[PATCH] 3c59x: use mii_check_media
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / 3c59x.c
blob4ae78bf377cdb89a3123e5014f5ae0e316aa3b16
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Linux Kernel Additions:
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
198 #define DRV_NAME "3c59x"
199 #define DRV_VERSION "LK1.1.19"
200 #define DRV_RELDATE "10 Nov 2002"
204 /* A few values that may be tweaked. */
205 /* Keep the ring sizes a power of two for efficiency. */
206 #define TX_RING_SIZE 16
207 #define RX_RING_SIZE 32
208 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
210 /* "Knobs" that adjust features and parameters. */
211 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 Setting to > 1512 effectively disables this feature. */
213 #ifndef __arm__
214 static int rx_copybreak = 200;
215 #else
216 /* ARM systems perform better by disregarding the bus-master
217 transfer capability of these cards. -- rmk */
218 static int rx_copybreak = 1513;
219 #endif
220 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
221 static const int mtu = 1500;
222 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
223 static int max_interrupt_work = 32;
224 /* Tx timeout interval (millisecs) */
225 static int watchdog = 5000;
227 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
228 * of possible Tx stalls if the system is blocking interrupts
229 * somewhere else. Undefine this to disable.
231 #define tx_interrupt_mitigation 1
233 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
234 #define vortex_debug debug
235 #ifdef VORTEX_DEBUG
236 static int vortex_debug = VORTEX_DEBUG;
237 #else
238 static int vortex_debug = 1;
239 #endif
241 #include <linux/config.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/string.h>
245 #include <linux/timer.h>
246 #include <linux/errno.h>
247 #include <linux/in.h>
248 #include <linux/ioport.h>
249 #include <linux/slab.h>
250 #include <linux/interrupt.h>
251 #include <linux/pci.h>
252 #include <linux/mii.h>
253 #include <linux/init.h>
254 #include <linux/netdevice.h>
255 #include <linux/etherdevice.h>
256 #include <linux/skbuff.h>
257 #include <linux/ethtool.h>
258 #include <linux/highmem.h>
259 #include <linux/eisa.h>
260 #include <linux/bitops.h>
261 #include <linux/jiffies.h>
262 #include <asm/irq.h> /* For NR_IRQS only. */
263 #include <asm/io.h>
264 #include <asm/uaccess.h>
266 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
267 This is only in the support-all-kernels source code. */
269 #define RUN_AT(x) (jiffies + (x))
271 #include <linux/delay.h>
274 static char version[] __devinitdata =
275 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
277 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
278 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "
279 DRV_VERSION " " DRV_RELDATE);
280 MODULE_LICENSE("GPL");
281 MODULE_VERSION(DRV_VERSION);
284 /* Operational parameter that usually are not changed. */
286 /* The Vortex size is twice that of the original EtherLinkIII series: the
287 runtime register window, window 1, is now always mapped in.
288 The Boomerang size is twice as large as the Vortex -- it has additional
289 bus master control registers. */
290 #define VORTEX_TOTAL_SIZE 0x20
291 #define BOOMERANG_TOTAL_SIZE 0x40
293 /* Set iff a MII transceiver on any interface requires mdio preamble.
294 This only set with the original DP83840 on older 3c905 boards, so the extra
295 code size of a per-interface flag is not worthwhile. */
296 static char mii_preamble_required;
298 #define PFX DRV_NAME ": "
303 Theory of Operation
305 I. Board Compatibility
307 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
308 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
309 versions of the FastEtherLink cards. The supported product IDs are
310 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
312 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
313 with the kernel source or available from
314 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
316 II. Board-specific settings
318 PCI bus devices are configured by the system at boot time, so no jumpers
319 need to be set on the board. The system BIOS should be set to assign the
320 PCI INTA signal to an otherwise unused system IRQ line.
322 The EEPROM settings for media type and forced-full-duplex are observed.
323 The EEPROM media type should be left at the default "autoselect" unless using
324 10base2 or AUI connections which cannot be reliably detected.
326 III. Driver operation
328 The 3c59x series use an interface that's very similar to the previous 3c5x9
329 series. The primary interface is two programmed-I/O FIFOs, with an
330 alternate single-contiguous-region bus-master transfer (see next).
332 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
333 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
334 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
335 programmed-I/O interface that has been removed in 'B' and subsequent board
336 revisions.
338 One extension that is advertised in a very large font is that the adapters
339 are capable of being bus masters. On the Vortex chip this capability was
340 only for a single contiguous region making it far less useful than the full
341 bus master capability. There is a significant performance impact of taking
342 an extra interrupt or polling for the completion of each transfer, as well
343 as difficulty sharing the single transfer engine between the transmit and
344 receive threads. Using DMA transfers is a win only with large blocks or
345 with the flawed versions of the Intel Orion motherboard PCI controller.
347 The Boomerang chip's full-bus-master interface is useful, and has the
348 currently-unused advantages over other similar chips that queued transmit
349 packets may be reordered and receive buffer groups are associated with a
350 single frame.
352 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
353 Rather than a fixed intermediate receive buffer, this scheme allocates
354 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
355 the copying breakpoint: it is chosen to trade-off the memory wasted by
356 passing the full-sized skbuff to the queue layer for all frames vs. the
357 copying cost of copying a frame to a correctly-sized skbuff.
359 IIIC. Synchronization
360 The driver runs as two independent, single-threaded flows of control. One
361 is the send-packet routine, which enforces single-threaded use by the
362 dev->tbusy flag. The other thread is the interrupt handler, which is single
363 threaded by the hardware and other software.
365 IV. Notes
367 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
368 3c590, 3c595, and 3c900 boards.
369 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
370 the EISA version is called "Demon". According to Terry these names come
371 from rides at the local amusement park.
373 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
374 This driver only supports ethernet packets because of the skbuff allocation
375 limit of 4K.
378 /* This table drives the PCI probe routines. It's mostly boilerplate in all
379 of the drivers, and will likely be provided by some future kernel.
381 enum pci_flags_bit {
382 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
383 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
386 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
387 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
388 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
389 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
390 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
391 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
393 enum vortex_chips {
394 CH_3C590 = 0,
395 CH_3C592,
396 CH_3C597,
397 CH_3C595_1,
398 CH_3C595_2,
400 CH_3C595_3,
401 CH_3C900_1,
402 CH_3C900_2,
403 CH_3C900_3,
404 CH_3C900_4,
406 CH_3C900_5,
407 CH_3C900B_FL,
408 CH_3C905_1,
409 CH_3C905_2,
410 CH_3C905B_1,
412 CH_3C905B_2,
413 CH_3C905B_FX,
414 CH_3C905C,
415 CH_3C9202,
416 CH_3C980,
417 CH_3C9805,
419 CH_3CSOHO100_TX,
420 CH_3C555,
421 CH_3C556,
422 CH_3C556B,
423 CH_3C575,
425 CH_3C575_1,
426 CH_3CCFE575,
427 CH_3CCFE575CT,
428 CH_3CCFE656,
429 CH_3CCFEM656,
431 CH_3CCFEM656_1,
432 CH_3C450,
433 CH_3C920,
434 CH_3C982A,
435 CH_3C982B,
437 CH_905BT4,
438 CH_920B_EMB_WNM,
442 /* note: this array directly indexed by above enums, and MUST
443 * be kept in sync with both the enums above, and the PCI device
444 * table below
446 static struct vortex_chip_info {
447 const char *name;
448 int flags;
449 int drv_flags;
450 int io_size;
451 } vortex_info_tbl[] __devinitdata = {
452 {"3c590 Vortex 10Mbps",
453 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
454 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
455 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
456 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
457 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
458 {"3c595 Vortex 100baseTx",
459 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
460 {"3c595 Vortex 100baseT4",
461 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
463 {"3c595 Vortex 100base-MII",
464 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
465 {"3c900 Boomerang 10baseT",
466 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
467 {"3c900 Boomerang 10Mbps Combo",
468 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
469 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
470 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
471 {"3c900 Cyclone 10Mbps Combo",
472 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
474 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
475 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
476 {"3c900B-FL Cyclone 10base-FL",
477 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
478 {"3c905 Boomerang 100baseTx",
479 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
480 {"3c905 Boomerang 100baseT4",
481 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
482 {"3c905B Cyclone 100baseTx",
483 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
485 {"3c905B Cyclone 10/100/BNC",
486 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
487 {"3c905B-FX Cyclone 100baseFx",
488 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
489 {"3c905C Tornado",
490 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
491 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
492 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
493 {"3c980 Cyclone",
494 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
496 {"3c980C Python-T",
497 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
498 {"3cSOHO100-TX Hurricane",
499 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
500 {"3c555 Laptop Hurricane",
501 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
502 {"3c556 Laptop Tornado",
503 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
504 HAS_HWCKSM, 128, },
505 {"3c556B Laptop Hurricane",
506 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
507 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
509 {"3c575 [Megahertz] 10/100 LAN CardBus",
510 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
511 {"3c575 Boomerang CardBus",
512 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
513 {"3CCFE575BT Cyclone CardBus",
514 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
515 INVERT_LED_PWR|HAS_HWCKSM, 128, },
516 {"3CCFE575CT Tornado CardBus",
517 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
518 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
519 {"3CCFE656 Cyclone CardBus",
520 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
521 INVERT_LED_PWR|HAS_HWCKSM, 128, },
523 {"3CCFEM656B Cyclone+Winmodem CardBus",
524 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
525 INVERT_LED_PWR|HAS_HWCKSM, 128, },
526 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
527 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
528 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
529 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
530 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
531 {"3c920 Tornado",
532 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
533 {"3c982 Hydra Dual Port A",
534 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
536 {"3c982 Hydra Dual Port B",
537 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
538 {"3c905B-T4",
539 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
540 {"3c920B-EMB-WNM Tornado",
541 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
543 {NULL,}, /* NULL terminated list. */
547 static struct pci_device_id vortex_pci_tbl[] = {
548 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
549 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
550 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
551 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
552 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
554 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
555 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
556 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
557 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
558 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
560 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
561 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
562 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
563 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
564 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
566 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
567 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
568 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
569 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
570 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
571 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
573 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
574 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
575 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
576 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
577 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
579 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
580 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
581 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
582 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
583 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
585 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
586 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
587 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
588 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
589 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
591 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
592 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
594 {0,} /* 0 terminated list. */
596 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
599 /* Operational definitions.
600 These are not used by other compilation units and thus are not
601 exported in a ".h" file.
603 First the windows. There are eight register windows, with the command
604 and status registers available in each.
606 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
607 #define EL3_CMD 0x0e
608 #define EL3_STATUS 0x0e
610 /* The top five bits written to EL3_CMD are a command, the lower
611 11 bits are the parameter, if applicable.
612 Note that 11 parameters bits was fine for ethernet, but the new chip
613 can handle FDDI length frames (~4500 octets) and now parameters count
614 32-bit 'Dwords' rather than octets. */
616 enum vortex_cmd {
617 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
618 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
619 UpStall = 6<<11, UpUnstall = (6<<11)+1,
620 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
621 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
622 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
623 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
624 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
625 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
626 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
628 /* The SetRxFilter command accepts the following classes: */
629 enum RxFilter {
630 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
632 /* Bits in the general status register. */
633 enum vortex_status {
634 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
635 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
636 IntReq = 0x0040, StatsFull = 0x0080,
637 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
638 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
639 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
642 /* Register window 1 offsets, the window used in normal operation.
643 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
644 enum Window1 {
645 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
646 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
647 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
649 enum Window0 {
650 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
651 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
652 IntrStatus=0x0E, /* Valid in all windows. */
654 enum Win0_EEPROM_bits {
655 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
656 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
657 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
659 /* EEPROM locations. */
660 enum eeprom_offset {
661 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
662 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
663 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
664 DriverTune=13, Checksum=15};
666 enum Window2 { /* Window 2. */
667 Wn2_ResetOptions=12,
669 enum Window3 { /* Window 3: MAC/config bits. */
670 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
673 #define BFEXT(value, offset, bitcount) \
674 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
676 #define BFINS(lhs, rhs, offset, bitcount) \
677 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
678 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
680 #define RAM_SIZE(v) BFEXT(v, 0, 3)
681 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
682 #define RAM_SPEED(v) BFEXT(v, 4, 2)
683 #define ROM_SIZE(v) BFEXT(v, 6, 2)
684 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
685 #define XCVR(v) BFEXT(v, 20, 4)
686 #define AUTOSELECT(v) BFEXT(v, 24, 1)
688 enum Window4 { /* Window 4: Xcvr/media bits. */
689 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
691 enum Win4_Media_bits {
692 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
693 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
694 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
695 Media_LnkBeat = 0x0800,
697 enum Window7 { /* Window 7: Bus Master control. */
698 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
699 Wn7_MasterStatus = 12,
701 /* Boomerang bus master control registers. */
702 enum MasterCtrl {
703 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
704 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
707 /* The Rx and Tx descriptor lists.
708 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
709 alignment contraint on tx_ring[] and rx_ring[]. */
710 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
711 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
712 struct boom_rx_desc {
713 u32 next; /* Last entry points to 0. */
714 s32 status;
715 u32 addr; /* Up to 63 addr/len pairs possible. */
716 s32 length; /* Set LAST_FRAG to indicate last pair. */
718 /* Values for the Rx status entry. */
719 enum rx_desc_status {
720 RxDComplete=0x00008000, RxDError=0x4000,
721 /* See boomerang_rx() for actual error bits */
722 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
723 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
726 #ifdef MAX_SKB_FRAGS
727 #define DO_ZEROCOPY 1
728 #else
729 #define DO_ZEROCOPY 0
730 #endif
732 struct boom_tx_desc {
733 u32 next; /* Last entry points to 0. */
734 s32 status; /* bits 0:12 length, others see below. */
735 #if DO_ZEROCOPY
736 struct {
737 u32 addr;
738 s32 length;
739 } frag[1+MAX_SKB_FRAGS];
740 #else
741 u32 addr;
742 s32 length;
743 #endif
746 /* Values for the Tx status entry. */
747 enum tx_desc_status {
748 CRCDisable=0x2000, TxDComplete=0x8000,
749 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
750 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
753 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
754 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
756 struct vortex_extra_stats {
757 unsigned long tx_deferred;
758 unsigned long tx_max_collisions;
759 unsigned long tx_multiple_collisions;
760 unsigned long tx_single_collisions;
761 unsigned long rx_bad_ssd;
764 struct vortex_private {
765 /* The Rx and Tx rings should be quad-word-aligned. */
766 struct boom_rx_desc* rx_ring;
767 struct boom_tx_desc* tx_ring;
768 dma_addr_t rx_ring_dma;
769 dma_addr_t tx_ring_dma;
770 /* The addresses of transmit- and receive-in-place skbuffs. */
771 struct sk_buff* rx_skbuff[RX_RING_SIZE];
772 struct sk_buff* tx_skbuff[TX_RING_SIZE];
773 unsigned int cur_rx, cur_tx; /* The next free ring entry */
774 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
775 struct net_device_stats stats; /* Generic stats */
776 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
777 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
778 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
780 /* PCI configuration space information. */
781 struct device *gendev;
782 void __iomem *ioaddr; /* IO address space */
783 void __iomem *cb_fn_base; /* CardBus function status addr space. */
785 /* Some values here only for performance evaluation and path-coverage */
786 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
787 int card_idx;
789 /* The remainder are related to chip state, mostly media selection. */
790 struct timer_list timer; /* Media selection timer. */
791 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
792 int options; /* User-settable misc. driver options. */
793 unsigned int media_override:4, /* Passed-in media type. */
794 default_media:4, /* Read from the EEPROM/Wn3_Config. */
795 full_duplex:1, force_fd:1, autoselect:1,
796 bus_master:1, /* Vortex can only do a fragment bus-m. */
797 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
798 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
799 partner_flow_ctrl:1, /* Partner supports flow control */
800 has_nway:1,
801 enable_wol:1, /* Wake-on-LAN is enabled */
802 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
803 open:1,
804 medialock:1,
805 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
806 large_frames:1; /* accept large frames */
807 int drv_flags;
808 u16 status_enable;
809 u16 intr_enable;
810 u16 available_media; /* From Wn3_Options. */
811 u16 capabilities, info1, info2; /* Various, from EEPROM. */
812 u16 advertising; /* NWay media advertisement */
813 unsigned char phys[2]; /* MII device addresses. */
814 u16 deferred; /* Resend these interrupts when we
815 * bale from the ISR */
816 u16 io_size; /* Size of PCI region (for release_region) */
817 spinlock_t lock; /* Serialise access to device & its vortex_private */
818 struct mii_if_info mii; /* MII lib hooks/info */
821 #ifdef CONFIG_PCI
822 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
823 #else
824 #define DEVICE_PCI(dev) NULL
825 #endif
827 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
829 #ifdef CONFIG_EISA
830 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
831 #else
832 #define DEVICE_EISA(dev) NULL
833 #endif
835 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
837 /* The action to take with a media selection timer tick.
838 Note that we deviate from the 3Com order by checking 10base2 before AUI.
840 enum xcvr_types {
841 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
842 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
845 static const struct media_table {
846 char *name;
847 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
848 mask:8, /* The transceiver-present bit in Wn3_Config.*/
849 next:8; /* The media type to try next. */
850 int wait; /* Time before we check media status. */
851 } media_tbl[] = {
852 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
853 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
854 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
855 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
856 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
857 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
858 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
859 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
860 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
861 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
862 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
865 static struct {
866 const char str[ETH_GSTRING_LEN];
867 } ethtool_stats_keys[] = {
868 { "tx_deferred" },
869 { "tx_max_collisions" },
870 { "tx_multiple_collisions" },
871 { "tx_single_collisions" },
872 { "rx_bad_ssd" },
875 /* number of ETHTOOL_GSTATS u64's */
876 #define VORTEX_NUM_STATS 5
878 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
879 int chip_idx, int card_idx);
880 static void vortex_up(struct net_device *dev);
881 static void vortex_down(struct net_device *dev, int final);
882 static int vortex_open(struct net_device *dev);
883 static void mdio_sync(void __iomem *ioaddr, int bits);
884 static int mdio_read(struct net_device *dev, int phy_id, int location);
885 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
886 static void vortex_timer(unsigned long arg);
887 static void rx_oom_timer(unsigned long arg);
888 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
889 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
890 static int vortex_rx(struct net_device *dev);
891 static int boomerang_rx(struct net_device *dev);
892 static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
893 static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
894 static int vortex_close(struct net_device *dev);
895 static void dump_tx_ring(struct net_device *dev);
896 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
897 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
898 static void set_rx_mode(struct net_device *dev);
899 #ifdef CONFIG_PCI
900 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
901 #endif
902 static void vortex_tx_timeout(struct net_device *dev);
903 static void acpi_set_WOL(struct net_device *dev);
904 static struct ethtool_ops vortex_ethtool_ops;
905 static void set_8021q_mode(struct net_device *dev, int enable);
908 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
909 /* Option count limit only -- unlimited interfaces are supported. */
910 #define MAX_UNITS 8
911 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
912 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
913 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
914 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
915 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
916 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
917 static int global_options = -1;
918 static int global_full_duplex = -1;
919 static int global_enable_wol = -1;
920 static int global_use_mmio = -1;
922 /* #define dev_alloc_skb dev_alloc_skb_debug */
924 /* Variables to work-around the Compaq PCI BIOS32 problem. */
925 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
926 static struct net_device *compaq_net_device;
928 static int vortex_cards_found;
930 module_param(debug, int, 0);
931 module_param(global_options, int, 0);
932 module_param_array(options, int, NULL, 0);
933 module_param(global_full_duplex, int, 0);
934 module_param_array(full_duplex, int, NULL, 0);
935 module_param_array(hw_checksums, int, NULL, 0);
936 module_param_array(flow_ctrl, int, NULL, 0);
937 module_param(global_enable_wol, int, 0);
938 module_param_array(enable_wol, int, NULL, 0);
939 module_param(rx_copybreak, int, 0);
940 module_param(max_interrupt_work, int, 0);
941 module_param(compaq_ioaddr, int, 0);
942 module_param(compaq_irq, int, 0);
943 module_param(compaq_device_id, int, 0);
944 module_param(watchdog, int, 0);
945 module_param(global_use_mmio, int, 0);
946 module_param_array(use_mmio, int, NULL, 0);
947 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
948 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
949 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
950 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
951 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
952 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
953 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
954 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
955 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
956 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
957 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
958 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
959 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
960 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
961 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
962 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
963 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
965 #ifdef CONFIG_NET_POLL_CONTROLLER
966 static void poll_vortex(struct net_device *dev)
968 struct vortex_private *vp = netdev_priv(dev);
969 unsigned long flags;
970 local_save_flags(flags);
971 local_irq_disable();
972 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
973 local_irq_restore(flags);
975 #endif
977 #ifdef CONFIG_PM
979 static int vortex_suspend (struct pci_dev *pdev, pm_message_t state)
981 struct net_device *dev = pci_get_drvdata(pdev);
983 if (dev && dev->priv) {
984 if (netif_running(dev)) {
985 netif_device_detach(dev);
986 vortex_down(dev, 1);
988 pci_save_state(pdev);
989 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
990 free_irq(dev->irq, dev);
991 pci_disable_device(pdev);
992 pci_set_power_state(pdev, pci_choose_state(pdev, state));
994 return 0;
997 static int vortex_resume (struct pci_dev *pdev)
999 struct net_device *dev = pci_get_drvdata(pdev);
1000 struct vortex_private *vp = netdev_priv(dev);
1002 if (dev && vp) {
1003 pci_set_power_state(pdev, PCI_D0);
1004 pci_restore_state(pdev);
1005 pci_enable_device(pdev);
1006 pci_set_master(pdev);
1007 if (request_irq(dev->irq, vp->full_bus_master_rx ?
1008 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev)) {
1009 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1010 pci_disable_device(pdev);
1011 return -EBUSY;
1013 if (netif_running(dev)) {
1014 vortex_up(dev);
1015 netif_device_attach(dev);
1018 return 0;
1021 #endif /* CONFIG_PM */
1023 #ifdef CONFIG_EISA
1024 static struct eisa_device_id vortex_eisa_ids[] = {
1025 { "TCM5920", CH_3C592 },
1026 { "TCM5970", CH_3C597 },
1027 { "" }
1030 static int vortex_eisa_probe (struct device *device);
1031 static int vortex_eisa_remove (struct device *device);
1033 static struct eisa_driver vortex_eisa_driver = {
1034 .id_table = vortex_eisa_ids,
1035 .driver = {
1036 .name = "3c59x",
1037 .probe = vortex_eisa_probe,
1038 .remove = vortex_eisa_remove
1042 static int vortex_eisa_probe (struct device *device)
1044 void __iomem *ioaddr;
1045 struct eisa_device *edev;
1047 edev = to_eisa_device (device);
1049 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
1050 return -EBUSY;
1052 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
1054 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
1055 edev->id.driver_data, vortex_cards_found)) {
1056 release_region (edev->base_addr, VORTEX_TOTAL_SIZE);
1057 return -ENODEV;
1060 vortex_cards_found++;
1062 return 0;
1065 static int vortex_eisa_remove (struct device *device)
1067 struct eisa_device *edev;
1068 struct net_device *dev;
1069 struct vortex_private *vp;
1070 void __iomem *ioaddr;
1072 edev = to_eisa_device (device);
1073 dev = eisa_get_drvdata (edev);
1075 if (!dev) {
1076 printk("vortex_eisa_remove called for Compaq device!\n");
1077 BUG();
1080 vp = netdev_priv(dev);
1081 ioaddr = vp->ioaddr;
1083 unregister_netdev (dev);
1084 iowrite16 (TotalReset|0x14, ioaddr + EL3_CMD);
1085 release_region (dev->base_addr, VORTEX_TOTAL_SIZE);
1087 free_netdev (dev);
1088 return 0;
1090 #endif
1092 /* returns count found (>= 0), or negative on error */
1093 static int __init vortex_eisa_init (void)
1095 int eisa_found = 0;
1096 int orig_cards_found = vortex_cards_found;
1098 #ifdef CONFIG_EISA
1099 int err;
1101 err = eisa_driver_register (&vortex_eisa_driver);
1102 if (!err) {
1104 * Because of the way EISA bus is probed, we cannot assume
1105 * any device have been found when we exit from
1106 * eisa_driver_register (the bus root driver may not be
1107 * initialized yet). So we blindly assume something was
1108 * found, and let the sysfs magic happend...
1110 eisa_found = 1;
1112 #endif
1114 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1115 if (compaq_ioaddr) {
1116 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
1117 compaq_irq, compaq_device_id, vortex_cards_found++);
1120 return vortex_cards_found - orig_cards_found + eisa_found;
1123 /* returns count (>= 0), or negative on error */
1124 static int __devinit vortex_init_one (struct pci_dev *pdev,
1125 const struct pci_device_id *ent)
1127 int rc, unit, pci_bar;
1128 struct vortex_chip_info *vci;
1129 void __iomem *ioaddr;
1131 /* wake up and enable device */
1132 rc = pci_enable_device (pdev);
1133 if (rc < 0)
1134 goto out;
1136 unit = vortex_cards_found;
1138 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1139 /* Determine the default if the user didn't override us */
1140 vci = &vortex_info_tbl[ent->driver_data];
1141 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1142 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1143 pci_bar = use_mmio[unit] ? 1 : 0;
1144 else
1145 pci_bar = global_use_mmio ? 1 : 0;
1147 ioaddr = pci_iomap(pdev, pci_bar, 0);
1148 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1149 ioaddr = pci_iomap(pdev, 0, 0);
1151 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1152 ent->driver_data, unit);
1153 if (rc < 0) {
1154 pci_disable_device (pdev);
1155 goto out;
1158 vortex_cards_found++;
1160 out:
1161 return rc;
1165 * Start up the PCI/EISA device which is described by *gendev.
1166 * Return 0 on success.
1168 * NOTE: pdev can be NULL, for the case of a Compaq device
1170 static int __devinit vortex_probe1(struct device *gendev,
1171 void __iomem *ioaddr, int irq,
1172 int chip_idx, int card_idx)
1174 struct vortex_private *vp;
1175 int option;
1176 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1177 int i, step;
1178 struct net_device *dev;
1179 static int printed_version;
1180 int retval, print_info;
1181 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1182 char *print_name = "3c59x";
1183 struct pci_dev *pdev = NULL;
1184 struct eisa_device *edev = NULL;
1186 if (!printed_version) {
1187 printk (version);
1188 printed_version = 1;
1191 if (gendev) {
1192 if ((pdev = DEVICE_PCI(gendev))) {
1193 print_name = pci_name(pdev);
1196 if ((edev = DEVICE_EISA(gendev))) {
1197 print_name = edev->dev.bus_id;
1201 dev = alloc_etherdev(sizeof(*vp));
1202 retval = -ENOMEM;
1203 if (!dev) {
1204 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1205 goto out;
1207 SET_MODULE_OWNER(dev);
1208 SET_NETDEV_DEV(dev, gendev);
1209 vp = netdev_priv(dev);
1211 option = global_options;
1213 /* The lower four bits are the media type. */
1214 if (dev->mem_start) {
1216 * The 'options' param is passed in as the third arg to the
1217 * LILO 'ether=' argument for non-modular use
1219 option = dev->mem_start;
1221 else if (card_idx < MAX_UNITS) {
1222 if (options[card_idx] >= 0)
1223 option = options[card_idx];
1226 if (option > 0) {
1227 if (option & 0x8000)
1228 vortex_debug = 7;
1229 if (option & 0x4000)
1230 vortex_debug = 2;
1231 if (option & 0x0400)
1232 vp->enable_wol = 1;
1235 print_info = (vortex_debug > 1);
1236 if (print_info)
1237 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1239 printk(KERN_INFO "%s: 3Com %s %s at %p. Vers " DRV_VERSION "\n",
1240 print_name,
1241 pdev ? "PCI" : "EISA",
1242 vci->name,
1243 ioaddr);
1245 dev->base_addr = (unsigned long)ioaddr;
1246 dev->irq = irq;
1247 dev->mtu = mtu;
1248 vp->ioaddr = ioaddr;
1249 vp->large_frames = mtu > 1500;
1250 vp->drv_flags = vci->drv_flags;
1251 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1252 vp->io_size = vci->io_size;
1253 vp->card_idx = card_idx;
1255 /* module list only for Compaq device */
1256 if (gendev == NULL) {
1257 compaq_net_device = dev;
1260 /* PCI-only startup logic */
1261 if (pdev) {
1262 /* EISA resources already marked, so only PCI needs to do this here */
1263 /* Ignore return value, because Cardbus drivers already allocate for us */
1264 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1265 vp->must_free_region = 1;
1267 /* enable bus-mastering if necessary */
1268 if (vci->flags & PCI_USES_MASTER)
1269 pci_set_master (pdev);
1271 if (vci->drv_flags & IS_VORTEX) {
1272 u8 pci_latency;
1273 u8 new_latency = 248;
1275 /* Check the PCI latency value. On the 3c590 series the latency timer
1276 must be set to the maximum value to avoid data corruption that occurs
1277 when the timer expires during a transfer. This bug exists the Vortex
1278 chip only. */
1279 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1280 if (pci_latency < new_latency) {
1281 printk(KERN_INFO "%s: Overriding PCI latency"
1282 " timer (CFLT) setting of %d, new value is %d.\n",
1283 print_name, pci_latency, new_latency);
1284 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1289 spin_lock_init(&vp->lock);
1290 vp->gendev = gendev;
1291 vp->mii.dev = dev;
1292 vp->mii.mdio_read = mdio_read;
1293 vp->mii.mdio_write = mdio_write;
1294 vp->mii.phy_id_mask = 0x1f;
1295 vp->mii.reg_num_mask = 0x1f;
1297 /* Makes sure rings are at least 16 byte aligned. */
1298 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1299 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1300 &vp->rx_ring_dma);
1301 retval = -ENOMEM;
1302 if (vp->rx_ring == 0)
1303 goto free_region;
1305 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1306 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1308 /* if we are a PCI driver, we store info in pdev->driver_data
1309 * instead of a module list */
1310 if (pdev)
1311 pci_set_drvdata(pdev, dev);
1312 if (edev)
1313 eisa_set_drvdata (edev, dev);
1315 vp->media_override = 7;
1316 if (option >= 0) {
1317 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1318 if (vp->media_override != 7)
1319 vp->medialock = 1;
1320 vp->full_duplex = (option & 0x200) ? 1 : 0;
1321 vp->bus_master = (option & 16) ? 1 : 0;
1324 if (global_full_duplex > 0)
1325 vp->full_duplex = 1;
1326 if (global_enable_wol > 0)
1327 vp->enable_wol = 1;
1329 if (card_idx < MAX_UNITS) {
1330 if (full_duplex[card_idx] > 0)
1331 vp->full_duplex = 1;
1332 if (flow_ctrl[card_idx] > 0)
1333 vp->flow_ctrl = 1;
1334 if (enable_wol[card_idx] > 0)
1335 vp->enable_wol = 1;
1338 vp->mii.force_media = vp->full_duplex;
1339 vp->options = option;
1340 /* Read the station address from the EEPROM. */
1341 EL3WINDOW(0);
1343 int base;
1345 if (vci->drv_flags & EEPROM_8BIT)
1346 base = 0x230;
1347 else if (vci->drv_flags & EEPROM_OFFSET)
1348 base = EEPROM_Read + 0x30;
1349 else
1350 base = EEPROM_Read;
1352 for (i = 0; i < 0x40; i++) {
1353 int timer;
1354 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1355 /* Pause for at least 162 us. for the read to take place. */
1356 for (timer = 10; timer >= 0; timer--) {
1357 udelay(162);
1358 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1359 break;
1361 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1364 for (i = 0; i < 0x18; i++)
1365 checksum ^= eeprom[i];
1366 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1367 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1368 while (i < 0x21)
1369 checksum ^= eeprom[i++];
1370 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1372 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1373 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1374 for (i = 0; i < 3; i++)
1375 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1376 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1377 if (print_info) {
1378 for (i = 0; i < 6; i++)
1379 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1381 /* Unfortunately an all zero eeprom passes the checksum and this
1382 gets found in the wild in failure cases. Crypto is hard 8) */
1383 if (!is_valid_ether_addr(dev->dev_addr)) {
1384 retval = -EINVAL;
1385 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1386 goto free_ring; /* With every pack */
1388 EL3WINDOW(2);
1389 for (i = 0; i < 6; i++)
1390 iowrite8(dev->dev_addr[i], ioaddr + i);
1392 #ifdef __sparc__
1393 if (print_info)
1394 printk(", IRQ %s\n", __irq_itoa(dev->irq));
1395 #else
1396 if (print_info)
1397 printk(", IRQ %d\n", dev->irq);
1398 /* Tell them about an invalid IRQ. */
1399 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1400 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1401 dev->irq);
1402 #endif
1404 EL3WINDOW(4);
1405 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1406 if (print_info) {
1407 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1408 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1409 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1413 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1414 unsigned short n;
1416 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1417 if (!vp->cb_fn_base) {
1418 retval = -ENOMEM;
1419 goto free_ring;
1422 if (print_info) {
1423 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1424 print_name, pci_resource_start(pdev, 2),
1425 vp->cb_fn_base);
1427 EL3WINDOW(2);
1429 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1430 if (vp->drv_flags & INVERT_LED_PWR)
1431 n |= 0x10;
1432 if (vp->drv_flags & INVERT_MII_PWR)
1433 n |= 0x4000;
1434 iowrite16(n, ioaddr + Wn2_ResetOptions);
1435 if (vp->drv_flags & WNO_XCVR_PWR) {
1436 EL3WINDOW(0);
1437 iowrite16(0x0800, ioaddr);
1441 /* Extract our information from the EEPROM data. */
1442 vp->info1 = eeprom[13];
1443 vp->info2 = eeprom[15];
1444 vp->capabilities = eeprom[16];
1446 if (vp->info1 & 0x8000) {
1447 vp->full_duplex = 1;
1448 if (print_info)
1449 printk(KERN_INFO "Full duplex capable\n");
1453 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1454 unsigned int config;
1455 EL3WINDOW(3);
1456 vp->available_media = ioread16(ioaddr + Wn3_Options);
1457 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1458 vp->available_media = 0x40;
1459 config = ioread32(ioaddr + Wn3_Config);
1460 if (print_info) {
1461 printk(KERN_DEBUG " Internal config register is %4.4x, "
1462 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1463 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1464 8 << RAM_SIZE(config),
1465 RAM_WIDTH(config) ? "word" : "byte",
1466 ram_split[RAM_SPLIT(config)],
1467 AUTOSELECT(config) ? "autoselect/" : "",
1468 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1469 media_tbl[XCVR(config)].name);
1471 vp->default_media = XCVR(config);
1472 if (vp->default_media == XCVR_NWAY)
1473 vp->has_nway = 1;
1474 vp->autoselect = AUTOSELECT(config);
1477 if (vp->media_override != 7) {
1478 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1479 print_name, vp->media_override,
1480 media_tbl[vp->media_override].name);
1481 dev->if_port = vp->media_override;
1482 } else
1483 dev->if_port = vp->default_media;
1485 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1486 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1487 int phy, phy_idx = 0;
1488 EL3WINDOW(4);
1489 mii_preamble_required++;
1490 if (vp->drv_flags & EXTRA_PREAMBLE)
1491 mii_preamble_required++;
1492 mdio_sync(ioaddr, 32);
1493 mdio_read(dev, 24, MII_BMSR);
1494 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1495 int mii_status, phyx;
1498 * For the 3c905CX we look at index 24 first, because it bogusly
1499 * reports an external PHY at all indices
1501 if (phy == 0)
1502 phyx = 24;
1503 else if (phy <= 24)
1504 phyx = phy - 1;
1505 else
1506 phyx = phy;
1507 mii_status = mdio_read(dev, phyx, MII_BMSR);
1508 if (mii_status && mii_status != 0xffff) {
1509 vp->phys[phy_idx++] = phyx;
1510 if (print_info) {
1511 printk(KERN_INFO " MII transceiver found at address %d,"
1512 " status %4x.\n", phyx, mii_status);
1514 if ((mii_status & 0x0040) == 0)
1515 mii_preamble_required++;
1518 mii_preamble_required--;
1519 if (phy_idx == 0) {
1520 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1521 vp->phys[0] = 24;
1522 } else {
1523 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1524 if (vp->full_duplex) {
1525 /* Only advertise the FD media types. */
1526 vp->advertising &= ~0x02A0;
1527 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1530 vp->mii.phy_id = vp->phys[0];
1533 if (vp->capabilities & CapBusMaster) {
1534 vp->full_bus_master_tx = 1;
1535 if (print_info) {
1536 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1537 (vp->info2 & 1) ? "early" : "whole-frame" );
1539 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1540 vp->bus_master = 0; /* AKPM: vortex only */
1543 /* The 3c59x-specific entries in the device structure. */
1544 dev->open = vortex_open;
1545 if (vp->full_bus_master_tx) {
1546 dev->hard_start_xmit = boomerang_start_xmit;
1547 /* Actually, it still should work with iommu. */
1548 if (card_idx < MAX_UNITS &&
1549 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1550 hw_checksums[card_idx] == 1)) {
1551 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1553 } else {
1554 dev->hard_start_xmit = vortex_start_xmit;
1557 if (print_info) {
1558 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1559 print_name,
1560 (dev->features & NETIF_F_SG) ? "en":"dis",
1561 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1564 dev->stop = vortex_close;
1565 dev->get_stats = vortex_get_stats;
1566 #ifdef CONFIG_PCI
1567 dev->do_ioctl = vortex_ioctl;
1568 #endif
1569 dev->ethtool_ops = &vortex_ethtool_ops;
1570 dev->set_multicast_list = set_rx_mode;
1571 dev->tx_timeout = vortex_tx_timeout;
1572 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1573 #ifdef CONFIG_NET_POLL_CONTROLLER
1574 dev->poll_controller = poll_vortex;
1575 #endif
1576 if (pdev) {
1577 vp->pm_state_valid = 1;
1578 pci_save_state(VORTEX_PCI(vp));
1579 acpi_set_WOL(dev);
1581 retval = register_netdev(dev);
1582 if (retval == 0)
1583 return 0;
1585 free_ring:
1586 pci_free_consistent(pdev,
1587 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1588 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1589 vp->rx_ring,
1590 vp->rx_ring_dma);
1591 free_region:
1592 if (vp->must_free_region)
1593 release_region(dev->base_addr, vci->io_size);
1594 free_netdev(dev);
1595 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1596 out:
1597 return retval;
1600 static void
1601 issue_and_wait(struct net_device *dev, int cmd)
1603 struct vortex_private *vp = netdev_priv(dev);
1604 void __iomem *ioaddr = vp->ioaddr;
1605 int i;
1607 iowrite16(cmd, ioaddr + EL3_CMD);
1608 for (i = 0; i < 2000; i++) {
1609 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1610 return;
1613 /* OK, that didn't work. Do it the slow way. One second */
1614 for (i = 0; i < 100000; i++) {
1615 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1616 if (vortex_debug > 1)
1617 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1618 dev->name, cmd, i * 10);
1619 return;
1621 udelay(10);
1623 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1624 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1627 static void
1628 vortex_set_duplex(struct net_device *dev)
1630 struct vortex_private *vp = netdev_priv(dev);
1631 void __iomem *ioaddr = vp->ioaddr;
1633 printk(KERN_INFO "%s: setting %s-duplex.\n",
1634 dev->name, (vp->full_duplex) ? "full" : "half");
1636 EL3WINDOW(3);
1637 /* Set the full-duplex bit. */
1638 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1639 (vp->large_frames ? 0x40 : 0) |
1640 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1641 0x100 : 0),
1642 ioaddr + Wn3_MAC_Ctrl);
1644 issue_and_wait(dev, TxReset);
1646 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1648 issue_and_wait(dev, RxReset|0x04);
1651 static void vortex_check_media(struct net_device *dev, unsigned int init)
1653 struct vortex_private *vp = netdev_priv(dev);
1654 unsigned int ok_to_print = 0;
1656 if (vortex_debug > 3)
1657 ok_to_print = 1;
1659 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1660 vp->full_duplex = vp->mii.full_duplex;
1661 vortex_set_duplex(dev);
1662 } else if (init) {
1663 vortex_set_duplex(dev);
1667 static void
1668 vortex_up(struct net_device *dev)
1670 struct vortex_private *vp = netdev_priv(dev);
1671 void __iomem *ioaddr = vp->ioaddr;
1672 unsigned int config;
1673 int i;
1675 if (VORTEX_PCI(vp)) {
1676 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1677 if (vp->pm_state_valid)
1678 pci_restore_state(VORTEX_PCI(vp));
1679 pci_enable_device(VORTEX_PCI(vp));
1682 /* Before initializing select the active media port. */
1683 EL3WINDOW(3);
1684 config = ioread32(ioaddr + Wn3_Config);
1686 if (vp->media_override != 7) {
1687 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1688 dev->name, vp->media_override,
1689 media_tbl[vp->media_override].name);
1690 dev->if_port = vp->media_override;
1691 } else if (vp->autoselect) {
1692 if (vp->has_nway) {
1693 if (vortex_debug > 1)
1694 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1695 dev->name, dev->if_port);
1696 dev->if_port = XCVR_NWAY;
1697 } else {
1698 /* Find first available media type, starting with 100baseTx. */
1699 dev->if_port = XCVR_100baseTx;
1700 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1701 dev->if_port = media_tbl[dev->if_port].next;
1702 if (vortex_debug > 1)
1703 printk(KERN_INFO "%s: first available media type: %s\n",
1704 dev->name, media_tbl[dev->if_port].name);
1706 } else {
1707 dev->if_port = vp->default_media;
1708 if (vortex_debug > 1)
1709 printk(KERN_INFO "%s: using default media %s\n",
1710 dev->name, media_tbl[dev->if_port].name);
1713 init_timer(&vp->timer);
1714 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1715 vp->timer.data = (unsigned long)dev;
1716 vp->timer.function = vortex_timer; /* timer handler */
1717 add_timer(&vp->timer);
1719 init_timer(&vp->rx_oom_timer);
1720 vp->rx_oom_timer.data = (unsigned long)dev;
1721 vp->rx_oom_timer.function = rx_oom_timer;
1723 if (vortex_debug > 1)
1724 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1725 dev->name, media_tbl[dev->if_port].name);
1727 vp->full_duplex = vp->mii.force_media;
1728 config = BFINS(config, dev->if_port, 20, 4);
1729 if (vortex_debug > 6)
1730 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1731 iowrite32(config, ioaddr + Wn3_Config);
1733 netif_carrier_off(dev);
1734 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1735 EL3WINDOW(4);
1736 vortex_check_media(dev, 1);
1738 else
1739 vortex_set_duplex(dev);
1742 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1744 if (vortex_debug > 1) {
1745 EL3WINDOW(4);
1746 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1747 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1750 /* Set the station address and mask in window 2 each time opened. */
1751 EL3WINDOW(2);
1752 for (i = 0; i < 6; i++)
1753 iowrite8(dev->dev_addr[i], ioaddr + i);
1754 for (; i < 12; i+=2)
1755 iowrite16(0, ioaddr + i);
1757 if (vp->cb_fn_base) {
1758 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1759 if (vp->drv_flags & INVERT_LED_PWR)
1760 n |= 0x10;
1761 if (vp->drv_flags & INVERT_MII_PWR)
1762 n |= 0x4000;
1763 iowrite16(n, ioaddr + Wn2_ResetOptions);
1766 if (dev->if_port == XCVR_10base2)
1767 /* Start the thinnet transceiver. We should really wait 50ms...*/
1768 iowrite16(StartCoax, ioaddr + EL3_CMD);
1769 if (dev->if_port != XCVR_NWAY) {
1770 EL3WINDOW(4);
1771 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1772 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1775 /* Switch to the stats window, and clear all stats by reading. */
1776 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1777 EL3WINDOW(6);
1778 for (i = 0; i < 10; i++)
1779 ioread8(ioaddr + i);
1780 ioread16(ioaddr + 10);
1781 ioread16(ioaddr + 12);
1782 /* New: On the Vortex we must also clear the BadSSD counter. */
1783 EL3WINDOW(4);
1784 ioread8(ioaddr + 12);
1785 /* ..and on the Boomerang we enable the extra statistics bits. */
1786 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1788 /* Switch to register set 7 for normal use. */
1789 EL3WINDOW(7);
1791 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1792 vp->cur_rx = vp->dirty_rx = 0;
1793 /* Initialize the RxEarly register as recommended. */
1794 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1795 iowrite32(0x0020, ioaddr + PktStatus);
1796 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1798 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1799 vp->cur_tx = vp->dirty_tx = 0;
1800 if (vp->drv_flags & IS_BOOMERANG)
1801 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1802 /* Clear the Rx, Tx rings. */
1803 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1804 vp->rx_ring[i].status = 0;
1805 for (i = 0; i < TX_RING_SIZE; i++)
1806 vp->tx_skbuff[i] = NULL;
1807 iowrite32(0, ioaddr + DownListPtr);
1809 /* Set receiver mode: presumably accept b-case and phys addr only. */
1810 set_rx_mode(dev);
1811 /* enable 802.1q tagged frames */
1812 set_8021q_mode(dev, 1);
1813 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1815 // issue_and_wait(dev, SetTxStart|0x07ff);
1816 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1817 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1818 /* Allow status bits to be seen. */
1819 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1820 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1821 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1822 (vp->bus_master ? DMADone : 0);
1823 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1824 (vp->full_bus_master_rx ? 0 : RxComplete) |
1825 StatsFull | HostError | TxComplete | IntReq
1826 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1827 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1828 /* Ack all pending events, and set active indicator mask. */
1829 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1830 ioaddr + EL3_CMD);
1831 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1832 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1833 iowrite32(0x8000, vp->cb_fn_base + 4);
1834 netif_start_queue (dev);
1837 static int
1838 vortex_open(struct net_device *dev)
1840 struct vortex_private *vp = netdev_priv(dev);
1841 int i;
1842 int retval;
1844 /* Use the now-standard shared IRQ implementation. */
1845 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1846 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1847 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1848 goto out;
1851 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1852 if (vortex_debug > 2)
1853 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1854 for (i = 0; i < RX_RING_SIZE; i++) {
1855 struct sk_buff *skb;
1856 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1857 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1858 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1859 skb = dev_alloc_skb(PKT_BUF_SZ);
1860 vp->rx_skbuff[i] = skb;
1861 if (skb == NULL)
1862 break; /* Bad news! */
1863 skb->dev = dev; /* Mark as being used by this device. */
1864 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1865 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1867 if (i != RX_RING_SIZE) {
1868 int j;
1869 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1870 for (j = 0; j < i; j++) {
1871 if (vp->rx_skbuff[j]) {
1872 dev_kfree_skb(vp->rx_skbuff[j]);
1873 vp->rx_skbuff[j] = NULL;
1876 retval = -ENOMEM;
1877 goto out_free_irq;
1879 /* Wrap the ring. */
1880 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1883 vortex_up(dev);
1884 return 0;
1886 out_free_irq:
1887 free_irq(dev->irq, dev);
1888 out:
1889 if (vortex_debug > 1)
1890 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1891 return retval;
1894 static void
1895 vortex_timer(unsigned long data)
1897 struct net_device *dev = (struct net_device *)data;
1898 struct vortex_private *vp = netdev_priv(dev);
1899 void __iomem *ioaddr = vp->ioaddr;
1900 int next_tick = 60*HZ;
1901 int ok = 0;
1902 int media_status, old_window;
1904 if (vortex_debug > 2) {
1905 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1906 dev->name, media_tbl[dev->if_port].name);
1907 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1910 if (vp->medialock)
1911 goto leave_media_alone;
1912 disable_irq(dev->irq);
1913 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1914 EL3WINDOW(4);
1915 media_status = ioread16(ioaddr + Wn4_Media);
1916 switch (dev->if_port) {
1917 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1918 if (media_status & Media_LnkBeat) {
1919 netif_carrier_on(dev);
1920 ok = 1;
1921 if (vortex_debug > 1)
1922 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1923 dev->name, media_tbl[dev->if_port].name, media_status);
1924 } else {
1925 netif_carrier_off(dev);
1926 if (vortex_debug > 1) {
1927 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1928 dev->name, media_tbl[dev->if_port].name, media_status);
1931 break;
1932 case XCVR_MII: case XCVR_NWAY:
1934 ok = 1;
1935 spin_lock_bh(&vp->lock);
1936 vortex_check_media(dev, 0);
1937 spin_unlock_bh(&vp->lock);
1939 break;
1940 default: /* Other media types handled by Tx timeouts. */
1941 if (vortex_debug > 1)
1942 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1943 dev->name, media_tbl[dev->if_port].name, media_status);
1944 ok = 1;
1946 if ( ! ok) {
1947 unsigned int config;
1949 do {
1950 dev->if_port = media_tbl[dev->if_port].next;
1951 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1952 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1953 dev->if_port = vp->default_media;
1954 if (vortex_debug > 1)
1955 printk(KERN_DEBUG "%s: Media selection failing, using default "
1956 "%s port.\n",
1957 dev->name, media_tbl[dev->if_port].name);
1958 } else {
1959 if (vortex_debug > 1)
1960 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1961 "%s port.\n",
1962 dev->name, media_tbl[dev->if_port].name);
1963 next_tick = media_tbl[dev->if_port].wait;
1965 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1966 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1968 EL3WINDOW(3);
1969 config = ioread32(ioaddr + Wn3_Config);
1970 config = BFINS(config, dev->if_port, 20, 4);
1971 iowrite32(config, ioaddr + Wn3_Config);
1973 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1974 ioaddr + EL3_CMD);
1975 if (vortex_debug > 1)
1976 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1977 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1979 EL3WINDOW(old_window);
1980 enable_irq(dev->irq);
1982 leave_media_alone:
1983 if (vortex_debug > 2)
1984 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1985 dev->name, media_tbl[dev->if_port].name);
1987 mod_timer(&vp->timer, RUN_AT(next_tick));
1988 if (vp->deferred)
1989 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1990 return;
1993 static void vortex_tx_timeout(struct net_device *dev)
1995 struct vortex_private *vp = netdev_priv(dev);
1996 void __iomem *ioaddr = vp->ioaddr;
1998 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1999 dev->name, ioread8(ioaddr + TxStatus),
2000 ioread16(ioaddr + EL3_STATUS));
2001 EL3WINDOW(4);
2002 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
2003 ioread16(ioaddr + Wn4_NetDiag),
2004 ioread16(ioaddr + Wn4_Media),
2005 ioread32(ioaddr + PktStatus),
2006 ioread16(ioaddr + Wn4_FIFODiag));
2007 /* Slight code bloat to be user friendly. */
2008 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
2009 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
2010 " network cable problem?\n", dev->name);
2011 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
2012 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
2013 " IRQ blocked by another device?\n", dev->name);
2014 /* Bad idea here.. but we might as well handle a few events. */
2017 * Block interrupts because vortex_interrupt does a bare spin_lock()
2019 unsigned long flags;
2020 local_irq_save(flags);
2021 if (vp->full_bus_master_tx)
2022 boomerang_interrupt(dev->irq, dev, NULL);
2023 else
2024 vortex_interrupt(dev->irq, dev, NULL);
2025 local_irq_restore(flags);
2029 if (vortex_debug > 0)
2030 dump_tx_ring(dev);
2032 issue_and_wait(dev, TxReset);
2034 vp->stats.tx_errors++;
2035 if (vp->full_bus_master_tx) {
2036 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2037 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
2038 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2039 ioaddr + DownListPtr);
2040 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2041 netif_wake_queue (dev);
2042 if (vp->drv_flags & IS_BOOMERANG)
2043 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2044 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2045 } else {
2046 vp->stats.tx_dropped++;
2047 netif_wake_queue(dev);
2050 /* Issue Tx Enable */
2051 iowrite16(TxEnable, ioaddr + EL3_CMD);
2052 dev->trans_start = jiffies;
2054 /* Switch to register set 7 for normal use. */
2055 EL3WINDOW(7);
2059 * Handle uncommon interrupt sources. This is a separate routine to minimize
2060 * the cache impact.
2062 static void
2063 vortex_error(struct net_device *dev, int status)
2065 struct vortex_private *vp = netdev_priv(dev);
2066 void __iomem *ioaddr = vp->ioaddr;
2067 int do_tx_reset = 0, reset_mask = 0;
2068 unsigned char tx_status = 0;
2070 if (vortex_debug > 2) {
2071 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2074 if (status & TxComplete) { /* Really "TxError" for us. */
2075 tx_status = ioread8(ioaddr + TxStatus);
2076 /* Presumably a tx-timeout. We must merely re-enable. */
2077 if (vortex_debug > 2
2078 || (tx_status != 0x88 && vortex_debug > 0)) {
2079 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2080 dev->name, tx_status);
2081 if (tx_status == 0x82) {
2082 printk(KERN_ERR "Probably a duplex mismatch. See "
2083 "Documentation/networking/vortex.txt\n");
2085 dump_tx_ring(dev);
2087 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2088 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2089 iowrite8(0, ioaddr + TxStatus);
2090 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2091 do_tx_reset = 1;
2092 } else if (tx_status & 0x08) { /* maxCollisions */
2093 vp->xstats.tx_max_collisions++;
2094 if (vp->drv_flags & MAX_COLLISION_RESET) {
2095 do_tx_reset = 1;
2096 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2098 } else { /* Merely re-enable the transmitter. */
2099 iowrite16(TxEnable, ioaddr + EL3_CMD);
2103 if (status & RxEarly) { /* Rx early is unused. */
2104 vortex_rx(dev);
2105 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2107 if (status & StatsFull) { /* Empty statistics. */
2108 static int DoneDidThat;
2109 if (vortex_debug > 4)
2110 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2111 update_stats(ioaddr, dev);
2112 /* HACK: Disable statistics as an interrupt source. */
2113 /* This occurs when we have the wrong media type! */
2114 if (DoneDidThat == 0 &&
2115 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2116 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2117 "stats as an interrupt source.\n", dev->name);
2118 EL3WINDOW(5);
2119 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2120 vp->intr_enable &= ~StatsFull;
2121 EL3WINDOW(7);
2122 DoneDidThat++;
2125 if (status & IntReq) { /* Restore all interrupt sources. */
2126 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2127 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2129 if (status & HostError) {
2130 u16 fifo_diag;
2131 EL3WINDOW(4);
2132 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2133 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2134 dev->name, fifo_diag);
2135 /* Adapter failure requires Tx/Rx reset and reinit. */
2136 if (vp->full_bus_master_tx) {
2137 int bus_status = ioread32(ioaddr + PktStatus);
2138 /* 0x80000000 PCI master abort. */
2139 /* 0x40000000 PCI target abort. */
2140 if (vortex_debug)
2141 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2143 /* In this case, blow the card away */
2144 /* Must not enter D3 or we can't legally issue the reset! */
2145 vortex_down(dev, 0);
2146 issue_and_wait(dev, TotalReset | 0xff);
2147 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2148 } else if (fifo_diag & 0x0400)
2149 do_tx_reset = 1;
2150 if (fifo_diag & 0x3000) {
2151 /* Reset Rx fifo and upload logic */
2152 issue_and_wait(dev, RxReset|0x07);
2153 /* Set the Rx filter to the current state. */
2154 set_rx_mode(dev);
2155 /* enable 802.1q VLAN tagged frames */
2156 set_8021q_mode(dev, 1);
2157 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2158 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2162 if (do_tx_reset) {
2163 issue_and_wait(dev, TxReset|reset_mask);
2164 iowrite16(TxEnable, ioaddr + EL3_CMD);
2165 if (!vp->full_bus_master_tx)
2166 netif_wake_queue(dev);
2170 static int
2171 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2173 struct vortex_private *vp = netdev_priv(dev);
2174 void __iomem *ioaddr = vp->ioaddr;
2176 /* Put out the doubleword header... */
2177 iowrite32(skb->len, ioaddr + TX_FIFO);
2178 if (vp->bus_master) {
2179 /* Set the bus-master controller to transfer the packet. */
2180 int len = (skb->len + 3) & ~3;
2181 iowrite32( vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2182 ioaddr + Wn7_MasterAddr);
2183 iowrite16(len, ioaddr + Wn7_MasterLen);
2184 vp->tx_skb = skb;
2185 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2186 /* netif_wake_queue() will be called at the DMADone interrupt. */
2187 } else {
2188 /* ... and the packet rounded to a doubleword. */
2189 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2190 dev_kfree_skb (skb);
2191 if (ioread16(ioaddr + TxFree) > 1536) {
2192 netif_start_queue (dev); /* AKPM: redundant? */
2193 } else {
2194 /* Interrupt us when the FIFO has room for max-sized packet. */
2195 netif_stop_queue(dev);
2196 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2200 dev->trans_start = jiffies;
2202 /* Clear the Tx status stack. */
2204 int tx_status;
2205 int i = 32;
2207 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2208 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2209 if (vortex_debug > 2)
2210 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2211 dev->name, tx_status);
2212 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2213 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2214 if (tx_status & 0x30) {
2215 issue_and_wait(dev, TxReset);
2217 iowrite16(TxEnable, ioaddr + EL3_CMD);
2219 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2222 return 0;
2225 static int
2226 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2228 struct vortex_private *vp = netdev_priv(dev);
2229 void __iomem *ioaddr = vp->ioaddr;
2230 /* Calculate the next Tx descriptor entry. */
2231 int entry = vp->cur_tx % TX_RING_SIZE;
2232 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2233 unsigned long flags;
2235 if (vortex_debug > 6) {
2236 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2237 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2238 dev->name, vp->cur_tx);
2241 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2242 if (vortex_debug > 0)
2243 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2244 dev->name);
2245 netif_stop_queue(dev);
2246 return 1;
2249 vp->tx_skbuff[entry] = skb;
2251 vp->tx_ring[entry].next = 0;
2252 #if DO_ZEROCOPY
2253 if (skb->ip_summed != CHECKSUM_HW)
2254 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2255 else
2256 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2258 if (!skb_shinfo(skb)->nr_frags) {
2259 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2260 skb->len, PCI_DMA_TODEVICE));
2261 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2262 } else {
2263 int i;
2265 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2266 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2267 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2269 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2270 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2272 vp->tx_ring[entry].frag[i+1].addr =
2273 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2274 (void*)page_address(frag->page) + frag->page_offset,
2275 frag->size, PCI_DMA_TODEVICE));
2277 if (i == skb_shinfo(skb)->nr_frags-1)
2278 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2279 else
2280 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2283 #else
2284 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2285 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2286 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2287 #endif
2289 spin_lock_irqsave(&vp->lock, flags);
2290 /* Wait for the stall to complete. */
2291 issue_and_wait(dev, DownStall);
2292 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2293 if (ioread32(ioaddr + DownListPtr) == 0) {
2294 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2295 vp->queued_packet++;
2298 vp->cur_tx++;
2299 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2300 netif_stop_queue (dev);
2301 } else { /* Clear previous interrupt enable. */
2302 #if defined(tx_interrupt_mitigation)
2303 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2304 * were selected, this would corrupt DN_COMPLETE. No?
2306 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2307 #endif
2309 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2310 spin_unlock_irqrestore(&vp->lock, flags);
2311 dev->trans_start = jiffies;
2312 return 0;
2315 /* The interrupt handler does all of the Rx thread work and cleans up
2316 after the Tx thread. */
2319 * This is the ISR for the vortex series chips.
2320 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2323 static irqreturn_t
2324 vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2326 struct net_device *dev = dev_id;
2327 struct vortex_private *vp = netdev_priv(dev);
2328 void __iomem *ioaddr;
2329 int status;
2330 int work_done = max_interrupt_work;
2331 int handled = 0;
2333 ioaddr = vp->ioaddr;
2334 spin_lock(&vp->lock);
2336 status = ioread16(ioaddr + EL3_STATUS);
2338 if (vortex_debug > 6)
2339 printk("vortex_interrupt(). status=0x%4x\n", status);
2341 if ((status & IntLatch) == 0)
2342 goto handler_exit; /* No interrupt: shared IRQs cause this */
2343 handled = 1;
2345 if (status & IntReq) {
2346 status |= vp->deferred;
2347 vp->deferred = 0;
2350 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2351 goto handler_exit;
2353 if (vortex_debug > 4)
2354 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2355 dev->name, status, ioread8(ioaddr + Timer));
2357 do {
2358 if (vortex_debug > 5)
2359 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2360 dev->name, status);
2361 if (status & RxComplete)
2362 vortex_rx(dev);
2364 if (status & TxAvailable) {
2365 if (vortex_debug > 5)
2366 printk(KERN_DEBUG " TX room bit was handled.\n");
2367 /* There's room in the FIFO for a full-sized packet. */
2368 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2369 netif_wake_queue (dev);
2372 if (status & DMADone) {
2373 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2374 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2375 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2376 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2377 if (ioread16(ioaddr + TxFree) > 1536) {
2379 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2380 * insufficient FIFO room, the TxAvailable test will succeed and call
2381 * netif_wake_queue()
2383 netif_wake_queue(dev);
2384 } else { /* Interrupt when FIFO has room for max-sized packet. */
2385 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2386 netif_stop_queue(dev);
2390 /* Check for all uncommon interrupts at once. */
2391 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2392 if (status == 0xffff)
2393 break;
2394 vortex_error(dev, status);
2397 if (--work_done < 0) {
2398 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2399 "%4.4x.\n", dev->name, status);
2400 /* Disable all pending interrupts. */
2401 do {
2402 vp->deferred |= status;
2403 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2404 ioaddr + EL3_CMD);
2405 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2406 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2407 /* The timer will reenable interrupts. */
2408 mod_timer(&vp->timer, jiffies + 1*HZ);
2409 break;
2411 /* Acknowledge the IRQ. */
2412 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2413 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2415 if (vortex_debug > 4)
2416 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2417 dev->name, status);
2418 handler_exit:
2419 spin_unlock(&vp->lock);
2420 return IRQ_RETVAL(handled);
2424 * This is the ISR for the boomerang series chips.
2425 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2428 static irqreturn_t
2429 boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2431 struct net_device *dev = dev_id;
2432 struct vortex_private *vp = netdev_priv(dev);
2433 void __iomem *ioaddr;
2434 int status;
2435 int work_done = max_interrupt_work;
2437 ioaddr = vp->ioaddr;
2440 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2441 * and boomerang_start_xmit
2443 spin_lock(&vp->lock);
2445 status = ioread16(ioaddr + EL3_STATUS);
2447 if (vortex_debug > 6)
2448 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2450 if ((status & IntLatch) == 0)
2451 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2453 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2454 if (vortex_debug > 1)
2455 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2456 goto handler_exit;
2459 if (status & IntReq) {
2460 status |= vp->deferred;
2461 vp->deferred = 0;
2464 if (vortex_debug > 4)
2465 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2466 dev->name, status, ioread8(ioaddr + Timer));
2467 do {
2468 if (vortex_debug > 5)
2469 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2470 dev->name, status);
2471 if (status & UpComplete) {
2472 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2473 if (vortex_debug > 5)
2474 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2475 boomerang_rx(dev);
2478 if (status & DownComplete) {
2479 unsigned int dirty_tx = vp->dirty_tx;
2481 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2482 while (vp->cur_tx - dirty_tx > 0) {
2483 int entry = dirty_tx % TX_RING_SIZE;
2484 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2485 if (ioread32(ioaddr + DownListPtr) ==
2486 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2487 break; /* It still hasn't been processed. */
2488 #else
2489 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2490 break; /* It still hasn't been processed. */
2491 #endif
2493 if (vp->tx_skbuff[entry]) {
2494 struct sk_buff *skb = vp->tx_skbuff[entry];
2495 #if DO_ZEROCOPY
2496 int i;
2497 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2498 pci_unmap_single(VORTEX_PCI(vp),
2499 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2500 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2501 PCI_DMA_TODEVICE);
2502 #else
2503 pci_unmap_single(VORTEX_PCI(vp),
2504 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2505 #endif
2506 dev_kfree_skb_irq(skb);
2507 vp->tx_skbuff[entry] = NULL;
2508 } else {
2509 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2511 /* vp->stats.tx_packets++; Counted below. */
2512 dirty_tx++;
2514 vp->dirty_tx = dirty_tx;
2515 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2516 if (vortex_debug > 6)
2517 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2518 netif_wake_queue (dev);
2522 /* Check for all uncommon interrupts at once. */
2523 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2524 vortex_error(dev, status);
2526 if (--work_done < 0) {
2527 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2528 "%4.4x.\n", dev->name, status);
2529 /* Disable all pending interrupts. */
2530 do {
2531 vp->deferred |= status;
2532 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2533 ioaddr + EL3_CMD);
2534 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2535 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2536 /* The timer will reenable interrupts. */
2537 mod_timer(&vp->timer, jiffies + 1*HZ);
2538 break;
2540 /* Acknowledge the IRQ. */
2541 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2542 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2543 iowrite32(0x8000, vp->cb_fn_base + 4);
2545 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2547 if (vortex_debug > 4)
2548 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2549 dev->name, status);
2550 handler_exit:
2551 spin_unlock(&vp->lock);
2552 return IRQ_HANDLED;
2555 static int vortex_rx(struct net_device *dev)
2557 struct vortex_private *vp = netdev_priv(dev);
2558 void __iomem *ioaddr = vp->ioaddr;
2559 int i;
2560 short rx_status;
2562 if (vortex_debug > 5)
2563 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2564 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2565 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2566 if (rx_status & 0x4000) { /* Error, update stats. */
2567 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2568 if (vortex_debug > 2)
2569 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2570 vp->stats.rx_errors++;
2571 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2572 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2573 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2574 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2575 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2576 } else {
2577 /* The packet length: up to 4.5K!. */
2578 int pkt_len = rx_status & 0x1fff;
2579 struct sk_buff *skb;
2581 skb = dev_alloc_skb(pkt_len + 5);
2582 if (vortex_debug > 4)
2583 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2584 pkt_len, rx_status);
2585 if (skb != NULL) {
2586 skb->dev = dev;
2587 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2588 /* 'skb_put()' points to the start of sk_buff data area. */
2589 if (vp->bus_master &&
2590 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2591 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2592 pkt_len, PCI_DMA_FROMDEVICE);
2593 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2594 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2595 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2596 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2598 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2599 } else {
2600 ioread32_rep(ioaddr + RX_FIFO,
2601 skb_put(skb, pkt_len),
2602 (pkt_len + 3) >> 2);
2604 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2605 skb->protocol = eth_type_trans(skb, dev);
2606 netif_rx(skb);
2607 dev->last_rx = jiffies;
2608 vp->stats.rx_packets++;
2609 /* Wait a limited time to go to next packet. */
2610 for (i = 200; i >= 0; i--)
2611 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2612 break;
2613 continue;
2614 } else if (vortex_debug > 0)
2615 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2616 "size %d.\n", dev->name, pkt_len);
2617 vp->stats.rx_dropped++;
2619 issue_and_wait(dev, RxDiscard);
2622 return 0;
2625 static int
2626 boomerang_rx(struct net_device *dev)
2628 struct vortex_private *vp = netdev_priv(dev);
2629 int entry = vp->cur_rx % RX_RING_SIZE;
2630 void __iomem *ioaddr = vp->ioaddr;
2631 int rx_status;
2632 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2634 if (vortex_debug > 5)
2635 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2637 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2638 if (--rx_work_limit < 0)
2639 break;
2640 if (rx_status & RxDError) { /* Error, update stats. */
2641 unsigned char rx_error = rx_status >> 16;
2642 if (vortex_debug > 2)
2643 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2644 vp->stats.rx_errors++;
2645 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2646 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2647 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2648 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2649 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2650 } else {
2651 /* The packet length: up to 4.5K!. */
2652 int pkt_len = rx_status & 0x1fff;
2653 struct sk_buff *skb;
2654 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2656 if (vortex_debug > 4)
2657 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2658 pkt_len, rx_status);
2660 /* Check if the packet is long enough to just accept without
2661 copying to a properly sized skbuff. */
2662 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2663 skb->dev = dev;
2664 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2665 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2666 /* 'skb_put()' points to the start of sk_buff data area. */
2667 memcpy(skb_put(skb, pkt_len),
2668 vp->rx_skbuff[entry]->data,
2669 pkt_len);
2670 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2671 vp->rx_copy++;
2672 } else {
2673 /* Pass up the skbuff already on the Rx ring. */
2674 skb = vp->rx_skbuff[entry];
2675 vp->rx_skbuff[entry] = NULL;
2676 skb_put(skb, pkt_len);
2677 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2678 vp->rx_nocopy++;
2680 skb->protocol = eth_type_trans(skb, dev);
2681 { /* Use hardware checksum info. */
2682 int csum_bits = rx_status & 0xee000000;
2683 if (csum_bits &&
2684 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2685 csum_bits == (IPChksumValid | UDPChksumValid))) {
2686 skb->ip_summed = CHECKSUM_UNNECESSARY;
2687 vp->rx_csumhits++;
2690 netif_rx(skb);
2691 dev->last_rx = jiffies;
2692 vp->stats.rx_packets++;
2694 entry = (++vp->cur_rx) % RX_RING_SIZE;
2696 /* Refill the Rx ring buffers. */
2697 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2698 struct sk_buff *skb;
2699 entry = vp->dirty_rx % RX_RING_SIZE;
2700 if (vp->rx_skbuff[entry] == NULL) {
2701 skb = dev_alloc_skb(PKT_BUF_SZ);
2702 if (skb == NULL) {
2703 static unsigned long last_jif;
2704 if (time_after(jiffies, last_jif + 10 * HZ)) {
2705 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2706 last_jif = jiffies;
2708 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2709 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2710 break; /* Bad news! */
2712 skb->dev = dev; /* Mark as being used by this device. */
2713 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2714 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2715 vp->rx_skbuff[entry] = skb;
2717 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2718 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2720 return 0;
2724 * If we've hit a total OOM refilling the Rx ring we poll once a second
2725 * for some memory. Otherwise there is no way to restart the rx process.
2727 static void
2728 rx_oom_timer(unsigned long arg)
2730 struct net_device *dev = (struct net_device *)arg;
2731 struct vortex_private *vp = netdev_priv(dev);
2733 spin_lock_irq(&vp->lock);
2734 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2735 boomerang_rx(dev);
2736 if (vortex_debug > 1) {
2737 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2738 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2740 spin_unlock_irq(&vp->lock);
2743 static void
2744 vortex_down(struct net_device *dev, int final_down)
2746 struct vortex_private *vp = netdev_priv(dev);
2747 void __iomem *ioaddr = vp->ioaddr;
2749 netif_stop_queue (dev);
2751 del_timer_sync(&vp->rx_oom_timer);
2752 del_timer_sync(&vp->timer);
2754 /* Turn off statistics ASAP. We update vp->stats below. */
2755 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2757 /* Disable the receiver and transmitter. */
2758 iowrite16(RxDisable, ioaddr + EL3_CMD);
2759 iowrite16(TxDisable, ioaddr + EL3_CMD);
2761 /* Disable receiving 802.1q tagged frames */
2762 set_8021q_mode(dev, 0);
2764 if (dev->if_port == XCVR_10base2)
2765 /* Turn off thinnet power. Green! */
2766 iowrite16(StopCoax, ioaddr + EL3_CMD);
2768 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2770 update_stats(ioaddr, dev);
2771 if (vp->full_bus_master_rx)
2772 iowrite32(0, ioaddr + UpListPtr);
2773 if (vp->full_bus_master_tx)
2774 iowrite32(0, ioaddr + DownListPtr);
2776 if (final_down && VORTEX_PCI(vp)) {
2777 vp->pm_state_valid = 1;
2778 pci_save_state(VORTEX_PCI(vp));
2779 acpi_set_WOL(dev);
2783 static int
2784 vortex_close(struct net_device *dev)
2786 struct vortex_private *vp = netdev_priv(dev);
2787 void __iomem *ioaddr = vp->ioaddr;
2788 int i;
2790 if (netif_device_present(dev))
2791 vortex_down(dev, 1);
2793 if (vortex_debug > 1) {
2794 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2795 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2796 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2797 " tx_queued %d Rx pre-checksummed %d.\n",
2798 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2801 #if DO_ZEROCOPY
2802 if (vp->rx_csumhits &&
2803 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2804 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2805 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2806 "not using them!\n", dev->name);
2808 #endif
2810 free_irq(dev->irq, dev);
2812 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2813 for (i = 0; i < RX_RING_SIZE; i++)
2814 if (vp->rx_skbuff[i]) {
2815 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2816 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2817 dev_kfree_skb(vp->rx_skbuff[i]);
2818 vp->rx_skbuff[i] = NULL;
2821 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2822 for (i = 0; i < TX_RING_SIZE; i++) {
2823 if (vp->tx_skbuff[i]) {
2824 struct sk_buff *skb = vp->tx_skbuff[i];
2825 #if DO_ZEROCOPY
2826 int k;
2828 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2829 pci_unmap_single(VORTEX_PCI(vp),
2830 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2831 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2832 PCI_DMA_TODEVICE);
2833 #else
2834 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2835 #endif
2836 dev_kfree_skb(skb);
2837 vp->tx_skbuff[i] = NULL;
2842 return 0;
2845 static void
2846 dump_tx_ring(struct net_device *dev)
2848 if (vortex_debug > 0) {
2849 struct vortex_private *vp = netdev_priv(dev);
2850 void __iomem *ioaddr = vp->ioaddr;
2852 if (vp->full_bus_master_tx) {
2853 int i;
2854 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2856 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2857 vp->full_bus_master_tx,
2858 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2859 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2860 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2861 ioread32(ioaddr + DownListPtr),
2862 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2863 issue_and_wait(dev, DownStall);
2864 for (i = 0; i < TX_RING_SIZE; i++) {
2865 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2866 &vp->tx_ring[i],
2867 #if DO_ZEROCOPY
2868 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2869 #else
2870 le32_to_cpu(vp->tx_ring[i].length),
2871 #endif
2872 le32_to_cpu(vp->tx_ring[i].status));
2874 if (!stalled)
2875 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2880 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2882 struct vortex_private *vp = netdev_priv(dev);
2883 void __iomem *ioaddr = vp->ioaddr;
2884 unsigned long flags;
2886 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2887 spin_lock_irqsave (&vp->lock, flags);
2888 update_stats(ioaddr, dev);
2889 spin_unlock_irqrestore (&vp->lock, flags);
2891 return &vp->stats;
2894 /* Update statistics.
2895 Unlike with the EL3 we need not worry about interrupts changing
2896 the window setting from underneath us, but we must still guard
2897 against a race condition with a StatsUpdate interrupt updating the
2898 table. This is done by checking that the ASM (!) code generated uses
2899 atomic updates with '+='.
2901 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2903 struct vortex_private *vp = netdev_priv(dev);
2904 int old_window = ioread16(ioaddr + EL3_CMD);
2906 if (old_window == 0xffff) /* Chip suspended or ejected. */
2907 return;
2908 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2909 /* Switch to the stats window, and read everything. */
2910 EL3WINDOW(6);
2911 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2912 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2913 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2914 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2915 vp->stats.tx_packets += ioread8(ioaddr + 6);
2916 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2917 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2918 /* Don't bother with register 9, an extension of registers 6&7.
2919 If we do use the 6&7 values the atomic update assumption above
2920 is invalid. */
2921 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2922 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2923 /* Extra stats for get_ethtool_stats() */
2924 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2925 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2926 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2927 EL3WINDOW(4);
2928 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2930 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2931 + vp->xstats.tx_single_collisions
2932 + vp->xstats.tx_max_collisions;
2935 u8 up = ioread8(ioaddr + 13);
2936 vp->stats.rx_bytes += (up & 0x0f) << 16;
2937 vp->stats.tx_bytes += (up & 0xf0) << 12;
2940 EL3WINDOW(old_window >> 13);
2941 return;
2944 static int vortex_nway_reset(struct net_device *dev)
2946 struct vortex_private *vp = netdev_priv(dev);
2947 void __iomem *ioaddr = vp->ioaddr;
2948 unsigned long flags;
2949 int rc;
2951 spin_lock_irqsave(&vp->lock, flags);
2952 EL3WINDOW(4);
2953 rc = mii_nway_restart(&vp->mii);
2954 spin_unlock_irqrestore(&vp->lock, flags);
2955 return rc;
2958 static u32 vortex_get_link(struct net_device *dev)
2960 struct vortex_private *vp = netdev_priv(dev);
2961 void __iomem *ioaddr = vp->ioaddr;
2962 unsigned long flags;
2963 int rc;
2965 spin_lock_irqsave(&vp->lock, flags);
2966 EL3WINDOW(4);
2967 rc = mii_link_ok(&vp->mii);
2968 spin_unlock_irqrestore(&vp->lock, flags);
2969 return rc;
2972 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2974 struct vortex_private *vp = netdev_priv(dev);
2975 void __iomem *ioaddr = vp->ioaddr;
2976 unsigned long flags;
2977 int rc;
2979 spin_lock_irqsave(&vp->lock, flags);
2980 EL3WINDOW(4);
2981 rc = mii_ethtool_gset(&vp->mii, cmd);
2982 spin_unlock_irqrestore(&vp->lock, flags);
2983 return rc;
2986 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2988 struct vortex_private *vp = netdev_priv(dev);
2989 void __iomem *ioaddr = vp->ioaddr;
2990 unsigned long flags;
2991 int rc;
2993 spin_lock_irqsave(&vp->lock, flags);
2994 EL3WINDOW(4);
2995 rc = mii_ethtool_sset(&vp->mii, cmd);
2996 spin_unlock_irqrestore(&vp->lock, flags);
2997 return rc;
3000 static u32 vortex_get_msglevel(struct net_device *dev)
3002 return vortex_debug;
3005 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
3007 vortex_debug = dbg;
3010 static int vortex_get_stats_count(struct net_device *dev)
3012 return VORTEX_NUM_STATS;
3015 static void vortex_get_ethtool_stats(struct net_device *dev,
3016 struct ethtool_stats *stats, u64 *data)
3018 struct vortex_private *vp = netdev_priv(dev);
3019 void __iomem *ioaddr = vp->ioaddr;
3020 unsigned long flags;
3022 spin_lock_irqsave(&vp->lock, flags);
3023 update_stats(ioaddr, dev);
3024 spin_unlock_irqrestore(&vp->lock, flags);
3026 data[0] = vp->xstats.tx_deferred;
3027 data[1] = vp->xstats.tx_max_collisions;
3028 data[2] = vp->xstats.tx_multiple_collisions;
3029 data[3] = vp->xstats.tx_single_collisions;
3030 data[4] = vp->xstats.rx_bad_ssd;
3034 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
3036 switch (stringset) {
3037 case ETH_SS_STATS:
3038 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
3039 break;
3040 default:
3041 WARN_ON(1);
3042 break;
3046 static void vortex_get_drvinfo(struct net_device *dev,
3047 struct ethtool_drvinfo *info)
3049 struct vortex_private *vp = netdev_priv(dev);
3051 strcpy(info->driver, DRV_NAME);
3052 strcpy(info->version, DRV_VERSION);
3053 if (VORTEX_PCI(vp)) {
3054 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3055 } else {
3056 if (VORTEX_EISA(vp))
3057 sprintf(info->bus_info, vp->gendev->bus_id);
3058 else
3059 sprintf(info->bus_info, "EISA 0x%lx %d",
3060 dev->base_addr, dev->irq);
3064 static struct ethtool_ops vortex_ethtool_ops = {
3065 .get_drvinfo = vortex_get_drvinfo,
3066 .get_strings = vortex_get_strings,
3067 .get_msglevel = vortex_get_msglevel,
3068 .set_msglevel = vortex_set_msglevel,
3069 .get_ethtool_stats = vortex_get_ethtool_stats,
3070 .get_stats_count = vortex_get_stats_count,
3071 .get_settings = vortex_get_settings,
3072 .set_settings = vortex_set_settings,
3073 .get_link = vortex_get_link,
3074 .nway_reset = vortex_nway_reset,
3075 .get_perm_addr = ethtool_op_get_perm_addr,
3078 #ifdef CONFIG_PCI
3080 * Must power the device up to do MDIO operations
3082 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3084 int err;
3085 struct vortex_private *vp = netdev_priv(dev);
3086 void __iomem *ioaddr = vp->ioaddr;
3087 unsigned long flags;
3088 int state = 0;
3090 if(VORTEX_PCI(vp))
3091 state = VORTEX_PCI(vp)->current_state;
3093 /* The kernel core really should have pci_get_power_state() */
3095 if(state != 0)
3096 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3097 spin_lock_irqsave(&vp->lock, flags);
3098 EL3WINDOW(4);
3099 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3100 spin_unlock_irqrestore(&vp->lock, flags);
3101 if(state != 0)
3102 pci_set_power_state(VORTEX_PCI(vp), state);
3104 return err;
3106 #endif
3109 /* Pre-Cyclone chips have no documented multicast filter, so the only
3110 multicast setting is to receive all multicast frames. At least
3111 the chip has a very clean way to set the mode, unlike many others. */
3112 static void set_rx_mode(struct net_device *dev)
3114 struct vortex_private *vp = netdev_priv(dev);
3115 void __iomem *ioaddr = vp->ioaddr;
3116 int new_mode;
3118 if (dev->flags & IFF_PROMISC) {
3119 if (vortex_debug > 0)
3120 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3121 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3122 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3123 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3124 } else
3125 new_mode = SetRxFilter | RxStation | RxBroadcast;
3127 iowrite16(new_mode, ioaddr + EL3_CMD);
3130 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3131 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3132 Note that this must be done after each RxReset due to some backwards
3133 compatibility logic in the Cyclone and Tornado ASICs */
3135 /* The Ethernet Type used for 802.1q tagged frames */
3136 #define VLAN_ETHER_TYPE 0x8100
3138 static void set_8021q_mode(struct net_device *dev, int enable)
3140 struct vortex_private *vp = netdev_priv(dev);
3141 void __iomem *ioaddr = vp->ioaddr;
3142 int old_window = ioread16(ioaddr + EL3_CMD);
3143 int mac_ctrl;
3145 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3146 /* cyclone and tornado chipsets can recognize 802.1q
3147 * tagged frames and treat them correctly */
3149 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3150 if (enable)
3151 max_pkt_size += 4; /* 802.1Q VLAN tag */
3153 EL3WINDOW(3);
3154 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3156 /* set VlanEtherType to let the hardware checksumming
3157 treat tagged frames correctly */
3158 EL3WINDOW(7);
3159 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3160 } else {
3161 /* on older cards we have to enable large frames */
3163 vp->large_frames = dev->mtu > 1500 || enable;
3165 EL3WINDOW(3);
3166 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3167 if (vp->large_frames)
3168 mac_ctrl |= 0x40;
3169 else
3170 mac_ctrl &= ~0x40;
3171 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3174 EL3WINDOW(old_window);
3176 #else
3178 static void set_8021q_mode(struct net_device *dev, int enable)
3183 #endif
3185 /* MII transceiver control section.
3186 Read and write the MII registers using software-generated serial
3187 MDIO protocol. See the MII specifications or DP83840A data sheet
3188 for details. */
3190 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3191 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3192 "overclocking" issues. */
3193 #define mdio_delay() ioread32(mdio_addr)
3195 #define MDIO_SHIFT_CLK 0x01
3196 #define MDIO_DIR_WRITE 0x04
3197 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3198 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3199 #define MDIO_DATA_READ 0x02
3200 #define MDIO_ENB_IN 0x00
3202 /* Generate the preamble required for initial synchronization and
3203 a few older transceivers. */
3204 static void mdio_sync(void __iomem *ioaddr, int bits)
3206 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3208 /* Establish sync by sending at least 32 logic ones. */
3209 while (-- bits >= 0) {
3210 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3211 mdio_delay();
3212 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3213 mdio_delay();
3217 static int mdio_read(struct net_device *dev, int phy_id, int location)
3219 int i;
3220 struct vortex_private *vp = netdev_priv(dev);
3221 void __iomem *ioaddr = vp->ioaddr;
3222 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3223 unsigned int retval = 0;
3224 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3226 if (mii_preamble_required)
3227 mdio_sync(ioaddr, 32);
3229 /* Shift the read command bits out. */
3230 for (i = 14; i >= 0; i--) {
3231 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3232 iowrite16(dataval, mdio_addr);
3233 mdio_delay();
3234 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3235 mdio_delay();
3237 /* Read the two transition, 16 data, and wire-idle bits. */
3238 for (i = 19; i > 0; i--) {
3239 iowrite16(MDIO_ENB_IN, mdio_addr);
3240 mdio_delay();
3241 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3242 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3243 mdio_delay();
3245 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3248 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3250 struct vortex_private *vp = netdev_priv(dev);
3251 void __iomem *ioaddr = vp->ioaddr;
3252 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3253 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3254 int i;
3256 if (mii_preamble_required)
3257 mdio_sync(ioaddr, 32);
3259 /* Shift the command bits out. */
3260 for (i = 31; i >= 0; i--) {
3261 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3262 iowrite16(dataval, mdio_addr);
3263 mdio_delay();
3264 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3265 mdio_delay();
3267 /* Leave the interface idle. */
3268 for (i = 1; i >= 0; i--) {
3269 iowrite16(MDIO_ENB_IN, mdio_addr);
3270 mdio_delay();
3271 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3272 mdio_delay();
3274 return;
3277 /* ACPI: Advanced Configuration and Power Interface. */
3278 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3279 static void acpi_set_WOL(struct net_device *dev)
3281 struct vortex_private *vp = netdev_priv(dev);
3282 void __iomem *ioaddr = vp->ioaddr;
3284 if (vp->enable_wol) {
3285 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3286 EL3WINDOW(7);
3287 iowrite16(2, ioaddr + 0x0c);
3288 /* The RxFilter must accept the WOL frames. */
3289 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3290 iowrite16(RxEnable, ioaddr + EL3_CMD);
3292 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3294 /* Change the power state to D3; RxEnable doesn't take effect. */
3295 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3300 static void __devexit vortex_remove_one (struct pci_dev *pdev)
3302 struct net_device *dev = pci_get_drvdata(pdev);
3303 struct vortex_private *vp;
3305 if (!dev) {
3306 printk("vortex_remove_one called for Compaq device!\n");
3307 BUG();
3310 vp = netdev_priv(dev);
3312 if (vp->cb_fn_base)
3313 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3315 unregister_netdev(dev);
3317 if (VORTEX_PCI(vp)) {
3318 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3319 if (vp->pm_state_valid)
3320 pci_restore_state(VORTEX_PCI(vp));
3321 pci_disable_device(VORTEX_PCI(vp));
3323 /* Should really use issue_and_wait() here */
3324 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3325 vp->ioaddr + EL3_CMD);
3327 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3329 pci_free_consistent(pdev,
3330 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3331 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3332 vp->rx_ring,
3333 vp->rx_ring_dma);
3334 if (vp->must_free_region)
3335 release_region(dev->base_addr, vp->io_size);
3336 free_netdev(dev);
3340 static struct pci_driver vortex_driver = {
3341 .name = "3c59x",
3342 .probe = vortex_init_one,
3343 .remove = __devexit_p(vortex_remove_one),
3344 .id_table = vortex_pci_tbl,
3345 #ifdef CONFIG_PM
3346 .suspend = vortex_suspend,
3347 .resume = vortex_resume,
3348 #endif
3352 static int vortex_have_pci;
3353 static int vortex_have_eisa;
3356 static int __init vortex_init (void)
3358 int pci_rc, eisa_rc;
3360 pci_rc = pci_module_init(&vortex_driver);
3361 eisa_rc = vortex_eisa_init();
3363 if (pci_rc == 0)
3364 vortex_have_pci = 1;
3365 if (eisa_rc > 0)
3366 vortex_have_eisa = 1;
3368 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3372 static void __exit vortex_eisa_cleanup (void)
3374 struct vortex_private *vp;
3375 void __iomem *ioaddr;
3377 #ifdef CONFIG_EISA
3378 /* Take care of the EISA devices */
3379 eisa_driver_unregister (&vortex_eisa_driver);
3380 #endif
3382 if (compaq_net_device) {
3383 vp = compaq_net_device->priv;
3384 ioaddr = ioport_map(compaq_net_device->base_addr,
3385 VORTEX_TOTAL_SIZE);
3387 unregister_netdev (compaq_net_device);
3388 iowrite16 (TotalReset, ioaddr + EL3_CMD);
3389 release_region(compaq_net_device->base_addr,
3390 VORTEX_TOTAL_SIZE);
3392 free_netdev (compaq_net_device);
3397 static void __exit vortex_cleanup (void)
3399 if (vortex_have_pci)
3400 pci_unregister_driver (&vortex_driver);
3401 if (vortex_have_eisa)
3402 vortex_eisa_cleanup ();
3406 module_init(vortex_init);
3407 module_exit(vortex_cleanup);
3411 * Local variables:
3412 * c-indent-level: 4
3413 * c-basic-offset: 4
3414 * tab-width: 4
3415 * End: