correctly.
280 * 2. Provide functions for certain scalar sizes. F.e. provide
281 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
282 * sized RMW actions. If arch code does not provide operations for
283 * a scalar size then the fallback in the generic code will be
284 * used.
287 #define _this_cpu_generic_read(pcp) \
288 ({ typeof(pcp) ret__; \
289 preempt_disable(); \
290 ret__ = *this_cpu_ptr(&(pcp)); \
291 preempt_enable(); \
292 ret__; \
295 #ifndef this_cpu_read
296 # ifndef this_cpu_read_1
297 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
298 # endif
299 # ifndef this_cpu_read_2
300 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
301 # endif
302 # ifndef this_cpu_read_4
303 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
304 # endif
305 # ifndef this_cpu_read_8
306 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
307 # endif
308 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
309 #endif
311 #define _this_cpu_generic_to_op(pcp, val, op) \
312 do { \
313 preempt_disable(); \
314 *__this_cpu_ptr(&pcp) op val; \
315 preempt_enable(); \
316 } while (0)
318 #ifndef this_cpu_write
319 # ifndef this_cpu_write_1
320 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
321 # endif
322 # ifndef this_cpu_write_2
323 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
324 # endif
325 # ifndef this_cpu_write_4
326 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
327 # endif
328 # ifndef this_cpu_write_8
329 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
330 # endif
331 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
332 #endif
334 #ifndef this_cpu_add
335 # ifndef this_cpu_add_1
336 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
337 # endif
338 # ifndef this_cpu_add_2
339 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
340 # endif
341 # ifndef this_cpu_add_4
342 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
343 # endif
344 # ifndef this_cpu_add_8
345 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
346 # endif
347 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
348 #endif
350 #ifndef this_cpu_sub
351 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
352 #endif
354 #ifndef this_cpu_inc
355 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
356 #endif
358 #ifndef this_cpu_dec
359 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
360 #endif
362 #ifndef this_cpu_and
363 # ifndef this_cpu_and_1
364 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
365 # endif
366 # ifndef this_cpu_and_2
367 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
368 # endif
369 # ifndef this_cpu_and_4
370 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
371 # endif
372 # ifndef this_cpu_and_8
373 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
374 # endif
375 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
376 #endif
378 #ifndef this_cpu_or
379 # ifndef this_cpu_or_1
380 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
381 # endif
382 # ifndef this_cpu_or_2
383 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
384 # endif
385 # ifndef this_cpu_or_4
386 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
387 # endif
388 # ifndef this_cpu_or_8
389 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
390 # endif
391 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
392 #endif
394 #ifndef this_cpu_xor
395 # ifndef this_cpu_xor_1
396 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
397 # endif
398 # ifndef this_cpu_xor_2
399 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
400 # endif
401 # ifndef this_cpu_xor_4
402 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
403 # endif
404 # ifndef this_cpu_xor_8
405 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
406 # endif
407 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
408 #endif
411 * Generic percpu operations that do not require preemption handling.
412 * Either we do not care about races or the caller has the
413 * responsibility of handling preemptions issues. Arch code can still
414 * override these instructions since the arch per cpu code may be more
415 * efficient and may actually get race freeness for free (that is the
416 * case for x86 for example).
418 * If there is no other protection through preempt disable and/or
419 * disabling interupts then one of these RMW operations can show unexpected
420 * behavior because the execution thread was rescheduled on another processor
421 * or an interrupt occurred and the same percpu variable was modified from
422 * the interrupt context.
424 #ifndef __this_cpu_read
425 # ifndef __this_cpu_read_1
426 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
427 # endif
428 # ifndef __this_cpu_read_2
429 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
430 # endif
431 # ifndef __this_cpu_read_4
432 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
433 # endif
434 # ifndef __this_cpu_read_8
435 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
436 # endif
437 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
438 #endif
440 #define __this_cpu_generic_to_op(pcp, val, op) \
441 do { \
442 *__this_cpu_ptr(&(pcp)) op val; \
443 } while (0)
445 #ifndef __this_cpu_write
446 # ifndef __this_cpu_write_1
447 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
448 # endif
449 # ifndef __this_cpu_write_2
450 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
451 # endif
452 # ifndef __this_cpu_write_4
453 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
454 # endif
455 # ifndef __this_cpu_write_8
456 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
457 # endif
458 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
459 #endif
461 #ifndef __this_cpu_add
462 # ifndef __this_cpu_add_1
463 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
464 # endif
465 # ifndef __this_cpu_add_2
466 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
467 # endif
468 # ifndef __this_cpu_add_4
469 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
470 # endif
471 # ifndef __this_cpu_add_8
472 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
473 # endif
474 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
475 #endif
477 #ifndef __this_cpu_sub
478 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
479 #endif
481 #ifndef __this_cpu_inc
482 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
483 #endif
485 #ifndef __this_cpu_dec
486 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
487 #endif
489 #ifndef __this_cpu_and
490 # ifndef __this_cpu_and_1
491 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
492 # endif
493 # ifndef __this_cpu_and_2
494 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
495 # endif
496 # ifndef __this_cpu_and_4
497 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
498 # endif
499 # ifndef __this_cpu_and_8
500 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
501 # endif
502 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
503 #endif
505 #ifndef __this_cpu_or
506 # ifndef __this_cpu_or_1
507 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
508 # endif
509 # ifndef __this_cpu_or_2
510 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
511 # endif
512 # ifndef __this_cpu_or_4
513 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
514 # endif
515 # ifndef __this_cpu_or_8
516 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
517 # endif
518 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
519 #endif
521 #ifndef __this_cpu_xor
522 # ifndef __this_cpu_xor_1
523 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
524 # endif
525 # ifndef __this_cpu_xor_2
526 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
527 # endif
528 # ifndef __this_cpu_xor_4
529 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
530 # endif
531 # ifndef __this_cpu_xor_8
532 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
533 # endif
534 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
535 #endif
538 * IRQ safe versions of the per cpu RMW operations. Note that these operations
539 * are *not* safe against modification of the same variable from another
540 * processors (which one gets when using regular atomic operations)
541 . They are guaranteed to be atomic vs. local interrupts and
542 * preemption only.
544 #define irqsafe_cpu_generic_to_op(pcp, val, op) \
545 do { \
546 unsigned long flags; \
547 local_irq_save(flags); \
548 *__this_cpu_ptr(&(pcp)) op val; \
549 local_irq_restore(flags); \
550 } while (0)
552 #ifndef irqsafe_cpu_add
553 # ifndef irqsafe_cpu_add_1
554 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
555 # endif
556 # ifndef irqsafe_cpu_add_2
557 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
558 # endif
559 # ifndef irqsafe_cpu_add_4
560 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
561 # endif
562 # ifndef irqsafe_cpu_add_8
563 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
564 # endif
565 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
566 #endif
568 #ifndef irqsafe_cpu_sub
569 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
570 #endif
572 #ifndef irqsafe_cpu_inc
573 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
574 #endif
576 #ifndef irqsafe_cpu_dec
577 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
578 #endif
580 #ifndef irqsafe_cpu_and
581 # ifndef irqsafe_cpu_and_1
582 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
583 # endif
584 # ifndef irqsafe_cpu_and_2
585 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
586 # endif
587 # ifndef irqsafe_cpu_and_4
588 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
589 # endif
590 # ifndef irqsafe_cpu_and_8
591 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
592 # endif
593 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
594 #endif
596 #ifndef irqsafe_cpu_or
597 # ifndef irqsafe_cpu_or_1
598 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
599 # endif
600 # ifndef irqsafe_cpu_or_2
601 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
602 # endif
603 # ifndef irqsafe_cpu_or_4
604 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
605 # endif
606 # ifndef irqsafe_cpu_or_8
607 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
608 # endif
609 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
610 #endif
612 #ifndef irqsafe_cpu_xor
613 # ifndef irqsafe_cpu_xor_1
614 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
615 # endif
616 # ifndef irqsafe_cpu_xor_2
617 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
618 # endif
619 # ifndef irqsafe_cpu_xor_4
620 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
621 # endif
622 # ifndef irqsafe_cpu_xor_8
623 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
624 # endif
625 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
626 #endif
628 #endif /* __LINUX_PERCPU_H */