2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
21 /* max queue in one round of service */
22 static const int cfq_quantum
= 4;
23 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max
= 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty
= 2;
28 static const int cfq_slice_sync
= HZ
/ 10;
29 static int cfq_slice_async
= HZ
/ 25;
30 static const int cfq_slice_async_rq
= 2;
31 static int cfq_slice_idle
= HZ
/ 125;
32 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
33 static const int cfq_hist_divisor
= 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
49 #define CFQQ_COOP_TOUT (HZ)
51 #define CFQ_SLICE_SCALE (5)
52 #define CFQ_HW_QUEUE_MIN (5)
53 #define CFQ_SERVICE_SHIFT 12
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 static struct kmem_cache
*cfq_pool
;
60 static struct kmem_cache
*cfq_ioc_pool
;
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
63 static struct completion
*ioc_gone
;
64 static DEFINE_SPINLOCK(ioc_gone_lock
);
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
84 struct rb_node
*active
;
85 unsigned total_weight
;
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
90 * Per process-grouping structure
95 /* various state flags, see below */
98 struct cfq_data
*cfqd
;
99 /* service_tree member */
100 struct rb_node rb_node
;
101 /* service_tree key */
102 unsigned long rb_key
;
103 /* prio tree member */
104 struct rb_node p_node
;
105 /* prio tree root we belong to, if any */
106 struct rb_root
*p_root
;
107 /* sorted list of pending requests */
108 struct rb_root sort_list
;
109 /* if fifo isn't expired, next request to serve */
110 struct request
*next_rq
;
111 /* requests queued in sort_list */
113 /* currently allocated requests */
115 /* fifo list of requests in sort_list */
116 struct list_head fifo
;
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start
;
120 unsigned int allocated_slice
;
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start
;
123 unsigned long slice_end
;
125 unsigned int slice_dispatch
;
127 /* pending metadata requests */
129 /* number of requests that are on the dispatch list or inside driver */
132 /* io prio of this group */
133 unsigned short ioprio
, org_ioprio
;
134 unsigned short ioprio_class
, org_ioprio_class
;
136 unsigned int seek_samples
;
139 sector_t last_request_pos
;
140 unsigned long seeky_start
;
144 struct cfq_rb_root
*service_tree
;
145 struct cfq_queue
*new_cfqq
;
146 struct cfq_group
*cfqg
;
147 struct cfq_group
*orig_cfqg
;
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors
;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
163 * Second index in the service_trees.
167 SYNC_NOIDLE_WORKLOAD
= 1,
171 /* This is per cgroup per device grouping structure */
173 /* group service_tree member */
174 struct rb_node rb_node
;
176 /* group service_tree key */
181 /* number of cfqq currently on this group */
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg
[2];
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
190 struct cfq_rb_root service_trees
[2][3];
191 struct cfq_rb_root service_tree_idle
;
193 unsigned long saved_workload_slice
;
194 enum wl_type_t saved_workload
;
195 enum wl_prio_t saved_serving_prio
;
196 struct blkio_group blkg
;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node
;
204 * Per block device queue structure
207 struct request_queue
*queue
;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree
;
210 struct cfq_group root_group
;
211 /* Number of active cfq groups on group service tree */
215 * The priority currently being served
217 enum wl_prio_t serving_prio
;
218 enum wl_type_t serving_type
;
219 unsigned long workload_expires
;
220 struct cfq_group
*serving_group
;
221 bool noidle_tree_requires_idle
;
224 * Each priority tree is sorted by next_request position. These
225 * trees are used when determining if two or more queues are
226 * interleaving requests (see cfq_close_cooperator).
228 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
230 unsigned int busy_queues
;
236 * queue-depth detection
242 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
246 int hw_tag_est_depth
;
247 unsigned int hw_tag_samples
;
250 * idle window management
252 struct timer_list idle_slice_timer
;
253 struct work_struct unplug_work
;
255 struct cfq_queue
*active_queue
;
256 struct cfq_io_context
*active_cic
;
259 * async queue for each priority case
261 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
262 struct cfq_queue
*async_idle_cfqq
;
264 sector_t last_position
;
267 * tunables, see top of file
269 unsigned int cfq_quantum
;
270 unsigned int cfq_fifo_expire
[2];
271 unsigned int cfq_back_penalty
;
272 unsigned int cfq_back_max
;
273 unsigned int cfq_slice
[2];
274 unsigned int cfq_slice_async_rq
;
275 unsigned int cfq_slice_idle
;
276 unsigned int cfq_latency
;
277 unsigned int cfq_group_isolation
;
279 struct list_head cic_list
;
282 * Fallback dummy cfqq for extreme OOM conditions
284 struct cfq_queue oom_cfqq
;
286 unsigned long last_delayed_sync
;
288 /* List of cfq groups being managed on this device*/
289 struct hlist_head cfqg_list
;
293 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
295 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
298 struct cfq_data
*cfqd
)
303 if (prio
== IDLE_WORKLOAD
)
304 return &cfqg
->service_tree_idle
;
306 return &cfqg
->service_trees
[prio
][type
];
309 enum cfqq_state_flags
{
310 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
311 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
312 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
313 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
314 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
315 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
316 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
317 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
318 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
319 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
320 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
321 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
324 #define CFQ_CFQQ_FNS(name) \
325 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
327 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
329 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
331 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
333 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
335 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
339 CFQ_CFQQ_FNS(wait_request
);
340 CFQ_CFQQ_FNS(must_dispatch
);
341 CFQ_CFQQ_FNS(must_alloc_slice
);
342 CFQ_CFQQ_FNS(fifo_expire
);
343 CFQ_CFQQ_FNS(idle_window
);
344 CFQ_CFQQ_FNS(prio_changed
);
345 CFQ_CFQQ_FNS(slice_new
);
349 CFQ_CFQQ_FNS(wait_busy
);
352 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
353 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
358 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
363 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
365 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
367 #define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370 /* Traverses through cfq group service trees */
371 #define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
381 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383 if (cfq_class_idle(cfqq
))
384 return IDLE_WORKLOAD
;
385 if (cfq_class_rt(cfqq
))
391 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
393 if (!cfq_cfqq_sync(cfqq
))
394 return ASYNC_WORKLOAD
;
395 if (!cfq_cfqq_idle_window(cfqq
))
396 return SYNC_NOIDLE_WORKLOAD
;
397 return SYNC_WORKLOAD
;
400 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
401 struct cfq_data
*cfqd
,
402 struct cfq_group
*cfqg
)
404 if (wl
== IDLE_WORKLOAD
)
405 return cfqg
->service_tree_idle
.count
;
407 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
408 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
409 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
412 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
413 struct cfq_group
*cfqg
)
415 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
416 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
419 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
420 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
421 struct io_context
*, gfp_t
);
422 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
423 struct io_context
*);
425 static inline int rq_in_driver(struct cfq_data
*cfqd
)
427 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
430 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
433 return cic
->cfqq
[is_sync
];
436 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
437 struct cfq_queue
*cfqq
, bool is_sync
)
439 cic
->cfqq
[is_sync
] = cfqq
;
443 * We regard a request as SYNC, if it's either a read or has the SYNC bit
444 * set (in which case it could also be direct WRITE).
446 static inline bool cfq_bio_sync(struct bio
*bio
)
448 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
452 * scheduler run of queue, if there are requests pending and no one in the
453 * driver that will restart queueing
455 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
457 if (cfqd
->busy_queues
) {
458 cfq_log(cfqd
, "schedule dispatch");
459 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
463 static int cfq_queue_empty(struct request_queue
*q
)
465 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
467 return !cfqd
->rq_queued
;
471 * Scale schedule slice based on io priority. Use the sync time slice only
472 * if a queue is marked sync and has sync io queued. A sync queue with async
473 * io only, should not get full sync slice length.
475 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
478 const int base_slice
= cfqd
->cfq_slice
[sync
];
480 WARN_ON(prio
>= IOPRIO_BE_NR
);
482 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
486 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
488 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
491 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
493 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
495 d
= d
* BLKIO_WEIGHT_DEFAULT
;
496 do_div(d
, cfqg
->weight
);
500 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
502 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
504 min_vdisktime
= vdisktime
;
506 return min_vdisktime
;
509 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
511 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
513 min_vdisktime
= vdisktime
;
515 return min_vdisktime
;
518 static void update_min_vdisktime(struct cfq_rb_root
*st
)
520 u64 vdisktime
= st
->min_vdisktime
;
521 struct cfq_group
*cfqg
;
524 cfqg
= rb_entry_cfqg(st
->active
);
525 vdisktime
= cfqg
->vdisktime
;
529 cfqg
= rb_entry_cfqg(st
->left
);
530 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
533 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
537 * get averaged number of queues of RT/BE priority.
538 * average is updated, with a formula that gives more weight to higher numbers,
539 * to quickly follows sudden increases and decrease slowly
542 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
543 struct cfq_group
*cfqg
, bool rt
)
545 unsigned min_q
, max_q
;
546 unsigned mult
= cfq_hist_divisor
- 1;
547 unsigned round
= cfq_hist_divisor
/ 2;
548 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
550 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
551 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
552 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
554 return cfqg
->busy_queues_avg
[rt
];
557 static inline unsigned
558 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
560 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
562 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
566 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
568 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
569 if (cfqd
->cfq_latency
) {
571 * interested queues (we consider only the ones with the same
572 * priority class in the cfq group)
574 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
576 unsigned sync_slice
= cfqd
->cfq_slice
[1];
577 unsigned expect_latency
= sync_slice
* iq
;
578 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
580 if (expect_latency
> group_slice
) {
581 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
582 /* scale low_slice according to IO priority
583 * and sync vs async */
585 min(slice
, base_low_slice
* slice
/ sync_slice
);
586 /* the adapted slice value is scaled to fit all iqs
587 * into the target latency */
588 slice
= max(slice
* group_slice
/ expect_latency
,
592 cfqq
->slice_start
= jiffies
;
593 cfqq
->slice_end
= jiffies
+ slice
;
594 cfqq
->allocated_slice
= slice
;
595 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
599 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
600 * isn't valid until the first request from the dispatch is activated
601 * and the slice time set.
603 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
605 if (cfq_cfqq_slice_new(cfqq
))
607 if (time_before(jiffies
, cfqq
->slice_end
))
614 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
615 * We choose the request that is closest to the head right now. Distance
616 * behind the head is penalized and only allowed to a certain extent.
618 static struct request
*
619 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
621 sector_t s1
, s2
, d1
= 0, d2
= 0;
622 unsigned long back_max
;
623 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
624 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
625 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
627 if (rq1
== NULL
|| rq1
== rq2
)
632 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
634 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
636 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
638 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
641 s1
= blk_rq_pos(rq1
);
642 s2
= blk_rq_pos(rq2
);
645 * by definition, 1KiB is 2 sectors
647 back_max
= cfqd
->cfq_back_max
* 2;
650 * Strict one way elevator _except_ in the case where we allow
651 * short backward seeks which are biased as twice the cost of a
652 * similar forward seek.
656 else if (s1
+ back_max
>= last
)
657 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
659 wrap
|= CFQ_RQ1_WRAP
;
663 else if (s2
+ back_max
>= last
)
664 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
666 wrap
|= CFQ_RQ2_WRAP
;
668 /* Found required data */
671 * By doing switch() on the bit mask "wrap" we avoid having to
672 * check two variables for all permutations: --> faster!
675 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
691 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
694 * Since both rqs are wrapped,
695 * start with the one that's further behind head
696 * (--> only *one* back seek required),
697 * since back seek takes more time than forward.
707 * The below is leftmost cache rbtree addon
709 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
711 /* Service tree is empty */
716 root
->left
= rb_first(&root
->rb
);
719 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
724 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
727 root
->left
= rb_first(&root
->rb
);
730 return rb_entry_cfqg(root
->left
);
735 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
741 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
745 rb_erase_init(n
, &root
->rb
);
750 * would be nice to take fifo expire time into account as well
752 static struct request
*
753 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
754 struct request
*last
)
756 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
757 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
758 struct request
*next
= NULL
, *prev
= NULL
;
760 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
763 prev
= rb_entry_rq(rbprev
);
766 next
= rb_entry_rq(rbnext
);
768 rbnext
= rb_first(&cfqq
->sort_list
);
769 if (rbnext
&& rbnext
!= &last
->rb_node
)
770 next
= rb_entry_rq(rbnext
);
773 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
776 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
777 struct cfq_queue
*cfqq
)
780 * just an approximation, should be ok.
782 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
783 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
787 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
789 return cfqg
->vdisktime
- st
->min_vdisktime
;
793 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
795 struct rb_node
**node
= &st
->rb
.rb_node
;
796 struct rb_node
*parent
= NULL
;
797 struct cfq_group
*__cfqg
;
798 s64 key
= cfqg_key(st
, cfqg
);
801 while (*node
!= NULL
) {
803 __cfqg
= rb_entry_cfqg(parent
);
805 if (key
< cfqg_key(st
, __cfqg
))
806 node
= &parent
->rb_left
;
808 node
= &parent
->rb_right
;
814 st
->left
= &cfqg
->rb_node
;
816 rb_link_node(&cfqg
->rb_node
, parent
, node
);
817 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
821 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
823 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
824 struct cfq_group
*__cfqg
;
832 * Currently put the group at the end. Later implement something
833 * so that groups get lesser vtime based on their weights, so that
834 * if group does not loose all if it was not continously backlogged.
836 n
= rb_last(&st
->rb
);
838 __cfqg
= rb_entry_cfqg(n
);
839 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
841 cfqg
->vdisktime
= st
->min_vdisktime
;
843 __cfq_group_service_tree_add(st
, cfqg
);
846 st
->total_weight
+= cfqg
->weight
;
850 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
852 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
854 if (st
->active
== &cfqg
->rb_node
)
857 BUG_ON(cfqg
->nr_cfqq
< 1);
860 /* If there are other cfq queues under this group, don't delete it */
864 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
867 st
->total_weight
-= cfqg
->weight
;
868 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
869 cfq_rb_erase(&cfqg
->rb_node
, st
);
870 cfqg
->saved_workload_slice
= 0;
871 blkiocg_update_blkio_group_dequeue_stats(&cfqg
->blkg
, 1);
874 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
876 unsigned int slice_used
;
879 * Queue got expired before even a single request completed or
880 * got expired immediately after first request completion.
882 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
884 * Also charge the seek time incurred to the group, otherwise
885 * if there are mutiple queues in the group, each can dispatch
886 * a single request on seeky media and cause lots of seek time
887 * and group will never know it.
889 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
892 slice_used
= jiffies
- cfqq
->slice_start
;
893 if (slice_used
> cfqq
->allocated_slice
)
894 slice_used
= cfqq
->allocated_slice
;
897 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u sect=%lu", slice_used
,
902 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
903 struct cfq_queue
*cfqq
)
905 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
906 unsigned int used_sl
, charge_sl
;
907 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
908 - cfqg
->service_tree_idle
.count
;
911 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
913 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
914 charge_sl
= cfqq
->allocated_slice
;
916 /* Can't update vdisktime while group is on service tree */
917 cfq_rb_erase(&cfqg
->rb_node
, st
);
918 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
919 __cfq_group_service_tree_add(st
, cfqg
);
921 /* This group is being expired. Save the context */
922 if (time_after(cfqd
->workload_expires
, jiffies
)) {
923 cfqg
->saved_workload_slice
= cfqd
->workload_expires
925 cfqg
->saved_workload
= cfqd
->serving_type
;
926 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
928 cfqg
->saved_workload_slice
= 0;
930 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
932 blkiocg_update_blkio_group_stats(&cfqg
->blkg
, used_sl
,
936 #ifdef CONFIG_CFQ_GROUP_IOSCHED
937 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
940 return container_of(blkg
, struct cfq_group
, blkg
);
945 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
947 cfqg_of_blkg(blkg
)->weight
= weight
;
950 static struct cfq_group
*
951 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
953 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
954 struct cfq_group
*cfqg
= NULL
;
957 struct cfq_rb_root
*st
;
958 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
959 unsigned int major
, minor
;
961 /* Do we need to take this reference */
962 if (!blkiocg_css_tryget(blkcg
))
965 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
969 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
973 cfqg
->weight
= blkcg
->weight
;
974 for_each_cfqg_st(cfqg
, i
, j
, st
)
976 RB_CLEAR_NODE(&cfqg
->rb_node
);
979 * Take the initial reference that will be released on destroy
980 * This can be thought of a joint reference by cgroup and
981 * elevator which will be dropped by either elevator exit
982 * or cgroup deletion path depending on who is exiting first.
984 atomic_set(&cfqg
->ref
, 1);
986 /* Add group onto cgroup list */
987 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
988 blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
989 MKDEV(major
, minor
));
991 /* Add group on cfqd list */
992 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
995 blkiocg_css_put(blkcg
);
1000 * Search for the cfq group current task belongs to. If create = 1, then also
1001 * create the cfq group if it does not exist. request_queue lock must be held.
1003 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1005 struct cgroup
*cgroup
;
1006 struct cfq_group
*cfqg
= NULL
;
1009 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1010 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1011 if (!cfqg
&& create
)
1012 cfqg
= &cfqd
->root_group
;
1017 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1019 /* Currently, all async queues are mapped to root group */
1020 if (!cfq_cfqq_sync(cfqq
))
1021 cfqg
= &cfqq
->cfqd
->root_group
;
1024 /* cfqq reference on cfqg */
1025 atomic_inc(&cfqq
->cfqg
->ref
);
1028 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1030 struct cfq_rb_root
*st
;
1033 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1034 if (!atomic_dec_and_test(&cfqg
->ref
))
1036 for_each_cfqg_st(cfqg
, i
, j
, st
)
1037 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1041 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1043 /* Something wrong if we are trying to remove same group twice */
1044 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1046 hlist_del_init(&cfqg
->cfqd_node
);
1049 * Put the reference taken at the time of creation so that when all
1050 * queues are gone, group can be destroyed.
1055 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1057 struct hlist_node
*pos
, *n
;
1058 struct cfq_group
*cfqg
;
1060 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1062 * If cgroup removal path got to blk_group first and removed
1063 * it from cgroup list, then it will take care of destroying
1066 if (!blkiocg_del_blkio_group(&cfqg
->blkg
))
1067 cfq_destroy_cfqg(cfqd
, cfqg
);
1072 * Blk cgroup controller notification saying that blkio_group object is being
1073 * delinked as associated cgroup object is going away. That also means that
1074 * no new IO will come in this group. So get rid of this group as soon as
1075 * any pending IO in the group is finished.
1077 * This function is called under rcu_read_lock(). key is the rcu protected
1078 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1081 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1082 * it should not be NULL as even if elevator was exiting, cgroup deltion
1083 * path got to it first.
1085 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1087 unsigned long flags
;
1088 struct cfq_data
*cfqd
= key
;
1090 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1091 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1092 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1095 #else /* GROUP_IOSCHED */
1096 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1098 return &cfqd
->root_group
;
1101 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1105 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1106 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1108 #endif /* GROUP_IOSCHED */
1111 * The cfqd->service_trees holds all pending cfq_queue's that have
1112 * requests waiting to be processed. It is sorted in the order that
1113 * we will service the queues.
1115 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1118 struct rb_node
**p
, *parent
;
1119 struct cfq_queue
*__cfqq
;
1120 unsigned long rb_key
;
1121 struct cfq_rb_root
*service_tree
;
1124 int group_changed
= 0;
1126 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1127 if (!cfqd
->cfq_group_isolation
1128 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1129 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1130 /* Move this cfq to root group */
1131 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1132 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1133 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1134 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1135 cfqq
->cfqg
= &cfqd
->root_group
;
1136 atomic_inc(&cfqd
->root_group
.ref
);
1138 } else if (!cfqd
->cfq_group_isolation
1139 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1140 /* cfqq is sequential now needs to go to its original group */
1141 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1142 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1143 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1144 cfq_put_cfqg(cfqq
->cfqg
);
1145 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1146 cfqq
->orig_cfqg
= NULL
;
1148 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1152 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1153 cfqq_type(cfqq
), cfqd
);
1154 if (cfq_class_idle(cfqq
)) {
1155 rb_key
= CFQ_IDLE_DELAY
;
1156 parent
= rb_last(&service_tree
->rb
);
1157 if (parent
&& parent
!= &cfqq
->rb_node
) {
1158 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1159 rb_key
+= __cfqq
->rb_key
;
1162 } else if (!add_front
) {
1164 * Get our rb key offset. Subtract any residual slice
1165 * value carried from last service. A negative resid
1166 * count indicates slice overrun, and this should position
1167 * the next service time further away in the tree.
1169 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1170 rb_key
-= cfqq
->slice_resid
;
1171 cfqq
->slice_resid
= 0;
1174 __cfqq
= cfq_rb_first(service_tree
);
1175 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1178 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1181 * same position, nothing more to do
1183 if (rb_key
== cfqq
->rb_key
&&
1184 cfqq
->service_tree
== service_tree
)
1187 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1188 cfqq
->service_tree
= NULL
;
1193 cfqq
->service_tree
= service_tree
;
1194 p
= &service_tree
->rb
.rb_node
;
1199 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1202 * sort by key, that represents service time.
1204 if (time_before(rb_key
, __cfqq
->rb_key
))
1207 n
= &(*p
)->rb_right
;
1215 service_tree
->left
= &cfqq
->rb_node
;
1217 cfqq
->rb_key
= rb_key
;
1218 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1219 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1220 service_tree
->count
++;
1221 if ((add_front
|| !new_cfqq
) && !group_changed
)
1223 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1226 static struct cfq_queue
*
1227 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1228 sector_t sector
, struct rb_node
**ret_parent
,
1229 struct rb_node
***rb_link
)
1231 struct rb_node
**p
, *parent
;
1232 struct cfq_queue
*cfqq
= NULL
;
1240 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1243 * Sort strictly based on sector. Smallest to the left,
1244 * largest to the right.
1246 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1247 n
= &(*p
)->rb_right
;
1248 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1256 *ret_parent
= parent
;
1262 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1264 struct rb_node
**p
, *parent
;
1265 struct cfq_queue
*__cfqq
;
1268 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1269 cfqq
->p_root
= NULL
;
1272 if (cfq_class_idle(cfqq
))
1277 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1278 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1279 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1281 rb_link_node(&cfqq
->p_node
, parent
, p
);
1282 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1284 cfqq
->p_root
= NULL
;
1288 * Update cfqq's position in the service tree.
1290 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1293 * Resorting requires the cfqq to be on the RR list already.
1295 if (cfq_cfqq_on_rr(cfqq
)) {
1296 cfq_service_tree_add(cfqd
, cfqq
, 0);
1297 cfq_prio_tree_add(cfqd
, cfqq
);
1302 * add to busy list of queues for service, trying to be fair in ordering
1303 * the pending list according to last request service
1305 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1307 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1308 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1309 cfq_mark_cfqq_on_rr(cfqq
);
1310 cfqd
->busy_queues
++;
1312 cfq_resort_rr_list(cfqd
, cfqq
);
1316 * Called when the cfqq no longer has requests pending, remove it from
1319 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1321 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1322 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1323 cfq_clear_cfqq_on_rr(cfqq
);
1325 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1326 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1327 cfqq
->service_tree
= NULL
;
1330 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1331 cfqq
->p_root
= NULL
;
1334 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1335 BUG_ON(!cfqd
->busy_queues
);
1336 cfqd
->busy_queues
--;
1340 * rb tree support functions
1342 static void cfq_del_rq_rb(struct request
*rq
)
1344 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1345 const int sync
= rq_is_sync(rq
);
1347 BUG_ON(!cfqq
->queued
[sync
]);
1348 cfqq
->queued
[sync
]--;
1350 elv_rb_del(&cfqq
->sort_list
, rq
);
1352 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1354 * Queue will be deleted from service tree when we actually
1355 * expire it later. Right now just remove it from prio tree
1359 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1360 cfqq
->p_root
= NULL
;
1365 static void cfq_add_rq_rb(struct request
*rq
)
1367 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1368 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1369 struct request
*__alias
, *prev
;
1371 cfqq
->queued
[rq_is_sync(rq
)]++;
1374 * looks a little odd, but the first insert might return an alias.
1375 * if that happens, put the alias on the dispatch list
1377 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1378 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1380 if (!cfq_cfqq_on_rr(cfqq
))
1381 cfq_add_cfqq_rr(cfqd
, cfqq
);
1384 * check if this request is a better next-serve candidate
1386 prev
= cfqq
->next_rq
;
1387 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1390 * adjust priority tree position, if ->next_rq changes
1392 if (prev
!= cfqq
->next_rq
)
1393 cfq_prio_tree_add(cfqd
, cfqq
);
1395 BUG_ON(!cfqq
->next_rq
);
1398 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1400 elv_rb_del(&cfqq
->sort_list
, rq
);
1401 cfqq
->queued
[rq_is_sync(rq
)]--;
1405 static struct request
*
1406 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1408 struct task_struct
*tsk
= current
;
1409 struct cfq_io_context
*cic
;
1410 struct cfq_queue
*cfqq
;
1412 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1416 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1418 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1420 return elv_rb_find(&cfqq
->sort_list
, sector
);
1426 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1428 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1430 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
1431 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1432 rq_in_driver(cfqd
));
1434 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1437 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1439 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1440 const int sync
= rq_is_sync(rq
);
1442 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
1443 cfqd
->rq_in_driver
[sync
]--;
1444 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1445 rq_in_driver(cfqd
));
1448 static void cfq_remove_request(struct request
*rq
)
1450 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1452 if (cfqq
->next_rq
== rq
)
1453 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1455 list_del_init(&rq
->queuelist
);
1458 cfqq
->cfqd
->rq_queued
--;
1459 if (rq_is_meta(rq
)) {
1460 WARN_ON(!cfqq
->meta_pending
);
1461 cfqq
->meta_pending
--;
1465 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1468 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1469 struct request
*__rq
;
1471 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1472 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1474 return ELEVATOR_FRONT_MERGE
;
1477 return ELEVATOR_NO_MERGE
;
1480 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1483 if (type
== ELEVATOR_FRONT_MERGE
) {
1484 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1486 cfq_reposition_rq_rb(cfqq
, req
);
1491 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1492 struct request
*next
)
1494 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1496 * reposition in fifo if next is older than rq
1498 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1499 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1500 list_move(&rq
->queuelist
, &next
->queuelist
);
1501 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1504 if (cfqq
->next_rq
== next
)
1506 cfq_remove_request(next
);
1509 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1512 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1513 struct cfq_io_context
*cic
;
1514 struct cfq_queue
*cfqq
;
1516 /* Deny merge if bio and rq don't belong to same cfq group */
1517 if ((RQ_CFQQ(rq
))->cfqg
!= cfq_get_cfqg(cfqd
, 0))
1520 * Disallow merge of a sync bio into an async request.
1522 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1526 * Lookup the cfqq that this bio will be queued with. Allow
1527 * merge only if rq is queued there.
1529 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1533 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1534 return cfqq
== RQ_CFQQ(rq
);
1537 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1538 struct cfq_queue
*cfqq
)
1541 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
1542 cfqq
->slice_start
= 0;
1543 cfqq
->dispatch_start
= jiffies
;
1544 cfqq
->allocated_slice
= 0;
1545 cfqq
->slice_end
= 0;
1546 cfqq
->slice_dispatch
= 0;
1547 cfqq
->nr_sectors
= 0;
1549 cfq_clear_cfqq_wait_request(cfqq
);
1550 cfq_clear_cfqq_must_dispatch(cfqq
);
1551 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1552 cfq_clear_cfqq_fifo_expire(cfqq
);
1553 cfq_mark_cfqq_slice_new(cfqq
);
1555 del_timer(&cfqd
->idle_slice_timer
);
1558 cfqd
->active_queue
= cfqq
;
1562 * current cfqq expired its slice (or was too idle), select new one
1565 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1568 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1570 if (cfq_cfqq_wait_request(cfqq
))
1571 del_timer(&cfqd
->idle_slice_timer
);
1573 cfq_clear_cfqq_wait_request(cfqq
);
1574 cfq_clear_cfqq_wait_busy(cfqq
);
1577 * store what was left of this slice, if the queue idled/timed out
1579 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1580 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1581 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1584 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1586 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1587 cfq_del_cfqq_rr(cfqd
, cfqq
);
1589 cfq_resort_rr_list(cfqd
, cfqq
);
1591 if (cfqq
== cfqd
->active_queue
)
1592 cfqd
->active_queue
= NULL
;
1594 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1595 cfqd
->grp_service_tree
.active
= NULL
;
1597 if (cfqd
->active_cic
) {
1598 put_io_context(cfqd
->active_cic
->ioc
);
1599 cfqd
->active_cic
= NULL
;
1603 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1605 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1608 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1612 * Get next queue for service. Unless we have a queue preemption,
1613 * we'll simply select the first cfqq in the service tree.
1615 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1617 struct cfq_rb_root
*service_tree
=
1618 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1619 cfqd
->serving_type
, cfqd
);
1621 if (!cfqd
->rq_queued
)
1624 /* There is nothing to dispatch */
1627 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1629 return cfq_rb_first(service_tree
);
1632 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1634 struct cfq_group
*cfqg
;
1635 struct cfq_queue
*cfqq
;
1637 struct cfq_rb_root
*st
;
1639 if (!cfqd
->rq_queued
)
1642 cfqg
= cfq_get_next_cfqg(cfqd
);
1646 for_each_cfqg_st(cfqg
, i
, j
, st
)
1647 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1653 * Get and set a new active queue for service.
1655 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1656 struct cfq_queue
*cfqq
)
1659 cfqq
= cfq_get_next_queue(cfqd
);
1661 __cfq_set_active_queue(cfqd
, cfqq
);
1665 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1668 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1669 return blk_rq_pos(rq
) - cfqd
->last_position
;
1671 return cfqd
->last_position
- blk_rq_pos(rq
);
1674 #define CFQQ_SEEK_THR 8 * 1024
1675 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1677 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1680 sector_t sdist
= cfqq
->seek_mean
;
1682 if (!sample_valid(cfqq
->seek_samples
))
1683 sdist
= CFQQ_SEEK_THR
;
1685 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
1688 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1689 struct cfq_queue
*cur_cfqq
)
1691 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1692 struct rb_node
*parent
, *node
;
1693 struct cfq_queue
*__cfqq
;
1694 sector_t sector
= cfqd
->last_position
;
1696 if (RB_EMPTY_ROOT(root
))
1700 * First, if we find a request starting at the end of the last
1701 * request, choose it.
1703 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1708 * If the exact sector wasn't found, the parent of the NULL leaf
1709 * will contain the closest sector.
1711 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1712 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1715 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1716 node
= rb_next(&__cfqq
->p_node
);
1718 node
= rb_prev(&__cfqq
->p_node
);
1722 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1723 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1731 * cur_cfqq - passed in so that we don't decide that the current queue is
1732 * closely cooperating with itself.
1734 * So, basically we're assuming that that cur_cfqq has dispatched at least
1735 * one request, and that cfqd->last_position reflects a position on the disk
1736 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1739 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1740 struct cfq_queue
*cur_cfqq
)
1742 struct cfq_queue
*cfqq
;
1744 if (!cfq_cfqq_sync(cur_cfqq
))
1746 if (CFQQ_SEEKY(cur_cfqq
))
1750 * Don't search priority tree if it's the only queue in the group.
1752 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1756 * We should notice if some of the queues are cooperating, eg
1757 * working closely on the same area of the disk. In that case,
1758 * we can group them together and don't waste time idling.
1760 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1764 /* If new queue belongs to different cfq_group, don't choose it */
1765 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1769 * It only makes sense to merge sync queues.
1771 if (!cfq_cfqq_sync(cfqq
))
1773 if (CFQQ_SEEKY(cfqq
))
1777 * Do not merge queues of different priority classes
1779 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1786 * Determine whether we should enforce idle window for this queue.
1789 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1791 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1792 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1794 BUG_ON(!service_tree
);
1795 BUG_ON(!service_tree
->count
);
1797 /* We never do for idle class queues. */
1798 if (prio
== IDLE_WORKLOAD
)
1801 /* We do for queues that were marked with idle window flag. */
1802 if (cfq_cfqq_idle_window(cfqq
) &&
1803 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1807 * Otherwise, we do only if they are the last ones
1808 * in their service tree.
1810 return service_tree
->count
== 1;
1813 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1815 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1816 struct cfq_io_context
*cic
;
1820 * SSD device without seek penalty, disable idling. But only do so
1821 * for devices that support queuing, otherwise we still have a problem
1822 * with sync vs async workloads.
1824 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1827 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1828 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1831 * idle is disabled, either manually or by past process history
1833 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1837 * still active requests from this queue, don't idle
1839 if (cfqq
->dispatched
)
1843 * task has exited, don't wait
1845 cic
= cfqd
->active_cic
;
1846 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1850 * If our average think time is larger than the remaining time
1851 * slice, then don't idle. This avoids overrunning the allotted
1854 if (sample_valid(cic
->ttime_samples
) &&
1855 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1858 cfq_mark_cfqq_wait_request(cfqq
);
1860 sl
= cfqd
->cfq_slice_idle
;
1862 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1863 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1867 * Move request from internal lists to the request queue dispatch list.
1869 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1871 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1872 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1874 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1876 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1877 cfq_remove_request(rq
);
1879 elv_dispatch_sort(q
, rq
);
1881 if (cfq_cfqq_sync(cfqq
))
1882 cfqd
->sync_flight
++;
1883 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1887 * return expired entry, or NULL to just start from scratch in rbtree
1889 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1891 struct request
*rq
= NULL
;
1893 if (cfq_cfqq_fifo_expire(cfqq
))
1896 cfq_mark_cfqq_fifo_expire(cfqq
);
1898 if (list_empty(&cfqq
->fifo
))
1901 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1902 if (time_before(jiffies
, rq_fifo_time(rq
)))
1905 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1910 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1912 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1914 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1916 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1920 * Must be called with the queue_lock held.
1922 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1924 int process_refs
, io_refs
;
1926 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1927 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1928 BUG_ON(process_refs
< 0);
1929 return process_refs
;
1932 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1934 int process_refs
, new_process_refs
;
1935 struct cfq_queue
*__cfqq
;
1937 /* Avoid a circular list and skip interim queue merges */
1938 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1944 process_refs
= cfqq_process_refs(cfqq
);
1946 * If the process for the cfqq has gone away, there is no
1947 * sense in merging the queues.
1949 if (process_refs
== 0)
1953 * Merge in the direction of the lesser amount of work.
1955 new_process_refs
= cfqq_process_refs(new_cfqq
);
1956 if (new_process_refs
>= process_refs
) {
1957 cfqq
->new_cfqq
= new_cfqq
;
1958 atomic_add(process_refs
, &new_cfqq
->ref
);
1960 new_cfqq
->new_cfqq
= cfqq
;
1961 atomic_add(new_process_refs
, &cfqq
->ref
);
1965 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
1966 struct cfq_group
*cfqg
, enum wl_prio_t prio
,
1969 struct cfq_queue
*queue
;
1971 bool key_valid
= false;
1972 unsigned long lowest_key
= 0;
1973 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1977 * When priorities switched, we prefer starting
1978 * from SYNC_NOIDLE (first choice), or just SYNC
1981 if (service_tree_for(cfqg
, prio
, cur_best
, cfqd
)->count
)
1983 cur_best
= SYNC_WORKLOAD
;
1984 if (service_tree_for(cfqg
, prio
, cur_best
, cfqd
)->count
)
1987 return ASYNC_WORKLOAD
;
1990 for (i
= 0; i
< 3; ++i
) {
1991 /* otherwise, select the one with lowest rb_key */
1992 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
, cfqd
));
1994 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1995 lowest_key
= queue
->rb_key
;
2004 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2006 enum wl_prio_t previous_prio
= cfqd
->serving_prio
;
2010 struct cfq_rb_root
*st
;
2011 unsigned group_slice
;
2014 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2015 cfqd
->workload_expires
= jiffies
+ 1;
2019 /* Choose next priority. RT > BE > IDLE */
2020 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2021 cfqd
->serving_prio
= RT_WORKLOAD
;
2022 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2023 cfqd
->serving_prio
= BE_WORKLOAD
;
2025 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2026 cfqd
->workload_expires
= jiffies
+ 1;
2031 * For RT and BE, we have to choose also the type
2032 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2035 prio_changed
= (cfqd
->serving_prio
!= previous_prio
);
2036 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
,
2041 * If priority didn't change, check workload expiration,
2042 * and that we still have other queues ready
2044 if (!prio_changed
&& count
&&
2045 !time_after(jiffies
, cfqd
->workload_expires
))
2048 /* otherwise select new workload type */
2049 cfqd
->serving_type
=
2050 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
, prio_changed
);
2051 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
,
2056 * the workload slice is computed as a fraction of target latency
2057 * proportional to the number of queues in that workload, over
2058 * all the queues in the same priority class
2060 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2062 slice
= group_slice
* count
/
2063 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2064 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2066 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2070 * Async queues are currently system wide. Just taking
2071 * proportion of queues with-in same group will lead to higher
2072 * async ratio system wide as generally root group is going
2073 * to have higher weight. A more accurate thing would be to
2074 * calculate system wide asnc/sync ratio.
2076 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2077 tmp
= tmp
/cfqd
->busy_queues
;
2078 slice
= min_t(unsigned, slice
, tmp
);
2080 /* async workload slice is scaled down according to
2081 * the sync/async slice ratio. */
2082 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2084 /* sync workload slice is at least 2 * cfq_slice_idle */
2085 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2087 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2088 cfqd
->workload_expires
= jiffies
+ slice
;
2089 cfqd
->noidle_tree_requires_idle
= false;
2092 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2094 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2095 struct cfq_group
*cfqg
;
2097 if (RB_EMPTY_ROOT(&st
->rb
))
2099 cfqg
= cfq_rb_first_group(st
);
2100 st
->active
= &cfqg
->rb_node
;
2101 update_min_vdisktime(st
);
2105 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2107 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2109 cfqd
->serving_group
= cfqg
;
2111 /* Restore the workload type data */
2112 if (cfqg
->saved_workload_slice
) {
2113 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2114 cfqd
->serving_type
= cfqg
->saved_workload
;
2115 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2117 cfqd
->workload_expires
= jiffies
- 1;
2119 choose_service_tree(cfqd
, cfqg
);
2123 * Select a queue for service. If we have a current active queue,
2124 * check whether to continue servicing it, or retrieve and set a new one.
2126 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2128 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2130 cfqq
= cfqd
->active_queue
;
2134 if (!cfqd
->rq_queued
)
2138 * We were waiting for group to get backlogged. Expire the queue
2140 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2144 * The active queue has run out of time, expire it and select new.
2146 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2148 * If slice had not expired at the completion of last request
2149 * we might not have turned on wait_busy flag. Don't expire
2150 * the queue yet. Allow the group to get backlogged.
2152 * The very fact that we have used the slice, that means we
2153 * have been idling all along on this queue and it should be
2154 * ok to wait for this request to complete.
2156 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2157 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2165 * The active queue has requests and isn't expired, allow it to
2168 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2172 * If another queue has a request waiting within our mean seek
2173 * distance, let it run. The expire code will check for close
2174 * cooperators and put the close queue at the front of the service
2175 * tree. If possible, merge the expiring queue with the new cfqq.
2177 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2179 if (!cfqq
->new_cfqq
)
2180 cfq_setup_merge(cfqq
, new_cfqq
);
2185 * No requests pending. If the active queue still has requests in
2186 * flight or is idling for a new request, allow either of these
2187 * conditions to happen (or time out) before selecting a new queue.
2189 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2190 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2196 cfq_slice_expired(cfqd
, 0);
2199 * Current queue expired. Check if we have to switch to a new
2203 cfq_choose_cfqg(cfqd
);
2205 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2210 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2214 while (cfqq
->next_rq
) {
2215 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2219 BUG_ON(!list_empty(&cfqq
->fifo
));
2221 /* By default cfqq is not expired if it is empty. Do it explicitly */
2222 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2227 * Drain our current requests. Used for barriers and when switching
2228 * io schedulers on-the-fly.
2230 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2232 struct cfq_queue
*cfqq
;
2235 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
)
2236 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2238 cfq_slice_expired(cfqd
, 0);
2239 BUG_ON(cfqd
->busy_queues
);
2241 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2245 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2247 unsigned int max_dispatch
;
2250 * Drain async requests before we start sync IO
2252 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
2256 * If this is an async queue and we have sync IO in flight, let it wait
2258 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
2261 max_dispatch
= cfqd
->cfq_quantum
;
2262 if (cfq_class_idle(cfqq
))
2266 * Does this cfqq already have too much IO in flight?
2268 if (cfqq
->dispatched
>= max_dispatch
) {
2270 * idle queue must always only have a single IO in flight
2272 if (cfq_class_idle(cfqq
))
2276 * We have other queues, don't allow more IO from this one
2278 if (cfqd
->busy_queues
> 1)
2282 * Sole queue user, no limit
2288 * Async queues must wait a bit before being allowed dispatch.
2289 * We also ramp up the dispatch depth gradually for async IO,
2290 * based on the last sync IO we serviced
2292 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2293 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2296 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2297 if (!depth
&& !cfqq
->dispatched
)
2299 if (depth
< max_dispatch
)
2300 max_dispatch
= depth
;
2304 * If we're below the current max, allow a dispatch
2306 return cfqq
->dispatched
< max_dispatch
;
2310 * Dispatch a request from cfqq, moving them to the request queue
2313 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2317 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2319 if (!cfq_may_dispatch(cfqd
, cfqq
))
2323 * follow expired path, else get first next available
2325 rq
= cfq_check_fifo(cfqq
);
2330 * insert request into driver dispatch list
2332 cfq_dispatch_insert(cfqd
->queue
, rq
);
2334 if (!cfqd
->active_cic
) {
2335 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2337 atomic_long_inc(&cic
->ioc
->refcount
);
2338 cfqd
->active_cic
= cic
;
2345 * Find the cfqq that we need to service and move a request from that to the
2348 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2350 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2351 struct cfq_queue
*cfqq
;
2353 if (!cfqd
->busy_queues
)
2356 if (unlikely(force
))
2357 return cfq_forced_dispatch(cfqd
);
2359 cfqq
= cfq_select_queue(cfqd
);
2364 * Dispatch a request from this cfqq, if it is allowed
2366 if (!cfq_dispatch_request(cfqd
, cfqq
))
2369 cfqq
->slice_dispatch
++;
2370 cfq_clear_cfqq_must_dispatch(cfqq
);
2373 * expire an async queue immediately if it has used up its slice. idle
2374 * queue always expire after 1 dispatch round.
2376 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2377 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2378 cfq_class_idle(cfqq
))) {
2379 cfqq
->slice_end
= jiffies
+ 1;
2380 cfq_slice_expired(cfqd
, 0);
2383 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2388 * task holds one reference to the queue, dropped when task exits. each rq
2389 * in-flight on this queue also holds a reference, dropped when rq is freed.
2391 * Each cfq queue took a reference on the parent group. Drop it now.
2392 * queue lock must be held here.
2394 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2396 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2397 struct cfq_group
*cfqg
, *orig_cfqg
;
2399 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2401 if (!atomic_dec_and_test(&cfqq
->ref
))
2404 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2405 BUG_ON(rb_first(&cfqq
->sort_list
));
2406 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2408 orig_cfqg
= cfqq
->orig_cfqg
;
2410 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2411 __cfq_slice_expired(cfqd
, cfqq
, 0);
2412 cfq_schedule_dispatch(cfqd
);
2415 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2416 kmem_cache_free(cfq_pool
, cfqq
);
2419 cfq_put_cfqg(orig_cfqg
);
2423 * Must always be called with the rcu_read_lock() held
2426 __call_for_each_cic(struct io_context
*ioc
,
2427 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2429 struct cfq_io_context
*cic
;
2430 struct hlist_node
*n
;
2432 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2437 * Call func for each cic attached to this ioc.
2440 call_for_each_cic(struct io_context
*ioc
,
2441 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2444 __call_for_each_cic(ioc
, func
);
2448 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2450 struct cfq_io_context
*cic
;
2452 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2454 kmem_cache_free(cfq_ioc_pool
, cic
);
2455 elv_ioc_count_dec(cfq_ioc_count
);
2459 * CFQ scheduler is exiting, grab exit lock and check
2460 * the pending io context count. If it hits zero,
2461 * complete ioc_gone and set it back to NULL
2463 spin_lock(&ioc_gone_lock
);
2464 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2468 spin_unlock(&ioc_gone_lock
);
2472 static void cfq_cic_free(struct cfq_io_context
*cic
)
2474 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2477 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2479 unsigned long flags
;
2481 BUG_ON(!cic
->dead_key
);
2483 spin_lock_irqsave(&ioc
->lock
, flags
);
2484 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
2485 hlist_del_rcu(&cic
->cic_list
);
2486 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2492 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2493 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2494 * and ->trim() which is called with the task lock held
2496 static void cfq_free_io_context(struct io_context
*ioc
)
2499 * ioc->refcount is zero here, or we are called from elv_unregister(),
2500 * so no more cic's are allowed to be linked into this ioc. So it
2501 * should be ok to iterate over the known list, we will see all cic's
2502 * since no new ones are added.
2504 __call_for_each_cic(ioc
, cic_free_func
);
2507 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2509 struct cfq_queue
*__cfqq
, *next
;
2511 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2512 __cfq_slice_expired(cfqd
, cfqq
, 0);
2513 cfq_schedule_dispatch(cfqd
);
2517 * If this queue was scheduled to merge with another queue, be
2518 * sure to drop the reference taken on that queue (and others in
2519 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2521 __cfqq
= cfqq
->new_cfqq
;
2523 if (__cfqq
== cfqq
) {
2524 WARN(1, "cfqq->new_cfqq loop detected\n");
2527 next
= __cfqq
->new_cfqq
;
2528 cfq_put_queue(__cfqq
);
2532 cfq_put_queue(cfqq
);
2535 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2536 struct cfq_io_context
*cic
)
2538 struct io_context
*ioc
= cic
->ioc
;
2540 list_del_init(&cic
->queue_list
);
2543 * Make sure key == NULL is seen for dead queues
2546 cic
->dead_key
= (unsigned long) cic
->key
;
2549 if (ioc
->ioc_data
== cic
)
2550 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2552 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2553 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2554 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2557 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2558 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2559 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2563 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2564 struct cfq_io_context
*cic
)
2566 struct cfq_data
*cfqd
= cic
->key
;
2569 struct request_queue
*q
= cfqd
->queue
;
2570 unsigned long flags
;
2572 spin_lock_irqsave(q
->queue_lock
, flags
);
2575 * Ensure we get a fresh copy of the ->key to prevent
2576 * race between exiting task and queue
2578 smp_read_barrier_depends();
2580 __cfq_exit_single_io_context(cfqd
, cic
);
2582 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2587 * The process that ioc belongs to has exited, we need to clean up
2588 * and put the internal structures we have that belongs to that process.
2590 static void cfq_exit_io_context(struct io_context
*ioc
)
2592 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2595 static struct cfq_io_context
*
2596 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2598 struct cfq_io_context
*cic
;
2600 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2603 cic
->last_end_request
= jiffies
;
2604 INIT_LIST_HEAD(&cic
->queue_list
);
2605 INIT_HLIST_NODE(&cic
->cic_list
);
2606 cic
->dtor
= cfq_free_io_context
;
2607 cic
->exit
= cfq_exit_io_context
;
2608 elv_ioc_count_inc(cfq_ioc_count
);
2614 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2616 struct task_struct
*tsk
= current
;
2619 if (!cfq_cfqq_prio_changed(cfqq
))
2622 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2623 switch (ioprio_class
) {
2625 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2626 case IOPRIO_CLASS_NONE
:
2628 * no prio set, inherit CPU scheduling settings
2630 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2631 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2633 case IOPRIO_CLASS_RT
:
2634 cfqq
->ioprio
= task_ioprio(ioc
);
2635 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2637 case IOPRIO_CLASS_BE
:
2638 cfqq
->ioprio
= task_ioprio(ioc
);
2639 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2641 case IOPRIO_CLASS_IDLE
:
2642 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2644 cfq_clear_cfqq_idle_window(cfqq
);
2649 * keep track of original prio settings in case we have to temporarily
2650 * elevate the priority of this queue
2652 cfqq
->org_ioprio
= cfqq
->ioprio
;
2653 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2654 cfq_clear_cfqq_prio_changed(cfqq
);
2657 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2659 struct cfq_data
*cfqd
= cic
->key
;
2660 struct cfq_queue
*cfqq
;
2661 unsigned long flags
;
2663 if (unlikely(!cfqd
))
2666 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2668 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2670 struct cfq_queue
*new_cfqq
;
2671 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2674 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2675 cfq_put_queue(cfqq
);
2679 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2681 cfq_mark_cfqq_prio_changed(cfqq
);
2683 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2686 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2688 call_for_each_cic(ioc
, changed_ioprio
);
2689 ioc
->ioprio_changed
= 0;
2692 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2693 pid_t pid
, bool is_sync
)
2695 RB_CLEAR_NODE(&cfqq
->rb_node
);
2696 RB_CLEAR_NODE(&cfqq
->p_node
);
2697 INIT_LIST_HEAD(&cfqq
->fifo
);
2699 atomic_set(&cfqq
->ref
, 0);
2702 cfq_mark_cfqq_prio_changed(cfqq
);
2705 if (!cfq_class_idle(cfqq
))
2706 cfq_mark_cfqq_idle_window(cfqq
);
2707 cfq_mark_cfqq_sync(cfqq
);
2712 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2713 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2715 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2716 struct cfq_data
*cfqd
= cic
->key
;
2717 unsigned long flags
;
2718 struct request_queue
*q
;
2720 if (unlikely(!cfqd
))
2725 spin_lock_irqsave(q
->queue_lock
, flags
);
2729 * Drop reference to sync queue. A new sync queue will be
2730 * assigned in new group upon arrival of a fresh request.
2732 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2733 cic_set_cfqq(cic
, NULL
, 1);
2734 cfq_put_queue(sync_cfqq
);
2737 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2740 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2742 call_for_each_cic(ioc
, changed_cgroup
);
2743 ioc
->cgroup_changed
= 0;
2745 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2747 static struct cfq_queue
*
2748 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2749 struct io_context
*ioc
, gfp_t gfp_mask
)
2751 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2752 struct cfq_io_context
*cic
;
2753 struct cfq_group
*cfqg
;
2756 cfqg
= cfq_get_cfqg(cfqd
, 1);
2757 cic
= cfq_cic_lookup(cfqd
, ioc
);
2758 /* cic always exists here */
2759 cfqq
= cic_to_cfqq(cic
, is_sync
);
2762 * Always try a new alloc if we fell back to the OOM cfqq
2763 * originally, since it should just be a temporary situation.
2765 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2770 } else if (gfp_mask
& __GFP_WAIT
) {
2771 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2772 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2773 gfp_mask
| __GFP_ZERO
,
2775 spin_lock_irq(cfqd
->queue
->queue_lock
);
2779 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2780 gfp_mask
| __GFP_ZERO
,
2785 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2786 cfq_init_prio_data(cfqq
, ioc
);
2787 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2788 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2790 cfqq
= &cfqd
->oom_cfqq
;
2794 kmem_cache_free(cfq_pool
, new_cfqq
);
2799 static struct cfq_queue
**
2800 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2802 switch (ioprio_class
) {
2803 case IOPRIO_CLASS_RT
:
2804 return &cfqd
->async_cfqq
[0][ioprio
];
2805 case IOPRIO_CLASS_BE
:
2806 return &cfqd
->async_cfqq
[1][ioprio
];
2807 case IOPRIO_CLASS_IDLE
:
2808 return &cfqd
->async_idle_cfqq
;
2814 static struct cfq_queue
*
2815 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2818 const int ioprio
= task_ioprio(ioc
);
2819 const int ioprio_class
= task_ioprio_class(ioc
);
2820 struct cfq_queue
**async_cfqq
= NULL
;
2821 struct cfq_queue
*cfqq
= NULL
;
2824 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2829 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2832 * pin the queue now that it's allocated, scheduler exit will prune it
2834 if (!is_sync
&& !(*async_cfqq
)) {
2835 atomic_inc(&cfqq
->ref
);
2839 atomic_inc(&cfqq
->ref
);
2844 * We drop cfq io contexts lazily, so we may find a dead one.
2847 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2848 struct cfq_io_context
*cic
)
2850 unsigned long flags
;
2852 WARN_ON(!list_empty(&cic
->queue_list
));
2854 spin_lock_irqsave(&ioc
->lock
, flags
);
2856 BUG_ON(ioc
->ioc_data
== cic
);
2858 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2859 hlist_del_rcu(&cic
->cic_list
);
2860 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2865 static struct cfq_io_context
*
2866 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2868 struct cfq_io_context
*cic
;
2869 unsigned long flags
;
2878 * we maintain a last-hit cache, to avoid browsing over the tree
2880 cic
= rcu_dereference(ioc
->ioc_data
);
2881 if (cic
&& cic
->key
== cfqd
) {
2887 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2891 /* ->key must be copied to avoid race with cfq_exit_queue() */
2894 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2899 spin_lock_irqsave(&ioc
->lock
, flags
);
2900 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2901 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2909 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2910 * the process specific cfq io context when entered from the block layer.
2911 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2913 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2914 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2916 unsigned long flags
;
2919 ret
= radix_tree_preload(gfp_mask
);
2924 spin_lock_irqsave(&ioc
->lock
, flags
);
2925 ret
= radix_tree_insert(&ioc
->radix_root
,
2926 (unsigned long) cfqd
, cic
);
2928 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2929 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2931 radix_tree_preload_end();
2934 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2935 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2936 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2941 printk(KERN_ERR
"cfq: cic link failed!\n");
2947 * Setup general io context and cfq io context. There can be several cfq
2948 * io contexts per general io context, if this process is doing io to more
2949 * than one device managed by cfq.
2951 static struct cfq_io_context
*
2952 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2954 struct io_context
*ioc
= NULL
;
2955 struct cfq_io_context
*cic
;
2957 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2959 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2963 cic
= cfq_cic_lookup(cfqd
, ioc
);
2967 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2971 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2975 smp_read_barrier_depends();
2976 if (unlikely(ioc
->ioprio_changed
))
2977 cfq_ioc_set_ioprio(ioc
);
2979 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2980 if (unlikely(ioc
->cgroup_changed
))
2981 cfq_ioc_set_cgroup(ioc
);
2987 put_io_context(ioc
);
2992 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2994 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2995 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2997 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2998 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2999 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3003 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3009 if (!cfqq
->last_request_pos
)
3011 else if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3012 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3014 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3017 * Don't allow the seek distance to get too large from the
3018 * odd fragment, pagein, etc
3020 if (cfqq
->seek_samples
<= 60) /* second&third seek */
3021 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*1024);
3023 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*64);
3025 cfqq
->seek_samples
= (7*cfqq
->seek_samples
+ 256) / 8;
3026 cfqq
->seek_total
= (7*cfqq
->seek_total
+ (u64
)256*sdist
) / 8;
3027 total
= cfqq
->seek_total
+ (cfqq
->seek_samples
/2);
3028 do_div(total
, cfqq
->seek_samples
);
3029 cfqq
->seek_mean
= (sector_t
)total
;
3032 * If this cfqq is shared between multiple processes, check to
3033 * make sure that those processes are still issuing I/Os within
3034 * the mean seek distance. If not, it may be time to break the
3035 * queues apart again.
3037 if (cfq_cfqq_coop(cfqq
)) {
3038 if (CFQQ_SEEKY(cfqq
) && !cfqq
->seeky_start
)
3039 cfqq
->seeky_start
= jiffies
;
3040 else if (!CFQQ_SEEKY(cfqq
))
3041 cfqq
->seeky_start
= 0;
3046 * Disable idle window if the process thinks too long or seeks so much that
3050 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3051 struct cfq_io_context
*cic
)
3053 int old_idle
, enable_idle
;
3056 * Don't idle for async or idle io prio class
3058 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3061 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3063 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3064 cfq_mark_cfqq_deep(cfqq
);
3066 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3067 (!cfq_cfqq_deep(cfqq
) && sample_valid(cfqq
->seek_samples
)
3068 && CFQQ_SEEKY(cfqq
)))
3070 else if (sample_valid(cic
->ttime_samples
)) {
3071 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3077 if (old_idle
!= enable_idle
) {
3078 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3080 cfq_mark_cfqq_idle_window(cfqq
);
3082 cfq_clear_cfqq_idle_window(cfqq
);
3087 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3088 * no or if we aren't sure, a 1 will cause a preempt.
3091 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3094 struct cfq_queue
*cfqq
;
3096 cfqq
= cfqd
->active_queue
;
3100 if (cfq_class_idle(new_cfqq
))
3103 if (cfq_class_idle(cfqq
))
3107 * if the new request is sync, but the currently running queue is
3108 * not, let the sync request have priority.
3110 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3113 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3116 if (cfq_slice_used(cfqq
))
3119 /* Allow preemption only if we are idling on sync-noidle tree */
3120 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3121 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3122 new_cfqq
->service_tree
->count
== 2 &&
3123 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3127 * So both queues are sync. Let the new request get disk time if
3128 * it's a metadata request and the current queue is doing regular IO.
3130 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
3134 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3136 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3139 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3143 * if this request is as-good as one we would expect from the
3144 * current cfqq, let it preempt
3146 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3153 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3154 * let it have half of its nominal slice.
3156 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3158 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3159 cfq_slice_expired(cfqd
, 1);
3162 * Put the new queue at the front of the of the current list,
3163 * so we know that it will be selected next.
3165 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3167 cfq_service_tree_add(cfqd
, cfqq
, 1);
3169 cfqq
->slice_end
= 0;
3170 cfq_mark_cfqq_slice_new(cfqq
);
3174 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3175 * something we should do about it
3178 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3181 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3185 cfqq
->meta_pending
++;
3187 cfq_update_io_thinktime(cfqd
, cic
);
3188 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3189 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3191 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3193 if (cfqq
== cfqd
->active_queue
) {
3195 * Remember that we saw a request from this process, but
3196 * don't start queuing just yet. Otherwise we risk seeing lots
3197 * of tiny requests, because we disrupt the normal plugging
3198 * and merging. If the request is already larger than a single
3199 * page, let it rip immediately. For that case we assume that
3200 * merging is already done. Ditto for a busy system that
3201 * has other work pending, don't risk delaying until the
3202 * idle timer unplug to continue working.
3204 if (cfq_cfqq_wait_request(cfqq
)) {
3205 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3206 cfqd
->busy_queues
> 1) {
3207 del_timer(&cfqd
->idle_slice_timer
);
3208 cfq_clear_cfqq_wait_request(cfqq
);
3209 __blk_run_queue(cfqd
->queue
);
3211 cfq_mark_cfqq_must_dispatch(cfqq
);
3213 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3215 * not the active queue - expire current slice if it is
3216 * idle and has expired it's mean thinktime or this new queue
3217 * has some old slice time left and is of higher priority or
3218 * this new queue is RT and the current one is BE
3220 cfq_preempt_queue(cfqd
, cfqq
);
3221 __blk_run_queue(cfqd
->queue
);
3225 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3227 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3228 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3230 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3231 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3233 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3234 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3237 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3241 * Update hw_tag based on peak queue depth over 50 samples under
3244 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3246 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3248 if (rq_in_driver(cfqd
) > cfqd
->hw_tag_est_depth
)
3249 cfqd
->hw_tag_est_depth
= rq_in_driver(cfqd
);
3251 if (cfqd
->hw_tag
== 1)
3254 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3255 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
3259 * If active queue hasn't enough requests and can idle, cfq might not
3260 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3263 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3264 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3265 CFQ_HW_QUEUE_MIN
&& rq_in_driver(cfqd
) < CFQ_HW_QUEUE_MIN
)
3268 if (cfqd
->hw_tag_samples
++ < 50)
3271 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3277 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3279 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3281 /* If there are other queues in the group, don't wait */
3282 if (cfqq
->cfqg
->nr_cfqq
> 1)
3285 if (cfq_slice_used(cfqq
))
3288 /* if slice left is less than think time, wait busy */
3289 if (cic
&& sample_valid(cic
->ttime_samples
)
3290 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3294 * If think times is less than a jiffy than ttime_mean=0 and above
3295 * will not be true. It might happen that slice has not expired yet
3296 * but will expire soon (4-5 ns) during select_queue(). To cover the
3297 * case where think time is less than a jiffy, mark the queue wait
3298 * busy if only 1 jiffy is left in the slice.
3300 if (cfqq
->slice_end
- jiffies
== 1)
3306 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3308 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3309 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3310 const int sync
= rq_is_sync(rq
);
3314 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", !!rq_noidle(rq
));
3316 cfq_update_hw_tag(cfqd
);
3318 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
3319 WARN_ON(!cfqq
->dispatched
);
3320 cfqd
->rq_in_driver
[sync
]--;
3323 if (cfq_cfqq_sync(cfqq
))
3324 cfqd
->sync_flight
--;
3327 RQ_CIC(rq
)->last_end_request
= now
;
3328 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3329 cfqd
->last_delayed_sync
= now
;
3333 * If this is the active queue, check if it needs to be expired,
3334 * or if we want to idle in case it has no pending requests.
3336 if (cfqd
->active_queue
== cfqq
) {
3337 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3339 if (cfq_cfqq_slice_new(cfqq
)) {
3340 cfq_set_prio_slice(cfqd
, cfqq
);
3341 cfq_clear_cfqq_slice_new(cfqq
);
3345 * Should we wait for next request to come in before we expire
3348 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3349 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3350 cfq_mark_cfqq_wait_busy(cfqq
);
3354 * Idling is not enabled on:
3356 * - idle-priority queues
3358 * - queues with still some requests queued
3359 * - when there is a close cooperator
3361 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3362 cfq_slice_expired(cfqd
, 1);
3363 else if (sync
&& cfqq_empty
&&
3364 !cfq_close_cooperator(cfqd
, cfqq
)) {
3365 cfqd
->noidle_tree_requires_idle
|= !rq_noidle(rq
);
3367 * Idling is enabled for SYNC_WORKLOAD.
3368 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3369 * only if we processed at least one !rq_noidle request
3371 if (cfqd
->serving_type
== SYNC_WORKLOAD
3372 || cfqd
->noidle_tree_requires_idle
3373 || cfqq
->cfqg
->nr_cfqq
== 1)
3374 cfq_arm_slice_timer(cfqd
);
3378 if (!rq_in_driver(cfqd
))
3379 cfq_schedule_dispatch(cfqd
);
3383 * we temporarily boost lower priority queues if they are holding fs exclusive
3384 * resources. they are boosted to normal prio (CLASS_BE/4)
3386 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3388 if (has_fs_excl()) {
3390 * boost idle prio on transactions that would lock out other
3391 * users of the filesystem
3393 if (cfq_class_idle(cfqq
))
3394 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3395 if (cfqq
->ioprio
> IOPRIO_NORM
)
3396 cfqq
->ioprio
= IOPRIO_NORM
;
3399 * unboost the queue (if needed)
3401 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3402 cfqq
->ioprio
= cfqq
->org_ioprio
;
3406 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3408 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3409 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3410 return ELV_MQUEUE_MUST
;
3413 return ELV_MQUEUE_MAY
;
3416 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3418 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3419 struct task_struct
*tsk
= current
;
3420 struct cfq_io_context
*cic
;
3421 struct cfq_queue
*cfqq
;
3424 * don't force setup of a queue from here, as a call to may_queue
3425 * does not necessarily imply that a request actually will be queued.
3426 * so just lookup a possibly existing queue, or return 'may queue'
3429 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3431 return ELV_MQUEUE_MAY
;
3433 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3435 cfq_init_prio_data(cfqq
, cic
->ioc
);
3436 cfq_prio_boost(cfqq
);
3438 return __cfq_may_queue(cfqq
);
3441 return ELV_MQUEUE_MAY
;
3445 * queue lock held here
3447 static void cfq_put_request(struct request
*rq
)
3449 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3452 const int rw
= rq_data_dir(rq
);
3454 BUG_ON(!cfqq
->allocated
[rw
]);
3455 cfqq
->allocated
[rw
]--;
3457 put_io_context(RQ_CIC(rq
)->ioc
);
3459 rq
->elevator_private
= NULL
;
3460 rq
->elevator_private2
= NULL
;
3462 cfq_put_queue(cfqq
);
3466 static struct cfq_queue
*
3467 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3468 struct cfq_queue
*cfqq
)
3470 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3471 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3472 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3473 cfq_put_queue(cfqq
);
3474 return cic_to_cfqq(cic
, 1);
3477 static int should_split_cfqq(struct cfq_queue
*cfqq
)
3479 if (cfqq
->seeky_start
&&
3480 time_after(jiffies
, cfqq
->seeky_start
+ CFQQ_COOP_TOUT
))
3486 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3487 * was the last process referring to said cfqq.
3489 static struct cfq_queue
*
3490 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3492 if (cfqq_process_refs(cfqq
) == 1) {
3493 cfqq
->seeky_start
= 0;
3494 cfqq
->pid
= current
->pid
;
3495 cfq_clear_cfqq_coop(cfqq
);
3499 cic_set_cfqq(cic
, NULL
, 1);
3500 cfq_put_queue(cfqq
);
3504 * Allocate cfq data structures associated with this request.
3507 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3509 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3510 struct cfq_io_context
*cic
;
3511 const int rw
= rq_data_dir(rq
);
3512 const bool is_sync
= rq_is_sync(rq
);
3513 struct cfq_queue
*cfqq
;
3514 unsigned long flags
;
3516 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3518 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3520 spin_lock_irqsave(q
->queue_lock
, flags
);
3526 cfqq
= cic_to_cfqq(cic
, is_sync
);
3527 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3528 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3529 cic_set_cfqq(cic
, cfqq
, is_sync
);
3532 * If the queue was seeky for too long, break it apart.
3534 if (cfq_cfqq_coop(cfqq
) && should_split_cfqq(cfqq
)) {
3535 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3536 cfqq
= split_cfqq(cic
, cfqq
);
3542 * Check to see if this queue is scheduled to merge with
3543 * another, closely cooperating queue. The merging of
3544 * queues happens here as it must be done in process context.
3545 * The reference on new_cfqq was taken in merge_cfqqs.
3548 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3551 cfqq
->allocated
[rw
]++;
3552 atomic_inc(&cfqq
->ref
);
3554 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3556 rq
->elevator_private
= cic
;
3557 rq
->elevator_private2
= cfqq
;
3562 put_io_context(cic
->ioc
);
3564 cfq_schedule_dispatch(cfqd
);
3565 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3566 cfq_log(cfqd
, "set_request fail");
3570 static void cfq_kick_queue(struct work_struct
*work
)
3572 struct cfq_data
*cfqd
=
3573 container_of(work
, struct cfq_data
, unplug_work
);
3574 struct request_queue
*q
= cfqd
->queue
;
3576 spin_lock_irq(q
->queue_lock
);
3577 __blk_run_queue(cfqd
->queue
);
3578 spin_unlock_irq(q
->queue_lock
);
3582 * Timer running if the active_queue is currently idling inside its time slice
3584 static void cfq_idle_slice_timer(unsigned long data
)
3586 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3587 struct cfq_queue
*cfqq
;
3588 unsigned long flags
;
3591 cfq_log(cfqd
, "idle timer fired");
3593 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3595 cfqq
= cfqd
->active_queue
;
3600 * We saw a request before the queue expired, let it through
3602 if (cfq_cfqq_must_dispatch(cfqq
))
3608 if (cfq_slice_used(cfqq
))
3612 * only expire and reinvoke request handler, if there are
3613 * other queues with pending requests
3615 if (!cfqd
->busy_queues
)
3619 * not expired and it has a request pending, let it dispatch
3621 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3625 * Queue depth flag is reset only when the idle didn't succeed
3627 cfq_clear_cfqq_deep(cfqq
);
3630 cfq_slice_expired(cfqd
, timed_out
);
3632 cfq_schedule_dispatch(cfqd
);
3634 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3637 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3639 del_timer_sync(&cfqd
->idle_slice_timer
);
3640 cancel_work_sync(&cfqd
->unplug_work
);
3643 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3647 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3648 if (cfqd
->async_cfqq
[0][i
])
3649 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3650 if (cfqd
->async_cfqq
[1][i
])
3651 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3654 if (cfqd
->async_idle_cfqq
)
3655 cfq_put_queue(cfqd
->async_idle_cfqq
);
3658 static void cfq_cfqd_free(struct rcu_head
*head
)
3660 kfree(container_of(head
, struct cfq_data
, rcu
));
3663 static void cfq_exit_queue(struct elevator_queue
*e
)
3665 struct cfq_data
*cfqd
= e
->elevator_data
;
3666 struct request_queue
*q
= cfqd
->queue
;
3668 cfq_shutdown_timer_wq(cfqd
);
3670 spin_lock_irq(q
->queue_lock
);
3672 if (cfqd
->active_queue
)
3673 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3675 while (!list_empty(&cfqd
->cic_list
)) {
3676 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3677 struct cfq_io_context
,
3680 __cfq_exit_single_io_context(cfqd
, cic
);
3683 cfq_put_async_queues(cfqd
);
3684 cfq_release_cfq_groups(cfqd
);
3685 blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3687 spin_unlock_irq(q
->queue_lock
);
3689 cfq_shutdown_timer_wq(cfqd
);
3691 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3692 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3695 static void *cfq_init_queue(struct request_queue
*q
)
3697 struct cfq_data
*cfqd
;
3699 struct cfq_group
*cfqg
;
3700 struct cfq_rb_root
*st
;
3702 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3706 /* Init root service tree */
3707 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3709 /* Init root group */
3710 cfqg
= &cfqd
->root_group
;
3711 for_each_cfqg_st(cfqg
, i
, j
, st
)
3713 RB_CLEAR_NODE(&cfqg
->rb_node
);
3715 /* Give preference to root group over other groups */
3716 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3718 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3720 * Take a reference to root group which we never drop. This is just
3721 * to make sure that cfq_put_cfqg() does not try to kfree root group
3723 atomic_set(&cfqg
->ref
, 1);
3724 blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
, (void *)cfqd
,
3728 * Not strictly needed (since RB_ROOT just clears the node and we
3729 * zeroed cfqd on alloc), but better be safe in case someone decides
3730 * to add magic to the rb code
3732 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3733 cfqd
->prio_trees
[i
] = RB_ROOT
;
3736 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3737 * Grab a permanent reference to it, so that the normal code flow
3738 * will not attempt to free it.
3740 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3741 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3742 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3744 INIT_LIST_HEAD(&cfqd
->cic_list
);
3748 init_timer(&cfqd
->idle_slice_timer
);
3749 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3750 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3752 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3754 cfqd
->cfq_quantum
= cfq_quantum
;
3755 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3756 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3757 cfqd
->cfq_back_max
= cfq_back_max
;
3758 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3759 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3760 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3761 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3762 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3763 cfqd
->cfq_latency
= 1;
3764 cfqd
->cfq_group_isolation
= 0;
3767 * we optimistically start assuming sync ops weren't delayed in last
3768 * second, in order to have larger depth for async operations.
3770 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3771 INIT_RCU_HEAD(&cfqd
->rcu
);
3775 static void cfq_slab_kill(void)
3778 * Caller already ensured that pending RCU callbacks are completed,
3779 * so we should have no busy allocations at this point.
3782 kmem_cache_destroy(cfq_pool
);
3784 kmem_cache_destroy(cfq_ioc_pool
);
3787 static int __init
cfq_slab_setup(void)
3789 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3793 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3804 * sysfs parts below -->
3807 cfq_var_show(unsigned int var
, char *page
)
3809 return sprintf(page
, "%d\n", var
);
3813 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3815 char *p
= (char *) page
;
3817 *var
= simple_strtoul(p
, &p
, 10);
3821 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3822 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3824 struct cfq_data *cfqd = e->elevator_data; \
3825 unsigned int __data = __VAR; \
3827 __data = jiffies_to_msecs(__data); \
3828 return cfq_var_show(__data, (page)); \
3830 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3831 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3832 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3833 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3834 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3835 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3836 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3837 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3838 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3839 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3840 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3841 #undef SHOW_FUNCTION
3843 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3844 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3846 struct cfq_data *cfqd = e->elevator_data; \
3847 unsigned int __data; \
3848 int ret = cfq_var_store(&__data, (page), count); \
3849 if (__data < (MIN)) \
3851 else if (__data > (MAX)) \
3854 *(__PTR) = msecs_to_jiffies(__data); \
3856 *(__PTR) = __data; \
3859 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3860 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3862 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3864 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3865 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3867 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3868 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3869 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3870 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3872 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3873 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3874 #undef STORE_FUNCTION
3876 #define CFQ_ATTR(name) \
3877 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3879 static struct elv_fs_entry cfq_attrs
[] = {
3881 CFQ_ATTR(fifo_expire_sync
),
3882 CFQ_ATTR(fifo_expire_async
),
3883 CFQ_ATTR(back_seek_max
),
3884 CFQ_ATTR(back_seek_penalty
),
3885 CFQ_ATTR(slice_sync
),
3886 CFQ_ATTR(slice_async
),
3887 CFQ_ATTR(slice_async_rq
),
3888 CFQ_ATTR(slice_idle
),
3889 CFQ_ATTR(low_latency
),
3890 CFQ_ATTR(group_isolation
),
3894 static struct elevator_type iosched_cfq
= {
3896 .elevator_merge_fn
= cfq_merge
,
3897 .elevator_merged_fn
= cfq_merged_request
,
3898 .elevator_merge_req_fn
= cfq_merged_requests
,
3899 .elevator_allow_merge_fn
= cfq_allow_merge
,
3900 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3901 .elevator_add_req_fn
= cfq_insert_request
,
3902 .elevator_activate_req_fn
= cfq_activate_request
,
3903 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3904 .elevator_queue_empty_fn
= cfq_queue_empty
,
3905 .elevator_completed_req_fn
= cfq_completed_request
,
3906 .elevator_former_req_fn
= elv_rb_former_request
,
3907 .elevator_latter_req_fn
= elv_rb_latter_request
,
3908 .elevator_set_req_fn
= cfq_set_request
,
3909 .elevator_put_req_fn
= cfq_put_request
,
3910 .elevator_may_queue_fn
= cfq_may_queue
,
3911 .elevator_init_fn
= cfq_init_queue
,
3912 .elevator_exit_fn
= cfq_exit_queue
,
3913 .trim
= cfq_free_io_context
,
3915 .elevator_attrs
= cfq_attrs
,
3916 .elevator_name
= "cfq",
3917 .elevator_owner
= THIS_MODULE
,
3920 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3921 static struct blkio_policy_type blkio_policy_cfq
= {
3923 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3924 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3928 static struct blkio_policy_type blkio_policy_cfq
;
3931 static int __init
cfq_init(void)
3934 * could be 0 on HZ < 1000 setups
3936 if (!cfq_slice_async
)
3937 cfq_slice_async
= 1;
3938 if (!cfq_slice_idle
)
3941 if (cfq_slab_setup())
3944 elv_register(&iosched_cfq
);
3945 blkio_policy_register(&blkio_policy_cfq
);
3950 static void __exit
cfq_exit(void)
3952 DECLARE_COMPLETION_ONSTACK(all_gone
);
3953 blkio_policy_unregister(&blkio_policy_cfq
);
3954 elv_unregister(&iosched_cfq
);
3955 ioc_gone
= &all_gone
;
3956 /* ioc_gone's update must be visible before reading ioc_count */
3960 * this also protects us from entering cfq_slab_kill() with
3961 * pending RCU callbacks
3963 if (elv_ioc_count_read(cfq_ioc_count
))
3964 wait_for_completion(&all_gone
);
3968 module_init(cfq_init
);
3969 module_exit(cfq_exit
);
3971 MODULE_AUTHOR("Jens Axboe");
3972 MODULE_LICENSE("GPL");
3973 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");