2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency
= 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG
;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity
= 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency
= 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly
;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield
;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
90 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
93 * The exponential sliding window over which load is averaged for shares
97 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
99 static const struct sched_class fair_sched_class
;
101 /**************************************************************
102 * CFS operations on generic schedulable entities:
105 #ifdef CONFIG_FAIR_GROUP_SCHED
107 /* cpu runqueue to which this cfs_rq is attached */
108 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
113 /* An entity is a task if it doesn't "own" a runqueue */
114 #define entity_is_task(se) (!se->my_q)
116 static inline struct task_struct
*task_of(struct sched_entity
*se
)
118 #ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se
));
121 return container_of(se
, struct task_struct
, se
);
124 /* Walk up scheduling entities hierarchy */
125 #define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
128 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
133 /* runqueue on which this entity is (to be) queued */
134 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
139 /* runqueue "owned" by this group */
140 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
145 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
148 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
150 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
153 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
155 if (!cfs_rq
->on_list
) {
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
162 if (cfs_rq
->tg
->parent
&&
163 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
164 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
165 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
167 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
168 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
175 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
177 if (cfs_rq
->on_list
) {
178 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
183 /* Iterate thr' all leaf cfs_rq's on a runqueue */
184 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
187 /* Do the two (enqueued) entities belong to the same group ? */
189 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
191 if (se
->cfs_rq
== pse
->cfs_rq
)
197 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
202 /* return depth at which a sched entity is present in the hierarchy */
203 static inline int depth_se(struct sched_entity
*se
)
207 for_each_sched_entity(se
)
214 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
216 int se_depth
, pse_depth
;
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
225 /* First walk up until both entities are at same depth */
226 se_depth
= depth_se(*se
);
227 pse_depth
= depth_se(*pse
);
229 while (se_depth
> pse_depth
) {
231 *se
= parent_entity(*se
);
234 while (pse_depth
> se_depth
) {
236 *pse
= parent_entity(*pse
);
239 while (!is_same_group(*se
, *pse
)) {
240 *se
= parent_entity(*se
);
241 *pse
= parent_entity(*pse
);
245 #else /* !CONFIG_FAIR_GROUP_SCHED */
247 static inline struct task_struct
*task_of(struct sched_entity
*se
)
249 return container_of(se
, struct task_struct
, se
);
252 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
254 return container_of(cfs_rq
, struct rq
, cfs
);
257 #define entity_is_task(se) 1
259 #define for_each_sched_entity(se) \
260 for (; se; se = NULL)
262 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
264 return &task_rq(p
)->cfs
;
267 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
269 struct task_struct
*p
= task_of(se
);
270 struct rq
*rq
= task_rq(p
);
275 /* runqueue "owned" by this group */
276 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
281 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
283 return &cpu_rq(this_cpu
)->cfs
;
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
290 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
294 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
298 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
303 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
309 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
313 #endif /* CONFIG_FAIR_GROUP_SCHED */
316 /**************************************************************
317 * Scheduling class tree data structure manipulation methods:
320 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
322 s64 delta
= (s64
)(vruntime
- min_vruntime
);
324 min_vruntime
= vruntime
;
329 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
331 s64 delta
= (s64
)(vruntime
- min_vruntime
);
333 min_vruntime
= vruntime
;
338 static inline int entity_before(struct sched_entity
*a
,
339 struct sched_entity
*b
)
341 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
344 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
346 return se
->vruntime
- cfs_rq
->min_vruntime
;
349 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
351 u64 vruntime
= cfs_rq
->min_vruntime
;
354 vruntime
= cfs_rq
->curr
->vruntime
;
356 if (cfs_rq
->rb_leftmost
) {
357 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
362 vruntime
= se
->vruntime
;
364 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
367 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
371 * Enqueue an entity into the rb-tree:
373 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
375 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
376 struct rb_node
*parent
= NULL
;
377 struct sched_entity
*entry
;
378 s64 key
= entity_key(cfs_rq
, se
);
382 * Find the right place in the rbtree:
386 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
391 if (key
< entity_key(cfs_rq
, entry
)) {
392 link
= &parent
->rb_left
;
394 link
= &parent
->rb_right
;
400 * Maintain a cache of leftmost tree entries (it is frequently
404 cfs_rq
->rb_leftmost
= &se
->run_node
;
406 rb_link_node(&se
->run_node
, parent
, link
);
407 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
410 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
412 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
413 struct rb_node
*next_node
;
415 next_node
= rb_next(&se
->run_node
);
416 cfs_rq
->rb_leftmost
= next_node
;
419 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
422 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
424 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
429 return rb_entry(left
, struct sched_entity
, run_node
);
432 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
434 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
439 return rb_entry(last
, struct sched_entity
, run_node
);
442 /**************************************************************
443 * Scheduling class statistics methods:
446 #ifdef CONFIG_SCHED_DEBUG
447 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
448 void __user
*buffer
, size_t *lenp
,
451 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
452 int factor
= get_update_sysctl_factor();
457 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
458 sysctl_sched_min_granularity
);
460 #define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity
);
463 WRT_SYSCTL(sched_latency
);
464 WRT_SYSCTL(sched_wakeup_granularity
);
474 static inline unsigned long
475 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
477 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
478 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
484 * The idea is to set a period in which each task runs once.
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
489 * p = (nr <= nl) ? l : l*nr/nl
491 static u64
__sched_period(unsigned long nr_running
)
493 u64 period
= sysctl_sched_latency
;
494 unsigned long nr_latency
= sched_nr_latency
;
496 if (unlikely(nr_running
> nr_latency
)) {
497 period
= sysctl_sched_min_granularity
;
498 period
*= nr_running
;
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
510 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
512 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
514 for_each_sched_entity(se
) {
515 struct load_weight
*load
;
516 struct load_weight lw
;
518 cfs_rq
= cfs_rq_of(se
);
519 load
= &cfs_rq
->load
;
521 if (unlikely(!se
->on_rq
)) {
524 update_load_add(&lw
, se
->load
.weight
);
527 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
533 * We calculate the vruntime slice of a to be inserted task
537 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
539 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
542 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
);
543 static void update_cfs_shares(struct cfs_rq
*cfs_rq
, long weight_delta
);
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
550 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
551 unsigned long delta_exec
)
553 unsigned long delta_exec_weighted
;
555 schedstat_set(curr
->statistics
.exec_max
,
556 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
558 curr
->sum_exec_runtime
+= delta_exec
;
559 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
560 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
562 curr
->vruntime
+= delta_exec_weighted
;
563 update_min_vruntime(cfs_rq
);
565 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566 cfs_rq
->load_unacc_exec_time
+= delta_exec
;
570 static void update_curr(struct cfs_rq
*cfs_rq
)
572 struct sched_entity
*curr
= cfs_rq
->curr
;
573 u64 now
= rq_of(cfs_rq
)->clock_task
;
574 unsigned long delta_exec
;
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
584 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
588 __update_curr(cfs_rq
, curr
, delta_exec
);
589 curr
->exec_start
= now
;
591 if (entity_is_task(curr
)) {
592 struct task_struct
*curtask
= task_of(curr
);
594 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
595 cpuacct_charge(curtask
, delta_exec
);
596 account_group_exec_runtime(curtask
, delta_exec
);
601 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
603 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
607 * Task is being enqueued - update stats:
609 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
615 if (se
!= cfs_rq
->curr
)
616 update_stats_wait_start(cfs_rq
, se
);
620 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
622 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
623 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
624 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
625 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
626 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
627 #ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se
)) {
629 trace_sched_stat_wait(task_of(se
),
630 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
633 schedstat_set(se
->statistics
.wait_start
, 0);
637 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
640 * Mark the end of the wait period if dequeueing a
643 if (se
!= cfs_rq
->curr
)
644 update_stats_wait_end(cfs_rq
, se
);
648 * We are picking a new current task - update its stats:
651 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
654 * We are starting a new run period:
656 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
659 /**************************************************
660 * Scheduling class queueing methods:
663 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
665 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
667 cfs_rq
->task_weight
+= weight
;
671 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
677 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
679 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
680 if (!parent_entity(se
))
681 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
682 if (entity_is_task(se
)) {
683 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
684 list_add(&se
->group_node
, &cfs_rq
->tasks
);
686 cfs_rq
->nr_running
++;
690 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
692 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
693 if (!parent_entity(se
))
694 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
695 if (entity_is_task(se
)) {
696 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
697 list_del_init(&se
->group_node
);
699 cfs_rq
->nr_running
--;
702 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
703 static void update_cfs_rq_load_contribution(struct cfs_rq
*cfs_rq
,
706 struct task_group
*tg
= cfs_rq
->tg
;
709 load_avg
= div64_u64(cfs_rq
->load_avg
, cfs_rq
->load_period
+1);
710 load_avg
-= cfs_rq
->load_contribution
;
712 if (global_update
|| abs(load_avg
) > cfs_rq
->load_contribution
/ 8) {
713 atomic_add(load_avg
, &tg
->load_weight
);
714 cfs_rq
->load_contribution
+= load_avg
;
718 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
720 u64 period
= sysctl_sched_shares_window
;
722 unsigned long load
= cfs_rq
->load
.weight
;
727 now
= rq_of(cfs_rq
)->clock
;
728 delta
= now
- cfs_rq
->load_stamp
;
730 /* truncate load history at 4 idle periods */
731 if (cfs_rq
->load_stamp
> cfs_rq
->load_last
&&
732 now
- cfs_rq
->load_last
> 4 * period
) {
733 cfs_rq
->load_period
= 0;
734 cfs_rq
->load_avg
= 0;
737 cfs_rq
->load_stamp
= now
;
738 cfs_rq
->load_unacc_exec_time
= 0;
739 cfs_rq
->load_period
+= delta
;
741 cfs_rq
->load_last
= now
;
742 cfs_rq
->load_avg
+= delta
* load
;
745 /* consider updating load contribution on each fold or truncate */
746 if (global_update
|| cfs_rq
->load_period
> period
747 || !cfs_rq
->load_period
)
748 update_cfs_rq_load_contribution(cfs_rq
, global_update
);
750 while (cfs_rq
->load_period
> period
) {
752 * Inline assembly required to prevent the compiler
753 * optimising this loop into a divmod call.
754 * See __iter_div_u64_rem() for another example of this.
756 asm("" : "+rm" (cfs_rq
->load_period
));
757 cfs_rq
->load_period
/= 2;
758 cfs_rq
->load_avg
/= 2;
761 if (!cfs_rq
->curr
&& !cfs_rq
->nr_running
&& !cfs_rq
->load_avg
)
762 list_del_leaf_cfs_rq(cfs_rq
);
765 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
766 unsigned long weight
)
769 /* commit outstanding execution time */
770 if (cfs_rq
->curr
== se
)
772 account_entity_dequeue(cfs_rq
, se
);
775 update_load_set(&se
->load
, weight
);
778 account_entity_enqueue(cfs_rq
, se
);
781 static void update_cfs_shares(struct cfs_rq
*cfs_rq
, long weight_delta
)
783 struct task_group
*tg
;
784 struct sched_entity
*se
;
785 long load_weight
, load
, shares
;
791 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
795 load
= cfs_rq
->load
.weight
+ weight_delta
;
797 load_weight
= atomic_read(&tg
->load_weight
);
798 load_weight
-= cfs_rq
->load_contribution
;
801 shares
= (tg
->shares
* load
);
803 shares
/= load_weight
;
805 if (shares
< MIN_SHARES
)
807 if (shares
> tg
->shares
)
810 reweight_entity(cfs_rq_of(se
), se
, shares
);
813 static void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
815 if (cfs_rq
->load_unacc_exec_time
> sysctl_sched_shares_window
) {
816 update_cfs_load(cfs_rq
, 0);
817 update_cfs_shares(cfs_rq
, 0);
820 #else /* CONFIG_FAIR_GROUP_SCHED */
821 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
825 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
, long weight_delta
)
829 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
832 #endif /* CONFIG_FAIR_GROUP_SCHED */
834 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
836 #ifdef CONFIG_SCHEDSTATS
837 struct task_struct
*tsk
= NULL
;
839 if (entity_is_task(se
))
842 if (se
->statistics
.sleep_start
) {
843 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
848 if (unlikely(delta
> se
->statistics
.sleep_max
))
849 se
->statistics
.sleep_max
= delta
;
851 se
->statistics
.sleep_start
= 0;
852 se
->statistics
.sum_sleep_runtime
+= delta
;
855 account_scheduler_latency(tsk
, delta
>> 10, 1);
856 trace_sched_stat_sleep(tsk
, delta
);
859 if (se
->statistics
.block_start
) {
860 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
865 if (unlikely(delta
> se
->statistics
.block_max
))
866 se
->statistics
.block_max
= delta
;
868 se
->statistics
.block_start
= 0;
869 se
->statistics
.sum_sleep_runtime
+= delta
;
872 if (tsk
->in_iowait
) {
873 se
->statistics
.iowait_sum
+= delta
;
874 se
->statistics
.iowait_count
++;
875 trace_sched_stat_iowait(tsk
, delta
);
879 * Blocking time is in units of nanosecs, so shift by
880 * 20 to get a milliseconds-range estimation of the
881 * amount of time that the task spent sleeping:
883 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
884 profile_hits(SLEEP_PROFILING
,
885 (void *)get_wchan(tsk
),
888 account_scheduler_latency(tsk
, delta
>> 10, 0);
894 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
896 #ifdef CONFIG_SCHED_DEBUG
897 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
902 if (d
> 3*sysctl_sched_latency
)
903 schedstat_inc(cfs_rq
, nr_spread_over
);
908 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
910 u64 vruntime
= cfs_rq
->min_vruntime
;
913 * The 'current' period is already promised to the current tasks,
914 * however the extra weight of the new task will slow them down a
915 * little, place the new task so that it fits in the slot that
916 * stays open at the end.
918 if (initial
&& sched_feat(START_DEBIT
))
919 vruntime
+= sched_vslice(cfs_rq
, se
);
921 /* sleeps up to a single latency don't count. */
923 unsigned long thresh
= sysctl_sched_latency
;
926 * Halve their sleep time's effect, to allow
927 * for a gentler effect of sleepers:
929 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
935 /* ensure we never gain time by being placed backwards. */
936 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
938 se
->vruntime
= vruntime
;
942 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
945 * Update the normalized vruntime before updating min_vruntime
946 * through callig update_curr().
948 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
949 se
->vruntime
+= cfs_rq
->min_vruntime
;
952 * Update run-time statistics of the 'current'.
955 update_cfs_load(cfs_rq
, 0);
956 update_cfs_shares(cfs_rq
, se
->load
.weight
);
957 account_entity_enqueue(cfs_rq
, se
);
959 if (flags
& ENQUEUE_WAKEUP
) {
960 place_entity(cfs_rq
, se
, 0);
961 enqueue_sleeper(cfs_rq
, se
);
964 update_stats_enqueue(cfs_rq
, se
);
965 check_spread(cfs_rq
, se
);
966 if (se
!= cfs_rq
->curr
)
967 __enqueue_entity(cfs_rq
, se
);
970 if (cfs_rq
->nr_running
== 1)
971 list_add_leaf_cfs_rq(cfs_rq
);
974 static void __clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
976 if (!se
|| cfs_rq
->last
== se
)
979 if (!se
|| cfs_rq
->next
== se
)
983 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
985 for_each_sched_entity(se
)
986 __clear_buddies(cfs_rq_of(se
), se
);
990 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
993 * Update run-time statistics of the 'current'.
997 update_stats_dequeue(cfs_rq
, se
);
998 if (flags
& DEQUEUE_SLEEP
) {
999 #ifdef CONFIG_SCHEDSTATS
1000 if (entity_is_task(se
)) {
1001 struct task_struct
*tsk
= task_of(se
);
1003 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1004 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
1005 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1006 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
1011 clear_buddies(cfs_rq
, se
);
1013 if (se
!= cfs_rq
->curr
)
1014 __dequeue_entity(cfs_rq
, se
);
1016 update_cfs_load(cfs_rq
, 0);
1017 account_entity_dequeue(cfs_rq
, se
);
1018 update_min_vruntime(cfs_rq
);
1019 update_cfs_shares(cfs_rq
, 0);
1022 * Normalize the entity after updating the min_vruntime because the
1023 * update can refer to the ->curr item and we need to reflect this
1024 * movement in our normalized position.
1026 if (!(flags
& DEQUEUE_SLEEP
))
1027 se
->vruntime
-= cfs_rq
->min_vruntime
;
1031 * Preempt the current task with a newly woken task if needed:
1034 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1036 unsigned long ideal_runtime
, delta_exec
;
1038 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1039 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1040 if (delta_exec
> ideal_runtime
) {
1041 resched_task(rq_of(cfs_rq
)->curr
);
1043 * The current task ran long enough, ensure it doesn't get
1044 * re-elected due to buddy favours.
1046 clear_buddies(cfs_rq
, curr
);
1051 * Ensure that a task that missed wakeup preemption by a
1052 * narrow margin doesn't have to wait for a full slice.
1053 * This also mitigates buddy induced latencies under load.
1055 if (!sched_feat(WAKEUP_PREEMPT
))
1058 if (delta_exec
< sysctl_sched_min_granularity
)
1061 if (cfs_rq
->nr_running
> 1) {
1062 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
1063 s64 delta
= curr
->vruntime
- se
->vruntime
;
1065 if (delta
> ideal_runtime
)
1066 resched_task(rq_of(cfs_rq
)->curr
);
1071 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1073 /* 'current' is not kept within the tree. */
1076 * Any task has to be enqueued before it get to execute on
1077 * a CPU. So account for the time it spent waiting on the
1080 update_stats_wait_end(cfs_rq
, se
);
1081 __dequeue_entity(cfs_rq
, se
);
1084 update_stats_curr_start(cfs_rq
, se
);
1086 #ifdef CONFIG_SCHEDSTATS
1088 * Track our maximum slice length, if the CPU's load is at
1089 * least twice that of our own weight (i.e. dont track it
1090 * when there are only lesser-weight tasks around):
1092 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1093 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1094 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1097 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1101 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1103 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1105 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
1106 struct sched_entity
*left
= se
;
1108 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1112 * Prefer last buddy, try to return the CPU to a preempted task.
1114 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1117 clear_buddies(cfs_rq
, se
);
1122 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
1125 * If still on the runqueue then deactivate_task()
1126 * was not called and update_curr() has to be done:
1129 update_curr(cfs_rq
);
1131 check_spread(cfs_rq
, prev
);
1133 update_stats_wait_start(cfs_rq
, prev
);
1134 /* Put 'current' back into the tree. */
1135 __enqueue_entity(cfs_rq
, prev
);
1137 cfs_rq
->curr
= NULL
;
1141 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
1144 * Update run-time statistics of the 'current'.
1146 update_curr(cfs_rq
);
1149 * Update share accounting for long-running entities.
1151 update_entity_shares_tick(cfs_rq
);
1153 #ifdef CONFIG_SCHED_HRTICK
1155 * queued ticks are scheduled to match the slice, so don't bother
1156 * validating it and just reschedule.
1159 resched_task(rq_of(cfs_rq
)->curr
);
1163 * don't let the period tick interfere with the hrtick preemption
1165 if (!sched_feat(DOUBLE_TICK
) &&
1166 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
1170 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
1171 check_preempt_tick(cfs_rq
, curr
);
1174 /**************************************************
1175 * CFS operations on tasks:
1178 #ifdef CONFIG_SCHED_HRTICK
1179 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1181 struct sched_entity
*se
= &p
->se
;
1182 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1184 WARN_ON(task_rq(p
) != rq
);
1186 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
1187 u64 slice
= sched_slice(cfs_rq
, se
);
1188 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1189 s64 delta
= slice
- ran
;
1198 * Don't schedule slices shorter than 10000ns, that just
1199 * doesn't make sense. Rely on vruntime for fairness.
1202 delta
= max_t(s64
, 10000LL, delta
);
1204 hrtick_start(rq
, delta
);
1209 * called from enqueue/dequeue and updates the hrtick when the
1210 * current task is from our class and nr_running is low enough
1213 static void hrtick_update(struct rq
*rq
)
1215 struct task_struct
*curr
= rq
->curr
;
1217 if (curr
->sched_class
!= &fair_sched_class
)
1220 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1221 hrtick_start_fair(rq
, curr
);
1223 #else /* !CONFIG_SCHED_HRTICK */
1225 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1229 static inline void hrtick_update(struct rq
*rq
)
1235 * The enqueue_task method is called before nr_running is
1236 * increased. Here we update the fair scheduling stats and
1237 * then put the task into the rbtree:
1240 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1242 struct cfs_rq
*cfs_rq
;
1243 struct sched_entity
*se
= &p
->se
;
1245 for_each_sched_entity(se
) {
1248 cfs_rq
= cfs_rq_of(se
);
1249 enqueue_entity(cfs_rq
, se
, flags
);
1250 flags
= ENQUEUE_WAKEUP
;
1253 for_each_sched_entity(se
) {
1254 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1256 update_cfs_load(cfs_rq
, 0);
1257 update_cfs_shares(cfs_rq
, 0);
1264 * The dequeue_task method is called before nr_running is
1265 * decreased. We remove the task from the rbtree and
1266 * update the fair scheduling stats:
1268 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1270 struct cfs_rq
*cfs_rq
;
1271 struct sched_entity
*se
= &p
->se
;
1273 for_each_sched_entity(se
) {
1274 cfs_rq
= cfs_rq_of(se
);
1275 dequeue_entity(cfs_rq
, se
, flags
);
1277 /* Don't dequeue parent if it has other entities besides us */
1278 if (cfs_rq
->load
.weight
)
1280 flags
|= DEQUEUE_SLEEP
;
1283 for_each_sched_entity(se
) {
1284 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1286 update_cfs_load(cfs_rq
, 0);
1287 update_cfs_shares(cfs_rq
, 0);
1294 * sched_yield() support is very simple - we dequeue and enqueue.
1296 * If compat_yield is turned on then we requeue to the end of the tree.
1298 static void yield_task_fair(struct rq
*rq
)
1300 struct task_struct
*curr
= rq
->curr
;
1301 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1302 struct sched_entity
*rightmost
, *se
= &curr
->se
;
1305 * Are we the only task in the tree?
1307 if (unlikely(cfs_rq
->nr_running
== 1))
1310 clear_buddies(cfs_rq
, se
);
1312 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
1313 update_rq_clock(rq
);
1315 * Update run-time statistics of the 'current'.
1317 update_curr(cfs_rq
);
1322 * Find the rightmost entry in the rbtree:
1324 rightmost
= __pick_last_entity(cfs_rq
);
1326 * Already in the rightmost position?
1328 if (unlikely(!rightmost
|| entity_before(rightmost
, se
)))
1332 * Minimally necessary key value to be last in the tree:
1333 * Upon rescheduling, sched_class::put_prev_task() will place
1334 * 'current' within the tree based on its new key value.
1336 se
->vruntime
= rightmost
->vruntime
+ 1;
1341 static void task_waking_fair(struct rq
*rq
, struct task_struct
*p
)
1343 struct sched_entity
*se
= &p
->se
;
1344 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1346 se
->vruntime
-= cfs_rq
->min_vruntime
;
1349 #ifdef CONFIG_FAIR_GROUP_SCHED
1351 * effective_load() calculates the load change as seen from the root_task_group
1353 * Adding load to a group doesn't make a group heavier, but can cause movement
1354 * of group shares between cpus. Assuming the shares were perfectly aligned one
1355 * can calculate the shift in shares.
1357 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
1359 struct sched_entity
*se
= tg
->se
[cpu
];
1364 for_each_sched_entity(se
) {
1365 long S
, rw
, s
, a
, b
;
1367 S
= se
->my_q
->tg
->shares
;
1368 s
= se
->load
.weight
;
1369 rw
= se
->my_q
->load
.weight
;
1380 * Assume the group is already running and will
1381 * thus already be accounted for in the weight.
1383 * That is, moving shares between CPUs, does not
1384 * alter the group weight.
1394 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1395 unsigned long wl
, unsigned long wg
)
1402 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1404 unsigned long this_load
, load
;
1405 int idx
, this_cpu
, prev_cpu
;
1406 unsigned long tl_per_task
;
1407 struct task_group
*tg
;
1408 unsigned long weight
;
1412 this_cpu
= smp_processor_id();
1413 prev_cpu
= task_cpu(p
);
1414 load
= source_load(prev_cpu
, idx
);
1415 this_load
= target_load(this_cpu
, idx
);
1418 * If sync wakeup then subtract the (maximum possible)
1419 * effect of the currently running task from the load
1420 * of the current CPU:
1424 tg
= task_group(current
);
1425 weight
= current
->se
.load
.weight
;
1427 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1428 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1432 weight
= p
->se
.load
.weight
;
1435 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1436 * due to the sync cause above having dropped this_load to 0, we'll
1437 * always have an imbalance, but there's really nothing you can do
1438 * about that, so that's good too.
1440 * Otherwise check if either cpus are near enough in load to allow this
1441 * task to be woken on this_cpu.
1444 unsigned long this_eff_load
, prev_eff_load
;
1446 this_eff_load
= 100;
1447 this_eff_load
*= power_of(prev_cpu
);
1448 this_eff_load
*= this_load
+
1449 effective_load(tg
, this_cpu
, weight
, weight
);
1451 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
1452 prev_eff_load
*= power_of(this_cpu
);
1453 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
1455 balanced
= this_eff_load
<= prev_eff_load
;
1461 * If the currently running task will sleep within
1462 * a reasonable amount of time then attract this newly
1465 if (sync
&& balanced
)
1468 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
1469 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1472 (this_load
<= load
&&
1473 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1475 * This domain has SD_WAKE_AFFINE and
1476 * p is cache cold in this domain, and
1477 * there is no bad imbalance.
1479 schedstat_inc(sd
, ttwu_move_affine
);
1480 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
1488 * find_idlest_group finds and returns the least busy CPU group within the
1491 static struct sched_group
*
1492 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1493 int this_cpu
, int load_idx
)
1495 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
1496 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1497 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1500 unsigned long load
, avg_load
;
1504 /* Skip over this group if it has no CPUs allowed */
1505 if (!cpumask_intersects(sched_group_cpus(group
),
1509 local_group
= cpumask_test_cpu(this_cpu
,
1510 sched_group_cpus(group
));
1512 /* Tally up the load of all CPUs in the group */
1515 for_each_cpu(i
, sched_group_cpus(group
)) {
1516 /* Bias balancing toward cpus of our domain */
1518 load
= source_load(i
, load_idx
);
1520 load
= target_load(i
, load_idx
);
1525 /* Adjust by relative CPU power of the group */
1526 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1529 this_load
= avg_load
;
1530 } else if (avg_load
< min_load
) {
1531 min_load
= avg_load
;
1534 } while (group
= group
->next
, group
!= sd
->groups
);
1536 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1542 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1545 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1547 unsigned long load
, min_load
= ULONG_MAX
;
1551 /* Traverse only the allowed CPUs */
1552 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1553 load
= weighted_cpuload(i
);
1555 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1565 * Try and locate an idle CPU in the sched_domain.
1567 static int select_idle_sibling(struct task_struct
*p
, int target
)
1569 int cpu
= smp_processor_id();
1570 int prev_cpu
= task_cpu(p
);
1571 struct sched_domain
*sd
;
1575 * If the task is going to be woken-up on this cpu and if it is
1576 * already idle, then it is the right target.
1578 if (target
== cpu
&& idle_cpu(cpu
))
1582 * If the task is going to be woken-up on the cpu where it previously
1583 * ran and if it is currently idle, then it the right target.
1585 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
1589 * Otherwise, iterate the domains and find an elegible idle cpu.
1591 for_each_domain(target
, sd
) {
1592 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
1595 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1603 * Lets stop looking for an idle sibling when we reached
1604 * the domain that spans the current cpu and prev_cpu.
1606 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
)) &&
1607 cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
1615 * sched_balance_self: balance the current task (running on cpu) in domains
1616 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1619 * Balance, ie. select the least loaded group.
1621 * Returns the target CPU number, or the same CPU if no balancing is needed.
1623 * preempt must be disabled.
1626 select_task_rq_fair(struct rq
*rq
, struct task_struct
*p
, int sd_flag
, int wake_flags
)
1628 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1629 int cpu
= smp_processor_id();
1630 int prev_cpu
= task_cpu(p
);
1632 int want_affine
= 0;
1634 int sync
= wake_flags
& WF_SYNC
;
1636 if (sd_flag
& SD_BALANCE_WAKE
) {
1637 if (cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1642 for_each_domain(cpu
, tmp
) {
1643 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
1647 * If power savings logic is enabled for a domain, see if we
1648 * are not overloaded, if so, don't balance wider.
1650 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1651 unsigned long power
= 0;
1652 unsigned long nr_running
= 0;
1653 unsigned long capacity
;
1656 for_each_cpu(i
, sched_domain_span(tmp
)) {
1657 power
+= power_of(i
);
1658 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1661 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1663 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1666 if (nr_running
< capacity
)
1671 * If both cpu and prev_cpu are part of this domain,
1672 * cpu is a valid SD_WAKE_AFFINE target.
1674 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
1675 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
1680 if (!want_sd
&& !want_affine
)
1683 if (!(tmp
->flags
& sd_flag
))
1691 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
1692 return select_idle_sibling(p
, cpu
);
1694 return select_idle_sibling(p
, prev_cpu
);
1698 int load_idx
= sd
->forkexec_idx
;
1699 struct sched_group
*group
;
1702 if (!(sd
->flags
& sd_flag
)) {
1707 if (sd_flag
& SD_BALANCE_WAKE
)
1708 load_idx
= sd
->wake_idx
;
1710 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1716 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1717 if (new_cpu
== -1 || new_cpu
== cpu
) {
1718 /* Now try balancing at a lower domain level of cpu */
1723 /* Now try balancing at a lower domain level of new_cpu */
1725 weight
= sd
->span_weight
;
1727 for_each_domain(cpu
, tmp
) {
1728 if (weight
<= tmp
->span_weight
)
1730 if (tmp
->flags
& sd_flag
)
1733 /* while loop will break here if sd == NULL */
1738 #endif /* CONFIG_SMP */
1740 static unsigned long
1741 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1743 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1746 * Since its curr running now, convert the gran from real-time
1747 * to virtual-time in his units.
1749 * By using 'se' instead of 'curr' we penalize light tasks, so
1750 * they get preempted easier. That is, if 'se' < 'curr' then
1751 * the resulting gran will be larger, therefore penalizing the
1752 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1753 * be smaller, again penalizing the lighter task.
1755 * This is especially important for buddies when the leftmost
1756 * task is higher priority than the buddy.
1758 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
1759 gran
= calc_delta_fair(gran
, se
);
1765 * Should 'se' preempt 'curr'.
1779 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1781 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1786 gran
= wakeup_gran(curr
, se
);
1793 static void set_last_buddy(struct sched_entity
*se
)
1795 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1796 for_each_sched_entity(se
)
1797 cfs_rq_of(se
)->last
= se
;
1801 static void set_next_buddy(struct sched_entity
*se
)
1803 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1804 for_each_sched_entity(se
)
1805 cfs_rq_of(se
)->next
= se
;
1810 * Preempt the current task with a newly woken task if needed:
1812 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1814 struct task_struct
*curr
= rq
->curr
;
1815 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1816 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1817 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1819 if (unlikely(se
== pse
))
1822 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
))
1823 set_next_buddy(pse
);
1826 * We can come here with TIF_NEED_RESCHED already set from new task
1829 if (test_tsk_need_resched(curr
))
1833 * Batch and idle tasks do not preempt (their preemption is driven by
1836 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1839 /* Idle tasks are by definition preempted by everybody. */
1840 if (unlikely(curr
->policy
== SCHED_IDLE
))
1843 if (!sched_feat(WAKEUP_PREEMPT
))
1846 update_curr(cfs_rq
);
1847 find_matching_se(&se
, &pse
);
1849 if (wakeup_preempt_entity(se
, pse
) == 1)
1857 * Only set the backward buddy when the current task is still
1858 * on the rq. This can happen when a wakeup gets interleaved
1859 * with schedule on the ->pre_schedule() or idle_balance()
1860 * point, either of which can * drop the rq lock.
1862 * Also, during early boot the idle thread is in the fair class,
1863 * for obvious reasons its a bad idea to schedule back to it.
1865 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1868 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1872 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1874 struct task_struct
*p
;
1875 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1876 struct sched_entity
*se
;
1878 if (!cfs_rq
->nr_running
)
1882 se
= pick_next_entity(cfs_rq
);
1883 set_next_entity(cfs_rq
, se
);
1884 cfs_rq
= group_cfs_rq(se
);
1888 hrtick_start_fair(rq
, p
);
1894 * Account for a descheduled task:
1896 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1898 struct sched_entity
*se
= &prev
->se
;
1899 struct cfs_rq
*cfs_rq
;
1901 for_each_sched_entity(se
) {
1902 cfs_rq
= cfs_rq_of(se
);
1903 put_prev_entity(cfs_rq
, se
);
1908 /**************************************************
1909 * Fair scheduling class load-balancing methods:
1913 * pull_task - move a task from a remote runqueue to the local runqueue.
1914 * Both runqueues must be locked.
1916 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
1917 struct rq
*this_rq
, int this_cpu
)
1919 deactivate_task(src_rq
, p
, 0);
1920 set_task_cpu(p
, this_cpu
);
1921 activate_task(this_rq
, p
, 0);
1922 check_preempt_curr(this_rq
, p
, 0);
1926 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1929 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
1930 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1933 int tsk_cache_hot
= 0;
1935 * We do not migrate tasks that are:
1936 * 1) running (obviously), or
1937 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1938 * 3) are cache-hot on their current CPU.
1940 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
1941 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
1946 if (task_running(rq
, p
)) {
1947 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
1952 * Aggressive migration if:
1953 * 1) task is cache cold, or
1954 * 2) too many balance attempts have failed.
1957 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
1958 if (!tsk_cache_hot
||
1959 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
1960 #ifdef CONFIG_SCHEDSTATS
1961 if (tsk_cache_hot
) {
1962 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1963 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
1969 if (tsk_cache_hot
) {
1970 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
1977 * move_one_task tries to move exactly one task from busiest to this_rq, as
1978 * part of active balancing operations within "domain".
1979 * Returns 1 if successful and 0 otherwise.
1981 * Called with both runqueues locked.
1984 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1985 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1987 struct task_struct
*p
, *n
;
1988 struct cfs_rq
*cfs_rq
;
1991 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
1992 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
1994 if (!can_migrate_task(p
, busiest
, this_cpu
,
1998 pull_task(busiest
, p
, this_rq
, this_cpu
);
2000 * Right now, this is only the second place pull_task()
2001 * is called, so we can safely collect pull_task()
2002 * stats here rather than inside pull_task().
2004 schedstat_inc(sd
, lb_gained
[idle
]);
2012 static unsigned long
2013 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2014 unsigned long max_load_move
, struct sched_domain
*sd
,
2015 enum cpu_idle_type idle
, int *all_pinned
,
2016 int *this_best_prio
, struct cfs_rq
*busiest_cfs_rq
)
2018 int loops
= 0, pulled
= 0, pinned
= 0;
2019 long rem_load_move
= max_load_move
;
2020 struct task_struct
*p
, *n
;
2022 if (max_load_move
== 0)
2027 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
2028 if (loops
++ > sysctl_sched_nr_migrate
)
2031 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2032 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
))
2035 pull_task(busiest
, p
, this_rq
, this_cpu
);
2037 rem_load_move
-= p
->se
.load
.weight
;
2039 #ifdef CONFIG_PREEMPT
2041 * NEWIDLE balancing is a source of latency, so preemptible
2042 * kernels will stop after the first task is pulled to minimize
2043 * the critical section.
2045 if (idle
== CPU_NEWLY_IDLE
)
2050 * We only want to steal up to the prescribed amount of
2053 if (rem_load_move
<= 0)
2056 if (p
->prio
< *this_best_prio
)
2057 *this_best_prio
= p
->prio
;
2061 * Right now, this is one of only two places pull_task() is called,
2062 * so we can safely collect pull_task() stats here rather than
2063 * inside pull_task().
2065 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2068 *all_pinned
= pinned
;
2070 return max_load_move
- rem_load_move
;
2073 #ifdef CONFIG_FAIR_GROUP_SCHED
2075 * update tg->load_weight by folding this cpu's load_avg
2077 static int update_shares_cpu(struct task_group
*tg
, int cpu
)
2079 struct cfs_rq
*cfs_rq
;
2080 unsigned long flags
;
2087 cfs_rq
= tg
->cfs_rq
[cpu
];
2089 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2091 update_rq_clock(rq
);
2092 update_cfs_load(cfs_rq
, 1);
2095 * We need to update shares after updating tg->load_weight in
2096 * order to adjust the weight of groups with long running tasks.
2098 update_cfs_shares(cfs_rq
, 0);
2100 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2105 static void update_shares(int cpu
)
2107 struct cfs_rq
*cfs_rq
;
2108 struct rq
*rq
= cpu_rq(cpu
);
2111 for_each_leaf_cfs_rq(rq
, cfs_rq
)
2112 update_shares_cpu(cfs_rq
->tg
, cpu
);
2116 static unsigned long
2117 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2118 unsigned long max_load_move
,
2119 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2120 int *all_pinned
, int *this_best_prio
)
2122 long rem_load_move
= max_load_move
;
2123 int busiest_cpu
= cpu_of(busiest
);
2124 struct task_group
*tg
;
2127 update_h_load(busiest_cpu
);
2129 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
2130 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
2131 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
2132 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
2133 u64 rem_load
, moved_load
;
2138 if (!busiest_cfs_rq
->task_weight
)
2141 rem_load
= (u64
)rem_load_move
* busiest_weight
;
2142 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
2144 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
2145 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
2151 moved_load
*= busiest_h_load
;
2152 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
2154 rem_load_move
-= moved_load
;
2155 if (rem_load_move
< 0)
2160 return max_load_move
- rem_load_move
;
2163 static inline void update_shares(int cpu
)
2167 static unsigned long
2168 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2169 unsigned long max_load_move
,
2170 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2171 int *all_pinned
, int *this_best_prio
)
2173 return balance_tasks(this_rq
, this_cpu
, busiest
,
2174 max_load_move
, sd
, idle
, all_pinned
,
2175 this_best_prio
, &busiest
->cfs
);
2180 * move_tasks tries to move up to max_load_move weighted load from busiest to
2181 * this_rq, as part of a balancing operation within domain "sd".
2182 * Returns 1 if successful and 0 otherwise.
2184 * Called with both runqueues locked.
2186 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2187 unsigned long max_load_move
,
2188 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2191 unsigned long total_load_moved
= 0, load_moved
;
2192 int this_best_prio
= this_rq
->curr
->prio
;
2195 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
2196 max_load_move
- total_load_moved
,
2197 sd
, idle
, all_pinned
, &this_best_prio
);
2199 total_load_moved
+= load_moved
;
2201 #ifdef CONFIG_PREEMPT
2203 * NEWIDLE balancing is a source of latency, so preemptible
2204 * kernels will stop after the first task is pulled to minimize
2205 * the critical section.
2207 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
2210 if (raw_spin_is_contended(&this_rq
->lock
) ||
2211 raw_spin_is_contended(&busiest
->lock
))
2214 } while (load_moved
&& max_load_move
> total_load_moved
);
2216 return total_load_moved
> 0;
2219 /********** Helpers for find_busiest_group ************************/
2221 * sd_lb_stats - Structure to store the statistics of a sched_domain
2222 * during load balancing.
2224 struct sd_lb_stats
{
2225 struct sched_group
*busiest
; /* Busiest group in this sd */
2226 struct sched_group
*this; /* Local group in this sd */
2227 unsigned long total_load
; /* Total load of all groups in sd */
2228 unsigned long total_pwr
; /* Total power of all groups in sd */
2229 unsigned long avg_load
; /* Average load across all groups in sd */
2231 /** Statistics of this group */
2232 unsigned long this_load
;
2233 unsigned long this_load_per_task
;
2234 unsigned long this_nr_running
;
2235 unsigned long this_has_capacity
;
2236 unsigned int this_idle_cpus
;
2238 /* Statistics of the busiest group */
2239 unsigned int busiest_idle_cpus
;
2240 unsigned long max_load
;
2241 unsigned long busiest_load_per_task
;
2242 unsigned long busiest_nr_running
;
2243 unsigned long busiest_group_capacity
;
2244 unsigned long busiest_has_capacity
;
2245 unsigned int busiest_group_weight
;
2247 int group_imb
; /* Is there imbalance in this sd */
2248 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2249 int power_savings_balance
; /* Is powersave balance needed for this sd */
2250 struct sched_group
*group_min
; /* Least loaded group in sd */
2251 struct sched_group
*group_leader
; /* Group which relieves group_min */
2252 unsigned long min_load_per_task
; /* load_per_task in group_min */
2253 unsigned long leader_nr_running
; /* Nr running of group_leader */
2254 unsigned long min_nr_running
; /* Nr running of group_min */
2259 * sg_lb_stats - stats of a sched_group required for load_balancing
2261 struct sg_lb_stats
{
2262 unsigned long avg_load
; /*Avg load across the CPUs of the group */
2263 unsigned long group_load
; /* Total load over the CPUs of the group */
2264 unsigned long sum_nr_running
; /* Nr tasks running in the group */
2265 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
2266 unsigned long group_capacity
;
2267 unsigned long idle_cpus
;
2268 unsigned long group_weight
;
2269 int group_imb
; /* Is there an imbalance in the group ? */
2270 int group_has_capacity
; /* Is there extra capacity in the group? */
2274 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2275 * @group: The group whose first cpu is to be returned.
2277 static inline unsigned int group_first_cpu(struct sched_group
*group
)
2279 return cpumask_first(sched_group_cpus(group
));
2283 * get_sd_load_idx - Obtain the load index for a given sched domain.
2284 * @sd: The sched_domain whose load_idx is to be obtained.
2285 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2287 static inline int get_sd_load_idx(struct sched_domain
*sd
,
2288 enum cpu_idle_type idle
)
2294 load_idx
= sd
->busy_idx
;
2297 case CPU_NEWLY_IDLE
:
2298 load_idx
= sd
->newidle_idx
;
2301 load_idx
= sd
->idle_idx
;
2309 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2311 * init_sd_power_savings_stats - Initialize power savings statistics for
2312 * the given sched_domain, during load balancing.
2314 * @sd: Sched domain whose power-savings statistics are to be initialized.
2315 * @sds: Variable containing the statistics for sd.
2316 * @idle: Idle status of the CPU at which we're performing load-balancing.
2318 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2319 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2322 * Busy processors will not participate in power savings
2325 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2326 sds
->power_savings_balance
= 0;
2328 sds
->power_savings_balance
= 1;
2329 sds
->min_nr_running
= ULONG_MAX
;
2330 sds
->leader_nr_running
= 0;
2335 * update_sd_power_savings_stats - Update the power saving stats for a
2336 * sched_domain while performing load balancing.
2338 * @group: sched_group belonging to the sched_domain under consideration.
2339 * @sds: Variable containing the statistics of the sched_domain
2340 * @local_group: Does group contain the CPU for which we're performing
2342 * @sgs: Variable containing the statistics of the group.
2344 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2345 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2348 if (!sds
->power_savings_balance
)
2352 * If the local group is idle or completely loaded
2353 * no need to do power savings balance at this domain
2355 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
2356 !sds
->this_nr_running
))
2357 sds
->power_savings_balance
= 0;
2360 * If a group is already running at full capacity or idle,
2361 * don't include that group in power savings calculations
2363 if (!sds
->power_savings_balance
||
2364 sgs
->sum_nr_running
>= sgs
->group_capacity
||
2365 !sgs
->sum_nr_running
)
2369 * Calculate the group which has the least non-idle load.
2370 * This is the group from where we need to pick up the load
2373 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
2374 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
2375 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
2376 sds
->group_min
= group
;
2377 sds
->min_nr_running
= sgs
->sum_nr_running
;
2378 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
2379 sgs
->sum_nr_running
;
2383 * Calculate the group which is almost near its
2384 * capacity but still has some space to pick up some load
2385 * from other group and save more power
2387 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
2390 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
2391 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
2392 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
2393 sds
->group_leader
= group
;
2394 sds
->leader_nr_running
= sgs
->sum_nr_running
;
2399 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2400 * @sds: Variable containing the statistics of the sched_domain
2401 * under consideration.
2402 * @this_cpu: Cpu at which we're currently performing load-balancing.
2403 * @imbalance: Variable to store the imbalance.
2406 * Check if we have potential to perform some power-savings balance.
2407 * If yes, set the busiest group to be the least loaded group in the
2408 * sched_domain, so that it's CPUs can be put to idle.
2410 * Returns 1 if there is potential to perform power-savings balance.
2413 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2414 int this_cpu
, unsigned long *imbalance
)
2416 if (!sds
->power_savings_balance
)
2419 if (sds
->this != sds
->group_leader
||
2420 sds
->group_leader
== sds
->group_min
)
2423 *imbalance
= sds
->min_load_per_task
;
2424 sds
->busiest
= sds
->group_min
;
2429 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2430 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2431 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2436 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2437 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2442 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2443 int this_cpu
, unsigned long *imbalance
)
2447 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2450 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2452 return SCHED_LOAD_SCALE
;
2455 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2457 return default_scale_freq_power(sd
, cpu
);
2460 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2462 unsigned long weight
= sd
->span_weight
;
2463 unsigned long smt_gain
= sd
->smt_gain
;
2470 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2472 return default_scale_smt_power(sd
, cpu
);
2475 unsigned long scale_rt_power(int cpu
)
2477 struct rq
*rq
= cpu_rq(cpu
);
2478 u64 total
, available
;
2480 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
2482 if (unlikely(total
< rq
->rt_avg
)) {
2483 /* Ensures that power won't end up being negative */
2486 available
= total
- rq
->rt_avg
;
2489 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
2490 total
= SCHED_LOAD_SCALE
;
2492 total
>>= SCHED_LOAD_SHIFT
;
2494 return div_u64(available
, total
);
2497 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
2499 unsigned long weight
= sd
->span_weight
;
2500 unsigned long power
= SCHED_LOAD_SCALE
;
2501 struct sched_group
*sdg
= sd
->groups
;
2503 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
2504 if (sched_feat(ARCH_POWER
))
2505 power
*= arch_scale_smt_power(sd
, cpu
);
2507 power
*= default_scale_smt_power(sd
, cpu
);
2509 power
>>= SCHED_LOAD_SHIFT
;
2512 sdg
->cpu_power_orig
= power
;
2514 if (sched_feat(ARCH_POWER
))
2515 power
*= arch_scale_freq_power(sd
, cpu
);
2517 power
*= default_scale_freq_power(sd
, cpu
);
2519 power
>>= SCHED_LOAD_SHIFT
;
2521 power
*= scale_rt_power(cpu
);
2522 power
>>= SCHED_LOAD_SHIFT
;
2527 cpu_rq(cpu
)->cpu_power
= power
;
2528 sdg
->cpu_power
= power
;
2531 static void update_group_power(struct sched_domain
*sd
, int cpu
)
2533 struct sched_domain
*child
= sd
->child
;
2534 struct sched_group
*group
, *sdg
= sd
->groups
;
2535 unsigned long power
;
2538 update_cpu_power(sd
, cpu
);
2544 group
= child
->groups
;
2546 power
+= group
->cpu_power
;
2547 group
= group
->next
;
2548 } while (group
!= child
->groups
);
2550 sdg
->cpu_power
= power
;
2554 * Try and fix up capacity for tiny siblings, this is needed when
2555 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2556 * which on its own isn't powerful enough.
2558 * See update_sd_pick_busiest() and check_asym_packing().
2561 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
2564 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2566 if (sd
->level
!= SD_LV_SIBLING
)
2570 * If ~90% of the cpu_power is still there, we're good.
2572 if (group
->cpu_power
* 32 > group
->cpu_power_orig
* 29)
2579 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2580 * @sd: The sched_domain whose statistics are to be updated.
2581 * @group: sched_group whose statistics are to be updated.
2582 * @this_cpu: Cpu for which load balance is currently performed.
2583 * @idle: Idle status of this_cpu
2584 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2585 * @sd_idle: Idle status of the sched_domain containing group.
2586 * @local_group: Does group contain this_cpu.
2587 * @cpus: Set of cpus considered for load balancing.
2588 * @balance: Should we balance.
2589 * @sgs: variable to hold the statistics for this group.
2591 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
2592 struct sched_group
*group
, int this_cpu
,
2593 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
2594 int local_group
, const struct cpumask
*cpus
,
2595 int *balance
, struct sg_lb_stats
*sgs
)
2597 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
2599 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2600 unsigned long avg_load_per_task
= 0;
2603 balance_cpu
= group_first_cpu(group
);
2605 /* Tally up the load of all CPUs in the group */
2607 min_cpu_load
= ~0UL;
2610 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
2611 struct rq
*rq
= cpu_rq(i
);
2613 if (*sd_idle
&& rq
->nr_running
)
2616 /* Bias balancing toward cpus of our domain */
2618 if (idle_cpu(i
) && !first_idle_cpu
) {
2623 load
= target_load(i
, load_idx
);
2625 load
= source_load(i
, load_idx
);
2626 if (load
> max_cpu_load
) {
2627 max_cpu_load
= load
;
2628 max_nr_running
= rq
->nr_running
;
2630 if (min_cpu_load
> load
)
2631 min_cpu_load
= load
;
2634 sgs
->group_load
+= load
;
2635 sgs
->sum_nr_running
+= rq
->nr_running
;
2636 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
2642 * First idle cpu or the first cpu(busiest) in this sched group
2643 * is eligible for doing load balancing at this and above
2644 * domains. In the newly idle case, we will allow all the cpu's
2645 * to do the newly idle load balance.
2647 if (idle
!= CPU_NEWLY_IDLE
&& local_group
) {
2648 if (balance_cpu
!= this_cpu
) {
2652 update_group_power(sd
, this_cpu
);
2655 /* Adjust by relative CPU power of the group */
2656 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2659 * Consider the group unbalanced when the imbalance is larger
2660 * than the average weight of two tasks.
2662 * APZ: with cgroup the avg task weight can vary wildly and
2663 * might not be a suitable number - should we keep a
2664 * normalized nr_running number somewhere that negates
2667 if (sgs
->sum_nr_running
)
2668 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
2670 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
&& max_nr_running
> 1)
2673 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
2674 if (!sgs
->group_capacity
)
2675 sgs
->group_capacity
= fix_small_capacity(sd
, group
);
2676 sgs
->group_weight
= group
->group_weight
;
2678 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
2679 sgs
->group_has_capacity
= 1;
2683 * update_sd_pick_busiest - return 1 on busiest group
2684 * @sd: sched_domain whose statistics are to be checked
2685 * @sds: sched_domain statistics
2686 * @sg: sched_group candidate to be checked for being the busiest
2687 * @sgs: sched_group statistics
2688 * @this_cpu: the current cpu
2690 * Determine if @sg is a busier group than the previously selected
2693 static bool update_sd_pick_busiest(struct sched_domain
*sd
,
2694 struct sd_lb_stats
*sds
,
2695 struct sched_group
*sg
,
2696 struct sg_lb_stats
*sgs
,
2699 if (sgs
->avg_load
<= sds
->max_load
)
2702 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
2709 * ASYM_PACKING needs to move all the work to the lowest
2710 * numbered CPUs in the group, therefore mark all groups
2711 * higher than ourself as busy.
2713 if ((sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
2714 this_cpu
< group_first_cpu(sg
)) {
2718 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
2726 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2727 * @sd: sched_domain whose statistics are to be updated.
2728 * @this_cpu: Cpu for which load balance is currently performed.
2729 * @idle: Idle status of this_cpu
2730 * @sd_idle: Idle status of the sched_domain containing sg.
2731 * @cpus: Set of cpus considered for load balancing.
2732 * @balance: Should we balance.
2733 * @sds: variable to hold the statistics for this sched_domain.
2735 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
2736 enum cpu_idle_type idle
, int *sd_idle
,
2737 const struct cpumask
*cpus
, int *balance
,
2738 struct sd_lb_stats
*sds
)
2740 struct sched_domain
*child
= sd
->child
;
2741 struct sched_group
*sg
= sd
->groups
;
2742 struct sg_lb_stats sgs
;
2743 int load_idx
, prefer_sibling
= 0;
2745 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
2748 init_sd_power_savings_stats(sd
, sds
, idle
);
2749 load_idx
= get_sd_load_idx(sd
, idle
);
2754 local_group
= cpumask_test_cpu(this_cpu
, sched_group_cpus(sg
));
2755 memset(&sgs
, 0, sizeof(sgs
));
2756 update_sg_lb_stats(sd
, sg
, this_cpu
, idle
, load_idx
, sd_idle
,
2757 local_group
, cpus
, balance
, &sgs
);
2759 if (local_group
&& !(*balance
))
2762 sds
->total_load
+= sgs
.group_load
;
2763 sds
->total_pwr
+= sg
->cpu_power
;
2766 * In case the child domain prefers tasks go to siblings
2767 * first, lower the sg capacity to one so that we'll try
2768 * and move all the excess tasks away. We lower the capacity
2769 * of a group only if the local group has the capacity to fit
2770 * these excess tasks, i.e. nr_running < group_capacity. The
2771 * extra check prevents the case where you always pull from the
2772 * heaviest group when it is already under-utilized (possible
2773 * with a large weight task outweighs the tasks on the system).
2775 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
2776 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
2779 sds
->this_load
= sgs
.avg_load
;
2781 sds
->this_nr_running
= sgs
.sum_nr_running
;
2782 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
2783 sds
->this_has_capacity
= sgs
.group_has_capacity
;
2784 sds
->this_idle_cpus
= sgs
.idle_cpus
;
2785 } else if (update_sd_pick_busiest(sd
, sds
, sg
, &sgs
, this_cpu
)) {
2786 sds
->max_load
= sgs
.avg_load
;
2788 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
2789 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
2790 sds
->busiest_group_capacity
= sgs
.group_capacity
;
2791 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
2792 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
2793 sds
->busiest_group_weight
= sgs
.group_weight
;
2794 sds
->group_imb
= sgs
.group_imb
;
2797 update_sd_power_savings_stats(sg
, sds
, local_group
, &sgs
);
2799 } while (sg
!= sd
->groups
);
2802 int __weak
arch_sd_sibling_asym_packing(void)
2804 return 0*SD_ASYM_PACKING
;
2808 * check_asym_packing - Check to see if the group is packed into the
2811 * This is primarily intended to used at the sibling level. Some
2812 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2813 * case of POWER7, it can move to lower SMT modes only when higher
2814 * threads are idle. When in lower SMT modes, the threads will
2815 * perform better since they share less core resources. Hence when we
2816 * have idle threads, we want them to be the higher ones.
2818 * This packing function is run on idle threads. It checks to see if
2819 * the busiest CPU in this domain (core in the P7 case) has a higher
2820 * CPU number than the packing function is being run on. Here we are
2821 * assuming lower CPU number will be equivalent to lower a SMT thread
2824 * Returns 1 when packing is required and a task should be moved to
2825 * this CPU. The amount of the imbalance is returned in *imbalance.
2827 * @sd: The sched_domain whose packing is to be checked.
2828 * @sds: Statistics of the sched_domain which is to be packed
2829 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2830 * @imbalance: returns amount of imbalanced due to packing.
2832 static int check_asym_packing(struct sched_domain
*sd
,
2833 struct sd_lb_stats
*sds
,
2834 int this_cpu
, unsigned long *imbalance
)
2838 if (!(sd
->flags
& SD_ASYM_PACKING
))
2844 busiest_cpu
= group_first_cpu(sds
->busiest
);
2845 if (this_cpu
> busiest_cpu
)
2848 *imbalance
= DIV_ROUND_CLOSEST(sds
->max_load
* sds
->busiest
->cpu_power
,
2854 * fix_small_imbalance - Calculate the minor imbalance that exists
2855 * amongst the groups of a sched_domain, during
2857 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2858 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2859 * @imbalance: Variable to store the imbalance.
2861 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
2862 int this_cpu
, unsigned long *imbalance
)
2864 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
2865 unsigned int imbn
= 2;
2866 unsigned long scaled_busy_load_per_task
;
2868 if (sds
->this_nr_running
) {
2869 sds
->this_load_per_task
/= sds
->this_nr_running
;
2870 if (sds
->busiest_load_per_task
>
2871 sds
->this_load_per_task
)
2874 sds
->this_load_per_task
=
2875 cpu_avg_load_per_task(this_cpu
);
2877 scaled_busy_load_per_task
= sds
->busiest_load_per_task
2879 scaled_busy_load_per_task
/= sds
->busiest
->cpu_power
;
2881 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
2882 (scaled_busy_load_per_task
* imbn
)) {
2883 *imbalance
= sds
->busiest_load_per_task
;
2888 * OK, we don't have enough imbalance to justify moving tasks,
2889 * however we may be able to increase total CPU power used by
2893 pwr_now
+= sds
->busiest
->cpu_power
*
2894 min(sds
->busiest_load_per_task
, sds
->max_load
);
2895 pwr_now
+= sds
->this->cpu_power
*
2896 min(sds
->this_load_per_task
, sds
->this_load
);
2897 pwr_now
/= SCHED_LOAD_SCALE
;
2899 /* Amount of load we'd subtract */
2900 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
2901 sds
->busiest
->cpu_power
;
2902 if (sds
->max_load
> tmp
)
2903 pwr_move
+= sds
->busiest
->cpu_power
*
2904 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
2906 /* Amount of load we'd add */
2907 if (sds
->max_load
* sds
->busiest
->cpu_power
<
2908 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
2909 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
2910 sds
->this->cpu_power
;
2912 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
2913 sds
->this->cpu_power
;
2914 pwr_move
+= sds
->this->cpu_power
*
2915 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
2916 pwr_move
/= SCHED_LOAD_SCALE
;
2918 /* Move if we gain throughput */
2919 if (pwr_move
> pwr_now
)
2920 *imbalance
= sds
->busiest_load_per_task
;
2924 * calculate_imbalance - Calculate the amount of imbalance present within the
2925 * groups of a given sched_domain during load balance.
2926 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2927 * @this_cpu: Cpu for which currently load balance is being performed.
2928 * @imbalance: The variable to store the imbalance.
2930 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
2931 unsigned long *imbalance
)
2933 unsigned long max_pull
, load_above_capacity
= ~0UL;
2935 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
2936 if (sds
->group_imb
) {
2937 sds
->busiest_load_per_task
=
2938 min(sds
->busiest_load_per_task
, sds
->avg_load
);
2942 * In the presence of smp nice balancing, certain scenarios can have
2943 * max load less than avg load(as we skip the groups at or below
2944 * its cpu_power, while calculating max_load..)
2946 if (sds
->max_load
< sds
->avg_load
) {
2948 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
2951 if (!sds
->group_imb
) {
2953 * Don't want to pull so many tasks that a group would go idle.
2955 load_above_capacity
= (sds
->busiest_nr_running
-
2956 sds
->busiest_group_capacity
);
2958 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_LOAD_SCALE
);
2960 load_above_capacity
/= sds
->busiest
->cpu_power
;
2964 * We're trying to get all the cpus to the average_load, so we don't
2965 * want to push ourselves above the average load, nor do we wish to
2966 * reduce the max loaded cpu below the average load. At the same time,
2967 * we also don't want to reduce the group load below the group capacity
2968 * (so that we can implement power-savings policies etc). Thus we look
2969 * for the minimum possible imbalance.
2970 * Be careful of negative numbers as they'll appear as very large values
2971 * with unsigned longs.
2973 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
2975 /* How much load to actually move to equalise the imbalance */
2976 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
2977 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
2981 * if *imbalance is less than the average load per runnable task
2982 * there is no gaurantee that any tasks will be moved so we'll have
2983 * a think about bumping its value to force at least one task to be
2986 if (*imbalance
< sds
->busiest_load_per_task
)
2987 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
2991 /******* find_busiest_group() helpers end here *********************/
2994 * find_busiest_group - Returns the busiest group within the sched_domain
2995 * if there is an imbalance. If there isn't an imbalance, and
2996 * the user has opted for power-savings, it returns a group whose
2997 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2998 * such a group exists.
3000 * Also calculates the amount of weighted load which should be moved
3001 * to restore balance.
3003 * @sd: The sched_domain whose busiest group is to be returned.
3004 * @this_cpu: The cpu for which load balancing is currently being performed.
3005 * @imbalance: Variable which stores amount of weighted load which should
3006 * be moved to restore balance/put a group to idle.
3007 * @idle: The idle status of this_cpu.
3008 * @sd_idle: The idleness of sd
3009 * @cpus: The set of CPUs under consideration for load-balancing.
3010 * @balance: Pointer to a variable indicating if this_cpu
3011 * is the appropriate cpu to perform load balancing at this_level.
3013 * Returns: - the busiest group if imbalance exists.
3014 * - If no imbalance and user has opted for power-savings balance,
3015 * return the least loaded group whose CPUs can be
3016 * put to idle by rebalancing its tasks onto our group.
3018 static struct sched_group
*
3019 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3020 unsigned long *imbalance
, enum cpu_idle_type idle
,
3021 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3023 struct sd_lb_stats sds
;
3025 memset(&sds
, 0, sizeof(sds
));
3028 * Compute the various statistics relavent for load balancing at
3031 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
3034 /* Cases where imbalance does not exist from POV of this_cpu */
3035 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3037 * 2) There is no busy sibling group to pull from.
3038 * 3) This group is the busiest group.
3039 * 4) This group is more busy than the avg busieness at this
3041 * 5) The imbalance is within the specified limit.
3043 * Note: when doing newidle balance, if the local group has excess
3044 * capacity (i.e. nr_running < group_capacity) and the busiest group
3045 * does not have any capacity, we force a load balance to pull tasks
3046 * to the local group. In this case, we skip past checks 3, 4 and 5.
3051 if ((idle
== CPU_IDLE
|| idle
== CPU_NEWLY_IDLE
) &&
3052 check_asym_packing(sd
, &sds
, this_cpu
, imbalance
))
3055 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3058 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3059 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
3060 !sds
.busiest_has_capacity
)
3063 if (sds
.this_load
>= sds
.max_load
)
3066 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3068 if (sds
.this_load
>= sds
.avg_load
)
3072 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3073 * And to check for busy balance use !idle_cpu instead of
3074 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3075 * even when they are idle.
3077 if (idle
== CPU_NEWLY_IDLE
|| !idle_cpu(this_cpu
)) {
3078 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3082 * This cpu is idle. If the busiest group load doesn't
3083 * have more tasks than the number of available cpu's and
3084 * there is no imbalance between this and busiest group
3085 * wrt to idle cpu's, it is balanced.
3087 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
3088 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
3093 /* Looks like there is an imbalance. Compute it */
3094 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3099 * There is no obvious imbalance. But check if we can do some balancing
3102 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3110 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3113 find_busiest_queue(struct sched_domain
*sd
, struct sched_group
*group
,
3114 enum cpu_idle_type idle
, unsigned long imbalance
,
3115 const struct cpumask
*cpus
)
3117 struct rq
*busiest
= NULL
, *rq
;
3118 unsigned long max_load
= 0;
3121 for_each_cpu(i
, sched_group_cpus(group
)) {
3122 unsigned long power
= power_of(i
);
3123 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
3127 capacity
= fix_small_capacity(sd
, group
);
3129 if (!cpumask_test_cpu(i
, cpus
))
3133 wl
= weighted_cpuload(i
);
3136 * When comparing with imbalance, use weighted_cpuload()
3137 * which is not scaled with the cpu power.
3139 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
3143 * For the load comparisons with the other cpu's, consider
3144 * the weighted_cpuload() scaled with the cpu power, so that
3145 * the load can be moved away from the cpu that is potentially
3146 * running at a lower capacity.
3148 wl
= (wl
* SCHED_LOAD_SCALE
) / power
;
3150 if (wl
> max_load
) {
3160 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3161 * so long as it is large enough.
3163 #define MAX_PINNED_INTERVAL 512
3165 /* Working cpumask for load_balance and load_balance_newidle. */
3166 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3168 static int need_active_balance(struct sched_domain
*sd
, int sd_idle
, int idle
,
3169 int busiest_cpu
, int this_cpu
)
3171 if (idle
== CPU_NEWLY_IDLE
) {
3174 * ASYM_PACKING needs to force migrate tasks from busy but
3175 * higher numbered CPUs in order to pack all tasks in the
3176 * lowest numbered CPUs.
3178 if ((sd
->flags
& SD_ASYM_PACKING
) && busiest_cpu
> this_cpu
)
3182 * The only task running in a non-idle cpu can be moved to this
3183 * cpu in an attempt to completely freeup the other CPU
3186 * The package power saving logic comes from
3187 * find_busiest_group(). If there are no imbalance, then
3188 * f_b_g() will return NULL. However when sched_mc={1,2} then
3189 * f_b_g() will select a group from which a running task may be
3190 * pulled to this cpu in order to make the other package idle.
3191 * If there is no opportunity to make a package idle and if
3192 * there are no imbalance, then f_b_g() will return NULL and no
3193 * action will be taken in load_balance_newidle().
3195 * Under normal task pull operation due to imbalance, there
3196 * will be more than one task in the source run queue and
3197 * move_tasks() will succeed. ld_moved will be true and this
3198 * active balance code will not be triggered.
3200 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3201 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3204 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3208 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
3211 static int active_load_balance_cpu_stop(void *data
);
3214 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3215 * tasks if there is an imbalance.
3217 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3218 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3221 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3222 struct sched_group
*group
;
3223 unsigned long imbalance
;
3225 unsigned long flags
;
3226 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
3228 cpumask_copy(cpus
, cpu_active_mask
);
3231 * When power savings policy is enabled for the parent domain, idle
3232 * sibling can pick up load irrespective of busy siblings. In this case,
3233 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3234 * portraying it as CPU_NOT_IDLE.
3236 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3237 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3240 schedstat_inc(sd
, lb_count
[idle
]);
3243 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3250 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3254 busiest
= find_busiest_queue(sd
, group
, idle
, imbalance
, cpus
);
3256 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3260 BUG_ON(busiest
== this_rq
);
3262 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3265 if (busiest
->nr_running
> 1) {
3267 * Attempt to move tasks. If find_busiest_group has found
3268 * an imbalance but busiest->nr_running <= 1, the group is
3269 * still unbalanced. ld_moved simply stays zero, so it is
3270 * correctly treated as an imbalance.
3272 local_irq_save(flags
);
3273 double_rq_lock(this_rq
, busiest
);
3274 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3275 imbalance
, sd
, idle
, &all_pinned
);
3276 double_rq_unlock(this_rq
, busiest
);
3277 local_irq_restore(flags
);
3280 * some other cpu did the load balance for us.
3282 if (ld_moved
&& this_cpu
!= smp_processor_id())
3283 resched_cpu(this_cpu
);
3285 /* All tasks on this runqueue were pinned by CPU affinity */
3286 if (unlikely(all_pinned
)) {
3287 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3288 if (!cpumask_empty(cpus
))
3295 schedstat_inc(sd
, lb_failed
[idle
]);
3297 * Increment the failure counter only on periodic balance.
3298 * We do not want newidle balance, which can be very
3299 * frequent, pollute the failure counter causing
3300 * excessive cache_hot migrations and active balances.
3302 if (idle
!= CPU_NEWLY_IDLE
)
3303 sd
->nr_balance_failed
++;
3305 if (need_active_balance(sd
, sd_idle
, idle
, cpu_of(busiest
),
3307 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
3309 /* don't kick the active_load_balance_cpu_stop,
3310 * if the curr task on busiest cpu can't be
3313 if (!cpumask_test_cpu(this_cpu
,
3314 &busiest
->curr
->cpus_allowed
)) {
3315 raw_spin_unlock_irqrestore(&busiest
->lock
,
3318 goto out_one_pinned
;
3322 * ->active_balance synchronizes accesses to
3323 * ->active_balance_work. Once set, it's cleared
3324 * only after active load balance is finished.
3326 if (!busiest
->active_balance
) {
3327 busiest
->active_balance
= 1;
3328 busiest
->push_cpu
= this_cpu
;
3331 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
3334 stop_one_cpu_nowait(cpu_of(busiest
),
3335 active_load_balance_cpu_stop
, busiest
,
3336 &busiest
->active_balance_work
);
3339 * We've kicked active balancing, reset the failure
3342 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3345 sd
->nr_balance_failed
= 0;
3347 if (likely(!active_balance
)) {
3348 /* We were unbalanced, so reset the balancing interval */
3349 sd
->balance_interval
= sd
->min_interval
;
3352 * If we've begun active balancing, start to back off. This
3353 * case may not be covered by the all_pinned logic if there
3354 * is only 1 task on the busy runqueue (because we don't call
3357 if (sd
->balance_interval
< sd
->max_interval
)
3358 sd
->balance_interval
*= 2;
3361 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3362 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3368 schedstat_inc(sd
, lb_balanced
[idle
]);
3370 sd
->nr_balance_failed
= 0;
3373 /* tune up the balancing interval */
3374 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3375 (sd
->balance_interval
< sd
->max_interval
))
3376 sd
->balance_interval
*= 2;
3378 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3379 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3388 * idle_balance is called by schedule() if this_cpu is about to become
3389 * idle. Attempts to pull tasks from other CPUs.
3391 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3393 struct sched_domain
*sd
;
3394 int pulled_task
= 0;
3395 unsigned long next_balance
= jiffies
+ HZ
;
3397 this_rq
->idle_stamp
= this_rq
->clock
;
3399 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
3403 * Drop the rq->lock, but keep IRQ/preempt disabled.
3405 raw_spin_unlock(&this_rq
->lock
);
3407 update_shares(this_cpu
);
3408 for_each_domain(this_cpu
, sd
) {
3409 unsigned long interval
;
3412 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3415 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
3416 /* If we've pulled tasks over stop searching: */
3417 pulled_task
= load_balance(this_cpu
, this_rq
,
3418 sd
, CPU_NEWLY_IDLE
, &balance
);
3421 interval
= msecs_to_jiffies(sd
->balance_interval
);
3422 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3423 next_balance
= sd
->last_balance
+ interval
;
3425 this_rq
->idle_stamp
= 0;
3430 raw_spin_lock(&this_rq
->lock
);
3432 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3434 * We are going idle. next_balance may be set based on
3435 * a busy processor. So reset next_balance.
3437 this_rq
->next_balance
= next_balance
;
3442 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3443 * running tasks off the busiest CPU onto idle CPUs. It requires at
3444 * least 1 task to be running on each physical CPU where possible, and
3445 * avoids physical / logical imbalances.
3447 static int active_load_balance_cpu_stop(void *data
)
3449 struct rq
*busiest_rq
= data
;
3450 int busiest_cpu
= cpu_of(busiest_rq
);
3451 int target_cpu
= busiest_rq
->push_cpu
;
3452 struct rq
*target_rq
= cpu_rq(target_cpu
);
3453 struct sched_domain
*sd
;
3455 raw_spin_lock_irq(&busiest_rq
->lock
);
3457 /* make sure the requested cpu hasn't gone down in the meantime */
3458 if (unlikely(busiest_cpu
!= smp_processor_id() ||
3459 !busiest_rq
->active_balance
))
3462 /* Is there any task to move? */
3463 if (busiest_rq
->nr_running
<= 1)
3467 * This condition is "impossible", if it occurs
3468 * we need to fix it. Originally reported by
3469 * Bjorn Helgaas on a 128-cpu setup.
3471 BUG_ON(busiest_rq
== target_rq
);
3473 /* move a task from busiest_rq to target_rq */
3474 double_lock_balance(busiest_rq
, target_rq
);
3476 /* Search for an sd spanning us and the target CPU. */
3477 for_each_domain(target_cpu
, sd
) {
3478 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3479 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3484 schedstat_inc(sd
, alb_count
);
3486 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3488 schedstat_inc(sd
, alb_pushed
);
3490 schedstat_inc(sd
, alb_failed
);
3492 double_unlock_balance(busiest_rq
, target_rq
);
3494 busiest_rq
->active_balance
= 0;
3495 raw_spin_unlock_irq(&busiest_rq
->lock
);
3501 static DEFINE_PER_CPU(struct call_single_data
, remote_sched_softirq_cb
);
3503 static void trigger_sched_softirq(void *data
)
3505 raise_softirq_irqoff(SCHED_SOFTIRQ
);
3508 static inline void init_sched_softirq_csd(struct call_single_data
*csd
)
3510 csd
->func
= trigger_sched_softirq
;
3517 * idle load balancing details
3518 * - One of the idle CPUs nominates itself as idle load_balancer, while
3520 * - This idle load balancer CPU will also go into tickless mode when
3521 * it is idle, just like all other idle CPUs
3522 * - When one of the busy CPUs notice that there may be an idle rebalancing
3523 * needed, they will kick the idle load balancer, which then does idle
3524 * load balancing for all the idle CPUs.
3527 atomic_t load_balancer
;
3528 atomic_t first_pick_cpu
;
3529 atomic_t second_pick_cpu
;
3530 cpumask_var_t idle_cpus_mask
;
3531 cpumask_var_t grp_idle_mask
;
3532 unsigned long next_balance
; /* in jiffy units */
3533 } nohz ____cacheline_aligned
;
3535 int get_nohz_load_balancer(void)
3537 return atomic_read(&nohz
.load_balancer
);
3540 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3542 * lowest_flag_domain - Return lowest sched_domain containing flag.
3543 * @cpu: The cpu whose lowest level of sched domain is to
3545 * @flag: The flag to check for the lowest sched_domain
3546 * for the given cpu.
3548 * Returns the lowest sched_domain of a cpu which contains the given flag.
3550 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
3552 struct sched_domain
*sd
;
3554 for_each_domain(cpu
, sd
)
3555 if (sd
&& (sd
->flags
& flag
))
3562 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3563 * @cpu: The cpu whose domains we're iterating over.
3564 * @sd: variable holding the value of the power_savings_sd
3566 * @flag: The flag to filter the sched_domains to be iterated.
3568 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3569 * set, starting from the lowest sched_domain to the highest.
3571 #define for_each_flag_domain(cpu, sd, flag) \
3572 for (sd = lowest_flag_domain(cpu, flag); \
3573 (sd && (sd->flags & flag)); sd = sd->parent)
3576 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3577 * @ilb_group: group to be checked for semi-idleness
3579 * Returns: 1 if the group is semi-idle. 0 otherwise.
3581 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3582 * and atleast one non-idle CPU. This helper function checks if the given
3583 * sched_group is semi-idle or not.
3585 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
3587 cpumask_and(nohz
.grp_idle_mask
, nohz
.idle_cpus_mask
,
3588 sched_group_cpus(ilb_group
));
3591 * A sched_group is semi-idle when it has atleast one busy cpu
3592 * and atleast one idle cpu.
3594 if (cpumask_empty(nohz
.grp_idle_mask
))
3597 if (cpumask_equal(nohz
.grp_idle_mask
, sched_group_cpus(ilb_group
)))
3603 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3604 * @cpu: The cpu which is nominating a new idle_load_balancer.
3606 * Returns: Returns the id of the idle load balancer if it exists,
3607 * Else, returns >= nr_cpu_ids.
3609 * This algorithm picks the idle load balancer such that it belongs to a
3610 * semi-idle powersavings sched_domain. The idea is to try and avoid
3611 * completely idle packages/cores just for the purpose of idle load balancing
3612 * when there are other idle cpu's which are better suited for that job.
3614 static int find_new_ilb(int cpu
)
3616 struct sched_domain
*sd
;
3617 struct sched_group
*ilb_group
;
3620 * Have idle load balancer selection from semi-idle packages only
3621 * when power-aware load balancing is enabled
3623 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
3627 * Optimize for the case when we have no idle CPUs or only one
3628 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3630 if (cpumask_weight(nohz
.idle_cpus_mask
) < 2)
3633 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
3634 ilb_group
= sd
->groups
;
3637 if (is_semi_idle_group(ilb_group
))
3638 return cpumask_first(nohz
.grp_idle_mask
);
3640 ilb_group
= ilb_group
->next
;
3642 } while (ilb_group
!= sd
->groups
);
3648 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3649 static inline int find_new_ilb(int call_cpu
)
3656 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3657 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3658 * CPU (if there is one).
3660 static void nohz_balancer_kick(int cpu
)
3664 nohz
.next_balance
++;
3666 ilb_cpu
= get_nohz_load_balancer();
3668 if (ilb_cpu
>= nr_cpu_ids
) {
3669 ilb_cpu
= cpumask_first(nohz
.idle_cpus_mask
);
3670 if (ilb_cpu
>= nr_cpu_ids
)
3674 if (!cpu_rq(ilb_cpu
)->nohz_balance_kick
) {
3675 struct call_single_data
*cp
;
3677 cpu_rq(ilb_cpu
)->nohz_balance_kick
= 1;
3678 cp
= &per_cpu(remote_sched_softirq_cb
, cpu
);
3679 __smp_call_function_single(ilb_cpu
, cp
, 0);
3685 * This routine will try to nominate the ilb (idle load balancing)
3686 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3687 * load balancing on behalf of all those cpus.
3689 * When the ilb owner becomes busy, we will not have new ilb owner until some
3690 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3691 * idle load balancing by kicking one of the idle CPUs.
3693 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3694 * ilb owner CPU in future (when there is a need for idle load balancing on
3695 * behalf of all idle CPUs).
3697 void select_nohz_load_balancer(int stop_tick
)
3699 int cpu
= smp_processor_id();
3702 if (!cpu_active(cpu
)) {
3703 if (atomic_read(&nohz
.load_balancer
) != cpu
)
3707 * If we are going offline and still the leader,
3710 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3717 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
3719 if (atomic_read(&nohz
.first_pick_cpu
) == cpu
)
3720 atomic_cmpxchg(&nohz
.first_pick_cpu
, cpu
, nr_cpu_ids
);
3721 if (atomic_read(&nohz
.second_pick_cpu
) == cpu
)
3722 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
3724 if (atomic_read(&nohz
.load_balancer
) >= nr_cpu_ids
) {
3727 /* make me the ilb owner */
3728 if (atomic_cmpxchg(&nohz
.load_balancer
, nr_cpu_ids
,
3733 * Check to see if there is a more power-efficient
3736 new_ilb
= find_new_ilb(cpu
);
3737 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
3738 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
3739 resched_cpu(new_ilb
);
3745 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
3748 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
3750 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3751 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3759 static DEFINE_SPINLOCK(balancing
);
3762 * It checks each scheduling domain to see if it is due to be balanced,
3763 * and initiates a balancing operation if so.
3765 * Balancing parameters are set up in arch_init_sched_domains.
3767 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3770 struct rq
*rq
= cpu_rq(cpu
);
3771 unsigned long interval
;
3772 struct sched_domain
*sd
;
3773 /* Earliest time when we have to do rebalance again */
3774 unsigned long next_balance
= jiffies
+ 60*HZ
;
3775 int update_next_balance
= 0;
3780 for_each_domain(cpu
, sd
) {
3781 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3784 interval
= sd
->balance_interval
;
3785 if (idle
!= CPU_IDLE
)
3786 interval
*= sd
->busy_factor
;
3788 /* scale ms to jiffies */
3789 interval
= msecs_to_jiffies(interval
);
3790 if (unlikely(!interval
))
3792 if (interval
> HZ
*NR_CPUS
/10)
3793 interval
= HZ
*NR_CPUS
/10;
3795 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3797 if (need_serialize
) {
3798 if (!spin_trylock(&balancing
))
3802 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3803 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3805 * We've pulled tasks over so either we're no
3806 * longer idle, or one of our SMT siblings is
3809 idle
= CPU_NOT_IDLE
;
3811 sd
->last_balance
= jiffies
;
3814 spin_unlock(&balancing
);
3816 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3817 next_balance
= sd
->last_balance
+ interval
;
3818 update_next_balance
= 1;
3822 * Stop the load balance at this level. There is another
3823 * CPU in our sched group which is doing load balancing more
3831 * next_balance will be updated only when there is a need.
3832 * When the cpu is attached to null domain for ex, it will not be
3835 if (likely(update_next_balance
))
3836 rq
->next_balance
= next_balance
;
3841 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3842 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3844 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
3846 struct rq
*this_rq
= cpu_rq(this_cpu
);
3850 if (idle
!= CPU_IDLE
|| !this_rq
->nohz_balance_kick
)
3853 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
3854 if (balance_cpu
== this_cpu
)
3858 * If this cpu gets work to do, stop the load balancing
3859 * work being done for other cpus. Next load
3860 * balancing owner will pick it up.
3862 if (need_resched()) {
3863 this_rq
->nohz_balance_kick
= 0;
3867 raw_spin_lock_irq(&this_rq
->lock
);
3868 update_rq_clock(this_rq
);
3869 update_cpu_load(this_rq
);
3870 raw_spin_unlock_irq(&this_rq
->lock
);
3872 rebalance_domains(balance_cpu
, CPU_IDLE
);
3874 rq
= cpu_rq(balance_cpu
);
3875 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3876 this_rq
->next_balance
= rq
->next_balance
;
3878 nohz
.next_balance
= this_rq
->next_balance
;
3879 this_rq
->nohz_balance_kick
= 0;
3883 * Current heuristic for kicking the idle load balancer
3884 * - first_pick_cpu is the one of the busy CPUs. It will kick
3885 * idle load balancer when it has more than one process active. This
3886 * eliminates the need for idle load balancing altogether when we have
3887 * only one running process in the system (common case).
3888 * - If there are more than one busy CPU, idle load balancer may have
3889 * to run for active_load_balance to happen (i.e., two busy CPUs are
3890 * SMT or core siblings and can run better if they move to different
3891 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3892 * which will kick idle load balancer as soon as it has any load.
3894 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
3896 unsigned long now
= jiffies
;
3898 int first_pick_cpu
, second_pick_cpu
;
3900 if (time_before(now
, nohz
.next_balance
))
3903 if (rq
->idle_at_tick
)
3906 first_pick_cpu
= atomic_read(&nohz
.first_pick_cpu
);
3907 second_pick_cpu
= atomic_read(&nohz
.second_pick_cpu
);
3909 if (first_pick_cpu
< nr_cpu_ids
&& first_pick_cpu
!= cpu
&&
3910 second_pick_cpu
< nr_cpu_ids
&& second_pick_cpu
!= cpu
)
3913 ret
= atomic_cmpxchg(&nohz
.first_pick_cpu
, nr_cpu_ids
, cpu
);
3914 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
3915 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
3916 if (rq
->nr_running
> 1)
3919 ret
= atomic_cmpxchg(&nohz
.second_pick_cpu
, nr_cpu_ids
, cpu
);
3920 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
3928 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3935 static void run_rebalance_domains(struct softirq_action
*h
)
3937 int this_cpu
= smp_processor_id();
3938 struct rq
*this_rq
= cpu_rq(this_cpu
);
3939 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3940 CPU_IDLE
: CPU_NOT_IDLE
;
3942 rebalance_domains(this_cpu
, idle
);
3945 * If this cpu has a pending nohz_balance_kick, then do the
3946 * balancing on behalf of the other idle cpus whose ticks are
3949 nohz_idle_balance(this_cpu
, idle
);
3952 static inline int on_null_domain(int cpu
)
3954 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
3958 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3960 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3962 /* Don't need to rebalance while attached to NULL domain */
3963 if (time_after_eq(jiffies
, rq
->next_balance
) &&
3964 likely(!on_null_domain(cpu
)))
3965 raise_softirq(SCHED_SOFTIRQ
);
3967 else if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
3968 nohz_balancer_kick(cpu
);
3972 static void rq_online_fair(struct rq
*rq
)
3977 static void rq_offline_fair(struct rq
*rq
)
3982 #else /* CONFIG_SMP */
3985 * on UP we do not need to balance between CPUs:
3987 static inline void idle_balance(int cpu
, struct rq
*rq
)
3991 #endif /* CONFIG_SMP */
3994 * scheduler tick hitting a task of our scheduling class:
3996 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
3998 struct cfs_rq
*cfs_rq
;
3999 struct sched_entity
*se
= &curr
->se
;
4001 for_each_sched_entity(se
) {
4002 cfs_rq
= cfs_rq_of(se
);
4003 entity_tick(cfs_rq
, se
, queued
);
4008 * called on fork with the child task as argument from the parent's context
4009 * - child not yet on the tasklist
4010 * - preemption disabled
4012 static void task_fork_fair(struct task_struct
*p
)
4014 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
4015 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
4016 int this_cpu
= smp_processor_id();
4017 struct rq
*rq
= this_rq();
4018 unsigned long flags
;
4020 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4022 update_rq_clock(rq
);
4024 if (unlikely(task_cpu(p
) != this_cpu
)) {
4026 __set_task_cpu(p
, this_cpu
);
4030 update_curr(cfs_rq
);
4033 se
->vruntime
= curr
->vruntime
;
4034 place_entity(cfs_rq
, se
, 1);
4036 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
4038 * Upon rescheduling, sched_class::put_prev_task() will place
4039 * 'current' within the tree based on its new key value.
4041 swap(curr
->vruntime
, se
->vruntime
);
4042 resched_task(rq
->curr
);
4045 se
->vruntime
-= cfs_rq
->min_vruntime
;
4047 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4051 * Priority of the task has changed. Check to see if we preempt
4054 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
4055 int oldprio
, int running
)
4058 * Reschedule if we are currently running on this runqueue and
4059 * our priority decreased, or if we are not currently running on
4060 * this runqueue and our priority is higher than the current's
4063 if (p
->prio
> oldprio
)
4064 resched_task(rq
->curr
);
4066 check_preempt_curr(rq
, p
, 0);
4070 * We switched to the sched_fair class.
4072 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
4076 * We were most likely switched from sched_rt, so
4077 * kick off the schedule if running, otherwise just see
4078 * if we can still preempt the current task.
4081 resched_task(rq
->curr
);
4083 check_preempt_curr(rq
, p
, 0);
4086 /* Account for a task changing its policy or group.
4088 * This routine is mostly called to set cfs_rq->curr field when a task
4089 * migrates between groups/classes.
4091 static void set_curr_task_fair(struct rq
*rq
)
4093 struct sched_entity
*se
= &rq
->curr
->se
;
4095 for_each_sched_entity(se
)
4096 set_next_entity(cfs_rq_of(se
), se
);
4099 #ifdef CONFIG_FAIR_GROUP_SCHED
4100 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
4103 * If the task was not on the rq at the time of this cgroup movement
4104 * it must have been asleep, sleeping tasks keep their ->vruntime
4105 * absolute on their old rq until wakeup (needed for the fair sleeper
4106 * bonus in place_entity()).
4108 * If it was on the rq, we've just 'preempted' it, which does convert
4109 * ->vruntime to a relative base.
4111 * Make sure both cases convert their relative position when migrating
4112 * to another cgroup's rq. This does somewhat interfere with the
4113 * fair sleeper stuff for the first placement, but who cares.
4116 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
4117 set_task_rq(p
, task_cpu(p
));
4119 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
4123 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
4125 struct sched_entity
*se
= &task
->se
;
4126 unsigned int rr_interval
= 0;
4129 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4132 if (rq
->cfs
.load
.weight
)
4133 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4139 * All the scheduling class methods:
4141 static const struct sched_class fair_sched_class
= {
4142 .next
= &idle_sched_class
,
4143 .enqueue_task
= enqueue_task_fair
,
4144 .dequeue_task
= dequeue_task_fair
,
4145 .yield_task
= yield_task_fair
,
4147 .check_preempt_curr
= check_preempt_wakeup
,
4149 .pick_next_task
= pick_next_task_fair
,
4150 .put_prev_task
= put_prev_task_fair
,
4153 .select_task_rq
= select_task_rq_fair
,
4155 .rq_online
= rq_online_fair
,
4156 .rq_offline
= rq_offline_fair
,
4158 .task_waking
= task_waking_fair
,
4161 .set_curr_task
= set_curr_task_fair
,
4162 .task_tick
= task_tick_fair
,
4163 .task_fork
= task_fork_fair
,
4165 .prio_changed
= prio_changed_fair
,
4166 .switched_to
= switched_to_fair
,
4168 .get_rr_interval
= get_rr_interval_fair
,
4170 #ifdef CONFIG_FAIR_GROUP_SCHED
4171 .task_move_group
= task_move_group_fair
,
4175 #ifdef CONFIG_SCHED_DEBUG
4176 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
4178 struct cfs_rq
*cfs_rq
;
4181 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
4182 print_cfs_rq(m
, cpu
, cfs_rq
);