ath5k: Clean up eeprom parsing and add missing calibration data
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath5k / eeprom.c
blob1cb7edfae625cca6076f45d6b11afa8463ae47cb
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
30 * Read from eeprom
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
34 u32 status, timeout;
36 ATH5K_TRACE(ah->ah_sc);
38 * Initialize EEPROM access
40 if (ah->ah_version == AR5K_AR5210) {
41 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43 } else {
44 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46 AR5K_EEPROM_CMD_READ);
49 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51 if (status & AR5K_EEPROM_STAT_RDDONE) {
52 if (status & AR5K_EEPROM_STAT_RDERR)
53 return -EIO;
54 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55 0xffff);
56 return 0;
58 udelay(15);
61 return -ETIMEDOUT;
65 * Translate binary channel representation in EEPROM to frequency
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68 unsigned int mode)
70 u16 val;
72 if (bin == AR5K_EEPROM_CHANNEL_DIS)
73 return bin;
75 if (mode == AR5K_EEPROM_MODE_11A) {
76 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77 val = (5 * bin) + 4800;
78 else
79 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80 (bin * 10) + 5100;
81 } else {
82 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83 val = bin + 2300;
84 else
85 val = bin + 2400;
88 return val;
92 * Initialize eeprom & capabilities structs
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
97 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98 int ret;
99 u16 val;
101 /* Initial TX thermal adjustment values */
102 ee->ee_tx_clip = 4;
103 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
104 ee->ee_gain_select = 1;
107 * Read values from EEPROM and store them in the capability structure
109 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
110 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
111 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
112 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
113 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
115 /* Return if we have an old EEPROM */
116 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
117 return 0;
119 #ifdef notyet
121 * Validate the checksum of the EEPROM date. There are some
122 * devices with invalid EEPROMs.
124 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
125 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
126 cksum ^= val;
128 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
129 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
130 return -EIO;
132 #endif
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
135 ee_ant_gain);
137 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
138 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
139 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
142 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
143 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
144 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
145 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
147 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
148 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
149 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
152 return 0;
157 * Read antenna infos from eeprom
159 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
160 unsigned int mode)
162 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
163 u32 o = *offset;
164 u16 val;
165 int ret, i = 0;
167 AR5K_EEPROM_READ(o++, val);
168 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
169 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
170 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
172 AR5K_EEPROM_READ(o++, val);
173 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
174 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
175 ee->ee_ant_control[mode][i++] = val & 0x3f;
177 AR5K_EEPROM_READ(o++, val);
178 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
179 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
180 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
182 AR5K_EEPROM_READ(o++, val);
183 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
184 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
185 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
186 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
188 AR5K_EEPROM_READ(o++, val);
189 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
190 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
191 ee->ee_ant_control[mode][i++] = val & 0x3f;
193 /* Get antenna modes */
194 ah->ah_antenna[mode][0] =
195 (ee->ee_ant_control[mode][0] << 4) | 0x1;
196 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
197 ee->ee_ant_control[mode][1] |
198 (ee->ee_ant_control[mode][2] << 6) |
199 (ee->ee_ant_control[mode][3] << 12) |
200 (ee->ee_ant_control[mode][4] << 18) |
201 (ee->ee_ant_control[mode][5] << 24);
202 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
203 ee->ee_ant_control[mode][6] |
204 (ee->ee_ant_control[mode][7] << 6) |
205 (ee->ee_ant_control[mode][8] << 12) |
206 (ee->ee_ant_control[mode][9] << 18) |
207 (ee->ee_ant_control[mode][10] << 24);
209 /* return new offset */
210 *offset = o;
212 return 0;
216 * Read supported modes from eeprom
218 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
219 unsigned int mode)
221 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
222 u32 o = *offset;
223 u16 val;
224 int ret;
226 ee->ee_n_piers[mode] = 0;
227 AR5K_EEPROM_READ(o++, val);
228 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
229 switch(mode) {
230 case AR5K_EEPROM_MODE_11A:
231 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
232 ee->ee_db[mode][3] = (val >> 2) & 0x7;
233 ee->ee_ob[mode][2] = (val << 1) & 0x7;
235 AR5K_EEPROM_READ(o++, val);
236 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
237 ee->ee_db[mode][2] = (val >> 12) & 0x7;
238 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
239 ee->ee_db[mode][1] = (val >> 6) & 0x7;
240 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
241 ee->ee_db[mode][0] = val & 0x7;
242 break;
243 case AR5K_EEPROM_MODE_11G:
244 case AR5K_EEPROM_MODE_11B:
245 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
246 ee->ee_db[mode][1] = val & 0x7;
247 break;
250 AR5K_EEPROM_READ(o++, val);
251 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
252 ee->ee_thr_62[mode] = val & 0xff;
254 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
255 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
257 AR5K_EEPROM_READ(o++, val);
258 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
259 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
261 AR5K_EEPROM_READ(o++, val);
262 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
264 if ((val & 0xff) & 0x80)
265 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
266 else
267 ee->ee_noise_floor_thr[mode] = val & 0xff;
269 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
270 ee->ee_noise_floor_thr[mode] =
271 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
273 AR5K_EEPROM_READ(o++, val);
274 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
275 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
276 ee->ee_xpd[mode] = val & 0x1;
278 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
279 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
281 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
282 AR5K_EEPROM_READ(o++, val);
283 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
285 if (mode == AR5K_EEPROM_MODE_11A)
286 ee->ee_xr_power[mode] = val & 0x3f;
287 else {
288 ee->ee_ob[mode][0] = val & 0x7;
289 ee->ee_db[mode][0] = (val >> 3) & 0x7;
293 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
294 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
295 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
296 } else {
297 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
299 AR5K_EEPROM_READ(o++, val);
300 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
302 if (mode == AR5K_EEPROM_MODE_11G) {
303 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
304 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
305 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
309 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
310 mode == AR5K_EEPROM_MODE_11A) {
311 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
312 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
315 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
316 goto done;
318 switch(mode) {
319 case AR5K_EEPROM_MODE_11A:
320 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
321 break;
323 AR5K_EEPROM_READ(o++, val);
324 ee->ee_margin_tx_rx[mode] = val & 0x3f;
325 break;
326 case AR5K_EEPROM_MODE_11B:
327 AR5K_EEPROM_READ(o++, val);
329 ee->ee_pwr_cal_b[0].freq =
330 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
331 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
332 ee->ee_n_piers[mode]++;
334 ee->ee_pwr_cal_b[1].freq =
335 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
336 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
337 ee->ee_n_piers[mode]++;
339 AR5K_EEPROM_READ(o++, val);
340 ee->ee_pwr_cal_b[2].freq =
341 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
342 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
343 ee->ee_n_piers[mode]++;
345 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
346 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
347 break;
348 case AR5K_EEPROM_MODE_11G:
349 AR5K_EEPROM_READ(o++, val);
351 ee->ee_pwr_cal_g[0].freq =
352 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
353 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
354 ee->ee_n_piers[mode]++;
356 ee->ee_pwr_cal_g[1].freq =
357 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
358 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
359 ee->ee_n_piers[mode]++;
361 AR5K_EEPROM_READ(o++, val);
362 ee->ee_turbo_max_power[mode] = val & 0x7f;
363 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
365 AR5K_EEPROM_READ(o++, val);
366 ee->ee_pwr_cal_g[2].freq =
367 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
368 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
369 ee->ee_n_piers[mode]++;
371 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
372 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
374 AR5K_EEPROM_READ(o++, val);
375 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
376 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
378 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
379 AR5K_EEPROM_READ(o++, val);
380 ee->ee_cck_ofdm_gain_delta = val & 0xff;
382 break;
385 done:
386 /* return new offset */
387 *offset = o;
389 return 0;
393 * Read turbo mode information on newer EEPROM versions
395 static int
396 ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
397 u32 *offset, unsigned int mode)
399 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
400 u32 o = *offset;
401 u16 val;
402 int ret;
404 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
405 return 0;
407 switch (mode){
408 case AR5K_EEPROM_MODE_11A:
409 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
411 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
412 AR5K_EEPROM_READ(o++, val);
413 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
414 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
416 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
417 AR5K_EEPROM_READ(o++, val);
418 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
419 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
421 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
422 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
423 break;
424 case AR5K_EEPROM_MODE_11G:
425 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
427 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
428 AR5K_EEPROM_READ(o++, val);
429 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
430 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
432 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
433 AR5K_EEPROM_READ(o++, val);
434 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
435 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
436 break;
439 /* return new offset */
440 *offset = o;
442 return 0;
446 static int
447 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
449 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
450 u32 mode_offset[3];
451 unsigned int mode;
452 u32 offset;
453 int ret;
456 * Get values for all modes
458 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
459 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
460 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
462 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
463 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
465 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
466 offset = mode_offset[mode];
468 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
469 if (ret)
470 return ret;
472 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
473 if (ret)
474 return ret;
476 ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
477 if (ret)
478 return ret;
481 /* override for older eeprom versions for better performance */
482 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
483 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
484 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
485 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
488 return 0;
491 static inline void
492 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
494 const static u16 intercepts3[] =
495 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
496 const static u16 intercepts3_2[] =
497 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
498 const u16 *ip;
499 int i;
501 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
502 ip = intercepts3_2;
503 else
504 ip = intercepts3;
506 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
507 *vp++ = (ip[i] * max + (100 - ip[i]) * min) / 100;
510 static inline int
511 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
512 struct ath5k_chan_pcal_info *pc, u8 *count)
514 int o = *offset;
515 int i = 0;
516 u8 f1, f2;
517 int ret;
518 u16 val;
520 while(i < max) {
521 AR5K_EEPROM_READ(o++, val);
523 f1 = (val >> 8) & 0xff;
524 f2 = val & 0xff;
526 if (f1)
527 pc[i++].freq = f1;
529 if (f2)
530 pc[i++].freq = f2;
532 if (!f1 || !f2)
533 break;
535 *offset = o;
536 *count = i;
538 return 0;
541 static int
542 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
544 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
545 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
546 int i, ret;
547 u16 val;
548 u8 mask;
550 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
551 ath5k_eeprom_read_freq_list(ah, &offset,
552 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
553 &ee->ee_n_piers[AR5K_EEPROM_MODE_11A]);
554 } else {
555 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
557 AR5K_EEPROM_READ(offset++, val);
558 pcal[0].freq = (val >> 9) & mask;
559 pcal[1].freq = (val >> 2) & mask;
560 pcal[2].freq = (val << 5) & mask;
562 AR5K_EEPROM_READ(offset++, val);
563 pcal[2].freq |= (val >> 11) & 0x1f;
564 pcal[3].freq = (val >> 4) & mask;
565 pcal[4].freq = (val << 3) & mask;
567 AR5K_EEPROM_READ(offset++, val);
568 pcal[4].freq |= (val >> 13) & 0x7;
569 pcal[5].freq = (val >> 6) & mask;
570 pcal[6].freq = (val << 1) & mask;
572 AR5K_EEPROM_READ(offset++, val);
573 pcal[6].freq |= (val >> 15) & 0x1;
574 pcal[7].freq = (val >> 8) & mask;
575 pcal[8].freq = (val >> 1) & mask;
576 pcal[9].freq = (val << 6) & mask;
578 AR5K_EEPROM_READ(offset++, val);
579 pcal[9].freq |= (val >> 10) & 0x3f;
580 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
583 for(i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i += 1) {
584 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
585 pcal[i].freq, AR5K_EEPROM_MODE_11A);
588 return 0;
591 static inline int
592 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
594 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
595 struct ath5k_chan_pcal_info *pcal;
596 int i;
598 switch(mode) {
599 case AR5K_EEPROM_MODE_11B:
600 pcal = ee->ee_pwr_cal_b;
601 break;
602 case AR5K_EEPROM_MODE_11G:
603 pcal = ee->ee_pwr_cal_g;
604 break;
605 default:
606 return -EINVAL;
609 ath5k_eeprom_read_freq_list(ah, &offset,
610 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
611 &ee->ee_n_piers[mode]);
612 for(i = 0; i < AR5K_EEPROM_N_2GHZ_CHAN_2413; i += 1) {
613 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
614 pcal[i].freq, mode);
617 return 0;
621 static int
622 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
624 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
625 struct ath5k_chan_pcal_info *pcal;
626 int offset, ret;
627 int i, j;
628 u16 val;
630 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
631 switch(mode) {
632 case AR5K_EEPROM_MODE_11A:
633 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
634 return 0;
636 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
637 offset + AR5K_EEPROM_GROUP1_OFFSET);
638 if (ret < 0)
639 return ret;
641 offset += AR5K_EEPROM_GROUP2_OFFSET;
642 pcal = ee->ee_pwr_cal_a;
643 break;
644 case AR5K_EEPROM_MODE_11B:
645 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
646 !AR5K_EEPROM_HDR_11G(ee->ee_header))
647 return 0;
649 pcal = ee->ee_pwr_cal_b;
650 offset += AR5K_EEPROM_GROUP3_OFFSET;
652 /* fixed piers */
653 pcal[0].freq = 2412;
654 pcal[1].freq = 2447;
655 pcal[2].freq = 2484;
656 ee->ee_n_piers[mode] = 3;
657 break;
658 case AR5K_EEPROM_MODE_11G:
659 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
660 return 0;
662 pcal = ee->ee_pwr_cal_g;
663 offset += AR5K_EEPROM_GROUP4_OFFSET;
665 /* fixed piers */
666 pcal[0].freq = 2312;
667 pcal[1].freq = 2412;
668 pcal[2].freq = 2484;
669 ee->ee_n_piers[mode] = 3;
670 break;
671 default:
672 return -EINVAL;
675 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
676 struct ath5k_chan_pcal_info_rf5111 *cdata =
677 &pcal[i].rf5111_info;
679 AR5K_EEPROM_READ(offset++, val);
680 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
681 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
682 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
684 AR5K_EEPROM_READ(offset++, val);
685 cdata->pwr[0] |= ((val >> 14) & 0x3);
686 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
687 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
688 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
690 AR5K_EEPROM_READ(offset++, val);
691 cdata->pwr[3] |= ((val >> 12) & 0xf);
692 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
693 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
695 AR5K_EEPROM_READ(offset++, val);
696 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
697 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
698 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
700 AR5K_EEPROM_READ(offset++, val);
701 cdata->pwr[8] |= ((val >> 14) & 0x3);
702 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
703 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
705 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
706 cdata->pcdac_max, cdata->pcdac);
708 for (j = 0; j < AR5K_EEPROM_N_PCDAC; j++) {
709 cdata->pwr[j] = (u16)
710 (AR5K_EEPROM_POWER_STEP * cdata->pwr[j]);
714 return 0;
717 static int
718 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
720 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
721 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
722 struct ath5k_chan_pcal_info *gen_chan_info;
723 u32 offset;
724 unsigned int i, c;
725 u16 val;
726 int ret;
728 switch (mode) {
729 case AR5K_EEPROM_MODE_11A:
731 * Read 5GHz EEPROM channels
733 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
734 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
736 offset += AR5K_EEPROM_GROUP2_OFFSET;
737 gen_chan_info = ee->ee_pwr_cal_a;
738 break;
739 case AR5K_EEPROM_MODE_11B:
740 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
741 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
742 offset += AR5K_EEPROM_GROUP3_OFFSET;
744 /* NB: frequency piers parsed during mode init */
745 gen_chan_info = ee->ee_pwr_cal_b;
746 break;
747 case AR5K_EEPROM_MODE_11G:
748 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
749 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
750 offset += AR5K_EEPROM_GROUP4_OFFSET;
751 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
752 offset += AR5K_EEPROM_GROUP2_OFFSET;
754 /* NB: frequency piers parsed during mode init */
755 gen_chan_info = ee->ee_pwr_cal_g;
756 break;
757 default:
758 return -EINVAL;
761 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
762 chan_pcal_info = &gen_chan_info[i].rf5112_info;
764 /* Power values in dBm * 4
765 * for the lower xpd gain curve
766 * (0 dBm -> higher output power) */
767 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
768 AR5K_EEPROM_READ(offset++, val);
769 chan_pcal_info->pwr_x0[c] = (val & 0xff);
770 chan_pcal_info->pwr_x0[++c] = ((val >> 8) & 0xff);
773 /* PCDAC steps
774 * corresponding to the above power
775 * measurements */
776 AR5K_EEPROM_READ(offset++, val);
777 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
778 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
779 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
781 /* Power values in dBm * 4
782 * for the higher xpd gain curve
783 * (18 dBm -> lower output power) */
784 AR5K_EEPROM_READ(offset++, val);
785 chan_pcal_info->pwr_x3[0] = (val & 0xff);
786 chan_pcal_info->pwr_x3[1] = ((val >> 8) & 0xff);
788 AR5K_EEPROM_READ(offset++, val);
789 chan_pcal_info->pwr_x3[2] = (val & 0xff);
791 /* PCDAC steps
792 * corresponding to the above power
793 * measurements (static) */
794 chan_pcal_info->pcdac_x3[0] = 20;
795 chan_pcal_info->pcdac_x3[1] = 35;
796 chan_pcal_info->pcdac_x3[2] = 63;
798 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
799 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0xff);
801 /* Last xpd0 power level is also channel maximum */
802 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
803 } else {
804 chan_pcal_info->pcdac_x0[0] = 1;
805 gen_chan_info[i].max_pwr = ((val >> 8) & 0xff);
808 /* Recreate pcdac_x0 table for this channel using pcdac steps */
809 chan_pcal_info->pcdac_x0[1] += chan_pcal_info->pcdac_x0[0];
810 chan_pcal_info->pcdac_x0[2] += chan_pcal_info->pcdac_x0[1];
811 chan_pcal_info->pcdac_x0[3] += chan_pcal_info->pcdac_x0[2];
814 return 0;
817 static inline unsigned int
818 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
820 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
821 unsigned int sz;
823 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
824 sz *= ee->ee_n_piers[mode];
826 return sz;
829 static unsigned int
830 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
832 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
834 switch(mode) {
835 case AR5K_EEPROM_MODE_11G:
836 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
837 offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) + 2;
838 /* fall through */
839 case AR5K_EEPROM_MODE_11B:
840 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
841 offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) + 5;
842 /* fall through */
843 case AR5K_EEPROM_MODE_11A:
844 break;
845 default:
846 break;
849 return offset;
852 static int
853 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
855 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
856 struct ath5k_chan_pcal_info_rf2413 *chan_pcal_info;
857 struct ath5k_chan_pcal_info *gen_chan_info;
858 unsigned int i, c;
859 u32 offset;
860 int ret;
861 u16 val;
862 u8 pd_gains = 0;
864 if (ee->ee_x_gain[mode] & 0x1) pd_gains++;
865 if ((ee->ee_x_gain[mode] >> 1) & 0x1) pd_gains++;
866 if ((ee->ee_x_gain[mode] >> 2) & 0x1) pd_gains++;
867 if ((ee->ee_x_gain[mode] >> 3) & 0x1) pd_gains++;
868 ee->ee_pd_gains[mode] = pd_gains;
870 offset = ath5k_cal_data_offset_2413(ee, mode);
871 switch (mode) {
872 case AR5K_EEPROM_MODE_11A:
873 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
874 return 0;
876 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
877 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
878 gen_chan_info = ee->ee_pwr_cal_a;
879 break;
880 case AR5K_EEPROM_MODE_11B:
881 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
882 return 0;
884 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
885 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
886 gen_chan_info = ee->ee_pwr_cal_b;
887 break;
888 case AR5K_EEPROM_MODE_11G:
889 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
890 return 0;
892 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
893 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
894 gen_chan_info = ee->ee_pwr_cal_g;
895 break;
896 default:
897 return -EINVAL;
900 if (pd_gains == 0)
901 return 0;
903 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
904 chan_pcal_info = &gen_chan_info[i].rf2413_info;
907 * Read pwr_i, pddac_i and the first
908 * 2 pd points (pwr, pddac)
910 AR5K_EEPROM_READ(offset++, val);
911 chan_pcal_info->pwr_i[0] = val & 0x1f;
912 chan_pcal_info->pddac_i[0] = (val >> 5) & 0x7f;
913 chan_pcal_info->pwr[0][0] =
914 (val >> 12) & 0xf;
916 AR5K_EEPROM_READ(offset++, val);
917 chan_pcal_info->pddac[0][0] = val & 0x3f;
918 chan_pcal_info->pwr[0][1] = (val >> 6) & 0xf;
919 chan_pcal_info->pddac[0][1] =
920 (val >> 10) & 0x3f;
922 AR5K_EEPROM_READ(offset++, val);
923 chan_pcal_info->pwr[0][2] = val & 0xf;
924 chan_pcal_info->pddac[0][2] =
925 (val >> 4) & 0x3f;
927 chan_pcal_info->pwr[0][3] = 0;
928 chan_pcal_info->pddac[0][3] = 0;
930 if (pd_gains > 1) {
932 * Pd gain 0 is not the last pd gain
933 * so it only has 2 pd points.
934 * Continue wih pd gain 1.
936 chan_pcal_info->pwr_i[1] = (val >> 10) & 0x1f;
938 chan_pcal_info->pddac_i[1] = (val >> 15) & 0x1;
939 AR5K_EEPROM_READ(offset++, val);
940 chan_pcal_info->pddac_i[1] |= (val & 0x3F) << 1;
942 chan_pcal_info->pwr[1][0] = (val >> 6) & 0xf;
943 chan_pcal_info->pddac[1][0] =
944 (val >> 10) & 0x3f;
946 AR5K_EEPROM_READ(offset++, val);
947 chan_pcal_info->pwr[1][1] = val & 0xf;
948 chan_pcal_info->pddac[1][1] =
949 (val >> 4) & 0x3f;
950 chan_pcal_info->pwr[1][2] =
951 (val >> 10) & 0xf;
953 chan_pcal_info->pddac[1][2] =
954 (val >> 14) & 0x3;
955 AR5K_EEPROM_READ(offset++, val);
956 chan_pcal_info->pddac[1][2] |=
957 (val & 0xF) << 2;
959 chan_pcal_info->pwr[1][3] = 0;
960 chan_pcal_info->pddac[1][3] = 0;
961 } else if (pd_gains == 1) {
963 * Pd gain 0 is the last one so
964 * read the extra point.
966 chan_pcal_info->pwr[0][3] =
967 (val >> 10) & 0xf;
969 chan_pcal_info->pddac[0][3] =
970 (val >> 14) & 0x3;
971 AR5K_EEPROM_READ(offset++, val);
972 chan_pcal_info->pddac[0][3] |=
973 (val & 0xF) << 2;
977 * Proceed with the other pd_gains
978 * as above.
980 if (pd_gains > 2) {
981 chan_pcal_info->pwr_i[2] = (val >> 4) & 0x1f;
982 chan_pcal_info->pddac_i[2] = (val >> 9) & 0x7f;
984 AR5K_EEPROM_READ(offset++, val);
985 chan_pcal_info->pwr[2][0] =
986 (val >> 0) & 0xf;
987 chan_pcal_info->pddac[2][0] =
988 (val >> 4) & 0x3f;
989 chan_pcal_info->pwr[2][1] =
990 (val >> 10) & 0xf;
992 chan_pcal_info->pddac[2][1] =
993 (val >> 14) & 0x3;
994 AR5K_EEPROM_READ(offset++, val);
995 chan_pcal_info->pddac[2][1] |=
996 (val & 0xF) << 2;
998 chan_pcal_info->pwr[2][2] =
999 (val >> 4) & 0xf;
1000 chan_pcal_info->pddac[2][2] =
1001 (val >> 8) & 0x3f;
1003 chan_pcal_info->pwr[2][3] = 0;
1004 chan_pcal_info->pddac[2][3] = 0;
1005 } else if (pd_gains == 2) {
1006 chan_pcal_info->pwr[1][3] =
1007 (val >> 4) & 0xf;
1008 chan_pcal_info->pddac[1][3] =
1009 (val >> 8) & 0x3f;
1012 if (pd_gains > 3) {
1013 chan_pcal_info->pwr_i[3] = (val >> 14) & 0x3;
1014 AR5K_EEPROM_READ(offset++, val);
1015 chan_pcal_info->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1017 chan_pcal_info->pddac_i[3] = (val >> 3) & 0x7f;
1018 chan_pcal_info->pwr[3][0] =
1019 (val >> 10) & 0xf;
1020 chan_pcal_info->pddac[3][0] =
1021 (val >> 14) & 0x3;
1023 AR5K_EEPROM_READ(offset++, val);
1024 chan_pcal_info->pddac[3][0] |=
1025 (val & 0xF) << 2;
1026 chan_pcal_info->pwr[3][1] =
1027 (val >> 4) & 0xf;
1028 chan_pcal_info->pddac[3][1] =
1029 (val >> 8) & 0x3f;
1031 chan_pcal_info->pwr[3][2] =
1032 (val >> 14) & 0x3;
1033 AR5K_EEPROM_READ(offset++, val);
1034 chan_pcal_info->pwr[3][2] |=
1035 ((val >> 0) & 0x3) << 2;
1037 chan_pcal_info->pddac[3][2] =
1038 (val >> 2) & 0x3f;
1039 chan_pcal_info->pwr[3][3] =
1040 (val >> 8) & 0xf;
1042 chan_pcal_info->pddac[3][3] =
1043 (val >> 12) & 0xF;
1044 AR5K_EEPROM_READ(offset++, val);
1045 chan_pcal_info->pddac[3][3] |=
1046 ((val >> 0) & 0x3) << 4;
1047 } else if (pd_gains == 3) {
1048 chan_pcal_info->pwr[2][3] =
1049 (val >> 14) & 0x3;
1050 AR5K_EEPROM_READ(offset++, val);
1051 chan_pcal_info->pwr[2][3] |=
1052 ((val >> 0) & 0x3) << 2;
1054 chan_pcal_info->pddac[2][3] =
1055 (val >> 2) & 0x3f;
1058 for (c = 0; c < pd_gains; c++) {
1059 /* Recreate pwr table for this channel using pwr steps */
1060 chan_pcal_info->pwr[c][0] += chan_pcal_info->pwr_i[c] * 2;
1061 chan_pcal_info->pwr[c][1] += chan_pcal_info->pwr[c][0];
1062 chan_pcal_info->pwr[c][2] += chan_pcal_info->pwr[c][1];
1063 chan_pcal_info->pwr[c][3] += chan_pcal_info->pwr[c][2];
1064 if (chan_pcal_info->pwr[c][3] == chan_pcal_info->pwr[c][2])
1065 chan_pcal_info->pwr[c][3] = 0;
1067 /* Recreate pddac table for this channel using pddac steps */
1068 chan_pcal_info->pddac[c][0] += chan_pcal_info->pddac_i[c];
1069 chan_pcal_info->pddac[c][1] += chan_pcal_info->pddac[c][0];
1070 chan_pcal_info->pddac[c][2] += chan_pcal_info->pddac[c][1];
1071 chan_pcal_info->pddac[c][3] += chan_pcal_info->pddac[c][2];
1072 if (chan_pcal_info->pddac[c][3] == chan_pcal_info->pddac[c][2])
1073 chan_pcal_info->pddac[c][3] = 0;
1077 return 0;
1081 * Read per rate target power (this is the maximum tx power
1082 * supported by the card). This info is used when setting
1083 * tx power, no matter the channel.
1085 * This also works for v5 EEPROMs.
1087 static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1089 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1090 struct ath5k_rate_pcal_info *rate_pcal_info;
1091 u16 *rate_target_pwr_num;
1092 u32 offset;
1093 u16 val;
1094 int ret, i;
1096 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1097 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1098 switch (mode) {
1099 case AR5K_EEPROM_MODE_11A:
1100 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1101 rate_pcal_info = ee->ee_rate_tpwr_a;
1102 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1103 break;
1104 case AR5K_EEPROM_MODE_11B:
1105 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1106 rate_pcal_info = ee->ee_rate_tpwr_b;
1107 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1108 break;
1109 case AR5K_EEPROM_MODE_11G:
1110 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1111 rate_pcal_info = ee->ee_rate_tpwr_g;
1112 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1113 break;
1114 default:
1115 return -EINVAL;
1118 /* Different freq mask for older eeproms (<= v3.2) */
1119 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1120 for (i = 0; i < (*rate_target_pwr_num); i++) {
1121 AR5K_EEPROM_READ(offset++, val);
1122 rate_pcal_info[i].freq =
1123 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1125 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1126 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1128 AR5K_EEPROM_READ(offset++, val);
1130 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1131 val == 0) {
1132 (*rate_target_pwr_num) = i;
1133 break;
1136 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1137 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1138 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1140 } else {
1141 for (i = 0; i < (*rate_target_pwr_num); i++) {
1142 AR5K_EEPROM_READ(offset++, val);
1143 rate_pcal_info[i].freq =
1144 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1146 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1147 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1149 AR5K_EEPROM_READ(offset++, val);
1151 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1152 val == 0) {
1153 (*rate_target_pwr_num) = i;
1154 break;
1157 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1158 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1159 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1163 return 0;
1166 static int
1167 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1169 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1170 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1171 int mode;
1172 int err;
1174 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1175 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1176 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1177 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1178 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1179 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1180 else
1181 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1183 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
1184 err = read_pcal(ah, mode);
1185 if (err)
1186 return err;
1188 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1189 if (err < 0)
1190 return err;
1193 return 0;
1196 /* Read conformance test limits */
1197 static int
1198 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1200 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1201 struct ath5k_edge_power *rep;
1202 unsigned int fmask, pmask;
1203 unsigned int ctl_mode;
1204 int ret, i, j;
1205 u32 offset;
1206 u16 val;
1208 pmask = AR5K_EEPROM_POWER_M;
1209 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1210 offset = AR5K_EEPROM_CTL(ee->ee_version);
1211 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1212 for (i = 0; i < ee->ee_ctls; i += 2) {
1213 AR5K_EEPROM_READ(offset++, val);
1214 ee->ee_ctl[i] = (val >> 8) & 0xff;
1215 ee->ee_ctl[i + 1] = val & 0xff;
1218 offset = AR5K_EEPROM_GROUP8_OFFSET;
1219 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1220 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1221 AR5K_EEPROM_GROUP5_OFFSET;
1222 else
1223 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1225 rep = ee->ee_ctl_pwr;
1226 for(i = 0; i < ee->ee_ctls; i++) {
1227 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1228 case AR5K_CTL_11A:
1229 case AR5K_CTL_TURBO:
1230 ctl_mode = AR5K_EEPROM_MODE_11A;
1231 break;
1232 default:
1233 ctl_mode = AR5K_EEPROM_MODE_11G;
1234 break;
1236 if (ee->ee_ctl[i] == 0) {
1237 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1238 offset += 8;
1239 else
1240 offset += 7;
1241 rep += AR5K_EEPROM_N_EDGES;
1242 continue;
1244 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1245 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1246 AR5K_EEPROM_READ(offset++, val);
1247 rep[j].freq = (val >> 8) & fmask;
1248 rep[j + 1].freq = val & fmask;
1250 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1251 AR5K_EEPROM_READ(offset++, val);
1252 rep[j].edge = (val >> 8) & pmask;
1253 rep[j].flag = (val >> 14) & 1;
1254 rep[j + 1].edge = val & pmask;
1255 rep[j + 1].flag = (val >> 6) & 1;
1257 } else {
1258 AR5K_EEPROM_READ(offset++, val);
1259 rep[0].freq = (val >> 9) & fmask;
1260 rep[1].freq = (val >> 2) & fmask;
1261 rep[2].freq = (val << 5) & fmask;
1263 AR5K_EEPROM_READ(offset++, val);
1264 rep[2].freq |= (val >> 11) & 0x1f;
1265 rep[3].freq = (val >> 4) & fmask;
1266 rep[4].freq = (val << 3) & fmask;
1268 AR5K_EEPROM_READ(offset++, val);
1269 rep[4].freq |= (val >> 13) & 0x7;
1270 rep[5].freq = (val >> 6) & fmask;
1271 rep[6].freq = (val << 1) & fmask;
1273 AR5K_EEPROM_READ(offset++, val);
1274 rep[6].freq |= (val >> 15) & 0x1;
1275 rep[7].freq = (val >> 8) & fmask;
1277 rep[0].edge = (val >> 2) & pmask;
1278 rep[1].edge = (val << 4) & pmask;
1280 AR5K_EEPROM_READ(offset++, val);
1281 rep[1].edge |= (val >> 12) & 0xf;
1282 rep[2].edge = (val >> 6) & pmask;
1283 rep[3].edge = val & pmask;
1285 AR5K_EEPROM_READ(offset++, val);
1286 rep[4].edge = (val >> 10) & pmask;
1287 rep[5].edge = (val >> 4) & pmask;
1288 rep[6].edge = (val << 2) & pmask;
1290 AR5K_EEPROM_READ(offset++, val);
1291 rep[6].edge |= (val >> 14) & 0x3;
1292 rep[7].edge = (val >> 8) & pmask;
1294 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1295 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1296 rep[j].freq, ctl_mode);
1298 rep += AR5K_EEPROM_N_EDGES;
1301 return 0;
1306 * Initialize eeprom power tables
1309 ath5k_eeprom_init(struct ath5k_hw *ah)
1311 int err;
1313 err = ath5k_eeprom_init_header(ah);
1314 if (err < 0)
1315 return err;
1317 err = ath5k_eeprom_init_modes(ah);
1318 if (err < 0)
1319 return err;
1321 err = ath5k_eeprom_read_pcal_info(ah);
1322 if (err < 0)
1323 return err;
1325 err = ath5k_eeprom_read_ctl_info(ah);
1326 if (err < 0)
1327 return err;
1329 return 0;
1332 * Read the MAC address from eeprom
1334 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1336 u8 mac_d[ETH_ALEN];
1337 u32 total, offset;
1338 u16 data;
1339 int octet, ret;
1341 memset(mac, 0, ETH_ALEN);
1342 memset(mac_d, 0, ETH_ALEN);
1344 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1345 if (ret)
1346 return ret;
1348 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1349 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1350 if (ret)
1351 return ret;
1353 total += data;
1354 mac_d[octet + 1] = data & 0xff;
1355 mac_d[octet] = data >> 8;
1356 octet += 2;
1359 memcpy(mac, mac_d, ETH_ALEN);
1361 if (!total || total == 3 * 0xffff)
1362 return -EINVAL;
1364 return 0;