2 * Squashfs - a compressed read only filesystem for Linux
4 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 * Phillip Lougher <phillip@lougher.demon.co.uk>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2,
10 * or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
25 * Blocks in Squashfs are compressed. To avoid repeatedly decompressing
26 * recently accessed data Squashfs uses two small metadata and fragment caches.
28 * This file implements a generic cache implementation used for both caches,
29 * plus functions layered ontop of the generic cache implementation to
30 * access the metadata and fragment caches.
32 * To avoid out of memory and fragmentation isssues with vmalloc the cache
33 * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
35 * It should be noted that the cache is not used for file datablocks, these
36 * are decompressed and cached in the page-cache in the normal way. The
37 * cache is only used to temporarily cache fragment and metadata blocks
38 * which have been read as as a result of a metadata (i.e. inode or
39 * directory) or fragment access. Because metadata and fragments are packed
40 * together into blocks (to gain greater compression) the read of a particular
41 * piece of metadata or fragment will retrieve other metadata/fragments which
42 * have been packed with it, these because of locality-of-reference may be read
43 * in the near future. Temporarily caching them ensures they are available for
44 * near future access without requiring an additional read and decompress.
48 #include <linux/vfs.h>
49 #include <linux/slab.h>
50 #include <linux/vmalloc.h>
51 #include <linux/sched.h>
52 #include <linux/spinlock.h>
53 #include <linux/wait.h>
54 #include <linux/zlib.h>
55 #include <linux/pagemap.h>
57 #include "squashfs_fs.h"
58 #include "squashfs_fs_sb.h"
59 #include "squashfs_fs_i.h"
63 * Look-up block in cache, and increment usage count. If not in cache, read
64 * and decompress it from disk.
66 struct squashfs_cache_entry
*squashfs_cache_get(struct super_block
*sb
,
67 struct squashfs_cache
*cache
, u64 block
, int length
)
70 struct squashfs_cache_entry
*entry
;
72 spin_lock(&cache
->lock
);
75 for (i
= 0; i
< cache
->entries
; i
++)
76 if (cache
->entry
[i
].block
== block
)
79 if (i
== cache
->entries
) {
81 * Block not in cache, if all cache entries are used
82 * go to sleep waiting for one to become available.
84 if (cache
->unused
== 0) {
86 spin_unlock(&cache
->lock
);
87 wait_event(cache
->wait_queue
, cache
->unused
);
88 spin_lock(&cache
->lock
);
94 * At least one unused cache entry. A simple
95 * round-robin strategy is used to choose the entry to
96 * be evicted from the cache.
99 for (n
= 0; n
< cache
->entries
; n
++) {
100 if (cache
->entry
[i
].refcount
== 0)
102 i
= (i
+ 1) % cache
->entries
;
105 cache
->next_blk
= (i
+ 1) % cache
->entries
;
106 entry
= &cache
->entry
[i
];
109 * Initialise choosen cache entry, and fill it in from
113 entry
->block
= block
;
116 entry
->num_waiters
= 0;
118 spin_unlock(&cache
->lock
);
120 entry
->length
= squashfs_read_data(sb
, entry
->data
,
121 block
, length
, &entry
->next_index
,
122 cache
->block_size
, cache
->pages
);
124 spin_lock(&cache
->lock
);
126 if (entry
->length
< 0)
127 entry
->error
= entry
->length
;
132 * While filling this entry one or more other processes
133 * have looked it up in the cache, and have slept
134 * waiting for it to become available.
136 if (entry
->num_waiters
) {
137 spin_unlock(&cache
->lock
);
138 wake_up_all(&entry
->wait_queue
);
140 spin_unlock(&cache
->lock
);
146 * Block already in cache. Increment refcount so it doesn't
147 * get reused until we're finished with it, if it was
148 * previously unused there's one less cache entry available
151 entry
= &cache
->entry
[i
];
152 if (entry
->refcount
== 0)
157 * If the entry is currently being filled in by another process
158 * go to sleep waiting for it to become available.
160 if (entry
->pending
) {
161 entry
->num_waiters
++;
162 spin_unlock(&cache
->lock
);
163 wait_event(entry
->wait_queue
, !entry
->pending
);
165 spin_unlock(&cache
->lock
);
171 TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
172 cache
->name
, i
, entry
->block
, entry
->refcount
, entry
->error
);
175 ERROR("Unable to read %s cache entry [%llx]\n", cache
->name
,
182 * Release cache entry, once usage count is zero it can be reused.
184 void squashfs_cache_put(struct squashfs_cache_entry
*entry
)
186 struct squashfs_cache
*cache
= entry
->cache
;
188 spin_lock(&cache
->lock
);
190 if (entry
->refcount
== 0) {
193 * If there's any processes waiting for a block to become
194 * available, wake one up.
196 if (cache
->num_waiters
) {
197 spin_unlock(&cache
->lock
);
198 wake_up(&cache
->wait_queue
);
202 spin_unlock(&cache
->lock
);
206 * Delete cache reclaiming all kmalloced buffers.
208 void squashfs_cache_delete(struct squashfs_cache
*cache
)
215 for (i
= 0; i
< cache
->entries
; i
++) {
216 if (cache
->entry
[i
].data
) {
217 for (j
= 0; j
< cache
->pages
; j
++)
218 kfree(cache
->entry
[i
].data
[j
]);
219 kfree(cache
->entry
[i
].data
);
229 * Initialise cache allocating the specified number of entries, each of
230 * size block_size. To avoid vmalloc fragmentation issues each entry
231 * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
233 struct squashfs_cache
*squashfs_cache_init(char *name
, int entries
,
237 struct squashfs_cache
*cache
= kzalloc(sizeof(*cache
), GFP_KERNEL
);
240 ERROR("Failed to allocate %s cache\n", name
);
244 cache
->entry
= kcalloc(entries
, sizeof(*(cache
->entry
)), GFP_KERNEL
);
245 if (cache
->entry
== NULL
) {
246 ERROR("Failed to allocate %s cache\n", name
);
251 cache
->unused
= entries
;
252 cache
->entries
= entries
;
253 cache
->block_size
= block_size
;
254 cache
->pages
= block_size
>> PAGE_CACHE_SHIFT
;
256 cache
->num_waiters
= 0;
257 spin_lock_init(&cache
->lock
);
258 init_waitqueue_head(&cache
->wait_queue
);
260 for (i
= 0; i
< entries
; i
++) {
261 struct squashfs_cache_entry
*entry
= &cache
->entry
[i
];
263 init_waitqueue_head(&cache
->entry
[i
].wait_queue
);
264 entry
->cache
= cache
;
265 entry
->block
= SQUASHFS_INVALID_BLK
;
266 entry
->data
= kcalloc(cache
->pages
, sizeof(void *), GFP_KERNEL
);
267 if (entry
->data
== NULL
) {
268 ERROR("Failed to allocate %s cache entry\n", name
);
272 for (j
= 0; j
< cache
->pages
; j
++) {
273 entry
->data
[j
] = kmalloc(PAGE_CACHE_SIZE
, GFP_KERNEL
);
274 if (entry
->data
[j
] == NULL
) {
275 ERROR("Failed to allocate %s buffer\n", name
);
284 squashfs_cache_delete(cache
);
290 * Copy upto length bytes from cache entry to buffer starting at offset bytes
291 * into the cache entry. If there's not length bytes then copy the number of
292 * bytes available. In all cases return the number of bytes copied.
294 int squashfs_copy_data(void *buffer
, struct squashfs_cache_entry
*entry
,
295 int offset
, int length
)
297 int remaining
= length
;
301 else if (buffer
== NULL
)
302 return min(length
, entry
->length
- offset
);
304 while (offset
< entry
->length
) {
305 void *buff
= entry
->data
[offset
/ PAGE_CACHE_SIZE
]
306 + (offset
% PAGE_CACHE_SIZE
);
307 int bytes
= min_t(int, entry
->length
- offset
,
308 PAGE_CACHE_SIZE
- (offset
% PAGE_CACHE_SIZE
));
310 if (bytes
>= remaining
) {
311 memcpy(buffer
, buff
, remaining
);
316 memcpy(buffer
, buff
, bytes
);
322 return length
- remaining
;
327 * Read length bytes from metadata position <block, offset> (block is the
328 * start of the compressed block on disk, and offset is the offset into
329 * the block once decompressed). Data is packed into consecutive blocks,
330 * and length bytes may require reading more than one block.
332 int squashfs_read_metadata(struct super_block
*sb
, void *buffer
,
333 u64
*block
, int *offset
, int length
)
335 struct squashfs_sb_info
*msblk
= sb
->s_fs_info
;
336 int bytes
, copied
= length
;
337 struct squashfs_cache_entry
*entry
;
339 TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block
, *offset
);
342 entry
= squashfs_cache_get(sb
, msblk
->block_cache
, *block
, 0);
345 else if (*offset
>= entry
->length
)
348 bytes
= squashfs_copy_data(buffer
, entry
, *offset
, length
);
354 if (*offset
== entry
->length
) {
355 *block
= entry
->next_index
;
359 squashfs_cache_put(entry
);
367 * Look-up in the fragmment cache the fragment located at <start_block> in the
368 * filesystem. If necessary read and decompress it from disk.
370 struct squashfs_cache_entry
*squashfs_get_fragment(struct super_block
*sb
,
371 u64 start_block
, int length
)
373 struct squashfs_sb_info
*msblk
= sb
->s_fs_info
;
375 return squashfs_cache_get(sb
, msblk
->fragment_cache
, start_block
,
381 * Read and decompress the datablock located at <start_block> in the
382 * filesystem. The cache is used here to avoid duplicating locking and
383 * read/decompress code.
385 struct squashfs_cache_entry
*squashfs_get_datablock(struct super_block
*sb
,
386 u64 start_block
, int length
)
388 struct squashfs_sb_info
*msblk
= sb
->s_fs_info
;
390 return squashfs_cache_get(sb
, msblk
->read_page
, start_block
, length
);
395 * Read a filesystem table (uncompressed sequence of bytes) from disk
397 int squashfs_read_table(struct super_block
*sb
, void *buffer
, u64 block
,
400 int pages
= (length
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
402 void **data
= kcalloc(pages
, sizeof(void *), GFP_KERNEL
);
406 for (i
= 0; i
< pages
; i
++, buffer
+= PAGE_CACHE_SIZE
)
408 res
= squashfs_read_data(sb
, data
, block
, length
|
409 SQUASHFS_COMPRESSED_BIT_BLOCK
, NULL
, length
, pages
);