igb: VFTA Table Fix for i350 devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
blob7881fb95a25ba51d6986621e125e0cadc4f09768
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* e1000_82575
29 * e1000_82576
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
38 static s32 igb_get_invariants_82575(struct e1000_hw *);
39 static s32 igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32 igb_check_for_link_82575(struct e1000_hw *);
44 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32 igb_init_hw_82575(struct e1000_hw *);
46 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32 igb_reset_hw_82575(struct e1000_hw *);
51 static s32 igb_reset_hw_82580(struct e1000_hw *);
52 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
54 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
55 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
58 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 u16 *);
60 static s32 igb_get_phy_id_82575(struct e1000_hw *);
61 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62 static bool igb_sgmii_active_82575(struct e1000_hw *);
63 static s32 igb_reset_init_script_82575(struct e1000_hw *);
64 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
66 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
67 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
68 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
69 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
70 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
71 static const u16 e1000_82580_rxpbs_table[] =
72 { 36, 72, 144, 1, 2, 4, 8, 16,
73 35, 70, 140 };
74 #define E1000_82580_RXPBS_TABLE_SIZE \
75 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
77 /**
78 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
79 * @hw: pointer to the HW structure
81 * Called to determine if the I2C pins are being used for I2C or as an
82 * external MDIO interface since the two options are mutually exclusive.
83 **/
84 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
86 u32 reg = 0;
87 bool ext_mdio = false;
89 switch (hw->mac.type) {
90 case e1000_82575:
91 case e1000_82576:
92 reg = rd32(E1000_MDIC);
93 ext_mdio = !!(reg & E1000_MDIC_DEST);
94 break;
95 case e1000_82580:
96 case e1000_i350:
97 reg = rd32(E1000_MDICNFG);
98 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
99 break;
100 default:
101 break;
103 return ext_mdio;
106 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
108 struct e1000_phy_info *phy = &hw->phy;
109 struct e1000_nvm_info *nvm = &hw->nvm;
110 struct e1000_mac_info *mac = &hw->mac;
111 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
112 u32 eecd;
113 s32 ret_val;
114 u16 size;
115 u32 ctrl_ext = 0;
117 switch (hw->device_id) {
118 case E1000_DEV_ID_82575EB_COPPER:
119 case E1000_DEV_ID_82575EB_FIBER_SERDES:
120 case E1000_DEV_ID_82575GB_QUAD_COPPER:
121 mac->type = e1000_82575;
122 break;
123 case E1000_DEV_ID_82576:
124 case E1000_DEV_ID_82576_NS:
125 case E1000_DEV_ID_82576_NS_SERDES:
126 case E1000_DEV_ID_82576_FIBER:
127 case E1000_DEV_ID_82576_SERDES:
128 case E1000_DEV_ID_82576_QUAD_COPPER:
129 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
130 case E1000_DEV_ID_82576_SERDES_QUAD:
131 mac->type = e1000_82576;
132 break;
133 case E1000_DEV_ID_82580_COPPER:
134 case E1000_DEV_ID_82580_FIBER:
135 case E1000_DEV_ID_82580_QUAD_FIBER:
136 case E1000_DEV_ID_82580_SERDES:
137 case E1000_DEV_ID_82580_SGMII:
138 case E1000_DEV_ID_82580_COPPER_DUAL:
139 case E1000_DEV_ID_DH89XXCC_SGMII:
140 case E1000_DEV_ID_DH89XXCC_SERDES:
141 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
142 case E1000_DEV_ID_DH89XXCC_SFP:
143 mac->type = e1000_82580;
144 break;
145 case E1000_DEV_ID_I350_COPPER:
146 case E1000_DEV_ID_I350_FIBER:
147 case E1000_DEV_ID_I350_SERDES:
148 case E1000_DEV_ID_I350_SGMII:
149 mac->type = e1000_i350;
150 break;
151 default:
152 return -E1000_ERR_MAC_INIT;
153 break;
156 /* Set media type */
158 * The 82575 uses bits 22:23 for link mode. The mode can be changed
159 * based on the EEPROM. We cannot rely upon device ID. There
160 * is no distinguishable difference between fiber and internal
161 * SerDes mode on the 82575. There can be an external PHY attached
162 * on the SGMII interface. For this, we'll set sgmii_active to true.
164 phy->media_type = e1000_media_type_copper;
165 dev_spec->sgmii_active = false;
167 ctrl_ext = rd32(E1000_CTRL_EXT);
168 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
169 case E1000_CTRL_EXT_LINK_MODE_SGMII:
170 dev_spec->sgmii_active = true;
171 break;
172 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
173 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
174 hw->phy.media_type = e1000_media_type_internal_serdes;
175 break;
176 default:
177 break;
180 /* Set mta register count */
181 mac->mta_reg_count = 128;
182 /* Set rar entry count */
183 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
184 if (mac->type == e1000_82576)
185 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
186 if (mac->type == e1000_82580)
187 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
188 if (mac->type == e1000_i350)
189 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
190 /* reset */
191 if (mac->type >= e1000_82580)
192 mac->ops.reset_hw = igb_reset_hw_82580;
193 else
194 mac->ops.reset_hw = igb_reset_hw_82575;
195 /* Set if part includes ASF firmware */
196 mac->asf_firmware_present = true;
197 /* Set if manageability features are enabled. */
198 mac->arc_subsystem_valid =
199 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
200 ? true : false;
201 /* enable EEE on i350 parts */
202 if (mac->type == e1000_i350)
203 dev_spec->eee_disable = false;
204 else
205 dev_spec->eee_disable = true;
206 /* physical interface link setup */
207 mac->ops.setup_physical_interface =
208 (hw->phy.media_type == e1000_media_type_copper)
209 ? igb_setup_copper_link_82575
210 : igb_setup_serdes_link_82575;
212 /* NVM initialization */
213 eecd = rd32(E1000_EECD);
215 nvm->opcode_bits = 8;
216 nvm->delay_usec = 1;
217 switch (nvm->override) {
218 case e1000_nvm_override_spi_large:
219 nvm->page_size = 32;
220 nvm->address_bits = 16;
221 break;
222 case e1000_nvm_override_spi_small:
223 nvm->page_size = 8;
224 nvm->address_bits = 8;
225 break;
226 default:
227 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
228 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
229 break;
232 nvm->type = e1000_nvm_eeprom_spi;
234 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
235 E1000_EECD_SIZE_EX_SHIFT);
238 * Added to a constant, "size" becomes the left-shift value
239 * for setting word_size.
241 size += NVM_WORD_SIZE_BASE_SHIFT;
244 * Check for invalid size
246 if ((hw->mac.type == e1000_82576) && (size > 15)) {
247 printk("igb: The NVM size is not valid, "
248 "defaulting to 32K.\n");
249 size = 15;
251 nvm->word_size = 1 << size;
252 if (nvm->word_size == (1 << 15))
253 nvm->page_size = 128;
255 /* NVM Function Pointers */
256 nvm->ops.acquire = igb_acquire_nvm_82575;
257 if (nvm->word_size < (1 << 15))
258 nvm->ops.read = igb_read_nvm_eerd;
259 else
260 nvm->ops.read = igb_read_nvm_spi;
262 nvm->ops.release = igb_release_nvm_82575;
263 switch (hw->mac.type) {
264 case e1000_82580:
265 nvm->ops.validate = igb_validate_nvm_checksum_82580;
266 nvm->ops.update = igb_update_nvm_checksum_82580;
267 break;
268 case e1000_i350:
269 nvm->ops.validate = igb_validate_nvm_checksum_i350;
270 nvm->ops.update = igb_update_nvm_checksum_i350;
271 break;
272 default:
273 nvm->ops.validate = igb_validate_nvm_checksum;
274 nvm->ops.update = igb_update_nvm_checksum;
276 nvm->ops.write = igb_write_nvm_spi;
278 /* if part supports SR-IOV then initialize mailbox parameters */
279 switch (mac->type) {
280 case e1000_82576:
281 case e1000_i350:
282 igb_init_mbx_params_pf(hw);
283 break;
284 default:
285 break;
288 /* setup PHY parameters */
289 if (phy->media_type != e1000_media_type_copper) {
290 phy->type = e1000_phy_none;
291 return 0;
294 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
295 phy->reset_delay_us = 100;
297 ctrl_ext = rd32(E1000_CTRL_EXT);
299 /* PHY function pointers */
300 if (igb_sgmii_active_82575(hw)) {
301 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
302 ctrl_ext |= E1000_CTRL_I2C_ENA;
303 } else {
304 phy->ops.reset = igb_phy_hw_reset;
305 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
308 wr32(E1000_CTRL_EXT, ctrl_ext);
309 igb_reset_mdicnfg_82580(hw);
311 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
312 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
313 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
314 } else if (hw->mac.type >= e1000_82580) {
315 phy->ops.read_reg = igb_read_phy_reg_82580;
316 phy->ops.write_reg = igb_write_phy_reg_82580;
317 } else {
318 phy->ops.read_reg = igb_read_phy_reg_igp;
319 phy->ops.write_reg = igb_write_phy_reg_igp;
322 /* set lan id */
323 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
324 E1000_STATUS_FUNC_SHIFT;
326 /* Set phy->phy_addr and phy->id. */
327 ret_val = igb_get_phy_id_82575(hw);
328 if (ret_val)
329 return ret_val;
331 /* Verify phy id and set remaining function pointers */
332 switch (phy->id) {
333 case I347AT4_E_PHY_ID:
334 case M88E1112_E_PHY_ID:
335 case M88E1111_I_PHY_ID:
336 phy->type = e1000_phy_m88;
337 phy->ops.get_phy_info = igb_get_phy_info_m88;
339 if (phy->id == I347AT4_E_PHY_ID ||
340 phy->id == M88E1112_E_PHY_ID)
341 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
342 else
343 phy->ops.get_cable_length = igb_get_cable_length_m88;
345 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
346 break;
347 case IGP03E1000_E_PHY_ID:
348 phy->type = e1000_phy_igp_3;
349 phy->ops.get_phy_info = igb_get_phy_info_igp;
350 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
351 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
352 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
353 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
354 break;
355 case I82580_I_PHY_ID:
356 case I350_I_PHY_ID:
357 phy->type = e1000_phy_82580;
358 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
359 phy->ops.get_cable_length = igb_get_cable_length_82580;
360 phy->ops.get_phy_info = igb_get_phy_info_82580;
361 break;
362 default:
363 return -E1000_ERR_PHY;
366 return 0;
370 * igb_acquire_phy_82575 - Acquire rights to access PHY
371 * @hw: pointer to the HW structure
373 * Acquire access rights to the correct PHY. This is a
374 * function pointer entry point called by the api module.
376 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
378 u16 mask = E1000_SWFW_PHY0_SM;
380 if (hw->bus.func == E1000_FUNC_1)
381 mask = E1000_SWFW_PHY1_SM;
382 else if (hw->bus.func == E1000_FUNC_2)
383 mask = E1000_SWFW_PHY2_SM;
384 else if (hw->bus.func == E1000_FUNC_3)
385 mask = E1000_SWFW_PHY3_SM;
387 return igb_acquire_swfw_sync_82575(hw, mask);
391 * igb_release_phy_82575 - Release rights to access PHY
392 * @hw: pointer to the HW structure
394 * A wrapper to release access rights to the correct PHY. This is a
395 * function pointer entry point called by the api module.
397 static void igb_release_phy_82575(struct e1000_hw *hw)
399 u16 mask = E1000_SWFW_PHY0_SM;
401 if (hw->bus.func == E1000_FUNC_1)
402 mask = E1000_SWFW_PHY1_SM;
403 else if (hw->bus.func == E1000_FUNC_2)
404 mask = E1000_SWFW_PHY2_SM;
405 else if (hw->bus.func == E1000_FUNC_3)
406 mask = E1000_SWFW_PHY3_SM;
408 igb_release_swfw_sync_82575(hw, mask);
412 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
413 * @hw: pointer to the HW structure
414 * @offset: register offset to be read
415 * @data: pointer to the read data
417 * Reads the PHY register at offset using the serial gigabit media independent
418 * interface and stores the retrieved information in data.
420 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
421 u16 *data)
423 s32 ret_val = -E1000_ERR_PARAM;
425 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
426 hw_dbg("PHY Address %u is out of range\n", offset);
427 goto out;
430 ret_val = hw->phy.ops.acquire(hw);
431 if (ret_val)
432 goto out;
434 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
436 hw->phy.ops.release(hw);
438 out:
439 return ret_val;
443 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
444 * @hw: pointer to the HW structure
445 * @offset: register offset to write to
446 * @data: data to write at register offset
448 * Writes the data to PHY register at the offset using the serial gigabit
449 * media independent interface.
451 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
452 u16 data)
454 s32 ret_val = -E1000_ERR_PARAM;
457 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
458 hw_dbg("PHY Address %d is out of range\n", offset);
459 goto out;
462 ret_val = hw->phy.ops.acquire(hw);
463 if (ret_val)
464 goto out;
466 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
468 hw->phy.ops.release(hw);
470 out:
471 return ret_val;
475 * igb_get_phy_id_82575 - Retrieve PHY addr and id
476 * @hw: pointer to the HW structure
478 * Retrieves the PHY address and ID for both PHY's which do and do not use
479 * sgmi interface.
481 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
483 struct e1000_phy_info *phy = &hw->phy;
484 s32 ret_val = 0;
485 u16 phy_id;
486 u32 ctrl_ext;
487 u32 mdic;
490 * For SGMII PHYs, we try the list of possible addresses until
491 * we find one that works. For non-SGMII PHYs
492 * (e.g. integrated copper PHYs), an address of 1 should
493 * work. The result of this function should mean phy->phy_addr
494 * and phy->id are set correctly.
496 if (!(igb_sgmii_active_82575(hw))) {
497 phy->addr = 1;
498 ret_val = igb_get_phy_id(hw);
499 goto out;
502 if (igb_sgmii_uses_mdio_82575(hw)) {
503 switch (hw->mac.type) {
504 case e1000_82575:
505 case e1000_82576:
506 mdic = rd32(E1000_MDIC);
507 mdic &= E1000_MDIC_PHY_MASK;
508 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
509 break;
510 case e1000_82580:
511 case e1000_i350:
512 mdic = rd32(E1000_MDICNFG);
513 mdic &= E1000_MDICNFG_PHY_MASK;
514 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
515 break;
516 default:
517 ret_val = -E1000_ERR_PHY;
518 goto out;
519 break;
521 ret_val = igb_get_phy_id(hw);
522 goto out;
525 /* Power on sgmii phy if it is disabled */
526 ctrl_ext = rd32(E1000_CTRL_EXT);
527 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
528 wrfl();
529 msleep(300);
532 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
533 * Therefore, we need to test 1-7
535 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
536 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
537 if (ret_val == 0) {
538 hw_dbg("Vendor ID 0x%08X read at address %u\n",
539 phy_id, phy->addr);
541 * At the time of this writing, The M88 part is
542 * the only supported SGMII PHY product.
544 if (phy_id == M88_VENDOR)
545 break;
546 } else {
547 hw_dbg("PHY address %u was unreadable\n", phy->addr);
551 /* A valid PHY type couldn't be found. */
552 if (phy->addr == 8) {
553 phy->addr = 0;
554 ret_val = -E1000_ERR_PHY;
555 goto out;
556 } else {
557 ret_val = igb_get_phy_id(hw);
560 /* restore previous sfp cage power state */
561 wr32(E1000_CTRL_EXT, ctrl_ext);
563 out:
564 return ret_val;
568 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
569 * @hw: pointer to the HW structure
571 * Resets the PHY using the serial gigabit media independent interface.
573 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
575 s32 ret_val;
578 * This isn't a true "hard" reset, but is the only reset
579 * available to us at this time.
582 hw_dbg("Soft resetting SGMII attached PHY...\n");
585 * SFP documentation requires the following to configure the SPF module
586 * to work on SGMII. No further documentation is given.
588 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
589 if (ret_val)
590 goto out;
592 ret_val = igb_phy_sw_reset(hw);
594 out:
595 return ret_val;
599 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
600 * @hw: pointer to the HW structure
601 * @active: true to enable LPLU, false to disable
603 * Sets the LPLU D0 state according to the active flag. When
604 * activating LPLU this function also disables smart speed
605 * and vice versa. LPLU will not be activated unless the
606 * device autonegotiation advertisement meets standards of
607 * either 10 or 10/100 or 10/100/1000 at all duplexes.
608 * This is a function pointer entry point only called by
609 * PHY setup routines.
611 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
613 struct e1000_phy_info *phy = &hw->phy;
614 s32 ret_val;
615 u16 data;
617 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
618 if (ret_val)
619 goto out;
621 if (active) {
622 data |= IGP02E1000_PM_D0_LPLU;
623 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
624 data);
625 if (ret_val)
626 goto out;
628 /* When LPLU is enabled, we should disable SmartSpeed */
629 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
630 &data);
631 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
632 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
633 data);
634 if (ret_val)
635 goto out;
636 } else {
637 data &= ~IGP02E1000_PM_D0_LPLU;
638 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
639 data);
641 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
642 * during Dx states where the power conservation is most
643 * important. During driver activity we should enable
644 * SmartSpeed, so performance is maintained.
646 if (phy->smart_speed == e1000_smart_speed_on) {
647 ret_val = phy->ops.read_reg(hw,
648 IGP01E1000_PHY_PORT_CONFIG, &data);
649 if (ret_val)
650 goto out;
652 data |= IGP01E1000_PSCFR_SMART_SPEED;
653 ret_val = phy->ops.write_reg(hw,
654 IGP01E1000_PHY_PORT_CONFIG, data);
655 if (ret_val)
656 goto out;
657 } else if (phy->smart_speed == e1000_smart_speed_off) {
658 ret_val = phy->ops.read_reg(hw,
659 IGP01E1000_PHY_PORT_CONFIG, &data);
660 if (ret_val)
661 goto out;
663 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
664 ret_val = phy->ops.write_reg(hw,
665 IGP01E1000_PHY_PORT_CONFIG, data);
666 if (ret_val)
667 goto out;
671 out:
672 return ret_val;
676 * igb_acquire_nvm_82575 - Request for access to EEPROM
677 * @hw: pointer to the HW structure
679 * Acquire the necessary semaphores for exclusive access to the EEPROM.
680 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
681 * Return successful if access grant bit set, else clear the request for
682 * EEPROM access and return -E1000_ERR_NVM (-1).
684 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
686 s32 ret_val;
688 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
689 if (ret_val)
690 goto out;
692 ret_val = igb_acquire_nvm(hw);
694 if (ret_val)
695 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
697 out:
698 return ret_val;
702 * igb_release_nvm_82575 - Release exclusive access to EEPROM
703 * @hw: pointer to the HW structure
705 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
706 * then release the semaphores acquired.
708 static void igb_release_nvm_82575(struct e1000_hw *hw)
710 igb_release_nvm(hw);
711 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
715 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
716 * @hw: pointer to the HW structure
717 * @mask: specifies which semaphore to acquire
719 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
720 * will also specify which port we're acquiring the lock for.
722 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
724 u32 swfw_sync;
725 u32 swmask = mask;
726 u32 fwmask = mask << 16;
727 s32 ret_val = 0;
728 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
730 while (i < timeout) {
731 if (igb_get_hw_semaphore(hw)) {
732 ret_val = -E1000_ERR_SWFW_SYNC;
733 goto out;
736 swfw_sync = rd32(E1000_SW_FW_SYNC);
737 if (!(swfw_sync & (fwmask | swmask)))
738 break;
741 * Firmware currently using resource (fwmask)
742 * or other software thread using resource (swmask)
744 igb_put_hw_semaphore(hw);
745 mdelay(5);
746 i++;
749 if (i == timeout) {
750 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
751 ret_val = -E1000_ERR_SWFW_SYNC;
752 goto out;
755 swfw_sync |= swmask;
756 wr32(E1000_SW_FW_SYNC, swfw_sync);
758 igb_put_hw_semaphore(hw);
760 out:
761 return ret_val;
765 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
766 * @hw: pointer to the HW structure
767 * @mask: specifies which semaphore to acquire
769 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
770 * will also specify which port we're releasing the lock for.
772 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
774 u32 swfw_sync;
776 while (igb_get_hw_semaphore(hw) != 0);
777 /* Empty */
779 swfw_sync = rd32(E1000_SW_FW_SYNC);
780 swfw_sync &= ~mask;
781 wr32(E1000_SW_FW_SYNC, swfw_sync);
783 igb_put_hw_semaphore(hw);
787 * igb_get_cfg_done_82575 - Read config done bit
788 * @hw: pointer to the HW structure
790 * Read the management control register for the config done bit for
791 * completion status. NOTE: silicon which is EEPROM-less will fail trying
792 * to read the config done bit, so an error is *ONLY* logged and returns
793 * 0. If we were to return with error, EEPROM-less silicon
794 * would not be able to be reset or change link.
796 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
798 s32 timeout = PHY_CFG_TIMEOUT;
799 s32 ret_val = 0;
800 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
802 if (hw->bus.func == 1)
803 mask = E1000_NVM_CFG_DONE_PORT_1;
804 else if (hw->bus.func == E1000_FUNC_2)
805 mask = E1000_NVM_CFG_DONE_PORT_2;
806 else if (hw->bus.func == E1000_FUNC_3)
807 mask = E1000_NVM_CFG_DONE_PORT_3;
809 while (timeout) {
810 if (rd32(E1000_EEMNGCTL) & mask)
811 break;
812 msleep(1);
813 timeout--;
815 if (!timeout)
816 hw_dbg("MNG configuration cycle has not completed.\n");
818 /* If EEPROM is not marked present, init the PHY manually */
819 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
820 (hw->phy.type == e1000_phy_igp_3))
821 igb_phy_init_script_igp3(hw);
823 return ret_val;
827 * igb_check_for_link_82575 - Check for link
828 * @hw: pointer to the HW structure
830 * If sgmii is enabled, then use the pcs register to determine link, otherwise
831 * use the generic interface for determining link.
833 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
835 s32 ret_val;
836 u16 speed, duplex;
838 if (hw->phy.media_type != e1000_media_type_copper) {
839 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
840 &duplex);
842 * Use this flag to determine if link needs to be checked or
843 * not. If we have link clear the flag so that we do not
844 * continue to check for link.
846 hw->mac.get_link_status = !hw->mac.serdes_has_link;
847 } else {
848 ret_val = igb_check_for_copper_link(hw);
851 return ret_val;
855 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
856 * @hw: pointer to the HW structure
858 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
860 u32 reg;
863 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
864 !igb_sgmii_active_82575(hw))
865 return;
867 /* Enable PCS to turn on link */
868 reg = rd32(E1000_PCS_CFG0);
869 reg |= E1000_PCS_CFG_PCS_EN;
870 wr32(E1000_PCS_CFG0, reg);
872 /* Power up the laser */
873 reg = rd32(E1000_CTRL_EXT);
874 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
875 wr32(E1000_CTRL_EXT, reg);
877 /* flush the write to verify completion */
878 wrfl();
879 msleep(1);
883 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
884 * @hw: pointer to the HW structure
885 * @speed: stores the current speed
886 * @duplex: stores the current duplex
888 * Using the physical coding sub-layer (PCS), retrieve the current speed and
889 * duplex, then store the values in the pointers provided.
891 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
892 u16 *duplex)
894 struct e1000_mac_info *mac = &hw->mac;
895 u32 pcs;
897 /* Set up defaults for the return values of this function */
898 mac->serdes_has_link = false;
899 *speed = 0;
900 *duplex = 0;
903 * Read the PCS Status register for link state. For non-copper mode,
904 * the status register is not accurate. The PCS status register is
905 * used instead.
907 pcs = rd32(E1000_PCS_LSTAT);
910 * The link up bit determines when link is up on autoneg. The sync ok
911 * gets set once both sides sync up and agree upon link. Stable link
912 * can be determined by checking for both link up and link sync ok
914 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
915 mac->serdes_has_link = true;
917 /* Detect and store PCS speed */
918 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
919 *speed = SPEED_1000;
920 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
921 *speed = SPEED_100;
922 } else {
923 *speed = SPEED_10;
926 /* Detect and store PCS duplex */
927 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
928 *duplex = FULL_DUPLEX;
929 } else {
930 *duplex = HALF_DUPLEX;
934 return 0;
938 * igb_shutdown_serdes_link_82575 - Remove link during power down
939 * @hw: pointer to the HW structure
941 * In the case of fiber serdes, shut down optics and PCS on driver unload
942 * when management pass thru is not enabled.
944 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
946 u32 reg;
948 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
949 igb_sgmii_active_82575(hw))
950 return;
952 if (!igb_enable_mng_pass_thru(hw)) {
953 /* Disable PCS to turn off link */
954 reg = rd32(E1000_PCS_CFG0);
955 reg &= ~E1000_PCS_CFG_PCS_EN;
956 wr32(E1000_PCS_CFG0, reg);
958 /* shutdown the laser */
959 reg = rd32(E1000_CTRL_EXT);
960 reg |= E1000_CTRL_EXT_SDP3_DATA;
961 wr32(E1000_CTRL_EXT, reg);
963 /* flush the write to verify completion */
964 wrfl();
965 msleep(1);
970 * igb_reset_hw_82575 - Reset hardware
971 * @hw: pointer to the HW structure
973 * This resets the hardware into a known state. This is a
974 * function pointer entry point called by the api module.
976 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
978 u32 ctrl, icr;
979 s32 ret_val;
982 * Prevent the PCI-E bus from sticking if there is no TLP connection
983 * on the last TLP read/write transaction when MAC is reset.
985 ret_val = igb_disable_pcie_master(hw);
986 if (ret_val)
987 hw_dbg("PCI-E Master disable polling has failed.\n");
989 /* set the completion timeout for interface */
990 ret_val = igb_set_pcie_completion_timeout(hw);
991 if (ret_val) {
992 hw_dbg("PCI-E Set completion timeout has failed.\n");
995 hw_dbg("Masking off all interrupts\n");
996 wr32(E1000_IMC, 0xffffffff);
998 wr32(E1000_RCTL, 0);
999 wr32(E1000_TCTL, E1000_TCTL_PSP);
1000 wrfl();
1002 msleep(10);
1004 ctrl = rd32(E1000_CTRL);
1006 hw_dbg("Issuing a global reset to MAC\n");
1007 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1009 ret_val = igb_get_auto_rd_done(hw);
1010 if (ret_val) {
1012 * When auto config read does not complete, do not
1013 * return with an error. This can happen in situations
1014 * where there is no eeprom and prevents getting link.
1016 hw_dbg("Auto Read Done did not complete\n");
1019 /* If EEPROM is not present, run manual init scripts */
1020 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1021 igb_reset_init_script_82575(hw);
1023 /* Clear any pending interrupt events. */
1024 wr32(E1000_IMC, 0xffffffff);
1025 icr = rd32(E1000_ICR);
1027 /* Install any alternate MAC address into RAR0 */
1028 ret_val = igb_check_alt_mac_addr(hw);
1030 return ret_val;
1034 * igb_init_hw_82575 - Initialize hardware
1035 * @hw: pointer to the HW structure
1037 * This inits the hardware readying it for operation.
1039 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1041 struct e1000_mac_info *mac = &hw->mac;
1042 s32 ret_val;
1043 u16 i, rar_count = mac->rar_entry_count;
1045 /* Initialize identification LED */
1046 ret_val = igb_id_led_init(hw);
1047 if (ret_val) {
1048 hw_dbg("Error initializing identification LED\n");
1049 /* This is not fatal and we should not stop init due to this */
1052 /* Disabling VLAN filtering */
1053 hw_dbg("Initializing the IEEE VLAN\n");
1054 if (hw->mac.type == e1000_i350)
1055 igb_clear_vfta_i350(hw);
1056 else
1057 igb_clear_vfta(hw);
1059 /* Setup the receive address */
1060 igb_init_rx_addrs(hw, rar_count);
1062 /* Zero out the Multicast HASH table */
1063 hw_dbg("Zeroing the MTA\n");
1064 for (i = 0; i < mac->mta_reg_count; i++)
1065 array_wr32(E1000_MTA, i, 0);
1067 /* Zero out the Unicast HASH table */
1068 hw_dbg("Zeroing the UTA\n");
1069 for (i = 0; i < mac->uta_reg_count; i++)
1070 array_wr32(E1000_UTA, i, 0);
1072 /* Setup link and flow control */
1073 ret_val = igb_setup_link(hw);
1076 * Clear all of the statistics registers (clear on read). It is
1077 * important that we do this after we have tried to establish link
1078 * because the symbol error count will increment wildly if there
1079 * is no link.
1081 igb_clear_hw_cntrs_82575(hw);
1083 return ret_val;
1087 * igb_setup_copper_link_82575 - Configure copper link settings
1088 * @hw: pointer to the HW structure
1090 * Configures the link for auto-neg or forced speed and duplex. Then we check
1091 * for link, once link is established calls to configure collision distance
1092 * and flow control are called.
1094 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1096 u32 ctrl;
1097 s32 ret_val;
1099 ctrl = rd32(E1000_CTRL);
1100 ctrl |= E1000_CTRL_SLU;
1101 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1102 wr32(E1000_CTRL, ctrl);
1104 ret_val = igb_setup_serdes_link_82575(hw);
1105 if (ret_val)
1106 goto out;
1108 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1109 /* allow time for SFP cage time to power up phy */
1110 msleep(300);
1112 ret_val = hw->phy.ops.reset(hw);
1113 if (ret_val) {
1114 hw_dbg("Error resetting the PHY.\n");
1115 goto out;
1118 switch (hw->phy.type) {
1119 case e1000_phy_m88:
1120 if (hw->phy.id == I347AT4_E_PHY_ID ||
1121 hw->phy.id == M88E1112_E_PHY_ID)
1122 ret_val = igb_copper_link_setup_m88_gen2(hw);
1123 else
1124 ret_val = igb_copper_link_setup_m88(hw);
1125 break;
1126 case e1000_phy_igp_3:
1127 ret_val = igb_copper_link_setup_igp(hw);
1128 break;
1129 case e1000_phy_82580:
1130 ret_val = igb_copper_link_setup_82580(hw);
1131 break;
1132 default:
1133 ret_val = -E1000_ERR_PHY;
1134 break;
1137 if (ret_val)
1138 goto out;
1140 ret_val = igb_setup_copper_link(hw);
1141 out:
1142 return ret_val;
1146 * igb_setup_serdes_link_82575 - Setup link for serdes
1147 * @hw: pointer to the HW structure
1149 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1150 * used on copper connections where the serialized gigabit media independent
1151 * interface (sgmii), or serdes fiber is being used. Configures the link
1152 * for auto-negotiation or forces speed/duplex.
1154 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1156 u32 ctrl_ext, ctrl_reg, reg;
1157 bool pcs_autoneg;
1158 s32 ret_val = E1000_SUCCESS;
1159 u16 data;
1161 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1162 !igb_sgmii_active_82575(hw))
1163 return ret_val;
1167 * On the 82575, SerDes loopback mode persists until it is
1168 * explicitly turned off or a power cycle is performed. A read to
1169 * the register does not indicate its status. Therefore, we ensure
1170 * loopback mode is disabled during initialization.
1172 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1174 /* power on the sfp cage if present */
1175 ctrl_ext = rd32(E1000_CTRL_EXT);
1176 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1177 wr32(E1000_CTRL_EXT, ctrl_ext);
1179 ctrl_reg = rd32(E1000_CTRL);
1180 ctrl_reg |= E1000_CTRL_SLU;
1182 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1183 /* set both sw defined pins */
1184 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1186 /* Set switch control to serdes energy detect */
1187 reg = rd32(E1000_CONNSW);
1188 reg |= E1000_CONNSW_ENRGSRC;
1189 wr32(E1000_CONNSW, reg);
1192 reg = rd32(E1000_PCS_LCTL);
1194 /* default pcs_autoneg to the same setting as mac autoneg */
1195 pcs_autoneg = hw->mac.autoneg;
1197 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1198 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1199 /* sgmii mode lets the phy handle forcing speed/duplex */
1200 pcs_autoneg = true;
1201 /* autoneg time out should be disabled for SGMII mode */
1202 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1203 break;
1204 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1205 /* disable PCS autoneg and support parallel detect only */
1206 pcs_autoneg = false;
1207 default:
1208 if (hw->mac.type == e1000_82575 ||
1209 hw->mac.type == e1000_82576) {
1210 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1211 if (ret_val) {
1212 printk(KERN_DEBUG "NVM Read Error\n\n");
1213 return ret_val;
1216 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1217 pcs_autoneg = false;
1221 * non-SGMII modes only supports a speed of 1000/Full for the
1222 * link so it is best to just force the MAC and let the pcs
1223 * link either autoneg or be forced to 1000/Full
1225 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1226 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1228 /* set speed of 1000/Full if speed/duplex is forced */
1229 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1230 break;
1233 wr32(E1000_CTRL, ctrl_reg);
1236 * New SerDes mode allows for forcing speed or autonegotiating speed
1237 * at 1gb. Autoneg should be default set by most drivers. This is the
1238 * mode that will be compatible with older link partners and switches.
1239 * However, both are supported by the hardware and some drivers/tools.
1241 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1242 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1245 * We force flow control to prevent the CTRL register values from being
1246 * overwritten by the autonegotiated flow control values
1248 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1250 if (pcs_autoneg) {
1251 /* Set PCS register for autoneg */
1252 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1253 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1254 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1255 } else {
1256 /* Set PCS register for forced link */
1257 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1259 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1262 wr32(E1000_PCS_LCTL, reg);
1264 if (!igb_sgmii_active_82575(hw))
1265 igb_force_mac_fc(hw);
1267 return ret_val;
1271 * igb_sgmii_active_82575 - Return sgmii state
1272 * @hw: pointer to the HW structure
1274 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1275 * which can be enabled for use in the embedded applications. Simply
1276 * return the current state of the sgmii interface.
1278 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1280 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1281 return dev_spec->sgmii_active;
1285 * igb_reset_init_script_82575 - Inits HW defaults after reset
1286 * @hw: pointer to the HW structure
1288 * Inits recommended HW defaults after a reset when there is no EEPROM
1289 * detected. This is only for the 82575.
1291 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1293 if (hw->mac.type == e1000_82575) {
1294 hw_dbg("Running reset init script for 82575\n");
1295 /* SerDes configuration via SERDESCTRL */
1296 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1297 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1298 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1299 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1301 /* CCM configuration via CCMCTL register */
1302 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1303 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1305 /* PCIe lanes configuration */
1306 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1307 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1308 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1309 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1311 /* PCIe PLL Configuration */
1312 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1313 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1314 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1317 return 0;
1321 * igb_read_mac_addr_82575 - Read device MAC address
1322 * @hw: pointer to the HW structure
1324 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1326 s32 ret_val = 0;
1329 * If there's an alternate MAC address place it in RAR0
1330 * so that it will override the Si installed default perm
1331 * address.
1333 ret_val = igb_check_alt_mac_addr(hw);
1334 if (ret_val)
1335 goto out;
1337 ret_val = igb_read_mac_addr(hw);
1339 out:
1340 return ret_val;
1344 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1345 * @hw: pointer to the HW structure
1347 * In the case of a PHY power down to save power, or to turn off link during a
1348 * driver unload, or wake on lan is not enabled, remove the link.
1350 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1352 /* If the management interface is not enabled, then power down */
1353 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1354 igb_power_down_phy_copper(hw);
1358 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1359 * @hw: pointer to the HW structure
1361 * Clears the hardware counters by reading the counter registers.
1363 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1365 igb_clear_hw_cntrs_base(hw);
1367 rd32(E1000_PRC64);
1368 rd32(E1000_PRC127);
1369 rd32(E1000_PRC255);
1370 rd32(E1000_PRC511);
1371 rd32(E1000_PRC1023);
1372 rd32(E1000_PRC1522);
1373 rd32(E1000_PTC64);
1374 rd32(E1000_PTC127);
1375 rd32(E1000_PTC255);
1376 rd32(E1000_PTC511);
1377 rd32(E1000_PTC1023);
1378 rd32(E1000_PTC1522);
1380 rd32(E1000_ALGNERRC);
1381 rd32(E1000_RXERRC);
1382 rd32(E1000_TNCRS);
1383 rd32(E1000_CEXTERR);
1384 rd32(E1000_TSCTC);
1385 rd32(E1000_TSCTFC);
1387 rd32(E1000_MGTPRC);
1388 rd32(E1000_MGTPDC);
1389 rd32(E1000_MGTPTC);
1391 rd32(E1000_IAC);
1392 rd32(E1000_ICRXOC);
1394 rd32(E1000_ICRXPTC);
1395 rd32(E1000_ICRXATC);
1396 rd32(E1000_ICTXPTC);
1397 rd32(E1000_ICTXATC);
1398 rd32(E1000_ICTXQEC);
1399 rd32(E1000_ICTXQMTC);
1400 rd32(E1000_ICRXDMTC);
1402 rd32(E1000_CBTMPC);
1403 rd32(E1000_HTDPMC);
1404 rd32(E1000_CBRMPC);
1405 rd32(E1000_RPTHC);
1406 rd32(E1000_HGPTC);
1407 rd32(E1000_HTCBDPC);
1408 rd32(E1000_HGORCL);
1409 rd32(E1000_HGORCH);
1410 rd32(E1000_HGOTCL);
1411 rd32(E1000_HGOTCH);
1412 rd32(E1000_LENERRS);
1414 /* This register should not be read in copper configurations */
1415 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1416 igb_sgmii_active_82575(hw))
1417 rd32(E1000_SCVPC);
1421 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1422 * @hw: pointer to the HW structure
1424 * After rx enable if managability is enabled then there is likely some
1425 * bad data at the start of the fifo and possibly in the DMA fifo. This
1426 * function clears the fifos and flushes any packets that came in as rx was
1427 * being enabled.
1429 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1431 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1432 int i, ms_wait;
1434 if (hw->mac.type != e1000_82575 ||
1435 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1436 return;
1438 /* Disable all RX queues */
1439 for (i = 0; i < 4; i++) {
1440 rxdctl[i] = rd32(E1000_RXDCTL(i));
1441 wr32(E1000_RXDCTL(i),
1442 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1444 /* Poll all queues to verify they have shut down */
1445 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1446 msleep(1);
1447 rx_enabled = 0;
1448 for (i = 0; i < 4; i++)
1449 rx_enabled |= rd32(E1000_RXDCTL(i));
1450 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1451 break;
1454 if (ms_wait == 10)
1455 hw_dbg("Queue disable timed out after 10ms\n");
1457 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1458 * incoming packets are rejected. Set enable and wait 2ms so that
1459 * any packet that was coming in as RCTL.EN was set is flushed
1461 rfctl = rd32(E1000_RFCTL);
1462 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1464 rlpml = rd32(E1000_RLPML);
1465 wr32(E1000_RLPML, 0);
1467 rctl = rd32(E1000_RCTL);
1468 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1469 temp_rctl |= E1000_RCTL_LPE;
1471 wr32(E1000_RCTL, temp_rctl);
1472 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1473 wrfl();
1474 msleep(2);
1476 /* Enable RX queues that were previously enabled and restore our
1477 * previous state
1479 for (i = 0; i < 4; i++)
1480 wr32(E1000_RXDCTL(i), rxdctl[i]);
1481 wr32(E1000_RCTL, rctl);
1482 wrfl();
1484 wr32(E1000_RLPML, rlpml);
1485 wr32(E1000_RFCTL, rfctl);
1487 /* Flush receive errors generated by workaround */
1488 rd32(E1000_ROC);
1489 rd32(E1000_RNBC);
1490 rd32(E1000_MPC);
1494 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1495 * @hw: pointer to the HW structure
1497 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1498 * however the hardware default for these parts is 500us to 1ms which is less
1499 * than the 10ms recommended by the pci-e spec. To address this we need to
1500 * increase the value to either 10ms to 200ms for capability version 1 config,
1501 * or 16ms to 55ms for version 2.
1503 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1505 u32 gcr = rd32(E1000_GCR);
1506 s32 ret_val = 0;
1507 u16 pcie_devctl2;
1509 /* only take action if timeout value is defaulted to 0 */
1510 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1511 goto out;
1514 * if capababilities version is type 1 we can write the
1515 * timeout of 10ms to 200ms through the GCR register
1517 if (!(gcr & E1000_GCR_CAP_VER2)) {
1518 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1519 goto out;
1523 * for version 2 capabilities we need to write the config space
1524 * directly in order to set the completion timeout value for
1525 * 16ms to 55ms
1527 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1528 &pcie_devctl2);
1529 if (ret_val)
1530 goto out;
1532 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1534 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1535 &pcie_devctl2);
1536 out:
1537 /* disable completion timeout resend */
1538 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1540 wr32(E1000_GCR, gcr);
1541 return ret_val;
1545 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1546 * @hw: pointer to the hardware struct
1547 * @enable: state to enter, either enabled or disabled
1548 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1550 * enables/disables L2 switch anti-spoofing functionality.
1552 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1554 u32 dtxswc;
1556 switch (hw->mac.type) {
1557 case e1000_82576:
1558 case e1000_i350:
1559 dtxswc = rd32(E1000_DTXSWC);
1560 if (enable) {
1561 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1562 E1000_DTXSWC_VLAN_SPOOF_MASK);
1563 /* The PF can spoof - it has to in order to
1564 * support emulation mode NICs */
1565 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1566 } else {
1567 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1568 E1000_DTXSWC_VLAN_SPOOF_MASK);
1570 wr32(E1000_DTXSWC, dtxswc);
1571 break;
1572 default:
1573 break;
1578 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1579 * @hw: pointer to the hardware struct
1580 * @enable: state to enter, either enabled or disabled
1582 * enables/disables L2 switch loopback functionality.
1584 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1586 u32 dtxswc;
1588 switch (hw->mac.type) {
1589 case e1000_82576:
1590 dtxswc = rd32(E1000_DTXSWC);
1591 if (enable)
1592 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1593 else
1594 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1595 wr32(E1000_DTXSWC, dtxswc);
1596 break;
1597 case e1000_i350:
1598 dtxswc = rd32(E1000_TXSWC);
1599 if (enable)
1600 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1601 else
1602 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1603 wr32(E1000_TXSWC, dtxswc);
1604 break;
1605 default:
1606 /* Currently no other hardware supports loopback */
1607 break;
1614 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1615 * @hw: pointer to the hardware struct
1616 * @enable: state to enter, either enabled or disabled
1618 * enables/disables replication of packets across multiple pools.
1620 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1622 u32 vt_ctl = rd32(E1000_VT_CTL);
1624 if (enable)
1625 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1626 else
1627 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1629 wr32(E1000_VT_CTL, vt_ctl);
1633 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1634 * @hw: pointer to the HW structure
1635 * @offset: register offset to be read
1636 * @data: pointer to the read data
1638 * Reads the MDI control register in the PHY at offset and stores the
1639 * information read to data.
1641 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1643 s32 ret_val;
1646 ret_val = hw->phy.ops.acquire(hw);
1647 if (ret_val)
1648 goto out;
1650 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1652 hw->phy.ops.release(hw);
1654 out:
1655 return ret_val;
1659 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1660 * @hw: pointer to the HW structure
1661 * @offset: register offset to write to
1662 * @data: data to write to register at offset
1664 * Writes data to MDI control register in the PHY at offset.
1666 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1668 s32 ret_val;
1671 ret_val = hw->phy.ops.acquire(hw);
1672 if (ret_val)
1673 goto out;
1675 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1677 hw->phy.ops.release(hw);
1679 out:
1680 return ret_val;
1684 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1685 * @hw: pointer to the HW structure
1687 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1688 * the values found in the EEPROM. This addresses an issue in which these
1689 * bits are not restored from EEPROM after reset.
1691 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1693 s32 ret_val = 0;
1694 u32 mdicnfg;
1695 u16 nvm_data = 0;
1697 if (hw->mac.type != e1000_82580)
1698 goto out;
1699 if (!igb_sgmii_active_82575(hw))
1700 goto out;
1702 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1703 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1704 &nvm_data);
1705 if (ret_val) {
1706 hw_dbg("NVM Read Error\n");
1707 goto out;
1710 mdicnfg = rd32(E1000_MDICNFG);
1711 if (nvm_data & NVM_WORD24_EXT_MDIO)
1712 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1713 if (nvm_data & NVM_WORD24_COM_MDIO)
1714 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1715 wr32(E1000_MDICNFG, mdicnfg);
1716 out:
1717 return ret_val;
1721 * igb_reset_hw_82580 - Reset hardware
1722 * @hw: pointer to the HW structure
1724 * This resets function or entire device (all ports, etc.)
1725 * to a known state.
1727 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1729 s32 ret_val = 0;
1730 /* BH SW mailbox bit in SW_FW_SYNC */
1731 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1732 u32 ctrl, icr;
1733 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1736 hw->dev_spec._82575.global_device_reset = false;
1738 /* Get current control state. */
1739 ctrl = rd32(E1000_CTRL);
1742 * Prevent the PCI-E bus from sticking if there is no TLP connection
1743 * on the last TLP read/write transaction when MAC is reset.
1745 ret_val = igb_disable_pcie_master(hw);
1746 if (ret_val)
1747 hw_dbg("PCI-E Master disable polling has failed.\n");
1749 hw_dbg("Masking off all interrupts\n");
1750 wr32(E1000_IMC, 0xffffffff);
1751 wr32(E1000_RCTL, 0);
1752 wr32(E1000_TCTL, E1000_TCTL_PSP);
1753 wrfl();
1755 msleep(10);
1757 /* Determine whether or not a global dev reset is requested */
1758 if (global_device_reset &&
1759 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1760 global_device_reset = false;
1762 if (global_device_reset &&
1763 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1764 ctrl |= E1000_CTRL_DEV_RST;
1765 else
1766 ctrl |= E1000_CTRL_RST;
1768 wr32(E1000_CTRL, ctrl);
1769 wrfl();
1771 /* Add delay to insure DEV_RST has time to complete */
1772 if (global_device_reset)
1773 msleep(5);
1775 ret_val = igb_get_auto_rd_done(hw);
1776 if (ret_val) {
1778 * When auto config read does not complete, do not
1779 * return with an error. This can happen in situations
1780 * where there is no eeprom and prevents getting link.
1782 hw_dbg("Auto Read Done did not complete\n");
1785 /* If EEPROM is not present, run manual init scripts */
1786 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1787 igb_reset_init_script_82575(hw);
1789 /* clear global device reset status bit */
1790 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1792 /* Clear any pending interrupt events. */
1793 wr32(E1000_IMC, 0xffffffff);
1794 icr = rd32(E1000_ICR);
1796 ret_val = igb_reset_mdicnfg_82580(hw);
1797 if (ret_val)
1798 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1800 /* Install any alternate MAC address into RAR0 */
1801 ret_val = igb_check_alt_mac_addr(hw);
1803 /* Release semaphore */
1804 if (global_device_reset)
1805 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1807 return ret_val;
1811 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1812 * @data: data received by reading RXPBS register
1814 * The 82580 uses a table based approach for packet buffer allocation sizes.
1815 * This function converts the retrieved value into the correct table value
1816 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1817 * 0x0 36 72 144 1 2 4 8 16
1818 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1820 u16 igb_rxpbs_adjust_82580(u32 data)
1822 u16 ret_val = 0;
1824 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1825 ret_val = e1000_82580_rxpbs_table[data];
1827 return ret_val;
1831 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
1832 * checksum
1833 * @hw: pointer to the HW structure
1834 * @offset: offset in words of the checksum protected region
1836 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1837 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
1839 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
1840 u16 offset)
1842 s32 ret_val = 0;
1843 u16 checksum = 0;
1844 u16 i, nvm_data;
1846 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1847 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1848 if (ret_val) {
1849 hw_dbg("NVM Read Error\n");
1850 goto out;
1852 checksum += nvm_data;
1855 if (checksum != (u16) NVM_SUM) {
1856 hw_dbg("NVM Checksum Invalid\n");
1857 ret_val = -E1000_ERR_NVM;
1858 goto out;
1861 out:
1862 return ret_val;
1866 * igb_update_nvm_checksum_with_offset - Update EEPROM
1867 * checksum
1868 * @hw: pointer to the HW structure
1869 * @offset: offset in words of the checksum protected region
1871 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
1872 * up to the checksum. Then calculates the EEPROM checksum and writes the
1873 * value to the EEPROM.
1875 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1877 s32 ret_val;
1878 u16 checksum = 0;
1879 u16 i, nvm_data;
1881 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1882 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1883 if (ret_val) {
1884 hw_dbg("NVM Read Error while updating checksum.\n");
1885 goto out;
1887 checksum += nvm_data;
1889 checksum = (u16) NVM_SUM - checksum;
1890 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1891 &checksum);
1892 if (ret_val)
1893 hw_dbg("NVM Write Error while updating checksum.\n");
1895 out:
1896 return ret_val;
1900 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1901 * @hw: pointer to the HW structure
1903 * Calculates the EEPROM section checksum by reading/adding each word of
1904 * the EEPROM and then verifies that the sum of the EEPROM is
1905 * equal to 0xBABA.
1907 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1909 s32 ret_val = 0;
1910 u16 eeprom_regions_count = 1;
1911 u16 j, nvm_data;
1912 u16 nvm_offset;
1914 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1915 if (ret_val) {
1916 hw_dbg("NVM Read Error\n");
1917 goto out;
1920 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
1921 /* if checksums compatibility bit is set validate checksums
1922 * for all 4 ports. */
1923 eeprom_regions_count = 4;
1926 for (j = 0; j < eeprom_regions_count; j++) {
1927 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1928 ret_val = igb_validate_nvm_checksum_with_offset(hw,
1929 nvm_offset);
1930 if (ret_val != 0)
1931 goto out;
1934 out:
1935 return ret_val;
1939 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
1940 * @hw: pointer to the HW structure
1942 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1943 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1944 * checksum and writes the value to the EEPROM.
1946 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1948 s32 ret_val;
1949 u16 j, nvm_data;
1950 u16 nvm_offset;
1952 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1953 if (ret_val) {
1954 hw_dbg("NVM Read Error while updating checksum"
1955 " compatibility bit.\n");
1956 goto out;
1959 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1960 /* set compatibility bit to validate checksums appropriately */
1961 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1962 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1963 &nvm_data);
1964 if (ret_val) {
1965 hw_dbg("NVM Write Error while updating checksum"
1966 " compatibility bit.\n");
1967 goto out;
1971 for (j = 0; j < 4; j++) {
1972 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1973 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1974 if (ret_val)
1975 goto out;
1978 out:
1979 return ret_val;
1983 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1984 * @hw: pointer to the HW structure
1986 * Calculates the EEPROM section checksum by reading/adding each word of
1987 * the EEPROM and then verifies that the sum of the EEPROM is
1988 * equal to 0xBABA.
1990 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1992 s32 ret_val = 0;
1993 u16 j;
1994 u16 nvm_offset;
1996 for (j = 0; j < 4; j++) {
1997 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1998 ret_val = igb_validate_nvm_checksum_with_offset(hw,
1999 nvm_offset);
2000 if (ret_val != 0)
2001 goto out;
2004 out:
2005 return ret_val;
2009 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2010 * @hw: pointer to the HW structure
2012 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2013 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2014 * checksum and writes the value to the EEPROM.
2016 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2018 s32 ret_val = 0;
2019 u16 j;
2020 u16 nvm_offset;
2022 for (j = 0; j < 4; j++) {
2023 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2024 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2025 if (ret_val != 0)
2026 goto out;
2029 out:
2030 return ret_val;
2034 * igb_set_eee_i350 - Enable/disable EEE support
2035 * @hw: pointer to the HW structure
2037 * Enable/disable EEE based on setting in dev_spec structure.
2040 s32 igb_set_eee_i350(struct e1000_hw *hw)
2042 s32 ret_val = 0;
2043 u32 ipcnfg, eeer, ctrl_ext;
2045 ctrl_ext = rd32(E1000_CTRL_EXT);
2046 if ((hw->mac.type != e1000_i350) ||
2047 (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2048 goto out;
2049 ipcnfg = rd32(E1000_IPCNFG);
2050 eeer = rd32(E1000_EEER);
2052 /* enable or disable per user setting */
2053 if (!(hw->dev_spec._82575.eee_disable)) {
2054 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2055 E1000_IPCNFG_EEE_100M_AN);
2056 eeer |= (E1000_EEER_TX_LPI_EN |
2057 E1000_EEER_RX_LPI_EN |
2058 E1000_EEER_LPI_FC);
2060 } else {
2061 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2062 E1000_IPCNFG_EEE_100M_AN);
2063 eeer &= ~(E1000_EEER_TX_LPI_EN |
2064 E1000_EEER_RX_LPI_EN |
2065 E1000_EEER_LPI_FC);
2067 wr32(E1000_IPCNFG, ipcnfg);
2068 wr32(E1000_EEER, eeer);
2069 out:
2071 return ret_val;
2074 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2075 .init_hw = igb_init_hw_82575,
2076 .check_for_link = igb_check_for_link_82575,
2077 .rar_set = igb_rar_set,
2078 .read_mac_addr = igb_read_mac_addr_82575,
2079 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2082 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2083 .acquire = igb_acquire_phy_82575,
2084 .get_cfg_done = igb_get_cfg_done_82575,
2085 .release = igb_release_phy_82575,
2088 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2089 .acquire = igb_acquire_nvm_82575,
2090 .read = igb_read_nvm_eerd,
2091 .release = igb_release_nvm_82575,
2092 .write = igb_write_nvm_spi,
2095 const struct e1000_info e1000_82575_info = {
2096 .get_invariants = igb_get_invariants_82575,
2097 .mac_ops = &e1000_mac_ops_82575,
2098 .phy_ops = &e1000_phy_ops_82575,
2099 .nvm_ops = &e1000_nvm_ops_82575,