USB: don't let errors prevent system sleep
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / pid.c
blob4d0a9fc6e8a0c544c71ca16adbd7546f8c6a904c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
40 #define pid_hashfn(nr, ns) \
41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head *pid_hash;
43 static unsigned int pidhash_shift = 4;
44 struct pid init_struct_pid = INIT_STRUCT_PID;
46 int pid_max = PID_MAX_DEFAULT;
48 #define RESERVED_PIDS 300
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
53 #define BITS_PER_PAGE (PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
71 struct pid_namespace init_pid_ns = {
72 .kref = {
73 .refcount = ATOMIC_INIT(2),
75 .pidmap = {
76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
78 .last_pid = 0,
79 .level = 0,
80 .child_reaper = &init_task,
82 EXPORT_SYMBOL_GPL(init_pid_ns);
84 int is_container_init(struct task_struct *tsk)
86 int ret = 0;
87 struct pid *pid;
89 rcu_read_lock();
90 pid = task_pid(tsk);
91 if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 ret = 1;
93 rcu_read_unlock();
95 return ret;
97 EXPORT_SYMBOL(is_container_init);
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
115 static void free_pidmap(struct upid *upid)
117 int nr = upid->nr;
118 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119 int offset = nr & BITS_PER_PAGE_MASK;
121 clear_bit(offset, map->page);
122 atomic_inc(&map->nr_free);
125 static int alloc_pidmap(struct pid_namespace *pid_ns)
127 int i, offset, max_scan, pid, last = pid_ns->last_pid;
128 struct pidmap *map;
130 pid = last + 1;
131 if (pid >= pid_max)
132 pid = RESERVED_PIDS;
133 offset = pid & BITS_PER_PAGE_MASK;
134 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
135 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
136 for (i = 0; i <= max_scan; ++i) {
137 if (unlikely(!map->page)) {
138 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
140 * Free the page if someone raced with us
141 * installing it:
143 spin_lock_irq(&pidmap_lock);
144 if (!map->page) {
145 map->page = page;
146 page = NULL;
148 spin_unlock_irq(&pidmap_lock);
149 kfree(page);
150 if (unlikely(!map->page))
151 break;
153 if (likely(atomic_read(&map->nr_free))) {
154 do {
155 if (!test_and_set_bit(offset, map->page)) {
156 atomic_dec(&map->nr_free);
157 pid_ns->last_pid = pid;
158 return pid;
160 offset = find_next_offset(map, offset);
161 pid = mk_pid(pid_ns, map, offset);
163 * find_next_offset() found a bit, the pid from it
164 * is in-bounds, and if we fell back to the last
165 * bitmap block and the final block was the same
166 * as the starting point, pid is before last_pid.
168 } while (offset < BITS_PER_PAGE && pid < pid_max &&
169 (i != max_scan || pid < last ||
170 !((last+1) & BITS_PER_PAGE_MASK)));
172 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
173 ++map;
174 offset = 0;
175 } else {
176 map = &pid_ns->pidmap[0];
177 offset = RESERVED_PIDS;
178 if (unlikely(last == offset))
179 break;
181 pid = mk_pid(pid_ns, map, offset);
183 return -1;
186 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
188 int offset;
189 struct pidmap *map, *end;
191 if (last >= PID_MAX_LIMIT)
192 return -1;
194 offset = (last + 1) & BITS_PER_PAGE_MASK;
195 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
196 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
197 for (; map < end; map++, offset = 0) {
198 if (unlikely(!map->page))
199 continue;
200 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
201 if (offset < BITS_PER_PAGE)
202 return mk_pid(pid_ns, map, offset);
204 return -1;
207 void put_pid(struct pid *pid)
209 struct pid_namespace *ns;
211 if (!pid)
212 return;
214 ns = pid->numbers[pid->level].ns;
215 if ((atomic_read(&pid->count) == 1) ||
216 atomic_dec_and_test(&pid->count)) {
217 kmem_cache_free(ns->pid_cachep, pid);
218 put_pid_ns(ns);
221 EXPORT_SYMBOL_GPL(put_pid);
223 static void delayed_put_pid(struct rcu_head *rhp)
225 struct pid *pid = container_of(rhp, struct pid, rcu);
226 put_pid(pid);
229 void free_pid(struct pid *pid)
231 /* We can be called with write_lock_irq(&tasklist_lock) held */
232 int i;
233 unsigned long flags;
235 spin_lock_irqsave(&pidmap_lock, flags);
236 for (i = 0; i <= pid->level; i++)
237 hlist_del_rcu(&pid->numbers[i].pid_chain);
238 spin_unlock_irqrestore(&pidmap_lock, flags);
240 for (i = 0; i <= pid->level; i++)
241 free_pidmap(pid->numbers + i);
243 call_rcu(&pid->rcu, delayed_put_pid);
246 struct pid *alloc_pid(struct pid_namespace *ns)
248 struct pid *pid;
249 enum pid_type type;
250 int i, nr;
251 struct pid_namespace *tmp;
252 struct upid *upid;
254 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
255 if (!pid)
256 goto out;
258 tmp = ns;
259 for (i = ns->level; i >= 0; i--) {
260 nr = alloc_pidmap(tmp);
261 if (nr < 0)
262 goto out_free;
264 pid->numbers[i].nr = nr;
265 pid->numbers[i].ns = tmp;
266 tmp = tmp->parent;
269 get_pid_ns(ns);
270 pid->level = ns->level;
271 atomic_set(&pid->count, 1);
272 for (type = 0; type < PIDTYPE_MAX; ++type)
273 INIT_HLIST_HEAD(&pid->tasks[type]);
275 upid = pid->numbers + ns->level;
276 spin_lock_irq(&pidmap_lock);
277 for ( ; upid >= pid->numbers; --upid)
278 hlist_add_head_rcu(&upid->pid_chain,
279 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
280 spin_unlock_irq(&pidmap_lock);
282 out:
283 return pid;
285 out_free:
286 while (++i <= ns->level)
287 free_pidmap(pid->numbers + i);
289 kmem_cache_free(ns->pid_cachep, pid);
290 pid = NULL;
291 goto out;
294 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
296 struct hlist_node *elem;
297 struct upid *pnr;
299 hlist_for_each_entry_rcu(pnr, elem,
300 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
301 if (pnr->nr == nr && pnr->ns == ns)
302 return container_of(pnr, struct pid,
303 numbers[ns->level]);
305 return NULL;
307 EXPORT_SYMBOL_GPL(find_pid_ns);
309 struct pid *find_vpid(int nr)
311 return find_pid_ns(nr, current->nsproxy->pid_ns);
313 EXPORT_SYMBOL_GPL(find_vpid);
316 * attach_pid() must be called with the tasklist_lock write-held.
318 void attach_pid(struct task_struct *task, enum pid_type type,
319 struct pid *pid)
321 struct pid_link *link;
323 link = &task->pids[type];
324 link->pid = pid;
325 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
328 static void __change_pid(struct task_struct *task, enum pid_type type,
329 struct pid *new)
331 struct pid_link *link;
332 struct pid *pid;
333 int tmp;
335 link = &task->pids[type];
336 pid = link->pid;
338 hlist_del_rcu(&link->node);
339 link->pid = new;
341 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
342 if (!hlist_empty(&pid->tasks[tmp]))
343 return;
345 free_pid(pid);
348 void detach_pid(struct task_struct *task, enum pid_type type)
350 __change_pid(task, type, NULL);
353 void change_pid(struct task_struct *task, enum pid_type type,
354 struct pid *pid)
356 __change_pid(task, type, pid);
357 attach_pid(task, type, pid);
360 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
361 void transfer_pid(struct task_struct *old, struct task_struct *new,
362 enum pid_type type)
364 new->pids[type].pid = old->pids[type].pid;
365 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
368 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
370 struct task_struct *result = NULL;
371 if (pid) {
372 struct hlist_node *first;
373 first = rcu_dereference_check(pid->tasks[type].first,
374 rcu_read_lock_held() ||
375 lockdep_tasklist_lock_is_held());
376 if (first)
377 result = hlist_entry(first, struct task_struct, pids[(type)].node);
379 return result;
381 EXPORT_SYMBOL(pid_task);
384 * Must be called under rcu_read_lock().
386 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
388 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
391 struct task_struct *find_task_by_vpid(pid_t vnr)
393 return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
396 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
398 struct pid *pid;
399 rcu_read_lock();
400 if (type != PIDTYPE_PID)
401 task = task->group_leader;
402 pid = get_pid(task->pids[type].pid);
403 rcu_read_unlock();
404 return pid;
407 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
409 struct task_struct *result;
410 rcu_read_lock();
411 result = pid_task(pid, type);
412 if (result)
413 get_task_struct(result);
414 rcu_read_unlock();
415 return result;
418 struct pid *find_get_pid(pid_t nr)
420 struct pid *pid;
422 rcu_read_lock();
423 pid = get_pid(find_vpid(nr));
424 rcu_read_unlock();
426 return pid;
428 EXPORT_SYMBOL_GPL(find_get_pid);
430 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
432 struct upid *upid;
433 pid_t nr = 0;
435 if (pid && ns->level <= pid->level) {
436 upid = &pid->numbers[ns->level];
437 if (upid->ns == ns)
438 nr = upid->nr;
440 return nr;
443 pid_t pid_vnr(struct pid *pid)
445 return pid_nr_ns(pid, current->nsproxy->pid_ns);
447 EXPORT_SYMBOL_GPL(pid_vnr);
449 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
450 struct pid_namespace *ns)
452 pid_t nr = 0;
454 rcu_read_lock();
455 if (!ns)
456 ns = current->nsproxy->pid_ns;
457 if (likely(pid_alive(task))) {
458 if (type != PIDTYPE_PID)
459 task = task->group_leader;
460 nr = pid_nr_ns(task->pids[type].pid, ns);
462 rcu_read_unlock();
464 return nr;
466 EXPORT_SYMBOL(__task_pid_nr_ns);
468 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
470 return pid_nr_ns(task_tgid(tsk), ns);
472 EXPORT_SYMBOL(task_tgid_nr_ns);
474 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
476 return ns_of_pid(task_pid(tsk));
478 EXPORT_SYMBOL_GPL(task_active_pid_ns);
481 * Used by proc to find the first pid that is greater than or equal to nr.
483 * If there is a pid at nr this function is exactly the same as find_pid_ns.
485 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
487 struct pid *pid;
489 do {
490 pid = find_pid_ns(nr, ns);
491 if (pid)
492 break;
493 nr = next_pidmap(ns, nr);
494 } while (nr > 0);
496 return pid;
500 * The pid hash table is scaled according to the amount of memory in the
501 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
502 * more.
504 void __init pidhash_init(void)
506 int i, pidhash_size;
508 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
509 HASH_EARLY | HASH_SMALL,
510 &pidhash_shift, NULL, 4096);
511 pidhash_size = 1 << pidhash_shift;
513 for (i = 0; i < pidhash_size; i++)
514 INIT_HLIST_HEAD(&pid_hash[i]);
517 void __init pidmap_init(void)
519 /* bump default and minimum pid_max based on number of cpus */
520 pid_max = min(pid_max_max, max_t(int, pid_max,
521 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
522 pid_max_min = max_t(int, pid_max_min,
523 PIDS_PER_CPU_MIN * num_possible_cpus());
524 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
526 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
527 /* Reserve PID 0. We never call free_pidmap(0) */
528 set_bit(0, init_pid_ns.pidmap[0].page);
529 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
531 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
532 SLAB_HWCACHE_ALIGN | SLAB_PANIC);