4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
59 int uptodate
, unsigned int nr_bytes
, int dequeue
)
65 error
= uptodate
? uptodate
: -EIO
;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq
) && error
)
72 nr_bytes
= rq
->hard_nr_sectors
<< 9;
74 if (!blk_fs_request(rq
) && error
&& !rq
->errors
)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive
->dev_flags
& IDE_DFLAG_DMA_PIO_RETRY
) &&
82 drive
->retry_pio
<= 3) {
83 drive
->dev_flags
&= ~IDE_DFLAG_DMA_PIO_RETRY
;
87 if (!blk_end_request(rq
, error
, nr_bytes
))
90 if (ret
== 0 && dequeue
)
91 drive
->hwif
->rq
= NULL
;
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
109 unsigned int nr_bytes
= nr_sectors
<< 9;
110 struct request
*rq
= drive
->hwif
->rq
;
113 if (blk_pc_request(rq
))
114 nr_bytes
= rq
->data_len
;
116 nr_bytes
= rq
->hard_cur_sectors
<< 9;
119 return __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
121 EXPORT_SYMBOL(ide_end_request
);
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
127 * @nr_sectors: number of sectors completed
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
134 * NOTE: This path does not handle barrier, but barrier is not supported
138 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
139 int uptodate
, int nr_sectors
)
141 BUG_ON(!blk_rq_started(rq
));
143 return __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
148 * ide_end_drive_cmd - end an explicit drive command
153 * Clean up after success/failure of an explicit drive command.
154 * These get thrown onto the queue so they are synchronized with
155 * real I/O operations on the drive.
157 * In LBA48 mode we have to read the register set twice to get
158 * all the extra information out.
161 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
163 ide_hwif_t
*hwif
= drive
->hwif
;
164 struct request
*rq
= hwif
->rq
;
166 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
167 ide_task_t
*task
= (ide_task_t
*)rq
->special
;
170 struct ide_taskfile
*tf
= &task
->tf
;
175 drive
->hwif
->tp_ops
->tf_read(drive
, task
);
177 if (task
->tf_flags
& IDE_TFLAG_DYN
)
180 } else if (blk_pm_request(rq
)) {
181 struct request_pm_state
*pm
= rq
->data
;
183 ide_complete_power_step(drive
, rq
);
184 if (pm
->pm_step
== IDE_PM_COMPLETED
)
185 ide_complete_pm_request(drive
, rq
);
193 if (unlikely(blk_end_request(rq
, (rq
->errors
? -EIO
: 0),
197 EXPORT_SYMBOL(ide_end_drive_cmd
);
199 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
202 struct ide_driver
*drv
;
204 drv
= *(struct ide_driver
**)rq
->rq_disk
->private_data
;
205 drv
->end_request(drive
, 0, 0);
207 ide_end_request(drive
, 0, 0);
210 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
212 ide_hwif_t
*hwif
= drive
->hwif
;
214 if ((stat
& ATA_BUSY
) ||
215 ((stat
& ATA_DF
) && (drive
->dev_flags
& IDE_DFLAG_NOWERR
) == 0)) {
216 /* other bits are useless when BUSY */
217 rq
->errors
|= ERROR_RESET
;
218 } else if (stat
& ATA_ERR
) {
219 /* err has different meaning on cdrom and tape */
220 if (err
== ATA_ABORTED
) {
221 if ((drive
->dev_flags
& IDE_DFLAG_LBA
) &&
222 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223 hwif
->tp_ops
->read_status(hwif
) == ATA_CMD_INIT_DEV_PARAMS
)
225 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
226 /* UDMA crc error, just retry the operation */
228 } else if (err
& (ATA_BBK
| ATA_UNC
)) {
229 /* retries won't help these */
230 rq
->errors
= ERROR_MAX
;
231 } else if (err
& ATA_TRK0NF
) {
232 /* help it find track zero */
233 rq
->errors
|= ERROR_RECAL
;
237 if ((stat
& ATA_DRQ
) && rq_data_dir(rq
) == READ
&&
238 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0) {
239 int nsect
= drive
->mult_count
? drive
->mult_count
: 1;
241 ide_pad_transfer(drive
, READ
, nsect
* SECTOR_SIZE
);
244 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
245 ide_kill_rq(drive
, rq
);
249 if (hwif
->tp_ops
->read_status(hwif
) & (ATA_BUSY
| ATA_DRQ
))
250 rq
->errors
|= ERROR_RESET
;
252 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
254 return ide_do_reset(drive
);
257 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
258 drive
->special
.b
.recalibrate
= 1;
265 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
267 ide_hwif_t
*hwif
= drive
->hwif
;
269 if ((stat
& ATA_BUSY
) ||
270 ((stat
& ATA_DF
) && (drive
->dev_flags
& IDE_DFLAG_NOWERR
) == 0)) {
271 /* other bits are useless when BUSY */
272 rq
->errors
|= ERROR_RESET
;
274 /* add decoding error stuff */
277 if (hwif
->tp_ops
->read_status(hwif
) & (ATA_BUSY
| ATA_DRQ
))
279 hwif
->tp_ops
->exec_command(hwif
, ATA_CMD_IDLEIMMEDIATE
);
281 if (rq
->errors
>= ERROR_MAX
) {
282 ide_kill_rq(drive
, rq
);
284 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
286 return ide_do_reset(drive
);
294 static ide_startstop_t
295 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
297 if (drive
->media
== ide_disk
)
298 return ide_ata_error(drive
, rq
, stat
, err
);
299 return ide_atapi_error(drive
, rq
, stat
, err
);
303 * ide_error - handle an error on the IDE
304 * @drive: drive the error occurred on
305 * @msg: message to report
308 * ide_error() takes action based on the error returned by the drive.
309 * For normal I/O that may well include retries. We deal with
310 * both new-style (taskfile) and old style command handling here.
311 * In the case of taskfile command handling there is work left to
315 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
320 err
= ide_dump_status(drive
, msg
, stat
);
322 rq
= drive
->hwif
->rq
;
326 /* retry only "normal" I/O: */
327 if (!blk_fs_request(rq
)) {
329 ide_end_drive_cmd(drive
, stat
, err
);
333 return __ide_error(drive
, rq
, stat
, err
);
335 EXPORT_SYMBOL_GPL(ide_error
);
337 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
339 tf
->nsect
= drive
->sect
;
340 tf
->lbal
= drive
->sect
;
341 tf
->lbam
= drive
->cyl
;
342 tf
->lbah
= drive
->cyl
>> 8;
343 tf
->device
= (drive
->head
- 1) | drive
->select
;
344 tf
->command
= ATA_CMD_INIT_DEV_PARAMS
;
347 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
349 tf
->nsect
= drive
->sect
;
350 tf
->command
= ATA_CMD_RESTORE
;
353 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
355 tf
->nsect
= drive
->mult_req
;
356 tf
->command
= ATA_CMD_SET_MULTI
;
359 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
361 special_t
*s
= &drive
->special
;
364 memset(&args
, 0, sizeof(ide_task_t
));
365 args
.data_phase
= TASKFILE_NO_DATA
;
367 if (s
->b
.set_geometry
) {
368 s
->b
.set_geometry
= 0;
369 ide_tf_set_specify_cmd(drive
, &args
.tf
);
370 } else if (s
->b
.recalibrate
) {
371 s
->b
.recalibrate
= 0;
372 ide_tf_set_restore_cmd(drive
, &args
.tf
);
373 } else if (s
->b
.set_multmode
) {
374 s
->b
.set_multmode
= 0;
375 ide_tf_set_setmult_cmd(drive
, &args
.tf
);
377 int special
= s
->all
;
379 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
383 args
.tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
|
384 IDE_TFLAG_CUSTOM_HANDLER
;
386 do_rw_taskfile(drive
, &args
);
392 * do_special - issue some special commands
393 * @drive: drive the command is for
395 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
396 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
398 * It used to do much more, but has been scaled back.
401 static ide_startstop_t
do_special (ide_drive_t
*drive
)
403 special_t
*s
= &drive
->special
;
406 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
408 if (drive
->media
== ide_disk
)
409 return ide_disk_special(drive
);
416 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
418 ide_hwif_t
*hwif
= drive
->hwif
;
419 struct scatterlist
*sg
= hwif
->sg_table
;
421 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
422 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
424 } else if (!rq
->bio
) {
425 sg_init_one(sg
, rq
->data
, rq
->data_len
);
428 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
432 EXPORT_SYMBOL_GPL(ide_map_sg
);
434 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
436 ide_hwif_t
*hwif
= drive
->hwif
;
438 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
443 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
446 * execute_drive_command - issue special drive command
447 * @drive: the drive to issue the command on
448 * @rq: the request structure holding the command
450 * execute_drive_cmd() issues a special drive command, usually
451 * initiated by ioctl() from the external hdparm program. The
452 * command can be a drive command, drive task or taskfile
453 * operation. Weirdly you can call it with NULL to wait for
454 * all commands to finish. Don't do this as that is due to change
457 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
460 ide_hwif_t
*hwif
= drive
->hwif
;
461 ide_task_t
*task
= rq
->special
;
464 hwif
->data_phase
= task
->data_phase
;
466 switch (hwif
->data_phase
) {
467 case TASKFILE_MULTI_OUT
:
469 case TASKFILE_MULTI_IN
:
471 ide_init_sg_cmd(drive
, rq
);
472 ide_map_sg(drive
, rq
);
477 return do_rw_taskfile(drive
, task
);
481 * NULL is actually a valid way of waiting for
482 * all current requests to be flushed from the queue.
485 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
487 ide_end_drive_cmd(drive
, hwif
->tp_ops
->read_status(hwif
),
488 ide_read_error(drive
));
493 int ide_devset_execute(ide_drive_t
*drive
, const struct ide_devset
*setting
,
496 struct request_queue
*q
= drive
->queue
;
500 if (!(setting
->flags
& DS_SYNC
))
501 return setting
->set(drive
, arg
);
503 rq
= blk_get_request(q
, READ
, __GFP_WAIT
);
504 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
506 rq
->cmd
[0] = REQ_DEVSET_EXEC
;
507 *(int *)&rq
->cmd
[1] = arg
;
508 rq
->special
= setting
->set
;
510 if (blk_execute_rq(q
, NULL
, rq
, 0))
516 EXPORT_SYMBOL_GPL(ide_devset_execute
);
518 static ide_startstop_t
ide_special_rq(ide_drive_t
*drive
, struct request
*rq
)
522 if (cmd
== REQ_PARK_HEADS
|| cmd
== REQ_UNPARK_HEADS
) {
524 struct ide_taskfile
*tf
= &task
.tf
;
526 memset(&task
, 0, sizeof(task
));
527 if (cmd
== REQ_PARK_HEADS
) {
528 drive
->sleep
= *(unsigned long *)rq
->special
;
529 drive
->dev_flags
|= IDE_DFLAG_SLEEPING
;
530 tf
->command
= ATA_CMD_IDLEIMMEDIATE
;
535 task
.tf_flags
|= IDE_TFLAG_CUSTOM_HANDLER
;
536 } else /* cmd == REQ_UNPARK_HEADS */
537 tf
->command
= ATA_CMD_CHK_POWER
;
539 task
.tf_flags
|= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
;
541 drive
->hwif
->data_phase
= task
.data_phase
= TASKFILE_NO_DATA
;
542 return do_rw_taskfile(drive
, &task
);
546 case REQ_DEVSET_EXEC
:
548 int err
, (*setfunc
)(ide_drive_t
*, int) = rq
->special
;
550 err
= setfunc(drive
, *(int *)&rq
->cmd
[1]);
555 ide_end_request(drive
, err
, 0);
558 case REQ_DRIVE_RESET
:
559 return ide_do_reset(drive
);
561 blk_dump_rq_flags(rq
, "ide_special_rq - bad request");
562 ide_end_request(drive
, 0, 0);
568 * start_request - start of I/O and command issuing for IDE
570 * start_request() initiates handling of a new I/O request. It
571 * accepts commands and I/O (read/write) requests.
573 * FIXME: this function needs a rename
576 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
578 ide_startstop_t startstop
;
580 BUG_ON(!blk_rq_started(rq
));
583 printk("%s: start_request: current=0x%08lx\n",
584 drive
->hwif
->name
, (unsigned long) rq
);
587 /* bail early if we've exceeded max_failures */
588 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
589 rq
->cmd_flags
|= REQ_FAILED
;
593 if (blk_pm_request(rq
))
594 ide_check_pm_state(drive
, rq
);
597 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
,
598 ATA_BUSY
| ATA_DRQ
, WAIT_READY
)) {
599 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
602 if (!drive
->special
.all
) {
603 struct ide_driver
*drv
;
606 * We reset the drive so we need to issue a SETFEATURES.
607 * Do it _after_ do_special() restored device parameters.
609 if (drive
->current_speed
== 0xff)
610 ide_config_drive_speed(drive
, drive
->desired_speed
);
612 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
613 return execute_drive_cmd(drive
, rq
);
614 else if (blk_pm_request(rq
)) {
615 struct request_pm_state
*pm
= rq
->data
;
617 printk("%s: start_power_step(step: %d)\n",
618 drive
->name
, pm
->pm_step
);
620 startstop
= ide_start_power_step(drive
, rq
);
621 if (startstop
== ide_stopped
&&
622 pm
->pm_step
== IDE_PM_COMPLETED
)
623 ide_complete_pm_request(drive
, rq
);
625 } else if (!rq
->rq_disk
&& blk_special_request(rq
))
627 * TODO: Once all ULDs have been modified to
628 * check for specific op codes rather than
629 * blindly accepting any special request, the
630 * check for ->rq_disk above may be replaced
631 * by a more suitable mechanism or even
634 return ide_special_rq(drive
, rq
);
636 drv
= *(struct ide_driver
**)rq
->rq_disk
->private_data
;
638 return drv
->do_request(drive
, rq
, rq
->sector
);
640 return do_special(drive
);
642 ide_kill_rq(drive
, rq
);
647 * ide_stall_queue - pause an IDE device
648 * @drive: drive to stall
649 * @timeout: time to stall for (jiffies)
651 * ide_stall_queue() can be used by a drive to give excess bandwidth back
652 * to the port by sleeping for timeout jiffies.
655 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
657 if (timeout
> WAIT_WORSTCASE
)
658 timeout
= WAIT_WORSTCASE
;
659 drive
->sleep
= timeout
+ jiffies
;
660 drive
->dev_flags
|= IDE_DFLAG_SLEEPING
;
662 EXPORT_SYMBOL(ide_stall_queue
);
664 static inline int ide_lock_port(ide_hwif_t
*hwif
)
674 static inline void ide_unlock_port(ide_hwif_t
*hwif
)
679 static inline int ide_lock_host(struct ide_host
*host
, ide_hwif_t
*hwif
)
683 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
684 rc
= test_and_set_bit_lock(IDE_HOST_BUSY
, &host
->host_busy
);
687 ide_get_lock(ide_intr
, hwif
);
693 static inline void ide_unlock_host(struct ide_host
*host
)
695 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
698 clear_bit_unlock(IDE_HOST_BUSY
, &host
->host_busy
);
703 * Issue a new request to a device.
705 void do_ide_request(struct request_queue
*q
)
707 ide_drive_t
*drive
= q
->queuedata
;
708 ide_hwif_t
*hwif
= drive
->hwif
;
709 struct ide_host
*host
= hwif
->host
;
710 struct request
*rq
= NULL
;
711 ide_startstop_t startstop
;
714 * drive is doing pre-flush, ordered write, post-flush sequence. even
715 * though that is 3 requests, it must be seen as a single transaction.
716 * we must not preempt this drive until that is complete
718 if (blk_queue_flushing(q
))
720 * small race where queue could get replugged during
721 * the 3-request flush cycle, just yank the plug since
722 * we want it to finish asap
726 spin_unlock_irq(q
->queue_lock
);
728 if (ide_lock_host(host
, hwif
))
731 spin_lock_irq(&hwif
->lock
);
733 if (!ide_lock_port(hwif
)) {
734 ide_hwif_t
*prev_port
;
736 prev_port
= hwif
->host
->cur_port
;
739 if (drive
->dev_flags
& IDE_DFLAG_SLEEPING
) {
740 if (time_before(drive
->sleep
, jiffies
)) {
741 ide_unlock_port(hwif
);
746 if ((hwif
->host
->host_flags
& IDE_HFLAG_SERIALIZE
) &&
749 * set nIEN for previous port, drives in the
750 * quirk_list may not like intr setups/cleanups
752 if (prev_port
&& prev_port
->cur_dev
->quirk_list
== 0)
753 prev_port
->tp_ops
->set_irq(prev_port
, 0);
755 hwif
->host
->cur_port
= hwif
;
757 hwif
->cur_dev
= drive
;
758 drive
->dev_flags
&= ~(IDE_DFLAG_SLEEPING
| IDE_DFLAG_PARKED
);
760 spin_unlock_irq(&hwif
->lock
);
761 spin_lock_irq(q
->queue_lock
);
763 * we know that the queue isn't empty, but this can happen
764 * if the q->prep_rq_fn() decides to kill a request
766 rq
= elv_next_request(drive
->queue
);
767 spin_unlock_irq(q
->queue_lock
);
768 spin_lock_irq(&hwif
->lock
);
771 ide_unlock_port(hwif
);
776 * Sanity: don't accept a request that isn't a PM request
777 * if we are currently power managed. This is very important as
778 * blk_stop_queue() doesn't prevent the elv_next_request()
779 * above to return us whatever is in the queue. Since we call
780 * ide_do_request() ourselves, we end up taking requests while
781 * the queue is blocked...
783 * We let requests forced at head of queue with ide-preempt
784 * though. I hope that doesn't happen too much, hopefully not
785 * unless the subdriver triggers such a thing in its own PM
788 if ((drive
->dev_flags
& IDE_DFLAG_BLOCKED
) &&
789 blk_pm_request(rq
) == 0 &&
790 (rq
->cmd_flags
& REQ_PREEMPT
) == 0) {
791 /* there should be no pending command at this point */
792 ide_unlock_port(hwif
);
798 spin_unlock_irq(&hwif
->lock
);
799 startstop
= start_request(drive
, rq
);
800 spin_lock_irq(&hwif
->lock
);
802 if (startstop
== ide_stopped
)
807 spin_unlock_irq(&hwif
->lock
);
809 ide_unlock_host(host
);
810 spin_lock_irq(q
->queue_lock
);
814 spin_unlock_irq(&hwif
->lock
);
815 ide_unlock_host(host
);
817 spin_lock_irq(q
->queue_lock
);
819 if (!elv_queue_empty(q
))
824 * un-busy the port etc, and clear any pending DMA status. we want to
825 * retry the current request in pio mode instead of risking tossing it
828 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
830 ide_hwif_t
*hwif
= drive
->hwif
;
832 ide_startstop_t ret
= ide_stopped
;
835 * end current dma transaction
839 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
840 (void)hwif
->dma_ops
->dma_end(drive
);
841 ret
= ide_error(drive
, "dma timeout error",
842 hwif
->tp_ops
->read_status(hwif
));
844 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
845 hwif
->dma_ops
->dma_timeout(drive
);
849 * disable dma for now, but remember that we did so because of
850 * a timeout -- we'll reenable after we finish this next request
851 * (or rather the first chunk of it) in pio.
853 drive
->dev_flags
|= IDE_DFLAG_DMA_PIO_RETRY
;
855 ide_dma_off_quietly(drive
);
858 * un-busy drive etc and make sure request is sane
872 rq
->sector
= rq
->bio
->bi_sector
;
873 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
874 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
875 rq
->buffer
= bio_data(rq
->bio
);
880 static void ide_plug_device(ide_drive_t
*drive
)
882 struct request_queue
*q
= drive
->queue
;
885 spin_lock_irqsave(q
->queue_lock
, flags
);
886 if (!elv_queue_empty(q
))
888 spin_unlock_irqrestore(q
->queue_lock
, flags
);
892 * ide_timer_expiry - handle lack of an IDE interrupt
893 * @data: timer callback magic (hwif)
895 * An IDE command has timed out before the expected drive return
896 * occurred. At this point we attempt to clean up the current
897 * mess. If the current handler includes an expiry handler then
898 * we invoke the expiry handler, and providing it is happy the
899 * work is done. If that fails we apply generic recovery rules
900 * invoking the handler and checking the drive DMA status. We
901 * have an excessively incestuous relationship with the DMA
902 * logic that wants cleaning up.
905 void ide_timer_expiry (unsigned long data
)
907 ide_hwif_t
*hwif
= (ide_hwif_t
*)data
;
908 ide_drive_t
*uninitialized_var(drive
);
909 ide_handler_t
*handler
;
914 spin_lock_irqsave(&hwif
->lock
, flags
);
916 handler
= hwif
->handler
;
918 if (handler
== NULL
|| hwif
->req_gen
!= hwif
->req_gen_timer
) {
920 * Either a marginal timeout occurred
921 * (got the interrupt just as timer expired),
922 * or we were "sleeping" to give other devices a chance.
923 * Either way, we don't really want to complain about anything.
926 ide_expiry_t
*expiry
= hwif
->expiry
;
927 ide_startstop_t startstop
= ide_stopped
;
929 drive
= hwif
->cur_dev
;
932 wait
= expiry(drive
);
933 if (wait
> 0) { /* continue */
935 hwif
->timer
.expires
= jiffies
+ wait
;
936 hwif
->req_gen_timer
= hwif
->req_gen
;
937 add_timer(&hwif
->timer
);
938 spin_unlock_irqrestore(&hwif
->lock
, flags
);
942 hwif
->handler
= NULL
;
944 * We need to simulate a real interrupt when invoking
945 * the handler() function, which means we need to
946 * globally mask the specific IRQ:
948 spin_unlock(&hwif
->lock
);
949 /* disable_irq_nosync ?? */
950 disable_irq(hwif
->irq
);
951 /* local CPU only, as if we were handling an interrupt */
954 startstop
= handler(drive
);
955 } else if (drive_is_ready(drive
)) {
956 if (drive
->waiting_for_dma
)
957 hwif
->dma_ops
->dma_lost_irq(drive
);
958 (void)ide_ack_intr(hwif
);
959 printk(KERN_WARNING
"%s: lost interrupt\n",
961 startstop
= handler(drive
);
963 if (drive
->waiting_for_dma
)
964 startstop
= ide_dma_timeout_retry(drive
, wait
);
966 startstop
= ide_error(drive
, "irq timeout",
967 hwif
->tp_ops
->read_status(hwif
));
969 spin_lock_irq(&hwif
->lock
);
970 enable_irq(hwif
->irq
);
971 if (startstop
== ide_stopped
) {
972 ide_unlock_port(hwif
);
976 spin_unlock_irqrestore(&hwif
->lock
, flags
);
979 ide_unlock_host(hwif
->host
);
980 ide_plug_device(drive
);
985 * unexpected_intr - handle an unexpected IDE interrupt
986 * @irq: interrupt line
987 * @hwif: port being processed
989 * There's nothing really useful we can do with an unexpected interrupt,
990 * other than reading the status register (to clear it), and logging it.
991 * There should be no way that an irq can happen before we're ready for it,
992 * so we needn't worry much about losing an "important" interrupt here.
994 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
995 * the drive enters "idle", "standby", or "sleep" mode, so if the status
996 * looks "good", we just ignore the interrupt completely.
998 * This routine assumes __cli() is in effect when called.
1000 * If an unexpected interrupt happens on irq15 while we are handling irq14
1001 * and if the two interfaces are "serialized" (CMD640), then it looks like
1002 * we could screw up by interfering with a new request being set up for
1005 * In reality, this is a non-issue. The new command is not sent unless
1006 * the drive is ready to accept one, in which case we know the drive is
1007 * not trying to interrupt us. And ide_set_handler() is always invoked
1008 * before completing the issuance of any new drive command, so we will not
1009 * be accidentally invoked as a result of any valid command completion
1013 static void unexpected_intr(int irq
, ide_hwif_t
*hwif
)
1015 u8 stat
= hwif
->tp_ops
->read_status(hwif
);
1017 if (!OK_STAT(stat
, ATA_DRDY
, BAD_STAT
)) {
1018 /* Try to not flood the console with msgs */
1019 static unsigned long last_msgtime
, count
;
1022 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1023 last_msgtime
= jiffies
;
1024 printk(KERN_ERR
"%s: unexpected interrupt, "
1025 "status=0x%02x, count=%ld\n",
1026 hwif
->name
, stat
, count
);
1032 * ide_intr - default IDE interrupt handler
1033 * @irq: interrupt number
1035 * @regs: unused weirdness from the kernel irq layer
1037 * This is the default IRQ handler for the IDE layer. You should
1038 * not need to override it. If you do be aware it is subtle in
1041 * hwif is the interface in the group currently performing
1042 * a command. hwif->cur_dev is the drive and hwif->handler is
1043 * the IRQ handler to call. As we issue a command the handlers
1044 * step through multiple states, reassigning the handler to the
1045 * next step in the process. Unlike a smart SCSI controller IDE
1046 * expects the main processor to sequence the various transfer
1047 * stages. We also manage a poll timer to catch up with most
1048 * timeout situations. There are still a few where the handlers
1049 * don't ever decide to give up.
1051 * The handler eventually returns ide_stopped to indicate the
1052 * request completed. At this point we issue the next request
1053 * on the port and the process begins again.
1056 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1058 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_id
;
1059 ide_drive_t
*uninitialized_var(drive
);
1060 ide_handler_t
*handler
;
1061 unsigned long flags
;
1062 ide_startstop_t startstop
;
1063 irqreturn_t irq_ret
= IRQ_NONE
;
1064 int plug_device
= 0;
1066 if (hwif
->host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
1067 if (hwif
!= hwif
->host
->cur_port
)
1071 spin_lock_irqsave(&hwif
->lock
, flags
);
1073 if (!ide_ack_intr(hwif
))
1076 handler
= hwif
->handler
;
1078 if (handler
== NULL
|| hwif
->polling
) {
1080 * Not expecting an interrupt from this drive.
1081 * That means this could be:
1082 * (1) an interrupt from another PCI device
1083 * sharing the same PCI INT# as us.
1084 * or (2) a drive just entered sleep or standby mode,
1085 * and is interrupting to let us know.
1086 * or (3) a spurious interrupt of unknown origin.
1088 * For PCI, we cannot tell the difference,
1089 * so in that case we just ignore it and hope it goes away.
1091 * FIXME: unexpected_intr should be hwif-> then we can
1092 * remove all the ifdef PCI crap
1094 #ifdef CONFIG_BLK_DEV_IDEPCI
1095 if (hwif
->chipset
!= ide_pci
)
1096 #endif /* CONFIG_BLK_DEV_IDEPCI */
1099 * Probably not a shared PCI interrupt,
1100 * so we can safely try to do something about it:
1102 unexpected_intr(irq
, hwif
);
1103 #ifdef CONFIG_BLK_DEV_IDEPCI
1106 * Whack the status register, just in case
1107 * we have a leftover pending IRQ.
1109 (void)hwif
->tp_ops
->read_status(hwif
);
1110 #endif /* CONFIG_BLK_DEV_IDEPCI */
1115 drive
= hwif
->cur_dev
;
1117 if (!drive_is_ready(drive
))
1119 * This happens regularly when we share a PCI IRQ with
1120 * another device. Unfortunately, it can also happen
1121 * with some buggy drives that trigger the IRQ before
1122 * their status register is up to date. Hopefully we have
1123 * enough advance overhead that the latter isn't a problem.
1127 hwif
->handler
= NULL
;
1129 del_timer(&hwif
->timer
);
1130 spin_unlock(&hwif
->lock
);
1132 if (hwif
->port_ops
&& hwif
->port_ops
->clear_irq
)
1133 hwif
->port_ops
->clear_irq(drive
);
1135 if (drive
->dev_flags
& IDE_DFLAG_UNMASK
)
1136 local_irq_enable_in_hardirq();
1138 /* service this interrupt, may set handler for next interrupt */
1139 startstop
= handler(drive
);
1141 spin_lock_irq(&hwif
->lock
);
1143 * Note that handler() may have set things up for another
1144 * interrupt to occur soon, but it cannot happen until
1145 * we exit from this routine, because it will be the
1146 * same irq as is currently being serviced here, and Linux
1147 * won't allow another of the same (on any CPU) until we return.
1149 if (startstop
== ide_stopped
) {
1150 BUG_ON(hwif
->handler
);
1151 ide_unlock_port(hwif
);
1154 irq_ret
= IRQ_HANDLED
;
1156 spin_unlock_irqrestore(&hwif
->lock
, flags
);
1159 ide_unlock_host(hwif
->host
);
1160 ide_plug_device(drive
);
1165 EXPORT_SYMBOL_GPL(ide_intr
);
1168 * ide_do_drive_cmd - issue IDE special command
1169 * @drive: device to issue command
1170 * @rq: request to issue
1172 * This function issues a special IDE device request
1173 * onto the request queue.
1175 * the rq is queued at the head of the request queue, displacing
1176 * the currently-being-processed request and this function
1177 * returns immediately without waiting for the new rq to be
1178 * completed. This is VERY DANGEROUS, and is intended for
1179 * careful use by the ATAPI tape/cdrom driver code.
1182 void ide_do_drive_cmd(ide_drive_t
*drive
, struct request
*rq
)
1184 struct request_queue
*q
= drive
->queue
;
1185 unsigned long flags
;
1187 drive
->hwif
->rq
= NULL
;
1189 spin_lock_irqsave(q
->queue_lock
, flags
);
1190 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FRONT
, 0);
1191 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1193 EXPORT_SYMBOL(ide_do_drive_cmd
);
1195 void ide_pktcmd_tf_load(ide_drive_t
*drive
, u32 tf_flags
, u16 bcount
, u8 dma
)
1197 ide_hwif_t
*hwif
= drive
->hwif
;
1200 memset(&task
, 0, sizeof(task
));
1201 task
.tf_flags
= IDE_TFLAG_OUT_LBAH
| IDE_TFLAG_OUT_LBAM
|
1202 IDE_TFLAG_OUT_FEATURE
| tf_flags
;
1203 task
.tf
.feature
= dma
; /* Use PIO/DMA */
1204 task
.tf
.lbam
= bcount
& 0xff;
1205 task
.tf
.lbah
= (bcount
>> 8) & 0xff;
1207 ide_tf_dump(drive
->name
, &task
.tf
);
1208 hwif
->tp_ops
->set_irq(hwif
, 1);
1209 SELECT_MASK(drive
, 0);
1210 hwif
->tp_ops
->tf_load(drive
, &task
);
1213 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load
);
1215 void ide_pad_transfer(ide_drive_t
*drive
, int write
, int len
)
1217 ide_hwif_t
*hwif
= drive
->hwif
;
1222 hwif
->tp_ops
->output_data(drive
, NULL
, buf
, min(4, len
));
1224 hwif
->tp_ops
->input_data(drive
, NULL
, buf
, min(4, len
));
1228 EXPORT_SYMBOL_GPL(ide_pad_transfer
);