2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2005 Macq Electronique SA.
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/string.h>
32 #include <linux/ptrace.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/skbuff.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
48 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
59 #include <asm/8xx_immap.h>
60 #include <asm/mpc8xx.h>
64 #if defined(CONFIG_FEC2)
65 #define FEC_MAX_PORTS 2
67 #define FEC_MAX_PORTS 1
71 * Define the fixed address of the FEC hardware.
73 static unsigned int fec_hw
[] = {
74 #if defined(CONFIG_M5272)
76 #elif defined(CONFIG_M527x)
79 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
81 #elif defined(CONFIG_M520x)
84 &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
),
88 static unsigned char fec_mac_default
[] = {
89 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
93 * Some hardware gets it MAC address out of local flash memory.
94 * if this is non-zero then assume it is the address to get MAC from.
96 #if defined(CONFIG_NETtel)
97 #define FEC_FLASHMAC 0xf0006006
98 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
99 #define FEC_FLASHMAC 0xf0006000
100 #elif defined (CONFIG_MTD_KeyTechnology)
101 #define FEC_FLASHMAC 0xffe04000
102 #elif defined(CONFIG_CANCam)
103 #define FEC_FLASHMAC 0xf0020000
104 #elif defined (CONFIG_M5272C3)
105 #define FEC_FLASHMAC (0xffe04000 + 4)
106 #elif defined(CONFIG_MOD5272)
107 #define FEC_FLASHMAC 0xffc0406b
109 #define FEC_FLASHMAC 0
112 /* Forward declarations of some structures to support different PHYs
117 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
124 const phy_cmd_t
*config
;
125 const phy_cmd_t
*startup
;
126 const phy_cmd_t
*ack_int
;
127 const phy_cmd_t
*shutdown
;
130 /* The number of Tx and Rx buffers. These are allocated from the page
131 * pool. The code may assume these are power of two, so it it best
132 * to keep them that size.
133 * We don't need to allocate pages for the transmitter. We just use
134 * the skbuffer directly.
136 #define FEC_ENET_RX_PAGES 8
137 #define FEC_ENET_RX_FRSIZE 2048
138 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140 #define FEC_ENET_TX_FRSIZE 2048
141 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142 #define TX_RING_SIZE 16 /* Must be power of two */
143 #define TX_RING_MOD_MASK 15 /* for this to work */
145 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
146 #error "FEC: descriptor ring size contants too large"
149 /* Interrupt events/masks.
151 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
152 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
153 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
154 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
155 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
156 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
157 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
158 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
159 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
160 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
162 /* The FEC stores dest/src/type, data, and checksum for receive packets.
164 #define PKT_MAXBUF_SIZE 1518
165 #define PKT_MINBUF_SIZE 64
166 #define PKT_MAXBLR_SIZE 1520
170 * The 5270/5271/5280/5282 RX control register also contains maximum frame
171 * size bits. Other FEC hardware does not, so we need to take that into
172 * account when setting it.
174 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
175 defined(CONFIG_M520x)
176 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
178 #define OPT_FRAME_SIZE 0
181 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
182 * tx_bd_base always point to the base of the buffer descriptors. The
183 * cur_rx and cur_tx point to the currently available buffer.
184 * The dirty_tx tracks the current buffer that is being sent by the
185 * controller. The cur_tx and dirty_tx are equal under both completely
186 * empty and completely full conditions. The empty/ready indicator in
187 * the buffer descriptor determines the actual condition.
189 struct fec_enet_private
{
190 /* Hardware registers of the FEC device */
193 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
194 unsigned char *tx_bounce
[TX_RING_SIZE
];
195 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
199 /* CPM dual port RAM relative addresses.
201 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
203 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
204 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
205 struct net_device_stats stats
;
213 phy_info_t
const *phy
;
214 struct work_struct phy_task
;
217 uint mii_phy_task_queued
;
228 static int fec_enet_open(struct net_device
*dev
);
229 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
230 static void fec_enet_mii(struct net_device
*dev
);
231 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
);
232 static void fec_enet_tx(struct net_device
*dev
);
233 static void fec_enet_rx(struct net_device
*dev
);
234 static int fec_enet_close(struct net_device
*dev
);
235 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
);
236 static void set_multicast_list(struct net_device
*dev
);
237 static void fec_restart(struct net_device
*dev
, int duplex
);
238 static void fec_stop(struct net_device
*dev
);
239 static void fec_set_mac_address(struct net_device
*dev
);
242 /* MII processing. We keep this as simple as possible. Requests are
243 * placed on the list (if there is room). When the request is finished
244 * by the MII, an optional function may be called.
246 typedef struct mii_list
{
248 void (*mii_func
)(uint val
, struct net_device
*dev
);
249 struct mii_list
*mii_next
;
253 static mii_list_t mii_cmds
[NMII
];
254 static mii_list_t
*mii_free
;
255 static mii_list_t
*mii_head
;
256 static mii_list_t
*mii_tail
;
258 static int mii_queue(struct net_device
*dev
, int request
,
259 void (*func
)(uint
, struct net_device
*));
261 /* Make MII read/write commands for the FEC.
263 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
264 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
268 /* Transmitter timeout.
270 #define TX_TIMEOUT (2*HZ)
272 /* Register definitions for the PHY.
275 #define MII_REG_CR 0 /* Control Register */
276 #define MII_REG_SR 1 /* Status Register */
277 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
278 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
279 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
280 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
281 #define MII_REG_ANER 6 /* A-N Expansion Register */
282 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
283 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
285 /* values for phy_status */
287 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
288 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
289 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
290 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
291 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
292 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
293 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
295 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
296 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
297 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
298 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
299 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
300 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
301 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
302 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
306 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
308 struct fec_enet_private
*fep
;
309 volatile fec_t
*fecp
;
312 fep
= netdev_priv(dev
);
313 fecp
= (volatile fec_t
*)dev
->base_addr
;
316 /* Link is down or autonegotiation is in progress. */
320 /* Fill in a Tx ring entry */
323 #ifndef final_version
324 if (bdp
->cbd_sc
& BD_ENET_TX_READY
) {
325 /* Ooops. All transmit buffers are full. Bail out.
326 * This should not happen, since dev->tbusy should be set.
328 printk("%s: tx queue full!.\n", dev
->name
);
333 /* Clear all of the status flags.
335 bdp
->cbd_sc
&= ~BD_ENET_TX_STATS
;
337 /* Set buffer length and buffer pointer.
339 bdp
->cbd_bufaddr
= __pa(skb
->data
);
340 bdp
->cbd_datlen
= skb
->len
;
343 * On some FEC implementations data must be aligned on
344 * 4-byte boundaries. Use bounce buffers to copy data
345 * and get it aligned. Ugh.
347 if (bdp
->cbd_bufaddr
& 0x3) {
349 index
= bdp
- fep
->tx_bd_base
;
350 memcpy(fep
->tx_bounce
[index
], (void *) bdp
->cbd_bufaddr
, bdp
->cbd_datlen
);
351 bdp
->cbd_bufaddr
= __pa(fep
->tx_bounce
[index
]);
356 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
358 fep
->stats
.tx_bytes
+= skb
->len
;
359 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
361 /* Push the data cache so the CPM does not get stale memory
364 flush_dcache_range((unsigned long)skb
->data
,
365 (unsigned long)skb
->data
+ skb
->len
);
367 spin_lock_irq(&fep
->lock
);
369 /* Send it on its way. Tell FEC its ready, interrupt when done,
370 * its the last BD of the frame, and to put the CRC on the end.
373 bdp
->cbd_sc
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
374 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
376 dev
->trans_start
= jiffies
;
378 /* Trigger transmission start */
379 fecp
->fec_x_des_active
= 0x01000000;
381 /* If this was the last BD in the ring, start at the beginning again.
383 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
) {
384 bdp
= fep
->tx_bd_base
;
389 if (bdp
== fep
->dirty_tx
) {
391 netif_stop_queue(dev
);
394 fep
->cur_tx
= (cbd_t
*)bdp
;
396 spin_unlock_irq(&fep
->lock
);
402 fec_timeout(struct net_device
*dev
)
404 struct fec_enet_private
*fep
= netdev_priv(dev
);
406 printk("%s: transmit timed out.\n", dev
->name
);
407 fep
->stats
.tx_errors
++;
408 #ifndef final_version
413 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
414 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
415 (unsigned long)fep
->dirty_tx
,
416 (unsigned long)fep
->cur_rx
);
418 bdp
= fep
->tx_bd_base
;
419 printk(" tx: %u buffers\n", TX_RING_SIZE
);
420 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
421 printk(" %08x: %04x %04x %08x\n",
425 (int) bdp
->cbd_bufaddr
);
429 bdp
= fep
->rx_bd_base
;
430 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE
);
431 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
432 printk(" %08x: %04x %04x %08x\n",
436 (int) bdp
->cbd_bufaddr
);
441 fec_restart(dev
, fep
->full_duplex
);
442 netif_wake_queue(dev
);
445 /* The interrupt handler.
446 * This is called from the MPC core interrupt.
449 fec_enet_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
451 struct net_device
*dev
= dev_id
;
452 volatile fec_t
*fecp
;
456 fecp
= (volatile fec_t
*)dev
->base_addr
;
458 /* Get the interrupt events that caused us to be here.
460 while ((int_events
= fecp
->fec_ievent
) != 0) {
461 fecp
->fec_ievent
= int_events
;
463 /* Handle receive event in its own function.
465 if (int_events
& FEC_ENET_RXF
) {
470 /* Transmit OK, or non-fatal error. Update the buffer
471 descriptors. FEC handles all errors, we just discover
472 them as part of the transmit process.
474 if (int_events
& FEC_ENET_TXF
) {
479 if (int_events
& FEC_ENET_MII
) {
485 return IRQ_RETVAL(handled
);
490 fec_enet_tx(struct net_device
*dev
)
492 struct fec_enet_private
*fep
;
496 fep
= netdev_priv(dev
);
497 spin_lock(&fep
->lock
);
500 while ((bdp
->cbd_sc
&BD_ENET_TX_READY
) == 0) {
501 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
503 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
504 /* Check for errors. */
505 if (bdp
->cbd_sc
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
506 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
508 fep
->stats
.tx_errors
++;
509 if (bdp
->cbd_sc
& BD_ENET_TX_HB
) /* No heartbeat */
510 fep
->stats
.tx_heartbeat_errors
++;
511 if (bdp
->cbd_sc
& BD_ENET_TX_LC
) /* Late collision */
512 fep
->stats
.tx_window_errors
++;
513 if (bdp
->cbd_sc
& BD_ENET_TX_RL
) /* Retrans limit */
514 fep
->stats
.tx_aborted_errors
++;
515 if (bdp
->cbd_sc
& BD_ENET_TX_UN
) /* Underrun */
516 fep
->stats
.tx_fifo_errors
++;
517 if (bdp
->cbd_sc
& BD_ENET_TX_CSL
) /* Carrier lost */
518 fep
->stats
.tx_carrier_errors
++;
520 fep
->stats
.tx_packets
++;
523 #ifndef final_version
524 if (bdp
->cbd_sc
& BD_ENET_TX_READY
)
525 printk("HEY! Enet xmit interrupt and TX_READY.\n");
527 /* Deferred means some collisions occurred during transmit,
528 * but we eventually sent the packet OK.
530 if (bdp
->cbd_sc
& BD_ENET_TX_DEF
)
531 fep
->stats
.collisions
++;
533 /* Free the sk buffer associated with this last transmit.
535 dev_kfree_skb_any(skb
);
536 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
537 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
539 /* Update pointer to next buffer descriptor to be transmitted.
541 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
542 bdp
= fep
->tx_bd_base
;
546 /* Since we have freed up a buffer, the ring is no longer
551 if (netif_queue_stopped(dev
))
552 netif_wake_queue(dev
);
555 fep
->dirty_tx
= (cbd_t
*)bdp
;
556 spin_unlock(&fep
->lock
);
560 /* During a receive, the cur_rx points to the current incoming buffer.
561 * When we update through the ring, if the next incoming buffer has
562 * not been given to the system, we just set the empty indicator,
563 * effectively tossing the packet.
566 fec_enet_rx(struct net_device
*dev
)
568 struct fec_enet_private
*fep
;
569 volatile fec_t
*fecp
;
575 fep
= netdev_priv(dev
);
576 fecp
= (volatile fec_t
*)dev
->base_addr
;
578 /* First, grab all of the stats for the incoming packet.
579 * These get messed up if we get called due to a busy condition.
583 while (!(bdp
->cbd_sc
& BD_ENET_RX_EMPTY
)) {
585 #ifndef final_version
586 /* Since we have allocated space to hold a complete frame,
587 * the last indicator should be set.
589 if ((bdp
->cbd_sc
& BD_ENET_RX_LAST
) == 0)
590 printk("FEC ENET: rcv is not +last\n");
594 goto rx_processing_done
;
596 /* Check for errors. */
597 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
598 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
599 fep
->stats
.rx_errors
++;
600 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
601 /* Frame too long or too short. */
602 fep
->stats
.rx_length_errors
++;
604 if (bdp
->cbd_sc
& BD_ENET_RX_NO
) /* Frame alignment */
605 fep
->stats
.rx_frame_errors
++;
606 if (bdp
->cbd_sc
& BD_ENET_RX_CR
) /* CRC Error */
607 fep
->stats
.rx_crc_errors
++;
608 if (bdp
->cbd_sc
& BD_ENET_RX_OV
) /* FIFO overrun */
609 fep
->stats
.rx_crc_errors
++;
612 /* Report late collisions as a frame error.
613 * On this error, the BD is closed, but we don't know what we
614 * have in the buffer. So, just drop this frame on the floor.
616 if (bdp
->cbd_sc
& BD_ENET_RX_CL
) {
617 fep
->stats
.rx_errors
++;
618 fep
->stats
.rx_frame_errors
++;
619 goto rx_processing_done
;
622 /* Process the incoming frame.
624 fep
->stats
.rx_packets
++;
625 pkt_len
= bdp
->cbd_datlen
;
626 fep
->stats
.rx_bytes
+= pkt_len
;
627 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
629 /* This does 16 byte alignment, exactly what we need.
630 * The packet length includes FCS, but we don't want to
631 * include that when passing upstream as it messes up
632 * bridging applications.
634 skb
= dev_alloc_skb(pkt_len
-4);
637 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
638 fep
->stats
.rx_dropped
++;
641 skb_put(skb
,pkt_len
-4); /* Make room */
642 eth_copy_and_sum(skb
,
643 (unsigned char *)__va(bdp
->cbd_bufaddr
),
645 skb
->protocol
=eth_type_trans(skb
,dev
);
650 /* Clear the status flags for this buffer.
652 bdp
->cbd_sc
&= ~BD_ENET_RX_STATS
;
654 /* Mark the buffer empty.
656 bdp
->cbd_sc
|= BD_ENET_RX_EMPTY
;
658 /* Update BD pointer to next entry.
660 if (bdp
->cbd_sc
& BD_ENET_RX_WRAP
)
661 bdp
= fep
->rx_bd_base
;
666 /* Doing this here will keep the FEC running while we process
667 * incoming frames. On a heavily loaded network, we should be
668 * able to keep up at the expense of system resources.
670 fecp
->fec_r_des_active
= 0x01000000;
672 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
673 fep
->cur_rx
= (cbd_t
*)bdp
;
676 /* Doing this here will allow us to process all frames in the
677 * ring before the FEC is allowed to put more there. On a heavily
678 * loaded network, some frames may be lost. Unfortunately, this
679 * increases the interrupt overhead since we can potentially work
680 * our way back to the interrupt return only to come right back
683 fecp
->fec_r_des_active
= 0x01000000;
689 fec_enet_mii(struct net_device
*dev
)
691 struct fec_enet_private
*fep
;
696 fep
= netdev_priv(dev
);
698 mii_reg
= ep
->fec_mii_data
;
700 if ((mip
= mii_head
) == NULL
) {
701 printk("MII and no head!\n");
705 if (mip
->mii_func
!= NULL
)
706 (*(mip
->mii_func
))(mii_reg
, dev
);
708 mii_head
= mip
->mii_next
;
709 mip
->mii_next
= mii_free
;
712 if ((mip
= mii_head
) != NULL
)
713 ep
->fec_mii_data
= mip
->mii_regval
;
717 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
719 struct fec_enet_private
*fep
;
724 /* Add PHY address to register command.
726 fep
= netdev_priv(dev
);
727 regval
|= fep
->phy_addr
<< 23;
734 if ((mip
= mii_free
) != NULL
) {
735 mii_free
= mip
->mii_next
;
736 mip
->mii_regval
= regval
;
737 mip
->mii_func
= func
;
738 mip
->mii_next
= NULL
;
740 mii_tail
->mii_next
= mip
;
744 mii_head
= mii_tail
= mip
;
745 fep
->hwp
->fec_mii_data
= regval
;
752 restore_flags(flags
);
757 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
764 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++) {
765 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
769 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
771 struct fec_enet_private
*fep
= netdev_priv(dev
);
772 volatile uint
*s
= &(fep
->phy_status
);
775 status
= *s
& ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
777 if (mii_reg
& 0x0004)
778 status
|= PHY_STAT_LINK
;
779 if (mii_reg
& 0x0010)
780 status
|= PHY_STAT_FAULT
;
781 if (mii_reg
& 0x0020)
782 status
|= PHY_STAT_ANC
;
787 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
789 struct fec_enet_private
*fep
= netdev_priv(dev
);
790 volatile uint
*s
= &(fep
->phy_status
);
793 status
= *s
& ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
795 if (mii_reg
& 0x1000)
796 status
|= PHY_CONF_ANE
;
797 if (mii_reg
& 0x4000)
798 status
|= PHY_CONF_LOOP
;
802 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
804 struct fec_enet_private
*fep
= netdev_priv(dev
);
805 volatile uint
*s
= &(fep
->phy_status
);
808 status
= *s
& ~(PHY_CONF_SPMASK
);
810 if (mii_reg
& 0x0020)
811 status
|= PHY_CONF_10HDX
;
812 if (mii_reg
& 0x0040)
813 status
|= PHY_CONF_10FDX
;
814 if (mii_reg
& 0x0080)
815 status
|= PHY_CONF_100HDX
;
816 if (mii_reg
& 0x00100)
817 status
|= PHY_CONF_100FDX
;
821 /* ------------------------------------------------------------------------- */
822 /* The Level one LXT970 is used by many boards */
824 #define MII_LXT970_MIRROR 16 /* Mirror register */
825 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
826 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
827 #define MII_LXT970_CONFIG 19 /* Configuration Register */
828 #define MII_LXT970_CSR 20 /* Chip Status Register */
830 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
832 struct fec_enet_private
*fep
= netdev_priv(dev
);
833 volatile uint
*s
= &(fep
->phy_status
);
836 status
= *s
& ~(PHY_STAT_SPMASK
);
837 if (mii_reg
& 0x0800) {
838 if (mii_reg
& 0x1000)
839 status
|= PHY_STAT_100FDX
;
841 status
|= PHY_STAT_100HDX
;
843 if (mii_reg
& 0x1000)
844 status
|= PHY_STAT_10FDX
;
846 status
|= PHY_STAT_10HDX
;
851 static phy_cmd_t
const phy_cmd_lxt970_config
[] = {
852 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
853 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
856 static phy_cmd_t
const phy_cmd_lxt970_startup
[] = { /* enable interrupts */
857 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
858 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
861 static phy_cmd_t
const phy_cmd_lxt970_ack_int
[] = {
862 /* read SR and ISR to acknowledge */
863 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
864 { mk_mii_read(MII_LXT970_ISR
), NULL
},
866 /* find out the current status */
867 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
870 static phy_cmd_t
const phy_cmd_lxt970_shutdown
[] = { /* disable interrupts */
871 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
874 static phy_info_t
const phy_info_lxt970
= {
877 .config
= phy_cmd_lxt970_config
,
878 .startup
= phy_cmd_lxt970_startup
,
879 .ack_int
= phy_cmd_lxt970_ack_int
,
880 .shutdown
= phy_cmd_lxt970_shutdown
883 /* ------------------------------------------------------------------------- */
884 /* The Level one LXT971 is used on some of my custom boards */
886 /* register definitions for the 971 */
888 #define MII_LXT971_PCR 16 /* Port Control Register */
889 #define MII_LXT971_SR2 17 /* Status Register 2 */
890 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
891 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
892 #define MII_LXT971_LCR 20 /* LED Control Register */
893 #define MII_LXT971_TCR 30 /* Transmit Control Register */
896 * I had some nice ideas of running the MDIO faster...
897 * The 971 should support 8MHz and I tried it, but things acted really
898 * weird, so 2.5 MHz ought to be enough for anyone...
901 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
903 struct fec_enet_private
*fep
= netdev_priv(dev
);
904 volatile uint
*s
= &(fep
->phy_status
);
907 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
909 if (mii_reg
& 0x0400) {
911 status
|= PHY_STAT_LINK
;
915 if (mii_reg
& 0x0080)
916 status
|= PHY_STAT_ANC
;
917 if (mii_reg
& 0x4000) {
918 if (mii_reg
& 0x0200)
919 status
|= PHY_STAT_100FDX
;
921 status
|= PHY_STAT_100HDX
;
923 if (mii_reg
& 0x0200)
924 status
|= PHY_STAT_10FDX
;
926 status
|= PHY_STAT_10HDX
;
928 if (mii_reg
& 0x0008)
929 status
|= PHY_STAT_FAULT
;
934 static phy_cmd_t
const phy_cmd_lxt971_config
[] = {
935 /* limit to 10MBit because my prototype board
936 * doesn't work with 100. */
937 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
938 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
939 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
942 static phy_cmd_t
const phy_cmd_lxt971_startup
[] = { /* enable interrupts */
943 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
944 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
945 { mk_mii_write(MII_LXT971_LCR
, 0xd422), NULL
}, /* LED config */
946 /* Somehow does the 971 tell me that the link is down
947 * the first read after power-up.
948 * read here to get a valid value in ack_int */
949 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
952 static phy_cmd_t
const phy_cmd_lxt971_ack_int
[] = {
953 /* acknowledge the int before reading status ! */
954 { mk_mii_read(MII_LXT971_ISR
), NULL
},
955 /* find out the current status */
956 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
957 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
960 static phy_cmd_t
const phy_cmd_lxt971_shutdown
[] = { /* disable interrupts */
961 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
964 static phy_info_t
const phy_info_lxt971
= {
967 .config
= phy_cmd_lxt971_config
,
968 .startup
= phy_cmd_lxt971_startup
,
969 .ack_int
= phy_cmd_lxt971_ack_int
,
970 .shutdown
= phy_cmd_lxt971_shutdown
973 /* ------------------------------------------------------------------------- */
974 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
976 /* register definitions */
978 #define MII_QS6612_MCR 17 /* Mode Control Register */
979 #define MII_QS6612_FTR 27 /* Factory Test Register */
980 #define MII_QS6612_MCO 28 /* Misc. Control Register */
981 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
982 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
983 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
985 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
987 struct fec_enet_private
*fep
= netdev_priv(dev
);
988 volatile uint
*s
= &(fep
->phy_status
);
991 status
= *s
& ~(PHY_STAT_SPMASK
);
993 switch((mii_reg
>> 2) & 7) {
994 case 1: status
|= PHY_STAT_10HDX
; break;
995 case 2: status
|= PHY_STAT_100HDX
; break;
996 case 5: status
|= PHY_STAT_10FDX
; break;
997 case 6: status
|= PHY_STAT_100FDX
; break;
1003 static phy_cmd_t
const phy_cmd_qs6612_config
[] = {
1004 /* The PHY powers up isolated on the RPX,
1005 * so send a command to allow operation.
1007 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1009 /* parse cr and anar to get some info */
1010 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1011 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1014 static phy_cmd_t
const phy_cmd_qs6612_startup
[] = { /* enable interrupts */
1015 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1016 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1019 static phy_cmd_t
const phy_cmd_qs6612_ack_int
[] = {
1020 /* we need to read ISR, SR and ANER to acknowledge */
1021 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1022 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1023 { mk_mii_read(MII_REG_ANER
), NULL
},
1025 /* read pcr to get info */
1026 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1029 static phy_cmd_t
const phy_cmd_qs6612_shutdown
[] = { /* disable interrupts */
1030 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1033 static phy_info_t
const phy_info_qs6612
= {
1036 .config
= phy_cmd_qs6612_config
,
1037 .startup
= phy_cmd_qs6612_startup
,
1038 .ack_int
= phy_cmd_qs6612_ack_int
,
1039 .shutdown
= phy_cmd_qs6612_shutdown
1042 /* ------------------------------------------------------------------------- */
1043 /* AMD AM79C874 phy */
1045 /* register definitions for the 874 */
1047 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1048 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1049 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1050 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1051 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1052 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1053 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1055 static void mii_parse_am79c874_dr(uint mii_reg
, struct net_device
*dev
)
1057 struct fec_enet_private
*fep
= netdev_priv(dev
);
1058 volatile uint
*s
= &(fep
->phy_status
);
1061 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_ANC
);
1063 if (mii_reg
& 0x0080)
1064 status
|= PHY_STAT_ANC
;
1065 if (mii_reg
& 0x0400)
1066 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_100FDX
: PHY_STAT_100HDX
);
1068 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_10FDX
: PHY_STAT_10HDX
);
1073 static phy_cmd_t
const phy_cmd_am79c874_config
[] = {
1074 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1075 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1076 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1079 static phy_cmd_t
const phy_cmd_am79c874_startup
[] = { /* enable interrupts */
1080 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1081 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1082 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1085 static phy_cmd_t
const phy_cmd_am79c874_ack_int
[] = {
1086 /* find out the current status */
1087 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1088 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1089 /* we only need to read ISR to acknowledge */
1090 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1093 static phy_cmd_t
const phy_cmd_am79c874_shutdown
[] = { /* disable interrupts */
1094 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1097 static phy_info_t
const phy_info_am79c874
= {
1100 .config
= phy_cmd_am79c874_config
,
1101 .startup
= phy_cmd_am79c874_startup
,
1102 .ack_int
= phy_cmd_am79c874_ack_int
,
1103 .shutdown
= phy_cmd_am79c874_shutdown
1107 /* ------------------------------------------------------------------------- */
1108 /* Kendin KS8721BL phy */
1110 /* register definitions for the 8721 */
1112 #define MII_KS8721BL_RXERCR 21
1113 #define MII_KS8721BL_ICSR 22
1114 #define MII_KS8721BL_PHYCR 31
1116 static phy_cmd_t
const phy_cmd_ks8721bl_config
[] = {
1117 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1118 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1121 static phy_cmd_t
const phy_cmd_ks8721bl_startup
[] = { /* enable interrupts */
1122 { mk_mii_write(MII_KS8721BL_ICSR
, 0xff00), NULL
},
1123 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1124 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1127 static phy_cmd_t
const phy_cmd_ks8721bl_ack_int
[] = {
1128 /* find out the current status */
1129 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1130 /* we only need to read ISR to acknowledge */
1131 { mk_mii_read(MII_KS8721BL_ICSR
), NULL
},
1134 static phy_cmd_t
const phy_cmd_ks8721bl_shutdown
[] = { /* disable interrupts */
1135 { mk_mii_write(MII_KS8721BL_ICSR
, 0x0000), NULL
},
1138 static phy_info_t
const phy_info_ks8721bl
= {
1141 .config
= phy_cmd_ks8721bl_config
,
1142 .startup
= phy_cmd_ks8721bl_startup
,
1143 .ack_int
= phy_cmd_ks8721bl_ack_int
,
1144 .shutdown
= phy_cmd_ks8721bl_shutdown
1147 /* ------------------------------------------------------------------------- */
1148 /* register definitions for the DP83848 */
1150 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1152 static void mii_parse_dp8384x_sr2(uint mii_reg
, struct net_device
*dev
)
1154 struct fec_enet_private
*fep
= dev
->priv
;
1155 volatile uint
*s
= &(fep
->phy_status
);
1157 *s
&= ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
1160 if (mii_reg
& 0x0001) {
1162 *s
|= PHY_STAT_LINK
;
1165 /* Status of link */
1166 if (mii_reg
& 0x0010) /* Autonegotioation complete */
1168 if (mii_reg
& 0x0002) { /* 10MBps? */
1169 if (mii_reg
& 0x0004) /* Full Duplex? */
1170 *s
|= PHY_STAT_10FDX
;
1172 *s
|= PHY_STAT_10HDX
;
1173 } else { /* 100 Mbps? */
1174 if (mii_reg
& 0x0004) /* Full Duplex? */
1175 *s
|= PHY_STAT_100FDX
;
1177 *s
|= PHY_STAT_100HDX
;
1179 if (mii_reg
& 0x0008)
1180 *s
|= PHY_STAT_FAULT
;
1183 static phy_info_t phy_info_dp83848
= {
1187 (const phy_cmd_t
[]) { /* config */
1188 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1189 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1190 { mk_mii_read(MII_DP8384X_PHYSTST
), mii_parse_dp8384x_sr2
},
1193 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1194 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1195 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1198 (const phy_cmd_t
[]) { /* ack_int - never happens, no interrupt */
1201 (const phy_cmd_t
[]) { /* shutdown */
1206 /* ------------------------------------------------------------------------- */
1208 static phy_info_t
const * const phy_info
[] = {
1218 /* ------------------------------------------------------------------------- */
1220 #ifdef CONFIG_RPXCLASSIC
1222 mii_link_interrupt(void *dev_id
);
1225 mii_link_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
);
1228 #if defined(CONFIG_M5272)
1231 * Code specific to Coldfire 5272 setup.
1233 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1235 volatile unsigned long *icrp
;
1236 static const struct idesc
{
1239 irqreturn_t (*handler
)(int, void *, struct pt_regs
*);
1241 { "fec(RX)", 86, fec_enet_interrupt
},
1242 { "fec(TX)", 87, fec_enet_interrupt
},
1243 { "fec(OTHER)", 88, fec_enet_interrupt
},
1244 { "fec(MII)", 66, mii_link_interrupt
},
1248 /* Setup interrupt handlers. */
1249 for (idp
= id
; idp
->name
; idp
++) {
1250 if (request_irq(idp
->irq
, idp
->handler
, 0, idp
->name
, dev
) != 0)
1251 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, idp
->irq
);
1254 /* Unmask interrupt at ColdFire 5272 SIM */
1255 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR3
);
1257 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1258 *icrp
= (*icrp
& 0x70777777) | 0x0d000000;
1261 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1263 volatile fec_t
*fecp
;
1266 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1267 fecp
->fec_x_cntrl
= 0x00;
1270 * Set MII speed to 2.5 MHz
1271 * See 5272 manual section 11.5.8: MSCR
1273 fep
->phy_speed
= ((((MCF_CLK
/ 4) / (2500000 / 10)) + 5) / 10) * 2;
1274 fecp
->fec_mii_speed
= fep
->phy_speed
;
1276 fec_restart(dev
, 0);
1279 static void __inline__
fec_get_mac(struct net_device
*dev
)
1281 struct fec_enet_private
*fep
= netdev_priv(dev
);
1282 volatile fec_t
*fecp
;
1283 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1289 * Get MAC address from FLASH.
1290 * If it is all 1's or 0's, use the default.
1292 iap
= (unsigned char *)FEC_FLASHMAC
;
1293 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1294 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1295 iap
= fec_mac_default
;
1296 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1297 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1298 iap
= fec_mac_default
;
1300 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1301 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1305 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1307 /* Adjust MAC if using default MAC address */
1308 if (iap
== fec_mac_default
)
1309 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1312 static void __inline__
fec_enable_phy_intr(void)
1316 static void __inline__
fec_disable_phy_intr(void)
1318 volatile unsigned long *icrp
;
1319 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1320 *icrp
= (*icrp
& 0x70777777) | 0x08000000;
1323 static void __inline__
fec_phy_ack_intr(void)
1325 volatile unsigned long *icrp
;
1326 /* Acknowledge the interrupt */
1327 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1328 *icrp
= (*icrp
& 0x77777777) | 0x08000000;
1331 static void __inline__
fec_localhw_setup(void)
1336 * Do not need to make region uncached on 5272.
1338 static void __inline__
fec_uncache(unsigned long addr
)
1342 /* ------------------------------------------------------------------------- */
1344 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1347 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1348 * the 5270/5271/5274/5275 and 5280/5282 setups.
1350 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1352 struct fec_enet_private
*fep
;
1354 static const struct idesc
{
1360 { "fec(TXFIFO)", 25 },
1361 { "fec(TXCR)", 26 },
1366 { "fec(HBERR)", 31 },
1368 { "fec(EBERR)", 33 },
1369 { "fec(BABT)", 34 },
1370 { "fec(BABR)", 35 },
1374 fep
= netdev_priv(dev
);
1375 b
= (fep
->index
) ? 128 : 64;
1377 /* Setup interrupt handlers. */
1378 for (idp
= id
; idp
->name
; idp
++) {
1379 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, 0, idp
->name
, dev
) != 0)
1380 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1383 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1385 volatile unsigned char *icrp
;
1386 volatile unsigned long *imrp
;
1389 b
= (fep
->index
) ? MCFICM_INTC1
: MCFICM_INTC0
;
1390 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ b
+
1392 for (i
= 23; (i
< 36); i
++)
1395 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1397 *imrp
&= ~0x0000000f;
1398 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1400 *imrp
&= ~0xff800001;
1403 #if defined(CONFIG_M528x)
1404 /* Set up gpio outputs for MII lines */
1406 volatile u16
*gpio_paspar
;
1407 volatile u8
*gpio_pehlpar
;
1409 gpio_paspar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100056);
1410 gpio_pehlpar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100058);
1411 *gpio_paspar
|= 0x0f00;
1412 *gpio_pehlpar
= 0xc0;
1417 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1419 volatile fec_t
*fecp
;
1422 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1423 fecp
->fec_x_cntrl
= 0x00;
1426 * Set MII speed to 2.5 MHz
1427 * See 5282 manual section 17.5.4.7: MSCR
1429 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1430 fecp
->fec_mii_speed
= fep
->phy_speed
;
1432 fec_restart(dev
, 0);
1435 static void __inline__
fec_get_mac(struct net_device
*dev
)
1437 struct fec_enet_private
*fep
= netdev_priv(dev
);
1438 volatile fec_t
*fecp
;
1439 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1445 * Get MAC address from FLASH.
1446 * If it is all 1's or 0's, use the default.
1449 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1450 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1451 iap
= fec_mac_default
;
1452 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1453 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1454 iap
= fec_mac_default
;
1456 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1457 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1461 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1463 /* Adjust MAC if using default MAC address */
1464 if (iap
== fec_mac_default
)
1465 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1468 static void __inline__
fec_enable_phy_intr(void)
1472 static void __inline__
fec_disable_phy_intr(void)
1476 static void __inline__
fec_phy_ack_intr(void)
1480 static void __inline__
fec_localhw_setup(void)
1485 * Do not need to make region uncached on 5272.
1487 static void __inline__
fec_uncache(unsigned long addr
)
1491 /* ------------------------------------------------------------------------- */
1493 #elif defined(CONFIG_M520x)
1496 * Code specific to Coldfire 520x
1498 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1500 struct fec_enet_private
*fep
;
1502 static const struct idesc
{
1508 { "fec(TXFIFO)", 25 },
1509 { "fec(TXCR)", 26 },
1514 { "fec(HBERR)", 31 },
1516 { "fec(EBERR)", 33 },
1517 { "fec(BABT)", 34 },
1518 { "fec(BABR)", 35 },
1522 fep
= netdev_priv(dev
);
1525 /* Setup interrupt handlers. */
1526 for (idp
= id
; idp
->name
; idp
++) {
1527 if (request_irq(b
+idp
->irq
,fec_enet_interrupt
,0,idp
->name
,dev
)!=0)
1528 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1531 /* Unmask interrupts at ColdFire interrupt controller */
1533 volatile unsigned char *icrp
;
1534 volatile unsigned long *imrp
;
1536 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1538 for (b
= 36; (b
< 49); b
++)
1540 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1542 *imrp
&= ~0x0001FFF0;
1544 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FEC
) |= 0xf0;
1545 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FECI2C
) |= 0x0f;
1548 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1550 volatile fec_t
*fecp
;
1553 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1554 fecp
->fec_x_cntrl
= 0x00;
1557 * Set MII speed to 2.5 MHz
1558 * See 5282 manual section 17.5.4.7: MSCR
1560 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1561 fecp
->fec_mii_speed
= fep
->phy_speed
;
1563 fec_restart(dev
, 0);
1566 static void __inline__
fec_get_mac(struct net_device
*dev
)
1568 struct fec_enet_private
*fep
= netdev_priv(dev
);
1569 volatile fec_t
*fecp
;
1570 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1576 * Get MAC address from FLASH.
1577 * If it is all 1's or 0's, use the default.
1580 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1581 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1582 iap
= fec_mac_default
;
1583 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1584 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1585 iap
= fec_mac_default
;
1587 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1588 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1592 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1594 /* Adjust MAC if using default MAC address */
1595 if (iap
== fec_mac_default
)
1596 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1599 static void __inline__
fec_enable_phy_intr(void)
1603 static void __inline__
fec_disable_phy_intr(void)
1607 static void __inline__
fec_phy_ack_intr(void)
1611 static void __inline__
fec_localhw_setup(void)
1615 static void __inline__
fec_uncache(unsigned long addr
)
1619 /* ------------------------------------------------------------------------- */
1624 * Code specific to the MPC860T setup.
1626 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1628 volatile immap_t
*immap
;
1630 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1632 if (request_8xxirq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1633 panic("Could not allocate FEC IRQ!");
1635 #ifdef CONFIG_RPXCLASSIC
1636 /* Make Port C, bit 15 an input that causes interrupts.
1638 immap
->im_ioport
.iop_pcpar
&= ~0x0001;
1639 immap
->im_ioport
.iop_pcdir
&= ~0x0001;
1640 immap
->im_ioport
.iop_pcso
&= ~0x0001;
1641 immap
->im_ioport
.iop_pcint
|= 0x0001;
1642 cpm_install_handler(CPMVEC_PIO_PC15
, mii_link_interrupt
, dev
);
1644 /* Make LEDS reflect Link status.
1646 *((uint
*) RPX_CSR_ADDR
) &= ~BCSR2_FETHLEDMODE
;
1649 if (request_8xxirq(SIU_IRQ2
, mii_link_interrupt
, 0, "mii", dev
) != 0)
1650 panic("Could not allocate MII IRQ!");
1654 static void __inline__
fec_get_mac(struct net_device
*dev
)
1659 memcpy(dev
->dev_addr
, bd
->bi_enetaddr
, ETH_ALEN
);
1661 #ifdef CONFIG_RPXCLASSIC
1662 /* The Embedded Planet boards have only one MAC address in
1663 * the EEPROM, but can have two Ethernet ports. For the
1664 * FEC port, we create another address by setting one of
1665 * the address bits above something that would have (up to
1666 * now) been allocated.
1668 dev
->dev_adrd
[3] |= 0x80;
1672 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1674 extern uint
_get_IMMR(void);
1675 volatile immap_t
*immap
;
1676 volatile fec_t
*fecp
;
1679 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1681 /* Configure all of port D for MII.
1683 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1685 /* Bits moved from Rev. D onward.
1687 if ((_get_IMMR() & 0xffff) < 0x0501)
1688 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1690 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1692 /* Set MII speed to 2.5 MHz
1694 fecp
->fec_mii_speed
= fep
->phy_speed
=
1695 ((bd
->bi_busfreq
* 1000000) / 2500000) & 0x7e;
1698 static void __inline__
fec_enable_phy_intr(void)
1700 volatile fec_t
*fecp
;
1704 /* Enable MII command finished interrupt
1706 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1709 static void __inline__
fec_disable_phy_intr(void)
1713 static void __inline__
fec_phy_ack_intr(void)
1717 static void __inline__
fec_localhw_setup(void)
1719 volatile fec_t
*fecp
;
1722 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1723 /* Enable big endian and don't care about SDMA FC.
1725 fecp
->fec_fun_code
= 0x78000000;
1728 static void __inline__
fec_uncache(unsigned long addr
)
1731 pte
= va_to_pte(mem_addr
);
1732 pte_val(*pte
) |= _PAGE_NO_CACHE
;
1733 flush_tlb_page(init_mm
.mmap
, mem_addr
);
1738 /* ------------------------------------------------------------------------- */
1740 static void mii_display_status(struct net_device
*dev
)
1742 struct fec_enet_private
*fep
= netdev_priv(dev
);
1743 volatile uint
*s
= &(fep
->phy_status
);
1745 if (!fep
->link
&& !fep
->old_link
) {
1746 /* Link is still down - don't print anything */
1750 printk("%s: status: ", dev
->name
);
1753 printk("link down");
1757 switch(*s
& PHY_STAT_SPMASK
) {
1758 case PHY_STAT_100FDX
: printk(", 100MBit Full Duplex"); break;
1759 case PHY_STAT_100HDX
: printk(", 100MBit Half Duplex"); break;
1760 case PHY_STAT_10FDX
: printk(", 10MBit Full Duplex"); break;
1761 case PHY_STAT_10HDX
: printk(", 10MBit Half Duplex"); break;
1763 printk(", Unknown speed/duplex");
1766 if (*s
& PHY_STAT_ANC
)
1767 printk(", auto-negotiation complete");
1770 if (*s
& PHY_STAT_FAULT
)
1771 printk(", remote fault");
1776 static void mii_display_config(struct net_device
*dev
)
1778 struct fec_enet_private
*fep
= netdev_priv(dev
);
1779 uint status
= fep
->phy_status
;
1782 ** When we get here, phy_task is already removed from
1783 ** the workqueue. It is thus safe to allow to reuse it.
1785 fep
->mii_phy_task_queued
= 0;
1786 printk("%s: config: auto-negotiation ", dev
->name
);
1788 if (status
& PHY_CONF_ANE
)
1793 if (status
& PHY_CONF_100FDX
)
1795 if (status
& PHY_CONF_100HDX
)
1797 if (status
& PHY_CONF_10FDX
)
1799 if (status
& PHY_CONF_10HDX
)
1801 if (!(status
& PHY_CONF_SPMASK
))
1802 printk(", No speed/duplex selected?");
1804 if (status
& PHY_CONF_LOOP
)
1805 printk(", loopback enabled");
1809 fep
->sequence_done
= 1;
1812 static void mii_relink(struct net_device
*dev
)
1814 struct fec_enet_private
*fep
= netdev_priv(dev
);
1818 ** When we get here, phy_task is already removed from
1819 ** the workqueue. It is thus safe to allow to reuse it.
1821 fep
->mii_phy_task_queued
= 0;
1822 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1823 mii_display_status(dev
);
1824 fep
->old_link
= fep
->link
;
1829 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1831 fec_restart(dev
, duplex
);
1837 enable_irq(fep
->mii_irq
);
1842 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1843 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
1845 struct fec_enet_private
*fep
= netdev_priv(dev
);
1848 ** We cannot queue phy_task twice in the workqueue. It
1849 ** would cause an endless loop in the workqueue.
1850 ** Fortunately, if the last mii_relink entry has not yet been
1851 ** executed now, it will do the job for the current interrupt,
1852 ** which is just what we want.
1854 if (fep
->mii_phy_task_queued
)
1857 fep
->mii_phy_task_queued
= 1;
1858 INIT_WORK(&fep
->phy_task
, (void*)mii_relink
, dev
);
1859 schedule_work(&fep
->phy_task
);
1862 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1863 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
1865 struct fec_enet_private
*fep
= netdev_priv(dev
);
1867 if (fep
->mii_phy_task_queued
)
1870 fep
->mii_phy_task_queued
= 1;
1871 INIT_WORK(&fep
->phy_task
, (void*)mii_display_config
, dev
);
1872 schedule_work(&fep
->phy_task
);
1875 phy_cmd_t
const phy_cmd_relink
[] = {
1876 { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
1879 phy_cmd_t
const phy_cmd_config
[] = {
1880 { mk_mii_read(MII_REG_CR
), mii_queue_config
},
1884 /* Read remainder of PHY ID.
1887 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
1889 struct fec_enet_private
*fep
;
1892 fep
= netdev_priv(dev
);
1893 fep
->phy_id
|= (mii_reg
& 0xffff);
1894 printk("fec: PHY @ 0x%x, ID 0x%08x", fep
->phy_addr
, fep
->phy_id
);
1896 for(i
= 0; phy_info
[i
]; i
++) {
1897 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
1902 printk(" -- %s\n", phy_info
[i
]->name
);
1904 printk(" -- unknown PHY!\n");
1906 fep
->phy
= phy_info
[i
];
1907 fep
->phy_id_done
= 1;
1910 /* Scan all of the MII PHY addresses looking for someone to respond
1911 * with a valid ID. This usually happens quickly.
1914 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
1916 struct fec_enet_private
*fep
;
1917 volatile fec_t
*fecp
;
1920 fep
= netdev_priv(dev
);
1923 if (fep
->phy_addr
< 32) {
1924 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff && phytype
!= 0) {
1926 /* Got first part of ID, now get remainder.
1928 fep
->phy_id
= phytype
<< 16;
1929 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
),
1934 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
1938 printk("FEC: No PHY device found.\n");
1939 /* Disable external MII interface */
1940 fecp
->fec_mii_speed
= fep
->phy_speed
= 0;
1941 fec_disable_phy_intr();
1945 /* This interrupt occurs when the PHY detects a link change.
1947 #ifdef CONFIG_RPXCLASSIC
1949 mii_link_interrupt(void *dev_id
)
1952 mii_link_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
1955 struct net_device
*dev
= dev_id
;
1956 struct fec_enet_private
*fep
= netdev_priv(dev
);
1961 disable_irq(fep
->mii_irq
); /* disable now, enable later */
1964 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1965 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
1971 fec_enet_open(struct net_device
*dev
)
1973 struct fec_enet_private
*fep
= netdev_priv(dev
);
1975 /* I should reset the ring buffers here, but I don't yet know
1976 * a simple way to do that.
1978 fec_set_mac_address(dev
);
1980 fep
->sequence_done
= 0;
1984 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1985 mii_do_cmd(dev
, fep
->phy
->config
);
1986 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
1988 /* FIXME: use netif_carrier_{on,off} ; this polls
1989 * until link is up which is wrong... could be
1990 * 30 seconds or more we are trapped in here. -jgarzik
1992 while(!fep
->sequence_done
)
1995 mii_do_cmd(dev
, fep
->phy
->startup
);
1997 /* Set the initial link state to true. A lot of hardware
1998 * based on this device does not implement a PHY interrupt,
1999 * so we are never notified of link change.
2003 fep
->link
= 1; /* lets just try it and see */
2004 /* no phy, go full duplex, it's most likely a hub chip */
2005 fec_restart(dev
, 1);
2008 netif_start_queue(dev
);
2010 return 0; /* Success */
2014 fec_enet_close(struct net_device
*dev
)
2016 struct fec_enet_private
*fep
= netdev_priv(dev
);
2018 /* Don't know what to do yet.
2021 netif_stop_queue(dev
);
2027 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
)
2029 struct fec_enet_private
*fep
= netdev_priv(dev
);
2034 /* Set or clear the multicast filter for this adaptor.
2035 * Skeleton taken from sunlance driver.
2036 * The CPM Ethernet implementation allows Multicast as well as individual
2037 * MAC address filtering. Some of the drivers check to make sure it is
2038 * a group multicast address, and discard those that are not. I guess I
2039 * will do the same for now, but just remove the test if you want
2040 * individual filtering as well (do the upper net layers want or support
2041 * this kind of feature?).
2044 #define HASH_BITS 6 /* #bits in hash */
2045 #define CRC32_POLY 0xEDB88320
2047 static void set_multicast_list(struct net_device
*dev
)
2049 struct fec_enet_private
*fep
;
2051 struct dev_mc_list
*dmi
;
2052 unsigned int i
, j
, bit
, data
, crc
;
2055 fep
= netdev_priv(dev
);
2058 if (dev
->flags
&IFF_PROMISC
) {
2059 /* Log any net taps. */
2060 printk("%s: Promiscuous mode enabled.\n", dev
->name
);
2061 ep
->fec_r_cntrl
|= 0x0008;
2064 ep
->fec_r_cntrl
&= ~0x0008;
2066 if (dev
->flags
& IFF_ALLMULTI
) {
2067 /* Catch all multicast addresses, so set the
2068 * filter to all 1's.
2070 ep
->fec_hash_table_high
= 0xffffffff;
2071 ep
->fec_hash_table_low
= 0xffffffff;
2073 /* Clear filter and add the addresses in hash register.
2075 ep
->fec_hash_table_high
= 0;
2076 ep
->fec_hash_table_low
= 0;
2080 for (j
= 0; j
< dev
->mc_count
; j
++, dmi
= dmi
->next
)
2082 /* Only support group multicast for now.
2084 if (!(dmi
->dmi_addr
[0] & 1))
2087 /* calculate crc32 value of mac address
2091 for (i
= 0; i
< dmi
->dmi_addrlen
; i
++)
2093 data
= dmi
->dmi_addr
[i
];
2094 for (bit
= 0; bit
< 8; bit
++, data
>>= 1)
2097 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2101 /* only upper 6 bits (HASH_BITS) are used
2102 which point to specific bit in he hash registers
2104 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
2107 ep
->fec_hash_table_high
|= 1 << (hash
- 32);
2109 ep
->fec_hash_table_low
|= 1 << hash
;
2115 /* Set a MAC change in hardware.
2118 fec_set_mac_address(struct net_device
*dev
)
2120 volatile fec_t
*fecp
;
2122 fecp
= ((struct fec_enet_private
*)netdev_priv(dev
))->hwp
;
2124 /* Set station address. */
2125 fecp
->fec_addr_low
= dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
2126 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24);
2127 fecp
->fec_addr_high
= (dev
->dev_addr
[5] << 16) |
2128 (dev
->dev_addr
[4] << 24);
2132 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2135 * XXX: We need to clean up on failure exits here.
2137 int __init
fec_enet_init(struct net_device
*dev
)
2139 struct fec_enet_private
*fep
= netdev_priv(dev
);
2140 unsigned long mem_addr
;
2141 volatile cbd_t
*bdp
;
2143 volatile fec_t
*fecp
;
2145 static int index
= 0;
2147 /* Only allow us to be probed once. */
2148 if (index
>= FEC_MAX_PORTS
)
2151 /* Allocate memory for buffer descriptors.
2153 mem_addr
= __get_free_page(GFP_KERNEL
);
2154 if (mem_addr
== 0) {
2155 printk("FEC: allocate descriptor memory failed?\n");
2159 /* Create an Ethernet device instance.
2161 fecp
= (volatile fec_t
*) fec_hw
[index
];
2166 /* Whack a reset. We should wait for this.
2168 fecp
->fec_ecntrl
= 1;
2171 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2172 * this needs some work to get unique addresses.
2174 * This is our default MAC address unless the user changes
2175 * it via eth_mac_addr (our dev->set_mac_addr handler).
2179 cbd_base
= (cbd_t
*)mem_addr
;
2180 /* XXX: missing check for allocation failure */
2182 fec_uncache(mem_addr
);
2184 /* Set receive and transmit descriptor base.
2186 fep
->rx_bd_base
= cbd_base
;
2187 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
2189 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2190 fep
->cur_rx
= fep
->rx_bd_base
;
2192 fep
->skb_cur
= fep
->skb_dirty
= 0;
2194 /* Initialize the receive buffer descriptors.
2196 bdp
= fep
->rx_bd_base
;
2197 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
2201 mem_addr
= __get_free_page(GFP_KERNEL
);
2202 /* XXX: missing check for allocation failure */
2204 fec_uncache(mem_addr
);
2206 /* Initialize the BD for every fragment in the page.
2208 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
2209 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2210 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2211 mem_addr
+= FEC_ENET_RX_FRSIZE
;
2216 /* Set the last buffer to wrap.
2219 bdp
->cbd_sc
|= BD_SC_WRAP
;
2221 /* ...and the same for transmmit.
2223 bdp
= fep
->tx_bd_base
;
2224 for (i
=0, j
=FEC_ENET_TX_FRPPG
; i
<TX_RING_SIZE
; i
++) {
2225 if (j
>= FEC_ENET_TX_FRPPG
) {
2226 mem_addr
= __get_free_page(GFP_KERNEL
);
2229 mem_addr
+= FEC_ENET_TX_FRSIZE
;
2232 fep
->tx_bounce
[i
] = (unsigned char *) mem_addr
;
2234 /* Initialize the BD for every fragment in the page.
2237 bdp
->cbd_bufaddr
= 0;
2241 /* Set the last buffer to wrap.
2244 bdp
->cbd_sc
|= BD_SC_WRAP
;
2246 /* Set receive and transmit descriptor base.
2248 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2249 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2251 /* Install our interrupt handlers. This varies depending on
2254 fec_request_intrs(dev
);
2256 /* Clear and enable interrupts */
2257 fecp
->fec_ievent
= 0xffc00000;
2258 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2259 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2260 fecp
->fec_hash_table_high
= 0;
2261 fecp
->fec_hash_table_low
= 0;
2262 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2263 fecp
->fec_ecntrl
= 2;
2264 fecp
->fec_r_des_active
= 0x01000000;
2266 dev
->base_addr
= (unsigned long)fecp
;
2268 /* The FEC Ethernet specific entries in the device structure. */
2269 dev
->open
= fec_enet_open
;
2270 dev
->hard_start_xmit
= fec_enet_start_xmit
;
2271 dev
->tx_timeout
= fec_timeout
;
2272 dev
->watchdog_timeo
= TX_TIMEOUT
;
2273 dev
->stop
= fec_enet_close
;
2274 dev
->get_stats
= fec_enet_get_stats
;
2275 dev
->set_multicast_list
= set_multicast_list
;
2277 for (i
=0; i
<NMII
-1; i
++)
2278 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
2279 mii_free
= mii_cmds
;
2281 /* setup MII interface */
2282 fec_set_mii(dev
, fep
);
2284 /* Queue up command to detect the PHY and initialize the
2285 * remainder of the interface.
2287 fep
->phy_id_done
= 0;
2289 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
2295 /* This function is called to start or restart the FEC during a link
2296 * change. This only happens when switching between half and full
2300 fec_restart(struct net_device
*dev
, int duplex
)
2302 struct fec_enet_private
*fep
;
2303 volatile cbd_t
*bdp
;
2304 volatile fec_t
*fecp
;
2307 fep
= netdev_priv(dev
);
2310 /* Whack a reset. We should wait for this.
2312 fecp
->fec_ecntrl
= 1;
2315 /* Enable interrupts we wish to service.
2317 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2318 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2320 /* Clear any outstanding interrupt.
2322 fecp
->fec_ievent
= 0xffc00000;
2323 fec_enable_phy_intr();
2325 /* Set station address.
2327 fec_set_mac_address(dev
);
2329 /* Reset all multicast.
2331 fecp
->fec_hash_table_high
= 0;
2332 fecp
->fec_hash_table_low
= 0;
2334 /* Set maximum receive buffer size.
2336 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2338 fec_localhw_setup();
2340 /* Set receive and transmit descriptor base.
2342 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2343 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2345 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2346 fep
->cur_rx
= fep
->rx_bd_base
;
2348 /* Reset SKB transmit buffers.
2350 fep
->skb_cur
= fep
->skb_dirty
= 0;
2351 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2352 if (fep
->tx_skbuff
[i
] != NULL
) {
2353 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
2354 fep
->tx_skbuff
[i
] = NULL
;
2358 /* Initialize the receive buffer descriptors.
2360 bdp
= fep
->rx_bd_base
;
2361 for (i
=0; i
<RX_RING_SIZE
; i
++) {
2363 /* Initialize the BD for every fragment in the page.
2365 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2369 /* Set the last buffer to wrap.
2372 bdp
->cbd_sc
|= BD_SC_WRAP
;
2374 /* ...and the same for transmmit.
2376 bdp
= fep
->tx_bd_base
;
2377 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2379 /* Initialize the BD for every fragment in the page.
2382 bdp
->cbd_bufaddr
= 0;
2386 /* Set the last buffer to wrap.
2389 bdp
->cbd_sc
|= BD_SC_WRAP
;
2394 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;/* MII enable */
2395 fecp
->fec_x_cntrl
= 0x04; /* FD enable */
2398 /* MII enable|No Rcv on Xmit */
2399 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x06;
2400 fecp
->fec_x_cntrl
= 0x00;
2402 fep
->full_duplex
= duplex
;
2406 fecp
->fec_mii_speed
= fep
->phy_speed
;
2408 /* And last, enable the transmit and receive processing.
2410 fecp
->fec_ecntrl
= 2;
2411 fecp
->fec_r_des_active
= 0x01000000;
2415 fec_stop(struct net_device
*dev
)
2417 volatile fec_t
*fecp
;
2418 struct fec_enet_private
*fep
;
2420 fep
= netdev_priv(dev
);
2423 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
2425 while(!(fecp
->fec_ievent
& FEC_ENET_GRA
));
2427 /* Whack a reset. We should wait for this.
2429 fecp
->fec_ecntrl
= 1;
2432 /* Clear outstanding MII command interrupts.
2434 fecp
->fec_ievent
= FEC_ENET_MII
;
2435 fec_enable_phy_intr();
2437 fecp
->fec_imask
= FEC_ENET_MII
;
2438 fecp
->fec_mii_speed
= fep
->phy_speed
;
2441 static int __init
fec_enet_module_init(void)
2443 struct net_device
*dev
;
2446 printk("FEC ENET Version 0.2\n");
2448 for (i
= 0; (i
< FEC_MAX_PORTS
); i
++) {
2449 dev
= alloc_etherdev(sizeof(struct fec_enet_private
));
2452 err
= fec_enet_init(dev
);
2457 if (register_netdev(dev
) != 0) {
2458 /* XXX: missing cleanup here */
2463 printk("%s: ethernet ", dev
->name
);
2464 for (j
= 0; (j
< 5); j
++)
2465 printk("%02x:", dev
->dev_addr
[j
]);
2466 printk("%02x\n", dev
->dev_addr
[5]);
2471 module_init(fec_enet_module_init
);
2473 MODULE_LICENSE("GPL");