2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
41 * writes in @c->max_write_size bytes at a time.
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
50 #include <linux/crc32.h>
51 #include <linux/slab.h>
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
62 static int is_empty(void *buf
, int len
)
67 for (i
= 0; i
< len
; i
++)
74 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
81 static int first_non_ff(void *buf
, int len
)
86 for (i
= 0; i
< len
; i
++)
93 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
107 * This function returns %0 on success and a negative error code on failure.
109 static int get_master_node(const struct ubifs_info
*c
, int lnum
, void **pbuf
,
110 struct ubifs_mst_node
**mst
, void **cor
)
112 const int sz
= c
->mst_node_alsz
;
116 sbuf
= vmalloc(c
->leb_size
);
120 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, c
->leb_size
);
121 if (err
&& err
!= -EBADMSG
)
124 /* Find the first position that is definitely not a node */
128 while (offs
+ UBIFS_MST_NODE_SZ
<= c
->leb_size
) {
129 struct ubifs_ch
*ch
= buf
;
131 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
)
137 /* See if there was a valid master node before that */
144 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
145 if (ret
!= SCANNED_A_NODE
&& offs
) {
146 /* Could have been corruption so check one place back */
150 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
151 if (ret
!= SCANNED_A_NODE
)
153 * We accept only one area of corruption because
154 * we are assuming that it was caused while
155 * trying to write a master node.
159 if (ret
== SCANNED_A_NODE
) {
160 struct ubifs_ch
*ch
= buf
;
162 if (ch
->node_type
!= UBIFS_MST_NODE
)
164 dbg_rcvry("found a master node at %d:%d", lnum
, offs
);
171 /* Check for corruption */
172 if (offs
< c
->leb_size
) {
173 if (!is_empty(buf
, min_t(int, len
, sz
))) {
175 dbg_rcvry("found corruption at %d:%d", lnum
, offs
);
181 /* Check remaining empty space */
182 if (offs
< c
->leb_size
)
183 if (!is_empty(buf
, len
))
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
202 * This function returns %0 on success and a negative error code on failure.
204 static int write_rcvrd_mst_node(struct ubifs_info
*c
,
205 struct ubifs_mst_node
*mst
)
207 int err
= 0, lnum
= UBIFS_MST_LNUM
, sz
= c
->mst_node_alsz
;
210 dbg_rcvry("recovery");
212 save_flags
= mst
->flags
;
213 mst
->flags
|= cpu_to_le32(UBIFS_MST_RCVRY
);
215 ubifs_prepare_node(c
, mst
, UBIFS_MST_NODE_SZ
, 1);
216 err
= ubi_leb_change(c
->ubi
, lnum
, mst
, sz
, UBI_SHORTTERM
);
219 err
= ubi_leb_change(c
->ubi
, lnum
+ 1, mst
, sz
, UBI_SHORTTERM
);
223 mst
->flags
= save_flags
;
228 * ubifs_recover_master_node - recover the master node.
229 * @c: UBIFS file-system description object
231 * This function recovers the master node from corruption that may occur due to
232 * an unclean unmount.
234 * This function returns %0 on success and a negative error code on failure.
236 int ubifs_recover_master_node(struct ubifs_info
*c
)
238 void *buf1
= NULL
, *buf2
= NULL
, *cor1
= NULL
, *cor2
= NULL
;
239 struct ubifs_mst_node
*mst1
= NULL
, *mst2
= NULL
, *mst
;
240 const int sz
= c
->mst_node_alsz
;
241 int err
, offs1
, offs2
;
243 dbg_rcvry("recovery");
245 err
= get_master_node(c
, UBIFS_MST_LNUM
, &buf1
, &mst1
, &cor1
);
249 err
= get_master_node(c
, UBIFS_MST_LNUM
+ 1, &buf2
, &mst2
, &cor2
);
254 offs1
= (void *)mst1
- buf1
;
255 if ((le32_to_cpu(mst1
->flags
) & UBIFS_MST_RCVRY
) &&
256 (offs1
== 0 && !cor1
)) {
258 * mst1 was written by recovery at offset 0 with no
261 dbg_rcvry("recovery recovery");
264 offs2
= (void *)mst2
- buf2
;
265 if (offs1
== offs2
) {
266 /* Same offset, so must be the same */
267 if (memcmp((void *)mst1
+ UBIFS_CH_SZ
,
268 (void *)mst2
+ UBIFS_CH_SZ
,
269 UBIFS_MST_NODE_SZ
- UBIFS_CH_SZ
))
272 } else if (offs2
+ sz
== offs1
) {
273 /* 1st LEB was written, 2nd was not */
277 } else if (offs1
== 0 && offs2
+ sz
>= c
->leb_size
) {
278 /* 1st LEB was unmapped and written, 2nd not */
286 * 2nd LEB was unmapped and about to be written, so
287 * there must be only one master node in the first LEB
290 if (offs1
!= 0 || cor1
)
298 * 1st LEB was unmapped and about to be written, so there must
299 * be no room left in 2nd LEB.
301 offs2
= (void *)mst2
- buf2
;
302 if (offs2
+ sz
+ sz
<= c
->leb_size
)
307 ubifs_msg("recovered master node from LEB %d",
308 (mst
== mst1
? UBIFS_MST_LNUM
: UBIFS_MST_LNUM
+ 1));
310 memcpy(c
->mst_node
, mst
, UBIFS_MST_NODE_SZ
);
313 /* Read-only mode. Keep a copy for switching to rw mode */
314 c
->rcvrd_mst_node
= kmalloc(sz
, GFP_KERNEL
);
315 if (!c
->rcvrd_mst_node
) {
319 memcpy(c
->rcvrd_mst_node
, c
->mst_node
, UBIFS_MST_NODE_SZ
);
322 * We had to recover the master node, which means there was an
323 * unclean reboot. However, it is possible that the master node
324 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
325 * E.g., consider the following chain of events:
327 * 1. UBIFS was cleanly unmounted, so the master node is clean
328 * 2. UBIFS is being mounted R/W and starts changing the master
329 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
330 * so this LEB ends up with some amount of garbage at the
332 * 3. UBIFS is being mounted R/O. We reach this place and
333 * recover the master node from the second LEB
334 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
335 * because we are being mounted R/O. We have to defer the
337 * 4. However, this master node (@c->mst_node) is marked as
338 * clean (since the step 1). And if we just return, the
339 * mount code will be confused and won't recover the master
340 * node when it is re-mounter R/W later.
342 * Thus, to force the recovery by marking the master node as
345 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
347 /* Write the recovered master node */
348 c
->max_sqnum
= le64_to_cpu(mst
->ch
.sqnum
) - 1;
349 err
= write_rcvrd_mst_node(c
, c
->mst_node
);
362 ubifs_err("failed to recover master node");
364 dbg_err("dumping first master node");
365 dbg_dump_node(c
, mst1
);
368 dbg_err("dumping second master node");
369 dbg_dump_node(c
, mst2
);
377 * ubifs_write_rcvrd_mst_node - write the recovered master node.
378 * @c: UBIFS file-system description object
380 * This function writes the master node that was recovered during mounting in
381 * read-only mode and must now be written because we are remounting rw.
383 * This function returns %0 on success and a negative error code on failure.
385 int ubifs_write_rcvrd_mst_node(struct ubifs_info
*c
)
389 if (!c
->rcvrd_mst_node
)
391 c
->rcvrd_mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
392 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
393 err
= write_rcvrd_mst_node(c
, c
->rcvrd_mst_node
);
396 kfree(c
->rcvrd_mst_node
);
397 c
->rcvrd_mst_node
= NULL
;
402 * is_last_write - determine if an offset was in the last write to a LEB.
403 * @c: UBIFS file-system description object
404 * @buf: buffer to check
405 * @offs: offset to check
407 * This function returns %1 if @offs was in the last write to the LEB whose data
408 * is in @buf, otherwise %0 is returned. The determination is made by checking
409 * for subsequent empty space starting from the next @c->max_write_size
412 static int is_last_write(const struct ubifs_info
*c
, void *buf
, int offs
)
414 int empty_offs
, check_len
;
418 * Round up to the next @c->max_write_size boundary i.e. @offs is in
419 * the last wbuf written. After that should be empty space.
421 empty_offs
= ALIGN(offs
+ 1, c
->max_write_size
);
422 check_len
= c
->leb_size
- empty_offs
;
423 p
= buf
+ empty_offs
- offs
;
424 return is_empty(p
, check_len
);
428 * clean_buf - clean the data from an LEB sitting in a buffer.
429 * @c: UBIFS file-system description object
430 * @buf: buffer to clean
431 * @lnum: LEB number to clean
432 * @offs: offset from which to clean
433 * @len: length of buffer
435 * This function pads up to the next min_io_size boundary (if there is one) and
436 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
437 * @c->min_io_size boundary.
439 static void clean_buf(const struct ubifs_info
*c
, void **buf
, int lnum
,
442 int empty_offs
, pad_len
;
445 dbg_rcvry("cleaning corruption at %d:%d", lnum
, *offs
);
447 ubifs_assert(!(*offs
& 7));
448 empty_offs
= ALIGN(*offs
, c
->min_io_size
);
449 pad_len
= empty_offs
- *offs
;
450 ubifs_pad(c
, *buf
, pad_len
);
454 memset(*buf
, 0xff, c
->leb_size
- empty_offs
);
458 * no_more_nodes - determine if there are no more nodes in a buffer.
459 * @c: UBIFS file-system description object
460 * @buf: buffer to check
461 * @len: length of buffer
462 * @lnum: LEB number of the LEB from which @buf was read
463 * @offs: offset from which @buf was read
465 * This function ensures that the corrupted node at @offs is the last thing
466 * written to a LEB. This function returns %1 if more data is not found and
467 * %0 if more data is found.
469 static int no_more_nodes(const struct ubifs_info
*c
, void *buf
, int len
,
472 struct ubifs_ch
*ch
= buf
;
473 int skip
, dlen
= le32_to_cpu(ch
->len
);
475 /* Check for empty space after the corrupt node's common header */
476 skip
= ALIGN(offs
+ UBIFS_CH_SZ
, c
->max_write_size
) - offs
;
477 if (is_empty(buf
+ skip
, len
- skip
))
480 * The area after the common header size is not empty, so the common
481 * header must be intact. Check it.
483 if (ubifs_check_node(c
, buf
, lnum
, offs
, 1, 0) != -EUCLEAN
) {
484 dbg_rcvry("unexpected bad common header at %d:%d", lnum
, offs
);
487 /* Now we know the corrupt node's length we can skip over it */
488 skip
= ALIGN(offs
+ dlen
, c
->max_write_size
) - offs
;
489 /* After which there should be empty space */
490 if (is_empty(buf
+ skip
, len
- skip
))
492 dbg_rcvry("unexpected data at %d:%d", lnum
, offs
+ skip
);
497 * fix_unclean_leb - fix an unclean LEB.
498 * @c: UBIFS file-system description object
499 * @sleb: scanned LEB information
500 * @start: offset where scan started
502 static int fix_unclean_leb(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
505 int lnum
= sleb
->lnum
, endpt
= start
;
507 /* Get the end offset of the last node we are keeping */
508 if (!list_empty(&sleb
->nodes
)) {
509 struct ubifs_scan_node
*snod
;
511 snod
= list_entry(sleb
->nodes
.prev
,
512 struct ubifs_scan_node
, list
);
513 endpt
= snod
->offs
+ snod
->len
;
516 if (c
->ro_mount
&& !c
->remounting_rw
) {
517 /* Add to recovery list */
518 struct ubifs_unclean_leb
*ucleb
;
520 dbg_rcvry("need to fix LEB %d start %d endpt %d",
521 lnum
, start
, sleb
->endpt
);
522 ucleb
= kzalloc(sizeof(struct ubifs_unclean_leb
), GFP_NOFS
);
526 ucleb
->endpt
= endpt
;
527 list_add_tail(&ucleb
->list
, &c
->unclean_leb_list
);
529 /* Write the fixed LEB back to flash */
532 dbg_rcvry("fixing LEB %d start %d endpt %d",
533 lnum
, start
, sleb
->endpt
);
535 err
= ubifs_leb_unmap(c
, lnum
);
539 int len
= ALIGN(endpt
, c
->min_io_size
);
542 err
= ubi_read(c
->ubi
, lnum
, sleb
->buf
, 0,
547 /* Pad to min_io_size */
549 int pad_len
= len
- ALIGN(endpt
, 8);
552 void *buf
= sleb
->buf
+ len
- pad_len
;
554 ubifs_pad(c
, buf
, pad_len
);
557 err
= ubi_leb_change(c
->ubi
, lnum
, sleb
->buf
, len
,
567 * drop_incomplete_group - drop nodes from an incomplete group.
568 * @sleb: scanned LEB information
569 * @offs: offset of dropped nodes is returned here
571 * This function returns %1 if nodes are dropped and %0 otherwise.
573 static int drop_incomplete_group(struct ubifs_scan_leb
*sleb
, int *offs
)
577 while (!list_empty(&sleb
->nodes
)) {
578 struct ubifs_scan_node
*snod
;
581 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
,
584 if (ch
->group_type
!= UBIFS_IN_NODE_GROUP
)
586 dbg_rcvry("dropping node at %d:%d", sleb
->lnum
, snod
->offs
);
588 list_del(&snod
->list
);
590 sleb
->nodes_cnt
-= 1;
597 * ubifs_recover_leb - scan and recover a LEB.
598 * @c: UBIFS file-system description object
601 * @sbuf: LEB-sized buffer to use
602 * @grouped: nodes may be grouped for recovery
604 * This function does a scan of a LEB, but caters for errors that might have
605 * been caused by the unclean unmount from which we are attempting to recover.
606 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
607 * found, and a negative error code in case of failure.
609 struct ubifs_scan_leb
*ubifs_recover_leb(struct ubifs_info
*c
, int lnum
,
610 int offs
, void *sbuf
, int grouped
)
612 int err
, len
= c
->leb_size
- offs
, need_clean
= 0, quiet
= 1;
613 int empty_chkd
= 0, start
= offs
;
614 struct ubifs_scan_leb
*sleb
;
615 void *buf
= sbuf
+ offs
;
617 dbg_rcvry("%d:%d", lnum
, offs
);
619 sleb
= ubifs_start_scan(c
, lnum
, offs
, sbuf
);
629 dbg_scan("look at LEB %d:%d (%d bytes left)",
635 * Scan quietly until there is an error from which we cannot
638 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
640 if (ret
== SCANNED_A_NODE
) {
641 /* A valid node, and not a padding node */
642 struct ubifs_ch
*ch
= buf
;
645 err
= ubifs_add_snod(c
, sleb
, buf
, offs
);
648 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
656 /* Padding bytes or a valid padding node */
663 if (ret
== SCANNED_EMPTY_SPACE
) {
664 if (!is_empty(buf
, len
)) {
665 if (!is_last_write(c
, buf
, offs
))
667 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
674 if (ret
== SCANNED_GARBAGE
|| ret
== SCANNED_A_BAD_PAD_NODE
)
675 if (is_last_write(c
, buf
, offs
)) {
676 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
682 if (ret
== SCANNED_A_CORRUPT_NODE
)
683 if (no_more_nodes(c
, buf
, len
, lnum
, offs
)) {
684 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
691 /* Redo the last scan but noisily */
697 case SCANNED_GARBAGE
:
700 case SCANNED_A_CORRUPT_NODE
:
701 case SCANNED_A_BAD_PAD_NODE
:
711 if (!empty_chkd
&& !is_empty(buf
, len
)) {
712 if (is_last_write(c
, buf
, offs
)) {
713 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
716 int corruption
= first_non_ff(buf
, len
);
719 * See header comment for this file for more
720 * explanations about the reasons we have this check.
722 ubifs_err("corrupt empty space LEB %d:%d, corruption "
723 "starts at %d", lnum
, offs
, corruption
);
724 /* Make sure we dump interesting non-0xFF data */
731 /* Drop nodes from incomplete group */
732 if (grouped
&& drop_incomplete_group(sleb
, &offs
)) {
734 len
= c
->leb_size
- offs
;
735 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
739 if (offs
% c
->min_io_size
) {
740 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
744 ubifs_end_scan(c
, sleb
, lnum
, offs
);
747 err
= fix_unclean_leb(c
, sleb
, start
);
755 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
758 ubifs_err("LEB %d scanning failed", lnum
);
759 ubifs_scan_destroy(sleb
);
764 * get_cs_sqnum - get commit start sequence number.
765 * @c: UBIFS file-system description object
766 * @lnum: LEB number of commit start node
767 * @offs: offset of commit start node
768 * @cs_sqnum: commit start sequence number is returned here
770 * This function returns %0 on success and a negative error code on failure.
772 static int get_cs_sqnum(struct ubifs_info
*c
, int lnum
, int offs
,
773 unsigned long long *cs_sqnum
)
775 struct ubifs_cs_node
*cs_node
= NULL
;
778 dbg_rcvry("at %d:%d", lnum
, offs
);
779 cs_node
= kmalloc(UBIFS_CS_NODE_SZ
, GFP_KERNEL
);
782 if (c
->leb_size
- offs
< UBIFS_CS_NODE_SZ
)
784 err
= ubi_read(c
->ubi
, lnum
, (void *)cs_node
, offs
, UBIFS_CS_NODE_SZ
);
785 if (err
&& err
!= -EBADMSG
)
787 ret
= ubifs_scan_a_node(c
, cs_node
, UBIFS_CS_NODE_SZ
, lnum
, offs
, 0);
788 if (ret
!= SCANNED_A_NODE
) {
789 dbg_err("Not a valid node");
792 if (cs_node
->ch
.node_type
!= UBIFS_CS_NODE
) {
793 dbg_err("Node a CS node, type is %d", cs_node
->ch
.node_type
);
796 if (le64_to_cpu(cs_node
->cmt_no
) != c
->cmt_no
) {
797 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
798 (unsigned long long)le64_to_cpu(cs_node
->cmt_no
),
802 *cs_sqnum
= le64_to_cpu(cs_node
->ch
.sqnum
);
803 dbg_rcvry("commit start sqnum %llu", *cs_sqnum
);
810 ubifs_err("failed to get CS sqnum");
816 * ubifs_recover_log_leb - scan and recover a log LEB.
817 * @c: UBIFS file-system description object
820 * @sbuf: LEB-sized buffer to use
822 * This function does a scan of a LEB, but caters for errors that might have
823 * been caused by unclean reboots from which we are attempting to recover
824 * (assume that only the last log LEB can be corrupted by an unclean reboot).
826 * This function returns %0 on success and a negative error code on failure.
828 struct ubifs_scan_leb
*ubifs_recover_log_leb(struct ubifs_info
*c
, int lnum
,
829 int offs
, void *sbuf
)
831 struct ubifs_scan_leb
*sleb
;
834 dbg_rcvry("LEB %d", lnum
);
835 next_lnum
= lnum
+ 1;
836 if (next_lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
837 next_lnum
= UBIFS_LOG_LNUM
;
838 if (next_lnum
!= c
->ltail_lnum
) {
840 * We can only recover at the end of the log, so check that the
841 * next log LEB is empty or out of date.
843 sleb
= ubifs_scan(c
, next_lnum
, 0, sbuf
, 0);
846 if (sleb
->nodes_cnt
) {
847 struct ubifs_scan_node
*snod
;
848 unsigned long long cs_sqnum
= c
->cs_sqnum
;
850 snod
= list_entry(sleb
->nodes
.next
,
851 struct ubifs_scan_node
, list
);
855 err
= get_cs_sqnum(c
, lnum
, offs
, &cs_sqnum
);
857 ubifs_scan_destroy(sleb
);
861 if (snod
->sqnum
> cs_sqnum
) {
862 ubifs_err("unrecoverable log corruption "
864 ubifs_scan_destroy(sleb
);
865 return ERR_PTR(-EUCLEAN
);
868 ubifs_scan_destroy(sleb
);
870 return ubifs_recover_leb(c
, lnum
, offs
, sbuf
, 0);
874 * recover_head - recover a head.
875 * @c: UBIFS file-system description object
876 * @lnum: LEB number of head to recover
877 * @offs: offset of head to recover
878 * @sbuf: LEB-sized buffer to use
880 * This function ensures that there is no data on the flash at a head location.
882 * This function returns %0 on success and a negative error code on failure.
884 static int recover_head(const struct ubifs_info
*c
, int lnum
, int offs
,
887 int len
= c
->max_write_size
, err
;
889 if (offs
+ len
> c
->leb_size
)
890 len
= c
->leb_size
- offs
;
895 /* Read at the head location and check it is empty flash */
896 err
= ubi_read(c
->ubi
, lnum
, sbuf
, offs
, len
);
897 if (err
|| !is_empty(sbuf
, len
)) {
898 dbg_rcvry("cleaning head at %d:%d", lnum
, offs
);
900 return ubifs_leb_unmap(c
, lnum
);
901 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, offs
);
904 return ubi_leb_change(c
->ubi
, lnum
, sbuf
, offs
, UBI_UNKNOWN
);
911 * ubifs_recover_inl_heads - recover index and LPT heads.
912 * @c: UBIFS file-system description object
913 * @sbuf: LEB-sized buffer to use
915 * This function ensures that there is no data on the flash at the index and
916 * LPT head locations.
918 * This deals with the recovery of a half-completed journal commit. UBIFS is
919 * careful never to overwrite the last version of the index or the LPT. Because
920 * the index and LPT are wandering trees, data from a half-completed commit will
921 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
922 * assumed to be empty and will be unmapped anyway before use, or in the index
925 * This function returns %0 on success and a negative error code on failure.
927 int ubifs_recover_inl_heads(const struct ubifs_info
*c
, void *sbuf
)
931 ubifs_assert(!c
->ro_mount
|| c
->remounting_rw
);
933 dbg_rcvry("checking index head at %d:%d", c
->ihead_lnum
, c
->ihead_offs
);
934 err
= recover_head(c
, c
->ihead_lnum
, c
->ihead_offs
, sbuf
);
938 dbg_rcvry("checking LPT head at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
939 err
= recover_head(c
, c
->nhead_lnum
, c
->nhead_offs
, sbuf
);
947 * clean_an_unclean_leb - read and write a LEB to remove corruption.
948 * @c: UBIFS file-system description object
949 * @ucleb: unclean LEB information
950 * @sbuf: LEB-sized buffer to use
952 * This function reads a LEB up to a point pre-determined by the mount recovery,
953 * checks the nodes, and writes the result back to the flash, thereby cleaning
954 * off any following corruption, or non-fatal ECC errors.
956 * This function returns %0 on success and a negative error code on failure.
958 static int clean_an_unclean_leb(const struct ubifs_info
*c
,
959 struct ubifs_unclean_leb
*ucleb
, void *sbuf
)
961 int err
, lnum
= ucleb
->lnum
, offs
= 0, len
= ucleb
->endpt
, quiet
= 1;
964 dbg_rcvry("LEB %d len %d", lnum
, len
);
967 /* Nothing to read, just unmap it */
968 err
= ubifs_leb_unmap(c
, lnum
);
974 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
975 if (err
&& err
!= -EBADMSG
)
983 /* Scan quietly until there is an error */
984 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
986 if (ret
== SCANNED_A_NODE
) {
987 /* A valid node, and not a padding node */
988 struct ubifs_ch
*ch
= buf
;
991 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
999 /* Padding bytes or a valid padding node */
1006 if (ret
== SCANNED_EMPTY_SPACE
) {
1007 ubifs_err("unexpected empty space at %d:%d",
1013 /* Redo the last scan but noisily */
1018 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
1022 /* Pad to min_io_size */
1023 len
= ALIGN(ucleb
->endpt
, c
->min_io_size
);
1024 if (len
> ucleb
->endpt
) {
1025 int pad_len
= len
- ALIGN(ucleb
->endpt
, 8);
1028 buf
= c
->sbuf
+ len
- pad_len
;
1029 ubifs_pad(c
, buf
, pad_len
);
1033 /* Write back the LEB atomically */
1034 err
= ubi_leb_change(c
->ubi
, lnum
, sbuf
, len
, UBI_UNKNOWN
);
1038 dbg_rcvry("cleaned LEB %d", lnum
);
1044 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1045 * @c: UBIFS file-system description object
1046 * @sbuf: LEB-sized buffer to use
1048 * This function cleans a LEB identified during recovery that needs to be
1049 * written but was not because UBIFS was mounted read-only. This happens when
1050 * remounting to read-write mode.
1052 * This function returns %0 on success and a negative error code on failure.
1054 int ubifs_clean_lebs(const struct ubifs_info
*c
, void *sbuf
)
1056 dbg_rcvry("recovery");
1057 while (!list_empty(&c
->unclean_leb_list
)) {
1058 struct ubifs_unclean_leb
*ucleb
;
1061 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1062 struct ubifs_unclean_leb
, list
);
1063 err
= clean_an_unclean_leb(c
, ucleb
, sbuf
);
1066 list_del(&ucleb
->list
);
1073 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1074 * @c: UBIFS file-system description object
1076 * Out-of-place garbage collection requires always one empty LEB with which to
1077 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1078 * written to the master node on unmounting. In the case of an unclean unmount
1079 * the value of gc_lnum recorded in the master node is out of date and cannot
1080 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1081 * However, there may not be enough empty space, in which case it must be
1082 * possible to GC the dirtiest LEB into the GC head LEB.
1084 * This function also runs the commit which causes the TNC updates from
1085 * size-recovery and orphans to be written to the flash. That is important to
1086 * ensure correct replay order for subsequent mounts.
1088 * This function returns %0 on success and a negative error code on failure.
1090 int ubifs_rcvry_gc_commit(struct ubifs_info
*c
)
1092 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
1093 struct ubifs_lprops lp
;
1097 if (wbuf
->lnum
== -1) {
1098 dbg_rcvry("no GC head LEB");
1102 * See whether the used space in the dirtiest LEB fits in the GC head
1105 if (wbuf
->offs
== c
->leb_size
) {
1106 dbg_rcvry("no room in GC head LEB");
1109 err
= ubifs_find_dirty_leb(c
, &lp
, wbuf
->offs
, 2);
1112 * There are no dirty or empty LEBs subject to here being
1113 * enough for the index. Try to use
1114 * 'ubifs_find_free_leb_for_idx()', which will return any empty
1115 * LEBs (ignoring index requirements). If the index then
1116 * doesn't have enough LEBs the recovery commit will fail -
1117 * which is the same result anyway i.e. recovery fails. So
1118 * there is no problem ignoring index requirements and just
1119 * grabbing a free LEB since we have already established there
1120 * is not a dirty LEB we could have used instead.
1122 if (err
== -ENOSPC
) {
1123 dbg_rcvry("could not find a dirty LEB");
1128 ubifs_assert(!(lp
.flags
& LPROPS_INDEX
));
1130 if (lp
.free
+ lp
.dirty
== c
->leb_size
) {
1131 /* An empty LEB was returned */
1132 if (lp
.free
!= c
->leb_size
) {
1133 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
,
1138 err
= ubifs_leb_unmap(c
, lnum
);
1142 dbg_rcvry("allocated LEB %d for GC", lnum
);
1143 /* Run the commit */
1144 dbg_rcvry("committing");
1145 return ubifs_run_commit(c
);
1148 * There was no empty LEB so the used space in the dirtiest LEB must fit
1149 * in the GC head LEB.
1151 if (lp
.free
+ lp
.dirty
< wbuf
->offs
) {
1152 dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1153 lnum
, wbuf
->lnum
, wbuf
->offs
);
1154 err
= ubifs_return_leb(c
, lnum
);
1160 * We run the commit before garbage collection otherwise subsequent
1161 * mounts will see the GC and orphan deletion in a different order.
1163 dbg_rcvry("committing");
1164 err
= ubifs_run_commit(c
);
1168 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1169 * - use locking to keep 'ubifs_assert()' happy.
1171 dbg_rcvry("GC'ing LEB %d", lnum
);
1172 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1173 err
= ubifs_garbage_collect_leb(c
, &lp
);
1175 int err2
= ubifs_wbuf_sync_nolock(wbuf
);
1180 mutex_unlock(&wbuf
->io_mutex
);
1182 dbg_err("GC failed, error %d", err
);
1187 if (err
!= LEB_RETAINED
) {
1188 dbg_err("GC returned %d", err
);
1191 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1194 dbg_rcvry("allocated LEB %d for GC", lnum
);
1199 * There is no GC head LEB or the free space in the GC head LEB is too
1200 * small, or there are not dirty LEBs. Allocate gc_lnum by calling
1201 * 'ubifs_find_free_leb_for_idx()' so GC is not run.
1203 lnum
= ubifs_find_free_leb_for_idx(c
);
1205 dbg_err("could not find an empty LEB");
1208 /* And reset the index flag */
1209 err
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
1214 dbg_rcvry("allocated LEB %d for GC", lnum
);
1215 /* Run the commit */
1216 dbg_rcvry("committing");
1217 return ubifs_run_commit(c
);
1221 * struct size_entry - inode size information for recovery.
1222 * @rb: link in the RB-tree of sizes
1223 * @inum: inode number
1224 * @i_size: size on inode
1225 * @d_size: maximum size based on data nodes
1226 * @exists: indicates whether the inode exists
1227 * @inode: inode if pinned in memory awaiting rw mode to fix it
1235 struct inode
*inode
;
1239 * add_ino - add an entry to the size tree.
1240 * @c: UBIFS file-system description object
1241 * @inum: inode number
1242 * @i_size: size on inode
1243 * @d_size: maximum size based on data nodes
1244 * @exists: indicates whether the inode exists
1246 static int add_ino(struct ubifs_info
*c
, ino_t inum
, loff_t i_size
,
1247 loff_t d_size
, int exists
)
1249 struct rb_node
**p
= &c
->size_tree
.rb_node
, *parent
= NULL
;
1250 struct size_entry
*e
;
1254 e
= rb_entry(parent
, struct size_entry
, rb
);
1258 p
= &(*p
)->rb_right
;
1261 e
= kzalloc(sizeof(struct size_entry
), GFP_KERNEL
);
1270 rb_link_node(&e
->rb
, parent
, p
);
1271 rb_insert_color(&e
->rb
, &c
->size_tree
);
1277 * find_ino - find an entry on the size tree.
1278 * @c: UBIFS file-system description object
1279 * @inum: inode number
1281 static struct size_entry
*find_ino(struct ubifs_info
*c
, ino_t inum
)
1283 struct rb_node
*p
= c
->size_tree
.rb_node
;
1284 struct size_entry
*e
;
1287 e
= rb_entry(p
, struct size_entry
, rb
);
1290 else if (inum
> e
->inum
)
1299 * remove_ino - remove an entry from the size tree.
1300 * @c: UBIFS file-system description object
1301 * @inum: inode number
1303 static void remove_ino(struct ubifs_info
*c
, ino_t inum
)
1305 struct size_entry
*e
= find_ino(c
, inum
);
1309 rb_erase(&e
->rb
, &c
->size_tree
);
1314 * ubifs_destroy_size_tree - free resources related to the size tree.
1315 * @c: UBIFS file-system description object
1317 void ubifs_destroy_size_tree(struct ubifs_info
*c
)
1319 struct rb_node
*this = c
->size_tree
.rb_node
;
1320 struct size_entry
*e
;
1323 if (this->rb_left
) {
1324 this = this->rb_left
;
1326 } else if (this->rb_right
) {
1327 this = this->rb_right
;
1330 e
= rb_entry(this, struct size_entry
, rb
);
1333 this = rb_parent(this);
1335 if (this->rb_left
== &e
->rb
)
1336 this->rb_left
= NULL
;
1338 this->rb_right
= NULL
;
1342 c
->size_tree
= RB_ROOT
;
1346 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1347 * @c: UBIFS file-system description object
1349 * @deletion: node is for a deletion
1350 * @new_size: inode size
1352 * This function has two purposes:
1353 * 1) to ensure there are no data nodes that fall outside the inode size
1354 * 2) to ensure there are no data nodes for inodes that do not exist
1355 * To accomplish those purposes, a rb-tree is constructed containing an entry
1356 * for each inode number in the journal that has not been deleted, and recording
1357 * the size from the inode node, the maximum size of any data node (also altered
1358 * by truncations) and a flag indicating a inode number for which no inode node
1359 * was present in the journal.
1361 * Note that there is still the possibility that there are data nodes that have
1362 * been committed that are beyond the inode size, however the only way to find
1363 * them would be to scan the entire index. Alternatively, some provision could
1364 * be made to record the size of inodes at the start of commit, which would seem
1365 * very cumbersome for a scenario that is quite unlikely and the only negative
1366 * consequence of which is wasted space.
1368 * This functions returns %0 on success and a negative error code on failure.
1370 int ubifs_recover_size_accum(struct ubifs_info
*c
, union ubifs_key
*key
,
1371 int deletion
, loff_t new_size
)
1373 ino_t inum
= key_inum(c
, key
);
1374 struct size_entry
*e
;
1377 switch (key_type(c
, key
)) {
1380 remove_ino(c
, inum
);
1382 e
= find_ino(c
, inum
);
1384 e
->i_size
= new_size
;
1387 err
= add_ino(c
, inum
, new_size
, 0, 1);
1393 case UBIFS_DATA_KEY
:
1394 e
= find_ino(c
, inum
);
1396 if (new_size
> e
->d_size
)
1397 e
->d_size
= new_size
;
1399 err
= add_ino(c
, inum
, 0, new_size
, 0);
1404 case UBIFS_TRUN_KEY
:
1405 e
= find_ino(c
, inum
);
1407 e
->d_size
= new_size
;
1414 * fix_size_in_place - fix inode size in place on flash.
1415 * @c: UBIFS file-system description object
1416 * @e: inode size information for recovery
1418 static int fix_size_in_place(struct ubifs_info
*c
, struct size_entry
*e
)
1420 struct ubifs_ino_node
*ino
= c
->sbuf
;
1422 union ubifs_key key
;
1423 int err
, lnum
, offs
, len
;
1427 /* Locate the inode node LEB number and offset */
1428 ino_key_init(c
, &key
, e
->inum
);
1429 err
= ubifs_tnc_locate(c
, &key
, ino
, &lnum
, &offs
);
1433 * If the size recorded on the inode node is greater than the size that
1434 * was calculated from nodes in the journal then don't change the inode.
1436 i_size
= le64_to_cpu(ino
->size
);
1437 if (i_size
>= e
->d_size
)
1440 err
= ubi_read(c
->ubi
, lnum
, c
->sbuf
, 0, c
->leb_size
);
1443 /* Change the size field and recalculate the CRC */
1444 ino
= c
->sbuf
+ offs
;
1445 ino
->size
= cpu_to_le64(e
->d_size
);
1446 len
= le32_to_cpu(ino
->ch
.len
);
1447 crc
= crc32(UBIFS_CRC32_INIT
, (void *)ino
+ 8, len
- 8);
1448 ino
->ch
.crc
= cpu_to_le32(crc
);
1449 /* Work out where data in the LEB ends and free space begins */
1451 len
= c
->leb_size
- 1;
1452 while (p
[len
] == 0xff)
1454 len
= ALIGN(len
+ 1, c
->min_io_size
);
1455 /* Atomically write the fixed LEB back again */
1456 err
= ubi_leb_change(c
->ubi
, lnum
, c
->sbuf
, len
, UBI_UNKNOWN
);
1459 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1460 (unsigned long)e
->inum
, lnum
, offs
, i_size
, e
->d_size
);
1464 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1465 (unsigned long)e
->inum
, e
->i_size
, e
->d_size
, err
);
1470 * ubifs_recover_size - recover inode size.
1471 * @c: UBIFS file-system description object
1473 * This function attempts to fix inode size discrepancies identified by the
1474 * 'ubifs_recover_size_accum()' function.
1476 * This functions returns %0 on success and a negative error code on failure.
1478 int ubifs_recover_size(struct ubifs_info
*c
)
1480 struct rb_node
*this = rb_first(&c
->size_tree
);
1483 struct size_entry
*e
;
1486 e
= rb_entry(this, struct size_entry
, rb
);
1488 union ubifs_key key
;
1490 ino_key_init(c
, &key
, e
->inum
);
1491 err
= ubifs_tnc_lookup(c
, &key
, c
->sbuf
);
1492 if (err
&& err
!= -ENOENT
)
1494 if (err
== -ENOENT
) {
1495 /* Remove data nodes that have no inode */
1496 dbg_rcvry("removing ino %lu",
1497 (unsigned long)e
->inum
);
1498 err
= ubifs_tnc_remove_ino(c
, e
->inum
);
1502 struct ubifs_ino_node
*ino
= c
->sbuf
;
1505 e
->i_size
= le64_to_cpu(ino
->size
);
1508 if (e
->exists
&& e
->i_size
< e
->d_size
) {
1509 if (!e
->inode
&& c
->ro_mount
) {
1510 /* Fix the inode size and pin it in memory */
1511 struct inode
*inode
;
1513 inode
= ubifs_iget(c
->vfs_sb
, e
->inum
);
1515 return PTR_ERR(inode
);
1516 if (inode
->i_size
< e
->d_size
) {
1517 dbg_rcvry("ino %lu size %lld -> %lld",
1518 (unsigned long)e
->inum
,
1519 e
->d_size
, inode
->i_size
);
1520 inode
->i_size
= e
->d_size
;
1521 ubifs_inode(inode
)->ui_size
= e
->d_size
;
1523 this = rb_next(this);
1528 /* Fix the size in place */
1529 err
= fix_size_in_place(c
, e
);
1536 this = rb_next(this);
1537 rb_erase(&e
->rb
, &c
->size_tree
);