2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/spi/pxa2xx_spi.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/spi/spi.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/gpio.h>
32 #include <linux/slab.h>
36 #include <asm/delay.h>
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
46 #define TIMOUT_DFLT 1000
48 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
49 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
50 #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
51 #define MAX_DMA_LEN 8191
52 #define DMA_ALIGNMENT 8
55 * for testing SSCR1 changes that require SSP restart, basically
56 * everything except the service and interrupt enables, the pxa270 developer
57 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
58 * list, but the PXA255 dev man says all bits without really meaning the
59 * service and interrupt enables
61 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
62 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
63 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
64 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
65 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
66 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68 #define DEFINE_SSP_REG(reg, off) \
69 static inline u32 read_##reg(void const __iomem *p) \
70 { return __raw_readl(p + (off)); } \
72 static inline void write_##reg(u32 v, void __iomem *p) \
73 { __raw_writel(v, p + (off)); }
75 DEFINE_SSP_REG(SSCR0
, 0x00)
76 DEFINE_SSP_REG(SSCR1
, 0x04)
77 DEFINE_SSP_REG(SSSR
, 0x08)
78 DEFINE_SSP_REG(SSITR
, 0x0c)
79 DEFINE_SSP_REG(SSDR
, 0x10)
80 DEFINE_SSP_REG(SSTO
, 0x28)
81 DEFINE_SSP_REG(SSPSP
, 0x2c)
83 #define START_STATE ((void*)0)
84 #define RUNNING_STATE ((void*)1)
85 #define DONE_STATE ((void*)2)
86 #define ERROR_STATE ((void*)-1)
88 #define QUEUE_RUNNING 0
89 #define QUEUE_STOPPED 1
92 /* Driver model hookup */
93 struct platform_device
*pdev
;
96 struct ssp_device
*ssp
;
98 /* SPI framework hookup */
99 enum pxa_ssp_type ssp_type
;
100 struct spi_master
*master
;
103 struct pxa2xx_spi_master
*master_info
;
105 /* DMA setup stuff */
110 /* SSP register addresses */
111 void __iomem
*ioaddr
;
120 /* Driver message queue */
121 struct workqueue_struct
*workqueue
;
122 struct work_struct pump_messages
;
124 struct list_head queue
;
128 /* Message Transfer pump */
129 struct tasklet_struct pump_transfers
;
131 /* Current message transfer state info */
132 struct spi_message
* cur_msg
;
133 struct spi_transfer
* cur_transfer
;
134 struct chip_data
*cur_chip
;
147 int (*write
)(struct driver_data
*drv_data
);
148 int (*read
)(struct driver_data
*drv_data
);
149 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
150 void (*cs_control
)(u32 command
);
170 int gpio_cs_inverted
;
171 int (*write
)(struct driver_data
*drv_data
);
172 int (*read
)(struct driver_data
*drv_data
);
173 void (*cs_control
)(u32 command
);
176 static void pump_messages(struct work_struct
*work
);
178 static void cs_assert(struct driver_data
*drv_data
)
180 struct chip_data
*chip
= drv_data
->cur_chip
;
182 if (drv_data
->ssp_type
== CE4100_SSP
) {
183 write_SSSR(drv_data
->cur_chip
->frm
, drv_data
->ioaddr
);
187 if (chip
->cs_control
) {
188 chip
->cs_control(PXA2XX_CS_ASSERT
);
192 if (gpio_is_valid(chip
->gpio_cs
))
193 gpio_set_value(chip
->gpio_cs
, chip
->gpio_cs_inverted
);
196 static void cs_deassert(struct driver_data
*drv_data
)
198 struct chip_data
*chip
= drv_data
->cur_chip
;
200 if (drv_data
->ssp_type
== CE4100_SSP
)
203 if (chip
->cs_control
) {
204 chip
->cs_control(PXA2XX_CS_DEASSERT
);
208 if (gpio_is_valid(chip
->gpio_cs
))
209 gpio_set_value(chip
->gpio_cs
, !chip
->gpio_cs_inverted
);
212 static void write_SSSR_CS(struct driver_data
*drv_data
, u32 val
)
214 void __iomem
*reg
= drv_data
->ioaddr
;
216 if (drv_data
->ssp_type
== CE4100_SSP
)
217 val
|= read_SSSR(reg
) & SSSR_ALT_FRM_MASK
;
219 write_SSSR(val
, reg
);
222 static int pxa25x_ssp_comp(struct driver_data
*drv_data
)
224 if (drv_data
->ssp_type
== PXA25x_SSP
)
226 if (drv_data
->ssp_type
== CE4100_SSP
)
231 static int flush(struct driver_data
*drv_data
)
233 unsigned long limit
= loops_per_jiffy
<< 1;
235 void __iomem
*reg
= drv_data
->ioaddr
;
238 while (read_SSSR(reg
) & SSSR_RNE
) {
241 } while ((read_SSSR(reg
) & SSSR_BSY
) && --limit
);
242 write_SSSR_CS(drv_data
, SSSR_ROR
);
247 static int null_writer(struct driver_data
*drv_data
)
249 void __iomem
*reg
= drv_data
->ioaddr
;
250 u8 n_bytes
= drv_data
->n_bytes
;
252 if (((read_SSSR(reg
) & SSSR_TFL_MASK
) == SSSR_TFL_MASK
)
253 || (drv_data
->tx
== drv_data
->tx_end
))
257 drv_data
->tx
+= n_bytes
;
262 static int null_reader(struct driver_data
*drv_data
)
264 void __iomem
*reg
= drv_data
->ioaddr
;
265 u8 n_bytes
= drv_data
->n_bytes
;
267 while ((read_SSSR(reg
) & SSSR_RNE
)
268 && (drv_data
->rx
< drv_data
->rx_end
)) {
270 drv_data
->rx
+= n_bytes
;
273 return drv_data
->rx
== drv_data
->rx_end
;
276 static int u8_writer(struct driver_data
*drv_data
)
278 void __iomem
*reg
= drv_data
->ioaddr
;
280 if (((read_SSSR(reg
) & SSSR_TFL_MASK
) == SSSR_TFL_MASK
)
281 || (drv_data
->tx
== drv_data
->tx_end
))
284 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
290 static int u8_reader(struct driver_data
*drv_data
)
292 void __iomem
*reg
= drv_data
->ioaddr
;
294 while ((read_SSSR(reg
) & SSSR_RNE
)
295 && (drv_data
->rx
< drv_data
->rx_end
)) {
296 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
300 return drv_data
->rx
== drv_data
->rx_end
;
303 static int u16_writer(struct driver_data
*drv_data
)
305 void __iomem
*reg
= drv_data
->ioaddr
;
307 if (((read_SSSR(reg
) & SSSR_TFL_MASK
) == SSSR_TFL_MASK
)
308 || (drv_data
->tx
== drv_data
->tx_end
))
311 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
317 static int u16_reader(struct driver_data
*drv_data
)
319 void __iomem
*reg
= drv_data
->ioaddr
;
321 while ((read_SSSR(reg
) & SSSR_RNE
)
322 && (drv_data
->rx
< drv_data
->rx_end
)) {
323 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
327 return drv_data
->rx
== drv_data
->rx_end
;
330 static int u32_writer(struct driver_data
*drv_data
)
332 void __iomem
*reg
= drv_data
->ioaddr
;
334 if (((read_SSSR(reg
) & SSSR_TFL_MASK
) == SSSR_TFL_MASK
)
335 || (drv_data
->tx
== drv_data
->tx_end
))
338 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
344 static int u32_reader(struct driver_data
*drv_data
)
346 void __iomem
*reg
= drv_data
->ioaddr
;
348 while ((read_SSSR(reg
) & SSSR_RNE
)
349 && (drv_data
->rx
< drv_data
->rx_end
)) {
350 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
354 return drv_data
->rx
== drv_data
->rx_end
;
357 static void *next_transfer(struct driver_data
*drv_data
)
359 struct spi_message
*msg
= drv_data
->cur_msg
;
360 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
362 /* Move to next transfer */
363 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
364 drv_data
->cur_transfer
=
365 list_entry(trans
->transfer_list
.next
,
368 return RUNNING_STATE
;
373 static int map_dma_buffers(struct driver_data
*drv_data
)
375 struct spi_message
*msg
= drv_data
->cur_msg
;
376 struct device
*dev
= &msg
->spi
->dev
;
378 if (!drv_data
->cur_chip
->enable_dma
)
381 if (msg
->is_dma_mapped
)
382 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
384 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
387 /* Modify setup if rx buffer is null */
388 if (drv_data
->rx
== NULL
) {
389 *drv_data
->null_dma_buf
= 0;
390 drv_data
->rx
= drv_data
->null_dma_buf
;
391 drv_data
->rx_map_len
= 4;
393 drv_data
->rx_map_len
= drv_data
->len
;
396 /* Modify setup if tx buffer is null */
397 if (drv_data
->tx
== NULL
) {
398 *drv_data
->null_dma_buf
= 0;
399 drv_data
->tx
= drv_data
->null_dma_buf
;
400 drv_data
->tx_map_len
= 4;
402 drv_data
->tx_map_len
= drv_data
->len
;
404 /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
405 * so we flush the cache *before* invalidating it, in case
406 * the tx and rx buffers overlap.
408 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
409 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
410 if (dma_mapping_error(dev
, drv_data
->tx_dma
))
413 /* Stream map the rx buffer */
414 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
415 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
416 if (dma_mapping_error(dev
, drv_data
->rx_dma
)) {
417 dma_unmap_single(dev
, drv_data
->tx_dma
,
418 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
425 static void unmap_dma_buffers(struct driver_data
*drv_data
)
429 if (!drv_data
->dma_mapped
)
432 if (!drv_data
->cur_msg
->is_dma_mapped
) {
433 dev
= &drv_data
->cur_msg
->spi
->dev
;
434 dma_unmap_single(dev
, drv_data
->rx_dma
,
435 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
436 dma_unmap_single(dev
, drv_data
->tx_dma
,
437 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
440 drv_data
->dma_mapped
= 0;
443 /* caller already set message->status; dma and pio irqs are blocked */
444 static void giveback(struct driver_data
*drv_data
)
446 struct spi_transfer
* last_transfer
;
448 struct spi_message
*msg
;
450 spin_lock_irqsave(&drv_data
->lock
, flags
);
451 msg
= drv_data
->cur_msg
;
452 drv_data
->cur_msg
= NULL
;
453 drv_data
->cur_transfer
= NULL
;
454 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
455 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
457 last_transfer
= list_entry(msg
->transfers
.prev
,
461 /* Delay if requested before any change in chip select */
462 if (last_transfer
->delay_usecs
)
463 udelay(last_transfer
->delay_usecs
);
465 /* Drop chip select UNLESS cs_change is true or we are returning
466 * a message with an error, or next message is for another chip
468 if (!last_transfer
->cs_change
)
469 cs_deassert(drv_data
);
471 struct spi_message
*next_msg
;
473 /* Holding of cs was hinted, but we need to make sure
474 * the next message is for the same chip. Don't waste
475 * time with the following tests unless this was hinted.
477 * We cannot postpone this until pump_messages, because
478 * after calling msg->complete (below) the driver that
479 * sent the current message could be unloaded, which
480 * could invalidate the cs_control() callback...
483 /* get a pointer to the next message, if any */
484 spin_lock_irqsave(&drv_data
->lock
, flags
);
485 if (list_empty(&drv_data
->queue
))
488 next_msg
= list_entry(drv_data
->queue
.next
,
489 struct spi_message
, queue
);
490 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
492 /* see if the next and current messages point
495 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
497 if (!next_msg
|| msg
->state
== ERROR_STATE
)
498 cs_deassert(drv_data
);
503 msg
->complete(msg
->context
);
505 drv_data
->cur_chip
= NULL
;
508 static int wait_ssp_rx_stall(void const __iomem
*ioaddr
)
510 unsigned long limit
= loops_per_jiffy
<< 1;
512 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && --limit
)
518 static int wait_dma_channel_stop(int channel
)
520 unsigned long limit
= loops_per_jiffy
<< 1;
522 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && --limit
)
528 static void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
530 void __iomem
*reg
= drv_data
->ioaddr
;
533 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
534 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
535 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
536 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
537 if (!pxa25x_ssp_comp(drv_data
))
540 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
542 unmap_dma_buffers(drv_data
);
544 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
546 drv_data
->cur_msg
->state
= ERROR_STATE
;
547 tasklet_schedule(&drv_data
->pump_transfers
);
550 static void dma_transfer_complete(struct driver_data
*drv_data
)
552 void __iomem
*reg
= drv_data
->ioaddr
;
553 struct spi_message
*msg
= drv_data
->cur_msg
;
555 /* Clear and disable interrupts on SSP and DMA channels*/
556 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
557 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
558 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
559 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
561 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
562 dev_err(&drv_data
->pdev
->dev
,
563 "dma_handler: dma rx channel stop failed\n");
565 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
566 dev_err(&drv_data
->pdev
->dev
,
567 "dma_transfer: ssp rx stall failed\n");
569 unmap_dma_buffers(drv_data
);
571 /* update the buffer pointer for the amount completed in dma */
572 drv_data
->rx
+= drv_data
->len
-
573 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
575 /* read trailing data from fifo, it does not matter how many
576 * bytes are in the fifo just read until buffer is full
577 * or fifo is empty, which ever occurs first */
578 drv_data
->read(drv_data
);
580 /* return count of what was actually read */
581 msg
->actual_length
+= drv_data
->len
-
582 (drv_data
->rx_end
- drv_data
->rx
);
584 /* Transfer delays and chip select release are
585 * handled in pump_transfers or giveback
588 /* Move to next transfer */
589 msg
->state
= next_transfer(drv_data
);
591 /* Schedule transfer tasklet */
592 tasklet_schedule(&drv_data
->pump_transfers
);
595 static void dma_handler(int channel
, void *data
)
597 struct driver_data
*drv_data
= data
;
598 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
600 if (irq_status
& DCSR_BUSERR
) {
602 if (channel
== drv_data
->tx_channel
)
603 dma_error_stop(drv_data
,
605 "bad bus address on tx channel");
607 dma_error_stop(drv_data
,
609 "bad bus address on rx channel");
613 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
614 if ((channel
== drv_data
->tx_channel
)
615 && (irq_status
& DCSR_ENDINTR
)
616 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
618 /* Wait for rx to stall */
619 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
620 dev_err(&drv_data
->pdev
->dev
,
621 "dma_handler: ssp rx stall failed\n");
623 /* finish this transfer, start the next */
624 dma_transfer_complete(drv_data
);
628 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
631 void __iomem
*reg
= drv_data
->ioaddr
;
633 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
634 if (irq_status
& SSSR_ROR
) {
635 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
639 /* Check for false positive timeout */
640 if ((irq_status
& SSSR_TINT
)
641 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
642 write_SSSR(SSSR_TINT
, reg
);
646 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
648 /* Clear and disable timeout interrupt, do the rest in
649 * dma_transfer_complete */
650 if (!pxa25x_ssp_comp(drv_data
))
653 /* finish this transfer, start the next */
654 dma_transfer_complete(drv_data
);
659 /* Opps problem detected */
663 static void reset_sccr1(struct driver_data
*drv_data
)
665 void __iomem
*reg
= drv_data
->ioaddr
;
666 struct chip_data
*chip
= drv_data
->cur_chip
;
669 sccr1_reg
= read_SSCR1(reg
) & ~drv_data
->int_cr1
;
670 sccr1_reg
&= ~SSCR1_RFT
;
671 sccr1_reg
|= chip
->threshold
;
672 write_SSCR1(sccr1_reg
, reg
);
675 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
677 void __iomem
*reg
= drv_data
->ioaddr
;
679 /* Stop and reset SSP */
680 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
681 reset_sccr1(drv_data
);
682 if (!pxa25x_ssp_comp(drv_data
))
685 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
687 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
689 drv_data
->cur_msg
->state
= ERROR_STATE
;
690 tasklet_schedule(&drv_data
->pump_transfers
);
693 static void int_transfer_complete(struct driver_data
*drv_data
)
695 void __iomem
*reg
= drv_data
->ioaddr
;
698 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
699 reset_sccr1(drv_data
);
700 if (!pxa25x_ssp_comp(drv_data
))
703 /* Update total byte transferred return count actual bytes read */
704 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
705 (drv_data
->rx_end
- drv_data
->rx
);
707 /* Transfer delays and chip select release are
708 * handled in pump_transfers or giveback
711 /* Move to next transfer */
712 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
714 /* Schedule transfer tasklet */
715 tasklet_schedule(&drv_data
->pump_transfers
);
718 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
720 void __iomem
*reg
= drv_data
->ioaddr
;
722 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
723 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
725 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
727 if (irq_status
& SSSR_ROR
) {
728 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
732 if (irq_status
& SSSR_TINT
) {
733 write_SSSR(SSSR_TINT
, reg
);
734 if (drv_data
->read(drv_data
)) {
735 int_transfer_complete(drv_data
);
740 /* Drain rx fifo, Fill tx fifo and prevent overruns */
742 if (drv_data
->read(drv_data
)) {
743 int_transfer_complete(drv_data
);
746 } while (drv_data
->write(drv_data
));
748 if (drv_data
->read(drv_data
)) {
749 int_transfer_complete(drv_data
);
753 if (drv_data
->tx
== drv_data
->tx_end
) {
757 sccr1_reg
= read_SSCR1(reg
);
758 sccr1_reg
&= ~SSCR1_TIE
;
761 * PXA25x_SSP has no timeout, set up rx threshould for the
762 * remaining RX bytes.
764 if (pxa25x_ssp_comp(drv_data
)) {
766 sccr1_reg
&= ~SSCR1_RFT
;
768 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
769 switch (drv_data
->n_bytes
) {
776 if (bytes_left
> RX_THRESH_DFLT
)
777 bytes_left
= RX_THRESH_DFLT
;
779 sccr1_reg
|= SSCR1_RxTresh(bytes_left
);
781 write_SSCR1(sccr1_reg
, reg
);
784 /* We did something */
788 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
790 struct driver_data
*drv_data
= dev_id
;
791 void __iomem
*reg
= drv_data
->ioaddr
;
792 u32 sccr1_reg
= read_SSCR1(reg
);
793 u32 mask
= drv_data
->mask_sr
;
796 status
= read_SSSR(reg
);
798 /* Ignore possible writes if we don't need to write */
799 if (!(sccr1_reg
& SSCR1_TIE
))
802 if (!(status
& mask
))
805 if (!drv_data
->cur_msg
) {
807 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
808 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
809 if (!pxa25x_ssp_comp(drv_data
))
811 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
813 dev_err(&drv_data
->pdev
->dev
, "bad message state "
814 "in interrupt handler\n");
820 return drv_data
->transfer_handler(drv_data
);
823 static int set_dma_burst_and_threshold(struct chip_data
*chip
,
824 struct spi_device
*spi
,
825 u8 bits_per_word
, u32
*burst_code
,
828 struct pxa2xx_spi_chip
*chip_info
=
829 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
836 /* Set the threshold (in registers) to equal the same amount of data
837 * as represented by burst size (in bytes). The computation below
838 * is (burst_size rounded up to nearest 8 byte, word or long word)
839 * divided by (bytes/register); the tx threshold is the inverse of
840 * the rx, so that there will always be enough data in the rx fifo
841 * to satisfy a burst, and there will always be enough space in the
842 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
843 * there is not enough space), there must always remain enough empty
844 * space in the rx fifo for any data loaded to the tx fifo.
845 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
846 * will be 8, or half the fifo;
847 * The threshold can only be set to 2, 4 or 8, but not 16, because
848 * to burst 16 to the tx fifo, the fifo would have to be empty;
849 * however, the minimum fifo trigger level is 1, and the tx will
850 * request service when the fifo is at this level, with only 15 spaces.
853 /* find bytes/word */
854 if (bits_per_word
<= 8)
856 else if (bits_per_word
<= 16)
861 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
863 req_burst_size
= chip_info
->dma_burst_size
;
865 switch (chip
->dma_burst_size
) {
867 /* if the default burst size is not set,
869 chip
->dma_burst_size
= DCMD_BURST8
;
881 if (req_burst_size
<= 8) {
882 *burst_code
= DCMD_BURST8
;
884 } else if (req_burst_size
<= 16) {
885 if (bytes_per_word
== 1) {
886 /* don't burst more than 1/2 the fifo */
887 *burst_code
= DCMD_BURST8
;
891 *burst_code
= DCMD_BURST16
;
895 if (bytes_per_word
== 1) {
896 /* don't burst more than 1/2 the fifo */
897 *burst_code
= DCMD_BURST8
;
900 } else if (bytes_per_word
== 2) {
901 /* don't burst more than 1/2 the fifo */
902 *burst_code
= DCMD_BURST16
;
906 *burst_code
= DCMD_BURST32
;
911 thresh_words
= burst_bytes
/ bytes_per_word
;
913 /* thresh_words will be between 2 and 8 */
914 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
915 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
920 static unsigned int ssp_get_clk_div(struct ssp_device
*ssp
, int rate
)
922 unsigned long ssp_clk
= clk_get_rate(ssp
->clk
);
924 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
925 return ((ssp_clk
/ (2 * rate
) - 1) & 0xff) << 8;
927 return ((ssp_clk
/ rate
- 1) & 0xfff) << 8;
930 static void pump_transfers(unsigned long data
)
932 struct driver_data
*drv_data
= (struct driver_data
*)data
;
933 struct spi_message
*message
= NULL
;
934 struct spi_transfer
*transfer
= NULL
;
935 struct spi_transfer
*previous
= NULL
;
936 struct chip_data
*chip
= NULL
;
937 struct ssp_device
*ssp
= drv_data
->ssp
;
938 void __iomem
*reg
= drv_data
->ioaddr
;
944 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
945 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
947 /* Get current state information */
948 message
= drv_data
->cur_msg
;
949 transfer
= drv_data
->cur_transfer
;
950 chip
= drv_data
->cur_chip
;
952 /* Handle for abort */
953 if (message
->state
== ERROR_STATE
) {
954 message
->status
= -EIO
;
959 /* Handle end of message */
960 if (message
->state
== DONE_STATE
) {
966 /* Delay if requested at end of transfer before CS change */
967 if (message
->state
== RUNNING_STATE
) {
968 previous
= list_entry(transfer
->transfer_list
.prev
,
971 if (previous
->delay_usecs
)
972 udelay(previous
->delay_usecs
);
974 /* Drop chip select only if cs_change is requested */
975 if (previous
->cs_change
)
976 cs_deassert(drv_data
);
979 /* Check for transfers that need multiple DMA segments */
980 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
982 /* reject already-mapped transfers; PIO won't always work */
983 if (message
->is_dma_mapped
984 || transfer
->rx_dma
|| transfer
->tx_dma
) {
985 dev_err(&drv_data
->pdev
->dev
,
986 "pump_transfers: mapped transfer length "
987 "of %u is greater than %d\n",
988 transfer
->len
, MAX_DMA_LEN
);
989 message
->status
= -EINVAL
;
994 /* warn ... we force this to PIO mode */
995 if (printk_ratelimit())
996 dev_warn(&message
->spi
->dev
, "pump_transfers: "
997 "DMA disabled for transfer length %ld "
999 (long)drv_data
->len
, MAX_DMA_LEN
);
1002 /* Setup the transfer state based on the type of transfer */
1003 if (flush(drv_data
) == 0) {
1004 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
1005 message
->status
= -EIO
;
1009 drv_data
->n_bytes
= chip
->n_bytes
;
1010 drv_data
->dma_width
= chip
->dma_width
;
1011 drv_data
->tx
= (void *)transfer
->tx_buf
;
1012 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
1013 drv_data
->rx
= transfer
->rx_buf
;
1014 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
1015 drv_data
->rx_dma
= transfer
->rx_dma
;
1016 drv_data
->tx_dma
= transfer
->tx_dma
;
1017 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
1018 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
1019 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
1021 /* Change speed and bit per word on a per transfer */
1023 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
1025 bits
= chip
->bits_per_word
;
1026 speed
= chip
->speed_hz
;
1028 if (transfer
->speed_hz
)
1029 speed
= transfer
->speed_hz
;
1031 if (transfer
->bits_per_word
)
1032 bits
= transfer
->bits_per_word
;
1034 clk_div
= ssp_get_clk_div(ssp
, speed
);
1037 drv_data
->n_bytes
= 1;
1038 drv_data
->dma_width
= DCMD_WIDTH1
;
1039 drv_data
->read
= drv_data
->read
!= null_reader
?
1040 u8_reader
: null_reader
;
1041 drv_data
->write
= drv_data
->write
!= null_writer
?
1042 u8_writer
: null_writer
;
1043 } else if (bits
<= 16) {
1044 drv_data
->n_bytes
= 2;
1045 drv_data
->dma_width
= DCMD_WIDTH2
;
1046 drv_data
->read
= drv_data
->read
!= null_reader
?
1047 u16_reader
: null_reader
;
1048 drv_data
->write
= drv_data
->write
!= null_writer
?
1049 u16_writer
: null_writer
;
1050 } else if (bits
<= 32) {
1051 drv_data
->n_bytes
= 4;
1052 drv_data
->dma_width
= DCMD_WIDTH4
;
1053 drv_data
->read
= drv_data
->read
!= null_reader
?
1054 u32_reader
: null_reader
;
1055 drv_data
->write
= drv_data
->write
!= null_writer
?
1056 u32_writer
: null_writer
;
1058 /* if bits/word is changed in dma mode, then must check the
1059 * thresholds and burst also */
1060 if (chip
->enable_dma
) {
1061 if (set_dma_burst_and_threshold(chip
, message
->spi
,
1064 if (printk_ratelimit())
1065 dev_warn(&message
->spi
->dev
,
1067 "DMA burst size reduced to "
1068 "match bits_per_word\n");
1073 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
1075 | (bits
> 16 ? SSCR0_EDSS
: 0);
1078 message
->state
= RUNNING_STATE
;
1080 /* Try to map dma buffer and do a dma transfer if successful, but
1081 * only if the length is non-zero and less than MAX_DMA_LEN.
1083 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084 * of PIO instead. Care is needed above because the transfer may
1085 * have have been passed with buffers that are already dma mapped.
1086 * A zero-length transfer in PIO mode will not try to write/read
1087 * to/from the buffers
1089 * REVISIT large transfers are exactly where we most want to be
1090 * using DMA. If this happens much, split those transfers into
1091 * multiple DMA segments rather than forcing PIO.
1093 drv_data
->dma_mapped
= 0;
1094 if (drv_data
->len
> 0 && drv_data
->len
<= MAX_DMA_LEN
)
1095 drv_data
->dma_mapped
= map_dma_buffers(drv_data
);
1096 if (drv_data
->dma_mapped
) {
1098 /* Ensure we have the correct interrupt handler */
1099 drv_data
->transfer_handler
= dma_transfer
;
1101 /* Setup rx DMA Channel */
1102 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
1103 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
1104 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
1105 if (drv_data
->rx
== drv_data
->null_dma_buf
)
1106 /* No target address increment */
1107 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
1108 | drv_data
->dma_width
1112 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
1114 | drv_data
->dma_width
1118 /* Setup tx DMA Channel */
1119 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
1120 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
1121 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
1122 if (drv_data
->tx
== drv_data
->null_dma_buf
)
1123 /* No source address increment */
1124 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
1125 | drv_data
->dma_width
1129 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
1131 | drv_data
->dma_width
1135 /* Enable dma end irqs on SSP to detect end of transfer */
1136 if (drv_data
->ssp_type
== PXA25x_SSP
)
1137 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
1139 /* Clear status and start DMA engine */
1140 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1141 write_SSSR(drv_data
->clear_sr
, reg
);
1142 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
1143 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
1145 /* Ensure we have the correct interrupt handler */
1146 drv_data
->transfer_handler
= interrupt_transfer
;
1149 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1150 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1153 /* see if we need to reload the config registers */
1154 if ((read_SSCR0(reg
) != cr0
)
1155 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
1156 (cr1
& SSCR1_CHANGE_MASK
)) {
1158 /* stop the SSP, and update the other bits */
1159 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
1160 if (!pxa25x_ssp_comp(drv_data
))
1161 write_SSTO(chip
->timeout
, reg
);
1162 /* first set CR1 without interrupt and service enables */
1163 write_SSCR1(cr1
& SSCR1_CHANGE_MASK
, reg
);
1164 /* restart the SSP */
1165 write_SSCR0(cr0
, reg
);
1168 if (!pxa25x_ssp_comp(drv_data
))
1169 write_SSTO(chip
->timeout
, reg
);
1172 cs_assert(drv_data
);
1174 /* after chip select, release the data by enabling service
1175 * requests and interrupts, without changing any mode bits */
1176 write_SSCR1(cr1
, reg
);
1179 static void pump_messages(struct work_struct
*work
)
1181 struct driver_data
*drv_data
=
1182 container_of(work
, struct driver_data
, pump_messages
);
1183 unsigned long flags
;
1185 /* Lock queue and check for queue work */
1186 spin_lock_irqsave(&drv_data
->lock
, flags
);
1187 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1189 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1193 /* Make sure we are not already running a message */
1194 if (drv_data
->cur_msg
) {
1195 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1199 /* Extract head of queue */
1200 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1201 struct spi_message
, queue
);
1202 list_del_init(&drv_data
->cur_msg
->queue
);
1204 /* Initial message state*/
1205 drv_data
->cur_msg
->state
= START_STATE
;
1206 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1207 struct spi_transfer
,
1210 /* prepare to setup the SSP, in pump_transfers, using the per
1211 * chip configuration */
1212 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1214 /* Mark as busy and launch transfers */
1215 tasklet_schedule(&drv_data
->pump_transfers
);
1218 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1221 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1223 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1224 unsigned long flags
;
1226 spin_lock_irqsave(&drv_data
->lock
, flags
);
1228 if (drv_data
->run
== QUEUE_STOPPED
) {
1229 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1233 msg
->actual_length
= 0;
1234 msg
->status
= -EINPROGRESS
;
1235 msg
->state
= START_STATE
;
1237 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1239 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1240 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1242 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1247 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1248 struct pxa2xx_spi_chip
*chip_info
)
1252 if (chip
== NULL
|| chip_info
== NULL
)
1255 /* NOTE: setup() can be called multiple times, possibly with
1256 * different chip_info, release previously requested GPIO
1258 if (gpio_is_valid(chip
->gpio_cs
))
1259 gpio_free(chip
->gpio_cs
);
1261 /* If (*cs_control) is provided, ignore GPIO chip select */
1262 if (chip_info
->cs_control
) {
1263 chip
->cs_control
= chip_info
->cs_control
;
1267 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1268 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1270 dev_err(&spi
->dev
, "failed to request chip select "
1271 "GPIO%d\n", chip_info
->gpio_cs
);
1275 chip
->gpio_cs
= chip_info
->gpio_cs
;
1276 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1278 err
= gpio_direction_output(chip
->gpio_cs
,
1279 !chip
->gpio_cs_inverted
);
1285 static int setup(struct spi_device
*spi
)
1287 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1288 struct chip_data
*chip
;
1289 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1290 struct ssp_device
*ssp
= drv_data
->ssp
;
1291 unsigned int clk_div
;
1292 uint tx_thres
= TX_THRESH_DFLT
;
1293 uint rx_thres
= RX_THRESH_DFLT
;
1295 if (!pxa25x_ssp_comp(drv_data
)
1296 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1297 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1298 "b/w not 4-32 for type non-PXA25x_SSP\n",
1299 drv_data
->ssp_type
, spi
->bits_per_word
);
1301 } else if (pxa25x_ssp_comp(drv_data
)
1302 && (spi
->bits_per_word
< 4
1303 || spi
->bits_per_word
> 16)) {
1304 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1305 "b/w not 4-16 for type PXA25x_SSP\n",
1306 drv_data
->ssp_type
, spi
->bits_per_word
);
1310 /* Only alloc on first setup */
1311 chip
= spi_get_ctldata(spi
);
1313 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1316 "failed setup: can't allocate chip data\n");
1320 if (drv_data
->ssp_type
== CE4100_SSP
) {
1321 if (spi
->chip_select
> 4) {
1322 dev_err(&spi
->dev
, "failed setup: "
1323 "cs number must not be > 4.\n");
1328 chip
->frm
= spi
->chip_select
;
1331 chip
->enable_dma
= 0;
1332 chip
->timeout
= TIMOUT_DFLT
;
1333 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1337 /* protocol drivers may change the chip settings, so...
1338 * if chip_info exists, use it */
1339 chip_info
= spi
->controller_data
;
1341 /* chip_info isn't always needed */
1344 if (chip_info
->timeout
)
1345 chip
->timeout
= chip_info
->timeout
;
1346 if (chip_info
->tx_threshold
)
1347 tx_thres
= chip_info
->tx_threshold
;
1348 if (chip_info
->rx_threshold
)
1349 rx_thres
= chip_info
->rx_threshold
;
1350 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1351 chip
->dma_threshold
= 0;
1352 if (chip_info
->enable_loopback
)
1353 chip
->cr1
= SSCR1_LBM
;
1356 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1357 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1359 /* set dma burst and threshold outside of chip_info path so that if
1360 * chip_info goes away after setting chip->enable_dma, the
1361 * burst and threshold can still respond to changes in bits_per_word */
1362 if (chip
->enable_dma
) {
1363 /* set up legal burst and threshold for dma */
1364 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1365 &chip
->dma_burst_size
,
1366 &chip
->dma_threshold
)) {
1367 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1368 "to match bits_per_word\n");
1372 clk_div
= ssp_get_clk_div(ssp
, spi
->max_speed_hz
);
1373 chip
->speed_hz
= spi
->max_speed_hz
;
1377 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1378 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1380 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1381 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1382 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1383 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1385 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1386 if (!pxa25x_ssp_comp(drv_data
))
1387 dev_dbg(&spi
->dev
, "%ld Hz actual, %s\n",
1388 clk_get_rate(ssp
->clk
)
1389 / (1 + ((chip
->cr0
& SSCR0_SCR(0xfff)) >> 8)),
1390 chip
->enable_dma
? "DMA" : "PIO");
1392 dev_dbg(&spi
->dev
, "%ld Hz actual, %s\n",
1393 clk_get_rate(ssp
->clk
) / 2
1394 / (1 + ((chip
->cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1395 chip
->enable_dma
? "DMA" : "PIO");
1397 if (spi
->bits_per_word
<= 8) {
1399 chip
->dma_width
= DCMD_WIDTH1
;
1400 chip
->read
= u8_reader
;
1401 chip
->write
= u8_writer
;
1402 } else if (spi
->bits_per_word
<= 16) {
1404 chip
->dma_width
= DCMD_WIDTH2
;
1405 chip
->read
= u16_reader
;
1406 chip
->write
= u16_writer
;
1407 } else if (spi
->bits_per_word
<= 32) {
1408 chip
->cr0
|= SSCR0_EDSS
;
1410 chip
->dma_width
= DCMD_WIDTH4
;
1411 chip
->read
= u32_reader
;
1412 chip
->write
= u32_writer
;
1414 dev_err(&spi
->dev
, "invalid wordsize\n");
1417 chip
->bits_per_word
= spi
->bits_per_word
;
1419 spi_set_ctldata(spi
, chip
);
1421 if (drv_data
->ssp_type
== CE4100_SSP
)
1424 return setup_cs(spi
, chip
, chip_info
);
1427 static void cleanup(struct spi_device
*spi
)
1429 struct chip_data
*chip
= spi_get_ctldata(spi
);
1430 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1435 if (drv_data
->ssp_type
!= CE4100_SSP
&& gpio_is_valid(chip
->gpio_cs
))
1436 gpio_free(chip
->gpio_cs
);
1441 static int __devinit
init_queue(struct driver_data
*drv_data
)
1443 INIT_LIST_HEAD(&drv_data
->queue
);
1444 spin_lock_init(&drv_data
->lock
);
1446 drv_data
->run
= QUEUE_STOPPED
;
1449 tasklet_init(&drv_data
->pump_transfers
,
1450 pump_transfers
, (unsigned long)drv_data
);
1452 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1453 drv_data
->workqueue
= create_singlethread_workqueue(
1454 dev_name(drv_data
->master
->dev
.parent
));
1455 if (drv_data
->workqueue
== NULL
)
1461 static int start_queue(struct driver_data
*drv_data
)
1463 unsigned long flags
;
1465 spin_lock_irqsave(&drv_data
->lock
, flags
);
1467 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1468 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1472 drv_data
->run
= QUEUE_RUNNING
;
1473 drv_data
->cur_msg
= NULL
;
1474 drv_data
->cur_transfer
= NULL
;
1475 drv_data
->cur_chip
= NULL
;
1476 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1478 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1483 static int stop_queue(struct driver_data
*drv_data
)
1485 unsigned long flags
;
1486 unsigned limit
= 500;
1489 spin_lock_irqsave(&drv_data
->lock
, flags
);
1491 /* This is a bit lame, but is optimized for the common execution path.
1492 * A wait_queue on the drv_data->busy could be used, but then the common
1493 * execution path (pump_messages) would be required to call wake_up or
1494 * friends on every SPI message. Do this instead */
1495 drv_data
->run
= QUEUE_STOPPED
;
1496 while ((!list_empty(&drv_data
->queue
) || drv_data
->busy
) && limit
--) {
1497 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1499 spin_lock_irqsave(&drv_data
->lock
, flags
);
1502 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1505 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1510 static int destroy_queue(struct driver_data
*drv_data
)
1514 status
= stop_queue(drv_data
);
1515 /* we are unloading the module or failing to load (only two calls
1516 * to this routine), and neither call can handle a return value.
1517 * However, destroy_workqueue calls flush_workqueue, and that will
1518 * block until all work is done. If the reason that stop_queue
1519 * timed out is that the work will never finish, then it does no
1520 * good to call destroy_workqueue, so return anyway. */
1524 destroy_workqueue(drv_data
->workqueue
);
1529 static int __devinit
pxa2xx_spi_probe(struct platform_device
*pdev
)
1531 struct device
*dev
= &pdev
->dev
;
1532 struct pxa2xx_spi_master
*platform_info
;
1533 struct spi_master
*master
;
1534 struct driver_data
*drv_data
;
1535 struct ssp_device
*ssp
;
1538 platform_info
= dev
->platform_data
;
1540 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1542 dev_err(&pdev
->dev
, "failed to request SSP%d\n", pdev
->id
);
1546 /* Allocate master with space for drv_data and null dma buffer */
1547 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1549 dev_err(&pdev
->dev
, "cannot alloc spi_master\n");
1553 drv_data
= spi_master_get_devdata(master
);
1554 drv_data
->master
= master
;
1555 drv_data
->master_info
= platform_info
;
1556 drv_data
->pdev
= pdev
;
1557 drv_data
->ssp
= ssp
;
1559 master
->dev
.parent
= &pdev
->dev
;
1560 master
->dev
.of_node
= pdev
->dev
.of_node
;
1561 /* the spi->mode bits understood by this driver: */
1562 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1564 master
->bus_num
= pdev
->id
;
1565 master
->num_chipselect
= platform_info
->num_chipselect
;
1566 master
->dma_alignment
= DMA_ALIGNMENT
;
1567 master
->cleanup
= cleanup
;
1568 master
->setup
= setup
;
1569 master
->transfer
= transfer
;
1571 drv_data
->ssp_type
= ssp
->type
;
1572 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1573 sizeof(struct driver_data
)), 8);
1575 drv_data
->ioaddr
= ssp
->mmio_base
;
1576 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1577 if (pxa25x_ssp_comp(drv_data
)) {
1578 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1579 drv_data
->dma_cr1
= 0;
1580 drv_data
->clear_sr
= SSSR_ROR
;
1581 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1583 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1584 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1585 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1586 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1589 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1592 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1593 goto out_error_master_alloc
;
1596 /* Setup DMA if requested */
1597 drv_data
->tx_channel
= -1;
1598 drv_data
->rx_channel
= -1;
1599 if (platform_info
->enable_dma
) {
1601 /* Get two DMA channels (rx and tx) */
1602 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1606 if (drv_data
->rx_channel
< 0) {
1607 dev_err(dev
, "problem (%d) requesting rx channel\n",
1608 drv_data
->rx_channel
);
1610 goto out_error_irq_alloc
;
1612 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1616 if (drv_data
->tx_channel
< 0) {
1617 dev_err(dev
, "problem (%d) requesting tx channel\n",
1618 drv_data
->tx_channel
);
1620 goto out_error_dma_alloc
;
1623 DRCMR(ssp
->drcmr_rx
) = DRCMR_MAPVLD
| drv_data
->rx_channel
;
1624 DRCMR(ssp
->drcmr_tx
) = DRCMR_MAPVLD
| drv_data
->tx_channel
;
1627 /* Enable SOC clock */
1628 clk_enable(ssp
->clk
);
1630 /* Load default SSP configuration */
1631 write_SSCR0(0, drv_data
->ioaddr
);
1632 write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT
) |
1633 SSCR1_TxTresh(TX_THRESH_DFLT
),
1635 write_SSCR0(SSCR0_SCR(2)
1637 | SSCR0_DataSize(8),
1639 if (!pxa25x_ssp_comp(drv_data
))
1640 write_SSTO(0, drv_data
->ioaddr
);
1641 write_SSPSP(0, drv_data
->ioaddr
);
1643 /* Initial and start queue */
1644 status
= init_queue(drv_data
);
1646 dev_err(&pdev
->dev
, "problem initializing queue\n");
1647 goto out_error_clock_enabled
;
1649 status
= start_queue(drv_data
);
1651 dev_err(&pdev
->dev
, "problem starting queue\n");
1652 goto out_error_clock_enabled
;
1655 /* Register with the SPI framework */
1656 platform_set_drvdata(pdev
, drv_data
);
1657 status
= spi_register_master(master
);
1659 dev_err(&pdev
->dev
, "problem registering spi master\n");
1660 goto out_error_queue_alloc
;
1665 out_error_queue_alloc
:
1666 destroy_queue(drv_data
);
1668 out_error_clock_enabled
:
1669 clk_disable(ssp
->clk
);
1671 out_error_dma_alloc
:
1672 if (drv_data
->tx_channel
!= -1)
1673 pxa_free_dma(drv_data
->tx_channel
);
1674 if (drv_data
->rx_channel
!= -1)
1675 pxa_free_dma(drv_data
->rx_channel
);
1677 out_error_irq_alloc
:
1678 free_irq(ssp
->irq
, drv_data
);
1680 out_error_master_alloc
:
1681 spi_master_put(master
);
1686 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1688 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1689 struct ssp_device
*ssp
;
1694 ssp
= drv_data
->ssp
;
1696 /* Remove the queue */
1697 status
= destroy_queue(drv_data
);
1699 /* the kernel does not check the return status of this
1700 * this routine (mod->exit, within the kernel). Therefore
1701 * nothing is gained by returning from here, the module is
1702 * going away regardless, and we should not leave any more
1703 * resources allocated than necessary. We cannot free the
1704 * message memory in drv_data->queue, but we can release the
1705 * resources below. I think the kernel should honor -EBUSY
1707 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1708 "complete, message memory not freed\n");
1710 /* Disable the SSP at the peripheral and SOC level */
1711 write_SSCR0(0, drv_data
->ioaddr
);
1712 clk_disable(ssp
->clk
);
1715 if (drv_data
->master_info
->enable_dma
) {
1716 DRCMR(ssp
->drcmr_rx
) = 0;
1717 DRCMR(ssp
->drcmr_tx
) = 0;
1718 pxa_free_dma(drv_data
->tx_channel
);
1719 pxa_free_dma(drv_data
->rx_channel
);
1723 free_irq(ssp
->irq
, drv_data
);
1728 /* Disconnect from the SPI framework */
1729 spi_unregister_master(drv_data
->master
);
1731 /* Prevent double remove */
1732 platform_set_drvdata(pdev
, NULL
);
1737 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1741 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1742 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1746 static int pxa2xx_spi_suspend(struct device
*dev
)
1748 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1749 struct ssp_device
*ssp
= drv_data
->ssp
;
1752 status
= stop_queue(drv_data
);
1755 write_SSCR0(0, drv_data
->ioaddr
);
1756 clk_disable(ssp
->clk
);
1761 static int pxa2xx_spi_resume(struct device
*dev
)
1763 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1764 struct ssp_device
*ssp
= drv_data
->ssp
;
1767 if (drv_data
->rx_channel
!= -1)
1768 DRCMR(drv_data
->ssp
->drcmr_rx
) =
1769 DRCMR_MAPVLD
| drv_data
->rx_channel
;
1770 if (drv_data
->tx_channel
!= -1)
1771 DRCMR(drv_data
->ssp
->drcmr_tx
) =
1772 DRCMR_MAPVLD
| drv_data
->tx_channel
;
1774 /* Enable the SSP clock */
1775 clk_enable(ssp
->clk
);
1777 /* Start the queue running */
1778 status
= start_queue(drv_data
);
1780 dev_err(dev
, "problem starting queue (%d)\n", status
);
1787 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1788 .suspend
= pxa2xx_spi_suspend
,
1789 .resume
= pxa2xx_spi_resume
,
1793 static struct platform_driver driver
= {
1795 .name
= "pxa2xx-spi",
1796 .owner
= THIS_MODULE
,
1798 .pm
= &pxa2xx_spi_pm_ops
,
1801 .probe
= pxa2xx_spi_probe
,
1802 .remove
= pxa2xx_spi_remove
,
1803 .shutdown
= pxa2xx_spi_shutdown
,
1806 static int __init
pxa2xx_spi_init(void)
1808 return platform_driver_register(&driver
);
1810 subsys_initcall(pxa2xx_spi_init
);
1812 static void __exit
pxa2xx_spi_exit(void)
1814 platform_driver_unregister(&driver
);
1816 module_exit(pxa2xx_spi_exit
);