2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
63 * - fix missed txok introduced during performance
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/config.h>
100 #include <linux/module.h>
101 #include <linux/moduleparam.h>
102 #include <linux/types.h>
103 #include <linux/pci.h>
104 #include <linux/dma-mapping.h>
105 #include <linux/netdevice.h>
106 #include <linux/etherdevice.h>
107 #include <linux/delay.h>
108 #include <linux/smp_lock.h>
109 #include <linux/workqueue.h>
110 #include <linux/init.h>
111 #include <linux/ip.h> /* for iph */
112 #include <linux/in.h> /* for IPPROTO_... */
113 #include <linux/compiler.h>
114 #include <linux/prefetch.h>
115 #include <linux/ethtool.h>
116 #include <linux/timer.h>
117 #include <linux/if_vlan.h>
118 #include <linux/rtnetlink.h>
119 #include <linux/jiffies.h>
122 #include <asm/uaccess.h>
123 #include <asm/system.h>
125 #define DRV_NAME "ns83820"
127 /* Global parameters. See module_param near the bottom. */
129 static int reset_phy
= 0;
130 static int lnksts
= 0; /* CFG_LNKSTS bit polarity */
132 /* Dprintk is used for more interesting debug events */
134 #define Dprintk dprintk
137 #define RX_BUF_SIZE 1500 /* 8192 */
138 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
139 #define NS83820_VLAN_ACCEL_SUPPORT
142 /* Must not exceed ~65000. */
143 #define NR_RX_DESC 64
144 #define NR_TX_DESC 128
147 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
149 #define MIN_TX_DESC_FREE 8
151 /* register defines */
154 #define CR_TXE 0x00000001
155 #define CR_TXD 0x00000002
156 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
157 * The Receive engine skips one descriptor and moves
158 * onto the next one!! */
159 #define CR_RXE 0x00000004
160 #define CR_RXD 0x00000008
161 #define CR_TXR 0x00000010
162 #define CR_RXR 0x00000020
163 #define CR_SWI 0x00000080
164 #define CR_RST 0x00000100
166 #define PTSCR_EEBIST_FAIL 0x00000001
167 #define PTSCR_EEBIST_EN 0x00000002
168 #define PTSCR_EELOAD_EN 0x00000004
169 #define PTSCR_RBIST_FAIL 0x000001b8
170 #define PTSCR_RBIST_DONE 0x00000200
171 #define PTSCR_RBIST_EN 0x00000400
172 #define PTSCR_RBIST_RST 0x00002000
174 #define MEAR_EEDI 0x00000001
175 #define MEAR_EEDO 0x00000002
176 #define MEAR_EECLK 0x00000004
177 #define MEAR_EESEL 0x00000008
178 #define MEAR_MDIO 0x00000010
179 #define MEAR_MDDIR 0x00000020
180 #define MEAR_MDC 0x00000040
182 #define ISR_TXDESC3 0x40000000
183 #define ISR_TXDESC2 0x20000000
184 #define ISR_TXDESC1 0x10000000
185 #define ISR_TXDESC0 0x08000000
186 #define ISR_RXDESC3 0x04000000
187 #define ISR_RXDESC2 0x02000000
188 #define ISR_RXDESC1 0x01000000
189 #define ISR_RXDESC0 0x00800000
190 #define ISR_TXRCMP 0x00400000
191 #define ISR_RXRCMP 0x00200000
192 #define ISR_DPERR 0x00100000
193 #define ISR_SSERR 0x00080000
194 #define ISR_RMABT 0x00040000
195 #define ISR_RTABT 0x00020000
196 #define ISR_RXSOVR 0x00010000
197 #define ISR_HIBINT 0x00008000
198 #define ISR_PHY 0x00004000
199 #define ISR_PME 0x00002000
200 #define ISR_SWI 0x00001000
201 #define ISR_MIB 0x00000800
202 #define ISR_TXURN 0x00000400
203 #define ISR_TXIDLE 0x00000200
204 #define ISR_TXERR 0x00000100
205 #define ISR_TXDESC 0x00000080
206 #define ISR_TXOK 0x00000040
207 #define ISR_RXORN 0x00000020
208 #define ISR_RXIDLE 0x00000010
209 #define ISR_RXEARLY 0x00000008
210 #define ISR_RXERR 0x00000004
211 #define ISR_RXDESC 0x00000002
212 #define ISR_RXOK 0x00000001
214 #define TXCFG_CSI 0x80000000
215 #define TXCFG_HBI 0x40000000
216 #define TXCFG_MLB 0x20000000
217 #define TXCFG_ATP 0x10000000
218 #define TXCFG_ECRETRY 0x00800000
219 #define TXCFG_BRST_DIS 0x00080000
220 #define TXCFG_MXDMA1024 0x00000000
221 #define TXCFG_MXDMA512 0x00700000
222 #define TXCFG_MXDMA256 0x00600000
223 #define TXCFG_MXDMA128 0x00500000
224 #define TXCFG_MXDMA64 0x00400000
225 #define TXCFG_MXDMA32 0x00300000
226 #define TXCFG_MXDMA16 0x00200000
227 #define TXCFG_MXDMA8 0x00100000
229 #define CFG_LNKSTS 0x80000000
230 #define CFG_SPDSTS 0x60000000
231 #define CFG_SPDSTS1 0x40000000
232 #define CFG_SPDSTS0 0x20000000
233 #define CFG_DUPSTS 0x10000000
234 #define CFG_TBI_EN 0x01000000
235 #define CFG_MODE_1000 0x00400000
236 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
237 * Read the Phy response and then configure the MAC accordingly */
238 #define CFG_AUTO_1000 0x00200000
239 #define CFG_PINT_CTL 0x001c0000
240 #define CFG_PINT_DUPSTS 0x00100000
241 #define CFG_PINT_LNKSTS 0x00080000
242 #define CFG_PINT_SPDSTS 0x00040000
243 #define CFG_TMRTEST 0x00020000
244 #define CFG_MRM_DIS 0x00010000
245 #define CFG_MWI_DIS 0x00008000
246 #define CFG_T64ADDR 0x00004000
247 #define CFG_PCI64_DET 0x00002000
248 #define CFG_DATA64_EN 0x00001000
249 #define CFG_M64ADDR 0x00000800
250 #define CFG_PHY_RST 0x00000400
251 #define CFG_PHY_DIS 0x00000200
252 #define CFG_EXTSTS_EN 0x00000100
253 #define CFG_REQALG 0x00000080
254 #define CFG_SB 0x00000040
255 #define CFG_POW 0x00000020
256 #define CFG_EXD 0x00000010
257 #define CFG_PESEL 0x00000008
258 #define CFG_BROM_DIS 0x00000004
259 #define CFG_EXT_125 0x00000002
260 #define CFG_BEM 0x00000001
262 #define EXTSTS_UDPPKT 0x00200000
263 #define EXTSTS_TCPPKT 0x00080000
264 #define EXTSTS_IPPKT 0x00020000
265 #define EXTSTS_VPKT 0x00010000
266 #define EXTSTS_VTG_MASK 0x0000ffff
268 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
270 #define MIBC_MIBS 0x00000008
271 #define MIBC_ACLR 0x00000004
272 #define MIBC_FRZ 0x00000002
273 #define MIBC_WRN 0x00000001
275 #define PCR_PSEN (1 << 31)
276 #define PCR_PS_MCAST (1 << 30)
277 #define PCR_PS_DA (1 << 29)
278 #define PCR_STHI_8 (3 << 23)
279 #define PCR_STLO_4 (1 << 23)
280 #define PCR_FFHI_8K (3 << 21)
281 #define PCR_FFLO_4K (1 << 21)
282 #define PCR_PAUSE_CNT 0xFFFE
284 #define RXCFG_AEP 0x80000000
285 #define RXCFG_ARP 0x40000000
286 #define RXCFG_STRIPCRC 0x20000000
287 #define RXCFG_RX_FD 0x10000000
288 #define RXCFG_ALP 0x08000000
289 #define RXCFG_AIRL 0x04000000
290 #define RXCFG_MXDMA512 0x00700000
291 #define RXCFG_DRTH 0x0000003e
292 #define RXCFG_DRTH0 0x00000002
294 #define RFCR_RFEN 0x80000000
295 #define RFCR_AAB 0x40000000
296 #define RFCR_AAM 0x20000000
297 #define RFCR_AAU 0x10000000
298 #define RFCR_APM 0x08000000
299 #define RFCR_APAT 0x07800000
300 #define RFCR_APAT3 0x04000000
301 #define RFCR_APAT2 0x02000000
302 #define RFCR_APAT1 0x01000000
303 #define RFCR_APAT0 0x00800000
304 #define RFCR_AARP 0x00400000
305 #define RFCR_MHEN 0x00200000
306 #define RFCR_UHEN 0x00100000
307 #define RFCR_ULM 0x00080000
309 #define VRCR_RUDPE 0x00000080
310 #define VRCR_RTCPE 0x00000040
311 #define VRCR_RIPE 0x00000020
312 #define VRCR_IPEN 0x00000010
313 #define VRCR_DUTF 0x00000008
314 #define VRCR_DVTF 0x00000004
315 #define VRCR_VTREN 0x00000002
316 #define VRCR_VTDEN 0x00000001
318 #define VTCR_PPCHK 0x00000008
319 #define VTCR_GCHK 0x00000004
320 #define VTCR_VPPTI 0x00000002
321 #define VTCR_VGTI 0x00000001
358 #define TBICR_MR_AN_ENABLE 0x00001000
359 #define TBICR_MR_RESTART_AN 0x00000200
361 #define TBISR_MR_LINK_STATUS 0x00000020
362 #define TBISR_MR_AN_COMPLETE 0x00000004
364 #define TANAR_PS2 0x00000100
365 #define TANAR_PS1 0x00000080
366 #define TANAR_HALF_DUP 0x00000040
367 #define TANAR_FULL_DUP 0x00000020
369 #define GPIOR_GP5_OE 0x00000200
370 #define GPIOR_GP4_OE 0x00000100
371 #define GPIOR_GP3_OE 0x00000080
372 #define GPIOR_GP2_OE 0x00000040
373 #define GPIOR_GP1_OE 0x00000020
374 #define GPIOR_GP3_OUT 0x00000004
375 #define GPIOR_GP1_OUT 0x00000001
377 #define LINK_AUTONEGOTIATE 0x01
378 #define LINK_DOWN 0x02
381 #define HW_ADDR_LEN sizeof(dma_addr_t)
382 #define desc_addr_set(desc, addr) \
384 ((desc)[0] = cpu_to_le32(addr)); \
385 if (HW_ADDR_LEN == 8) \
386 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
388 #define desc_addr_get(desc) \
389 (le32_to_cpu((desc)[0]) | \
390 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
393 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
394 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
395 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
397 #define CMDSTS_OWN 0x80000000
398 #define CMDSTS_MORE 0x40000000
399 #define CMDSTS_INTR 0x20000000
400 #define CMDSTS_ERR 0x10000000
401 #define CMDSTS_OK 0x08000000
402 #define CMDSTS_RUNT 0x00200000
403 #define CMDSTS_LEN_MASK 0x0000ffff
405 #define CMDSTS_DEST_MASK 0x01800000
406 #define CMDSTS_DEST_SELF 0x00800000
407 #define CMDSTS_DEST_MULTI 0x01000000
409 #define DESC_SIZE 8 /* Should be cache line sized */
416 struct sk_buff
*skbs
[NR_RX_DESC
];
419 u16 next_rx
, next_empty
;
422 dma_addr_t phy_descs
;
427 struct net_device_stats stats
;
430 struct pci_dev
*pci_dev
;
432 #ifdef NS83820_VLAN_ACCEL_SUPPORT
433 struct vlan_group
*vlgrp
;
436 struct rx_info rx_info
;
437 struct tasklet_struct rx_tasklet
;
440 struct work_struct tq_refill
;
442 /* protects everything below. irqsave when using. */
443 spinlock_t misc_lock
;
456 volatile u16 tx_free_idx
; /* idx of free desc chain */
460 struct sk_buff
*tx_skbs
[NR_TX_DESC
];
462 char pad
[16] __attribute__((aligned(16)));
464 dma_addr_t tx_phy_descs
;
466 struct timer_list tx_watchdog
;
469 static inline struct ns83820
*PRIV(struct net_device
*dev
)
471 return netdev_priv(dev
);
474 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
476 static inline void kick_rx(struct net_device
*ndev
)
478 struct ns83820
*dev
= PRIV(ndev
);
479 dprintk("kick_rx: maybe kicking\n");
480 if (test_and_clear_bit(0, &dev
->rx_info
.idle
)) {
481 dprintk("actually kicking\n");
482 writel(dev
->rx_info
.phy_descs
+
483 (4 * DESC_SIZE
* dev
->rx_info
.next_rx
),
485 if (dev
->rx_info
.next_rx
== dev
->rx_info
.next_empty
)
486 printk(KERN_DEBUG
"%s: uh-oh: next_rx == next_empty???\n",
492 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
493 #define start_tx_okay(dev) \
494 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
497 #ifdef NS83820_VLAN_ACCEL_SUPPORT
498 static void ns83820_vlan_rx_register(struct net_device
*ndev
, struct vlan_group
*grp
)
500 struct ns83820
*dev
= PRIV(ndev
);
502 spin_lock_irq(&dev
->misc_lock
);
503 spin_lock(&dev
->tx_lock
);
507 spin_unlock(&dev
->tx_lock
);
508 spin_unlock_irq(&dev
->misc_lock
);
511 static void ns83820_vlan_rx_kill_vid(struct net_device
*ndev
, unsigned short vid
)
513 struct ns83820
*dev
= PRIV(ndev
);
515 spin_lock_irq(&dev
->misc_lock
);
516 spin_lock(&dev
->tx_lock
);
518 dev
->vlgrp
->vlan_devices
[vid
] = NULL
;
519 spin_unlock(&dev
->tx_lock
);
520 spin_unlock_irq(&dev
->misc_lock
);
526 * The hardware supports linked lists of receive descriptors for
527 * which ownership is transfered back and forth by means of an
528 * ownership bit. While the hardware does support the use of a
529 * ring for receive descriptors, we only make use of a chain in
530 * an attempt to reduce bus traffic under heavy load scenarios.
531 * This will also make bugs a bit more obvious. The current code
532 * only makes use of a single rx chain; I hope to implement
533 * priority based rx for version 1.0. Goal: even under overload
534 * conditions, still route realtime traffic with as low jitter as
537 static inline void build_rx_desc(struct ns83820
*dev
, u32
*desc
, dma_addr_t link
, dma_addr_t buf
, u32 cmdsts
, u32 extsts
)
539 desc_addr_set(desc
+ DESC_LINK
, link
);
540 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
541 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
543 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
546 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
547 static inline int ns83820_add_rx_skb(struct ns83820
*dev
, struct sk_buff
*skb
)
554 next_empty
= dev
->rx_info
.next_empty
;
556 /* don't overrun last rx marker */
557 if (unlikely(nr_rx_empty(dev
) <= 2)) {
563 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
564 dev
->rx_info
.next_empty
,
565 dev
->rx_info
.nr_used
,
570 sg
= dev
->rx_info
.descs
+ (next_empty
* DESC_SIZE
);
571 if (unlikely(NULL
!= dev
->rx_info
.skbs
[next_empty
]))
573 dev
->rx_info
.skbs
[next_empty
] = skb
;
575 dev
->rx_info
.next_empty
= (next_empty
+ 1) % NR_RX_DESC
;
576 cmdsts
= REAL_RX_BUF_SIZE
| CMDSTS_INTR
;
577 buf
= pci_map_single(dev
->pci_dev
, skb
->data
,
578 REAL_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
579 build_rx_desc(dev
, sg
, 0, buf
, cmdsts
, 0);
580 /* update link of previous rx */
581 if (likely(next_empty
!= dev
->rx_info
.next_rx
))
582 dev
->rx_info
.descs
[((NR_RX_DESC
+ next_empty
- 1) % NR_RX_DESC
) * DESC_SIZE
] = cpu_to_le32(dev
->rx_info
.phy_descs
+ (next_empty
* DESC_SIZE
* 4));
587 static inline int rx_refill(struct net_device
*ndev
, gfp_t gfp
)
589 struct ns83820
*dev
= PRIV(ndev
);
591 unsigned long flags
= 0;
593 if (unlikely(nr_rx_empty(dev
) <= 2))
596 dprintk("rx_refill(%p)\n", ndev
);
597 if (gfp
== GFP_ATOMIC
)
598 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
599 for (i
=0; i
<NR_RX_DESC
; i
++) {
602 /* extra 16 bytes for alignment */
603 skb
= __dev_alloc_skb(REAL_RX_BUF_SIZE
+16, gfp
);
607 res
= (long)skb
->data
& 0xf;
610 skb_reserve(skb
, res
);
613 if (gfp
!= GFP_ATOMIC
)
614 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
615 res
= ns83820_add_rx_skb(dev
, skb
);
616 if (gfp
!= GFP_ATOMIC
)
617 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
623 if (gfp
== GFP_ATOMIC
)
624 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
626 return i
? 0 : -ENOMEM
;
629 static void FASTCALL(rx_refill_atomic(struct net_device
*ndev
));
630 static void fastcall
rx_refill_atomic(struct net_device
*ndev
)
632 rx_refill(ndev
, GFP_ATOMIC
);
636 static inline void queue_refill(void *_dev
)
638 struct net_device
*ndev
= _dev
;
639 struct ns83820
*dev
= PRIV(ndev
);
641 rx_refill(ndev
, GFP_KERNEL
);
646 static inline void clear_rx_desc(struct ns83820
*dev
, unsigned i
)
648 build_rx_desc(dev
, dev
->rx_info
.descs
+ (DESC_SIZE
* i
), 0, 0, CMDSTS_OWN
, 0);
651 static void FASTCALL(phy_intr(struct net_device
*ndev
));
652 static void fastcall
phy_intr(struct net_device
*ndev
)
654 struct ns83820
*dev
= PRIV(ndev
);
655 static const char *speeds
[] = { "10", "100", "1000", "1000(?)", "1000F" };
657 u32 tbisr
, tanar
, tanlpar
;
658 int speed
, fullduplex
, newlinkstate
;
660 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
662 if (dev
->CFG_cache
& CFG_TBI_EN
) {
663 /* we have an optical transceiver */
664 tbisr
= readl(dev
->base
+ TBISR
);
665 tanar
= readl(dev
->base
+ TANAR
);
666 tanlpar
= readl(dev
->base
+ TANLPAR
);
667 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
668 tbisr
, tanar
, tanlpar
);
670 if ( (fullduplex
= (tanlpar
& TANAR_FULL_DUP
)
671 && (tanar
& TANAR_FULL_DUP
)) ) {
673 /* both of us are full duplex */
674 writel(readl(dev
->base
+ TXCFG
)
675 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
677 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
679 /* Light up full duplex LED */
680 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
683 } else if(((tanlpar
& TANAR_HALF_DUP
)
684 && (tanar
& TANAR_HALF_DUP
))
685 || ((tanlpar
& TANAR_FULL_DUP
)
686 && (tanar
& TANAR_HALF_DUP
))
687 || ((tanlpar
& TANAR_HALF_DUP
)
688 && (tanar
& TANAR_FULL_DUP
))) {
690 /* one or both of us are half duplex */
691 writel((readl(dev
->base
+ TXCFG
)
692 & ~(TXCFG_CSI
| TXCFG_HBI
)) | TXCFG_ATP
,
694 writel(readl(dev
->base
+ RXCFG
) & ~RXCFG_RX_FD
,
696 /* Turn off full duplex LED */
697 writel(readl(dev
->base
+ GPIOR
) & ~GPIOR_GP1_OUT
,
701 speed
= 4; /* 1000F */
704 /* we have a copper transceiver */
705 new_cfg
= dev
->CFG_cache
& ~(CFG_SB
| CFG_MODE_1000
| CFG_SPDSTS
);
707 if (cfg
& CFG_SPDSTS1
)
708 new_cfg
|= CFG_MODE_1000
;
710 new_cfg
&= ~CFG_MODE_1000
;
712 speed
= ((cfg
/ CFG_SPDSTS0
) & 3);
713 fullduplex
= (cfg
& CFG_DUPSTS
);
717 writel(readl(dev
->base
+ TXCFG
)
718 | TXCFG_CSI
| TXCFG_HBI
,
720 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
723 writel(readl(dev
->base
+ TXCFG
)
724 & ~(TXCFG_CSI
| TXCFG_HBI
),
726 writel(readl(dev
->base
+ RXCFG
) & ~(RXCFG_RX_FD
),
730 if ((cfg
& CFG_LNKSTS
) &&
731 ((new_cfg
^ dev
->CFG_cache
) != 0)) {
732 writel(new_cfg
, dev
->base
+ CFG
);
733 dev
->CFG_cache
= new_cfg
;
736 dev
->CFG_cache
&= ~CFG_SPDSTS
;
737 dev
->CFG_cache
|= cfg
& CFG_SPDSTS
;
740 newlinkstate
= (cfg
& CFG_LNKSTS
) ? LINK_UP
: LINK_DOWN
;
742 if (newlinkstate
& LINK_UP
743 && dev
->linkstate
!= newlinkstate
) {
744 netif_start_queue(ndev
);
745 netif_wake_queue(ndev
);
746 printk(KERN_INFO
"%s: link now %s mbps, %s duplex and up.\n",
749 fullduplex
? "full" : "half");
750 } else if (newlinkstate
& LINK_DOWN
751 && dev
->linkstate
!= newlinkstate
) {
752 netif_stop_queue(ndev
);
753 printk(KERN_INFO
"%s: link now down.\n", ndev
->name
);
756 dev
->linkstate
= newlinkstate
;
759 static int ns83820_setup_rx(struct net_device
*ndev
)
761 struct ns83820
*dev
= PRIV(ndev
);
765 dprintk("ns83820_setup_rx(%p)\n", ndev
);
767 dev
->rx_info
.idle
= 1;
768 dev
->rx_info
.next_rx
= 0;
769 dev
->rx_info
.next_rx_desc
= dev
->rx_info
.descs
;
770 dev
->rx_info
.next_empty
= 0;
772 for (i
=0; i
<NR_RX_DESC
; i
++)
773 clear_rx_desc(dev
, i
);
775 writel(0, dev
->base
+ RXDP_HI
);
776 writel(dev
->rx_info
.phy_descs
, dev
->base
+ RXDP
);
778 ret
= rx_refill(ndev
, GFP_KERNEL
);
780 dprintk("starting receiver\n");
781 /* prevent the interrupt handler from stomping on us */
782 spin_lock_irq(&dev
->rx_info
.lock
);
784 writel(0x0001, dev
->base
+ CCSR
);
785 writel(0, dev
->base
+ RFCR
);
786 writel(0x7fc00000, dev
->base
+ RFCR
);
787 writel(0xffc00000, dev
->base
+ RFCR
);
793 /* Okay, let it rip */
794 spin_lock_irq(&dev
->misc_lock
);
795 dev
->IMR_cache
|= ISR_PHY
;
796 dev
->IMR_cache
|= ISR_RXRCMP
;
797 //dev->IMR_cache |= ISR_RXERR;
798 //dev->IMR_cache |= ISR_RXOK;
799 dev
->IMR_cache
|= ISR_RXORN
;
800 dev
->IMR_cache
|= ISR_RXSOVR
;
801 dev
->IMR_cache
|= ISR_RXDESC
;
802 dev
->IMR_cache
|= ISR_RXIDLE
;
803 dev
->IMR_cache
|= ISR_TXDESC
;
804 dev
->IMR_cache
|= ISR_TXIDLE
;
806 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
807 writel(1, dev
->base
+ IER
);
808 spin_unlock_irq(&dev
->misc_lock
);
812 spin_unlock_irq(&dev
->rx_info
.lock
);
817 static void ns83820_cleanup_rx(struct ns83820
*dev
)
822 dprintk("ns83820_cleanup_rx(%p)\n", dev
);
824 /* disable receive interrupts */
825 spin_lock_irqsave(&dev
->misc_lock
, flags
);
826 dev
->IMR_cache
&= ~(ISR_RXOK
| ISR_RXDESC
| ISR_RXERR
| ISR_RXEARLY
| ISR_RXIDLE
);
827 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
828 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
830 /* synchronize with the interrupt handler and kill it */
832 synchronize_irq(dev
->pci_dev
->irq
);
834 /* touch the pci bus... */
835 readl(dev
->base
+ IMR
);
837 /* assumes the transmitter is already disabled and reset */
838 writel(0, dev
->base
+ RXDP_HI
);
839 writel(0, dev
->base
+ RXDP
);
841 for (i
=0; i
<NR_RX_DESC
; i
++) {
842 struct sk_buff
*skb
= dev
->rx_info
.skbs
[i
];
843 dev
->rx_info
.skbs
[i
] = NULL
;
844 clear_rx_desc(dev
, i
);
850 static void FASTCALL(ns83820_rx_kick(struct net_device
*ndev
));
851 static void fastcall
ns83820_rx_kick(struct net_device
*ndev
)
853 struct ns83820
*dev
= PRIV(ndev
);
854 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
855 if (dev
->rx_info
.up
) {
856 rx_refill_atomic(ndev
);
861 if (dev
->rx_info
.up
&& nr_rx_empty(dev
) > NR_RX_DESC
*3/4)
862 schedule_work(&dev
->tq_refill
);
865 if (dev
->rx_info
.idle
)
866 printk(KERN_DEBUG
"%s: BAD\n", ndev
->name
);
872 static void FASTCALL(rx_irq(struct net_device
*ndev
));
873 static void fastcall
rx_irq(struct net_device
*ndev
)
875 struct ns83820
*dev
= PRIV(ndev
);
876 struct rx_info
*info
= &dev
->rx_info
;
883 dprintk("rx_irq(%p)\n", ndev
);
884 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
885 readl(dev
->base
+ RXDP
),
886 (long)(dev
->rx_info
.phy_descs
),
887 (int)dev
->rx_info
.next_rx
,
888 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_rx
)),
889 (int)dev
->rx_info
.next_empty
,
890 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_empty
))
893 spin_lock_irqsave(&info
->lock
, flags
);
897 dprintk("walking descs\n");
898 next_rx
= info
->next_rx
;
899 desc
= info
->next_rx_desc
;
900 while ((CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) &&
901 (cmdsts
!= CMDSTS_OWN
)) {
903 u32 extsts
= le32_to_cpu(desc
[DESC_EXTSTS
]);
904 dma_addr_t bufptr
= desc_addr_get(desc
+ DESC_BUFPTR
);
906 dprintk("cmdsts: %08x\n", cmdsts
);
907 dprintk("link: %08x\n", cpu_to_le32(desc
[DESC_LINK
]));
908 dprintk("extsts: %08x\n", extsts
);
910 skb
= info
->skbs
[next_rx
];
911 info
->skbs
[next_rx
] = NULL
;
912 info
->next_rx
= (next_rx
+ 1) % NR_RX_DESC
;
915 clear_rx_desc(dev
, next_rx
);
917 pci_unmap_single(dev
->pci_dev
, bufptr
,
918 RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
919 len
= cmdsts
& CMDSTS_LEN_MASK
;
920 #ifdef NS83820_VLAN_ACCEL_SUPPORT
921 /* NH: As was mentioned below, this chip is kinda
922 * brain dead about vlan tag stripping. Frames
923 * that are 64 bytes with a vlan header appended
924 * like arp frames, or pings, are flagged as Runts
925 * when the tag is stripped and hardware. This
926 * also means that the OK bit in the descriptor
927 * is cleared when the frame comes in so we have
928 * to do a specific length check here to make sure
929 * the frame would have been ok, had we not stripped
932 if (likely((CMDSTS_OK
& cmdsts
) ||
933 ((cmdsts
& CMDSTS_RUNT
) && len
>= 56))) {
935 if (likely(CMDSTS_OK
& cmdsts
)) {
939 goto netdev_mangle_me_harder_failed
;
940 if (cmdsts
& CMDSTS_DEST_MULTI
)
941 dev
->stats
.multicast
++;
942 dev
->stats
.rx_packets
++;
943 dev
->stats
.rx_bytes
+= len
;
944 if ((extsts
& 0x002a0000) && !(extsts
& 0x00540000)) {
945 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
947 skb
->ip_summed
= CHECKSUM_NONE
;
949 skb
->protocol
= eth_type_trans(skb
, ndev
);
950 #ifdef NS83820_VLAN_ACCEL_SUPPORT
951 if(extsts
& EXTSTS_VPKT
) {
953 tag
= ntohs(extsts
& EXTSTS_VTG_MASK
);
954 rx_rc
= vlan_hwaccel_rx(skb
,dev
->vlgrp
,tag
);
956 rx_rc
= netif_rx(skb
);
959 rx_rc
= netif_rx(skb
);
961 if (NET_RX_DROP
== rx_rc
) {
962 netdev_mangle_me_harder_failed
:
963 dev
->stats
.rx_dropped
++;
970 next_rx
= info
->next_rx
;
971 desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
973 info
->next_rx
= next_rx
;
974 info
->next_rx_desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
978 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts
);
981 spin_unlock_irqrestore(&info
->lock
, flags
);
984 static void rx_action(unsigned long _dev
)
986 struct net_device
*ndev
= (void *)_dev
;
987 struct ns83820
*dev
= PRIV(ndev
);
989 writel(ihr
, dev
->base
+ IHR
);
991 spin_lock_irq(&dev
->misc_lock
);
992 dev
->IMR_cache
|= ISR_RXDESC
;
993 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
994 spin_unlock_irq(&dev
->misc_lock
);
997 ns83820_rx_kick(ndev
);
1000 /* Packet Transmit code
1002 static inline void kick_tx(struct ns83820
*dev
)
1004 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
1005 dev
, dev
->tx_idx
, dev
->tx_free_idx
);
1006 writel(CR_TXE
, dev
->base
+ CR
);
1009 /* No spinlock needed on the transmit irq path as the interrupt handler is
1012 static void do_tx_done(struct net_device
*ndev
)
1014 struct ns83820
*dev
= PRIV(ndev
);
1015 u32 cmdsts
, tx_done_idx
, *desc
;
1017 spin_lock_irq(&dev
->tx_lock
);
1019 dprintk("do_tx_done(%p)\n", ndev
);
1020 tx_done_idx
= dev
->tx_done_idx
;
1021 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1023 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1024 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1025 while ((tx_done_idx
!= dev
->tx_free_idx
) &&
1026 !(CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) ) {
1027 struct sk_buff
*skb
;
1031 if (cmdsts
& CMDSTS_ERR
)
1032 dev
->stats
.tx_errors
++;
1033 if (cmdsts
& CMDSTS_OK
)
1034 dev
->stats
.tx_packets
++;
1035 if (cmdsts
& CMDSTS_OK
)
1036 dev
->stats
.tx_bytes
+= cmdsts
& 0xffff;
1038 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1039 tx_done_idx
, dev
->tx_free_idx
, cmdsts
);
1040 skb
= dev
->tx_skbs
[tx_done_idx
];
1041 dev
->tx_skbs
[tx_done_idx
] = NULL
;
1042 dprintk("done(%p)\n", skb
);
1044 len
= cmdsts
& CMDSTS_LEN_MASK
;
1045 addr
= desc_addr_get(desc
+ DESC_BUFPTR
);
1047 pci_unmap_single(dev
->pci_dev
,
1051 dev_kfree_skb_irq(skb
);
1052 atomic_dec(&dev
->nr_tx_skbs
);
1054 pci_unmap_page(dev
->pci_dev
,
1059 tx_done_idx
= (tx_done_idx
+ 1) % NR_TX_DESC
;
1060 dev
->tx_done_idx
= tx_done_idx
;
1061 desc
[DESC_CMDSTS
] = cpu_to_le32(0);
1063 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1066 /* Allow network stack to resume queueing packets after we've
1067 * finished transmitting at least 1/4 of the packets in the queue.
1069 if (netif_queue_stopped(ndev
) && start_tx_okay(dev
)) {
1070 dprintk("start_queue(%p)\n", ndev
);
1071 netif_start_queue(ndev
);
1072 netif_wake_queue(ndev
);
1074 spin_unlock_irq(&dev
->tx_lock
);
1077 static void ns83820_cleanup_tx(struct ns83820
*dev
)
1081 for (i
=0; i
<NR_TX_DESC
; i
++) {
1082 struct sk_buff
*skb
= dev
->tx_skbs
[i
];
1083 dev
->tx_skbs
[i
] = NULL
;
1085 u32
*desc
= dev
->tx_descs
+ (i
* DESC_SIZE
);
1086 pci_unmap_single(dev
->pci_dev
,
1087 desc_addr_get(desc
+ DESC_BUFPTR
),
1088 le32_to_cpu(desc
[DESC_CMDSTS
]) & CMDSTS_LEN_MASK
,
1090 dev_kfree_skb_irq(skb
);
1091 atomic_dec(&dev
->nr_tx_skbs
);
1095 memset(dev
->tx_descs
, 0, NR_TX_DESC
* DESC_SIZE
* 4);
1098 /* transmit routine. This code relies on the network layer serializing
1099 * its calls in, but will run happily in parallel with the interrupt
1100 * handler. This code currently has provisions for fragmenting tx buffers
1101 * while trying to track down a bug in either the zero copy code or
1102 * the tx fifo (hence the MAX_FRAG_LEN).
1104 static int ns83820_hard_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
1106 struct ns83820
*dev
= PRIV(ndev
);
1107 u32 free_idx
, cmdsts
, extsts
;
1108 int nr_free
, nr_frags
;
1109 unsigned tx_done_idx
, last_idx
;
1115 volatile u32
*first_desc
;
1117 dprintk("ns83820_hard_start_xmit\n");
1119 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1121 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
)) {
1122 netif_stop_queue(ndev
);
1123 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
))
1125 netif_start_queue(ndev
);
1128 last_idx
= free_idx
= dev
->tx_free_idx
;
1129 tx_done_idx
= dev
->tx_done_idx
;
1130 nr_free
= (tx_done_idx
+ NR_TX_DESC
-2 - free_idx
) % NR_TX_DESC
;
1132 if (nr_free
<= nr_frags
) {
1133 dprintk("stop_queue - not enough(%p)\n", ndev
);
1134 netif_stop_queue(ndev
);
1136 /* Check again: we may have raced with a tx done irq */
1137 if (dev
->tx_done_idx
!= tx_done_idx
) {
1138 dprintk("restart queue(%p)\n", ndev
);
1139 netif_start_queue(ndev
);
1145 if (free_idx
== dev
->tx_intr_idx
) {
1147 dev
->tx_intr_idx
= (dev
->tx_intr_idx
+ NR_TX_DESC
/4) % NR_TX_DESC
;
1150 nr_free
-= nr_frags
;
1151 if (nr_free
< MIN_TX_DESC_FREE
) {
1152 dprintk("stop_queue - last entry(%p)\n", ndev
);
1153 netif_stop_queue(ndev
);
1157 frag
= skb_shinfo(skb
)->frags
;
1161 if (skb
->ip_summed
== CHECKSUM_HW
) {
1162 extsts
|= EXTSTS_IPPKT
;
1163 if (IPPROTO_TCP
== skb
->nh
.iph
->protocol
)
1164 extsts
|= EXTSTS_TCPPKT
;
1165 else if (IPPROTO_UDP
== skb
->nh
.iph
->protocol
)
1166 extsts
|= EXTSTS_UDPPKT
;
1169 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1170 if(vlan_tx_tag_present(skb
)) {
1171 /* fetch the vlan tag info out of the
1172 * ancilliary data if the vlan code
1173 * is using hw vlan acceleration
1175 short tag
= vlan_tx_tag_get(skb
);
1176 extsts
|= (EXTSTS_VPKT
| htons(tag
));
1182 len
-= skb
->data_len
;
1183 buf
= pci_map_single(dev
->pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
1185 first_desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1188 volatile u32
*desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1190 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx
, len
,
1191 (unsigned long long)buf
);
1192 last_idx
= free_idx
;
1193 free_idx
= (free_idx
+ 1) % NR_TX_DESC
;
1194 desc
[DESC_LINK
] = cpu_to_le32(dev
->tx_phy_descs
+ (free_idx
* DESC_SIZE
* 4));
1195 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
1196 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
1198 cmdsts
= ((nr_frags
) ? CMDSTS_MORE
: do_intr
? CMDSTS_INTR
: 0);
1199 cmdsts
|= (desc
== first_desc
) ? 0 : CMDSTS_OWN
;
1201 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
1206 buf
= pci_map_page(dev
->pci_dev
, frag
->page
,
1208 frag
->size
, PCI_DMA_TODEVICE
);
1209 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1210 (long long)buf
, (long) page_to_pfn(frag
->page
),
1216 dprintk("done pkt\n");
1218 spin_lock_irq(&dev
->tx_lock
);
1219 dev
->tx_skbs
[last_idx
] = skb
;
1220 first_desc
[DESC_CMDSTS
] |= cpu_to_le32(CMDSTS_OWN
);
1221 dev
->tx_free_idx
= free_idx
;
1222 atomic_inc(&dev
->nr_tx_skbs
);
1223 spin_unlock_irq(&dev
->tx_lock
);
1227 /* Check again: we may have raced with a tx done irq */
1228 if (stopped
&& (dev
->tx_done_idx
!= tx_done_idx
) && start_tx_okay(dev
))
1229 netif_start_queue(ndev
);
1231 /* set the transmit start time to catch transmit timeouts */
1232 ndev
->trans_start
= jiffies
;
1236 static void ns83820_update_stats(struct ns83820
*dev
)
1238 u8 __iomem
*base
= dev
->base
;
1240 /* the DP83820 will freeze counters, so we need to read all of them */
1241 dev
->stats
.rx_errors
+= readl(base
+ 0x60) & 0xffff;
1242 dev
->stats
.rx_crc_errors
+= readl(base
+ 0x64) & 0xffff;
1243 dev
->stats
.rx_missed_errors
+= readl(base
+ 0x68) & 0xffff;
1244 dev
->stats
.rx_frame_errors
+= readl(base
+ 0x6c) & 0xffff;
1245 /*dev->stats.rx_symbol_errors +=*/ readl(base
+ 0x70);
1246 dev
->stats
.rx_length_errors
+= readl(base
+ 0x74) & 0xffff;
1247 dev
->stats
.rx_length_errors
+= readl(base
+ 0x78) & 0xffff;
1248 /*dev->stats.rx_badopcode_errors += */ readl(base
+ 0x7c);
1249 /*dev->stats.rx_pause_count += */ readl(base
+ 0x80);
1250 /*dev->stats.tx_pause_count += */ readl(base
+ 0x84);
1251 dev
->stats
.tx_carrier_errors
+= readl(base
+ 0x88) & 0xff;
1254 static struct net_device_stats
*ns83820_get_stats(struct net_device
*ndev
)
1256 struct ns83820
*dev
= PRIV(ndev
);
1258 /* somewhat overkill */
1259 spin_lock_irq(&dev
->misc_lock
);
1260 ns83820_update_stats(dev
);
1261 spin_unlock_irq(&dev
->misc_lock
);
1266 static void ns83820_get_drvinfo(struct net_device
*ndev
, struct ethtool_drvinfo
*info
)
1268 struct ns83820
*dev
= PRIV(ndev
);
1269 strcpy(info
->driver
, "ns83820");
1270 strcpy(info
->version
, VERSION
);
1271 strcpy(info
->bus_info
, pci_name(dev
->pci_dev
));
1274 static u32
ns83820_get_link(struct net_device
*ndev
)
1276 struct ns83820
*dev
= PRIV(ndev
);
1277 u32 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1278 return cfg
& CFG_LNKSTS
? 1 : 0;
1281 static struct ethtool_ops ops
= {
1282 .get_drvinfo
= ns83820_get_drvinfo
,
1283 .get_link
= ns83820_get_link
1286 static void ns83820_mib_isr(struct ns83820
*dev
)
1288 spin_lock(&dev
->misc_lock
);
1289 ns83820_update_stats(dev
);
1290 spin_unlock(&dev
->misc_lock
);
1293 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
);
1294 static irqreturn_t
ns83820_irq(int foo
, void *data
, struct pt_regs
*regs
)
1296 struct net_device
*ndev
= data
;
1297 struct ns83820
*dev
= PRIV(ndev
);
1299 dprintk("ns83820_irq(%p)\n", ndev
);
1303 isr
= readl(dev
->base
+ ISR
);
1304 dprintk("irq: %08x\n", isr
);
1305 ns83820_do_isr(ndev
, isr
);
1309 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
)
1311 struct ns83820
*dev
= PRIV(ndev
);
1313 if (isr
& ~(ISR_PHY
| ISR_RXDESC
| ISR_RXEARLY
| ISR_RXOK
| ISR_RXERR
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXDESC
))
1314 Dprintk("odd isr? 0x%08x\n", isr
);
1317 if (ISR_RXIDLE
& isr
) {
1318 dev
->rx_info
.idle
= 1;
1319 Dprintk("oh dear, we are idle\n");
1320 ns83820_rx_kick(ndev
);
1323 if ((ISR_RXDESC
| ISR_RXOK
) & isr
) {
1324 prefetch(dev
->rx_info
.next_rx_desc
);
1326 spin_lock_irq(&dev
->misc_lock
);
1327 dev
->IMR_cache
&= ~(ISR_RXDESC
| ISR_RXOK
);
1328 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1329 spin_unlock_irq(&dev
->misc_lock
);
1331 tasklet_schedule(&dev
->rx_tasklet
);
1333 //writel(4, dev->base + IHR);
1336 if ((ISR_RXIDLE
| ISR_RXORN
| ISR_RXDESC
| ISR_RXOK
| ISR_RXERR
) & isr
)
1337 ns83820_rx_kick(ndev
);
1339 if (unlikely(ISR_RXSOVR
& isr
)) {
1340 //printk("overrun: rxsovr\n");
1341 dev
->stats
.rx_fifo_errors
++;
1344 if (unlikely(ISR_RXORN
& isr
)) {
1345 //printk("overrun: rxorn\n");
1346 dev
->stats
.rx_fifo_errors
++;
1349 if ((ISR_RXRCMP
& isr
) && dev
->rx_info
.up
)
1350 writel(CR_RXE
, dev
->base
+ CR
);
1352 if (ISR_TXIDLE
& isr
) {
1354 txdp
= readl(dev
->base
+ TXDP
);
1355 dprintk("txdp: %08x\n", txdp
);
1356 txdp
-= dev
->tx_phy_descs
;
1357 dev
->tx_idx
= txdp
/ (DESC_SIZE
* 4);
1358 if (dev
->tx_idx
>= NR_TX_DESC
) {
1359 printk(KERN_ALERT
"%s: BUG -- txdp out of range\n", ndev
->name
);
1362 /* The may have been a race between a pci originated read
1363 * and the descriptor update from the cpu. Just in case,
1364 * kick the transmitter if the hardware thinks it is on a
1365 * different descriptor than we are.
1367 if (dev
->tx_idx
!= dev
->tx_free_idx
)
1371 /* Defer tx ring processing until more than a minimum amount of
1372 * work has accumulated
1374 if ((ISR_TXDESC
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXERR
) & isr
) {
1377 /* Disable TxOk if there are no outstanding tx packets.
1379 if ((dev
->tx_done_idx
== dev
->tx_free_idx
) &&
1380 (dev
->IMR_cache
& ISR_TXOK
)) {
1381 spin_lock_irq(&dev
->misc_lock
);
1382 dev
->IMR_cache
&= ~ISR_TXOK
;
1383 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1384 spin_unlock_irq(&dev
->misc_lock
);
1388 /* The TxIdle interrupt can come in before the transmit has
1389 * completed. Normally we reap packets off of the combination
1390 * of TxDesc and TxIdle and leave TxOk disabled (since it
1391 * occurs on every packet), but when no further irqs of this
1392 * nature are expected, we must enable TxOk.
1394 if ((ISR_TXIDLE
& isr
) && (dev
->tx_done_idx
!= dev
->tx_free_idx
)) {
1395 spin_lock_irq(&dev
->misc_lock
);
1396 dev
->IMR_cache
|= ISR_TXOK
;
1397 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1398 spin_unlock_irq(&dev
->misc_lock
);
1401 /* MIB interrupt: one of the statistics counters is about to overflow */
1402 if (unlikely(ISR_MIB
& isr
))
1403 ns83820_mib_isr(dev
);
1405 /* PHY: Link up/down/negotiation state change */
1406 if (unlikely(ISR_PHY
& isr
))
1409 #if 0 /* Still working on the interrupt mitigation strategy */
1411 writel(dev
->ihr
, dev
->base
+ IHR
);
1415 static void ns83820_do_reset(struct ns83820
*dev
, u32 which
)
1417 Dprintk("resetting chip...\n");
1418 writel(which
, dev
->base
+ CR
);
1421 } while (readl(dev
->base
+ CR
) & which
);
1425 static int ns83820_stop(struct net_device
*ndev
)
1427 struct ns83820
*dev
= PRIV(ndev
);
1429 /* FIXME: protect against interrupt handler? */
1430 del_timer_sync(&dev
->tx_watchdog
);
1432 /* disable interrupts */
1433 writel(0, dev
->base
+ IMR
);
1434 writel(0, dev
->base
+ IER
);
1435 readl(dev
->base
+ IER
);
1437 dev
->rx_info
.up
= 0;
1438 synchronize_irq(dev
->pci_dev
->irq
);
1440 ns83820_do_reset(dev
, CR_RST
);
1442 synchronize_irq(dev
->pci_dev
->irq
);
1444 spin_lock_irq(&dev
->misc_lock
);
1445 dev
->IMR_cache
&= ~(ISR_TXURN
| ISR_TXIDLE
| ISR_TXERR
| ISR_TXDESC
| ISR_TXOK
);
1446 spin_unlock_irq(&dev
->misc_lock
);
1448 ns83820_cleanup_rx(dev
);
1449 ns83820_cleanup_tx(dev
);
1454 static void ns83820_tx_timeout(struct net_device
*ndev
)
1456 struct ns83820
*dev
= PRIV(ndev
);
1457 u32 tx_done_idx
, *desc
;
1458 unsigned long flags
;
1460 local_irq_save(flags
);
1462 tx_done_idx
= dev
->tx_done_idx
;
1463 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1465 printk(KERN_INFO
"%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1467 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1472 isr
= readl(dev
->base
+ ISR
);
1473 printk("irq: %08x imr: %08x\n", isr
, dev
->IMR_cache
);
1474 ns83820_do_isr(ndev
, isr
);
1480 tx_done_idx
= dev
->tx_done_idx
;
1481 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1483 printk(KERN_INFO
"%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1485 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1487 local_irq_restore(flags
);
1490 static void ns83820_tx_watch(unsigned long data
)
1492 struct net_device
*ndev
= (void *)data
;
1493 struct ns83820
*dev
= PRIV(ndev
);
1496 printk("ns83820_tx_watch: %u %u %d\n",
1497 dev
->tx_done_idx
, dev
->tx_free_idx
, atomic_read(&dev
->nr_tx_skbs
)
1501 if (time_after(jiffies
, ndev
->trans_start
+ 1*HZ
) &&
1502 dev
->tx_done_idx
!= dev
->tx_free_idx
) {
1503 printk(KERN_DEBUG
"%s: ns83820_tx_watch: %u %u %d\n",
1505 dev
->tx_done_idx
, dev
->tx_free_idx
,
1506 atomic_read(&dev
->nr_tx_skbs
));
1507 ns83820_tx_timeout(ndev
);
1510 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1513 static int ns83820_open(struct net_device
*ndev
)
1515 struct ns83820
*dev
= PRIV(ndev
);
1520 dprintk("ns83820_open\n");
1522 writel(0, dev
->base
+ PQCR
);
1524 ret
= ns83820_setup_rx(ndev
);
1528 memset(dev
->tx_descs
, 0, 4 * NR_TX_DESC
* DESC_SIZE
);
1529 for (i
=0; i
<NR_TX_DESC
; i
++) {
1530 dev
->tx_descs
[(i
* DESC_SIZE
) + DESC_LINK
]
1533 + ((i
+1) % NR_TX_DESC
) * DESC_SIZE
* 4);
1537 dev
->tx_done_idx
= 0;
1538 desc
= dev
->tx_phy_descs
;
1539 writel(0, dev
->base
+ TXDP_HI
);
1540 writel(desc
, dev
->base
+ TXDP
);
1542 init_timer(&dev
->tx_watchdog
);
1543 dev
->tx_watchdog
.data
= (unsigned long)ndev
;
1544 dev
->tx_watchdog
.function
= ns83820_tx_watch
;
1545 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1547 netif_start_queue(ndev
); /* FIXME: wait for phy to come up */
1556 static void ns83820_getmac(struct ns83820
*dev
, u8
*mac
)
1559 for (i
=0; i
<3; i
++) {
1562 /* Read from the perfect match memory: this is loaded by
1563 * the chip from the EEPROM via the EELOAD self test.
1565 writel(i
*2, dev
->base
+ RFCR
);
1566 data
= readl(dev
->base
+ RFDR
);
1573 static int ns83820_change_mtu(struct net_device
*ndev
, int new_mtu
)
1575 if (new_mtu
> RX_BUF_SIZE
)
1577 ndev
->mtu
= new_mtu
;
1581 static void ns83820_set_multicast(struct net_device
*ndev
)
1583 struct ns83820
*dev
= PRIV(ndev
);
1584 u8 __iomem
*rfcr
= dev
->base
+ RFCR
;
1585 u32 and_mask
= 0xffffffff;
1589 if (ndev
->flags
& IFF_PROMISC
)
1590 or_mask
|= RFCR_AAU
| RFCR_AAM
;
1592 and_mask
&= ~(RFCR_AAU
| RFCR_AAM
);
1594 if (ndev
->flags
& IFF_ALLMULTI
)
1595 or_mask
|= RFCR_AAM
;
1597 and_mask
&= ~RFCR_AAM
;
1599 spin_lock_irq(&dev
->misc_lock
);
1600 val
= (readl(rfcr
) & and_mask
) | or_mask
;
1601 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1602 writel(val
& ~RFCR_RFEN
, rfcr
);
1604 spin_unlock_irq(&dev
->misc_lock
);
1607 static void ns83820_run_bist(struct net_device
*ndev
, const char *name
, u32 enable
, u32 done
, u32 fail
)
1609 struct ns83820
*dev
= PRIV(ndev
);
1611 unsigned long start
;
1615 dprintk("%s: start %s\n", ndev
->name
, name
);
1619 writel(enable
, dev
->base
+ PTSCR
);
1622 status
= readl(dev
->base
+ PTSCR
);
1623 if (!(status
& enable
))
1629 if (time_after_eq(jiffies
, start
+ HZ
)) {
1633 schedule_timeout_uninterruptible(1);
1637 printk(KERN_INFO
"%s: %s failed! (0x%08x & 0x%08x)\n",
1638 ndev
->name
, name
, status
, fail
);
1640 printk(KERN_INFO
"%s: run_bist %s timed out! (%08x)\n",
1641 ndev
->name
, name
, status
);
1643 dprintk("%s: done %s in %d loops\n", ndev
->name
, name
, loops
);
1646 #ifdef PHY_CODE_IS_FINISHED
1647 static void ns83820_mii_write_bit(struct ns83820
*dev
, int bit
)
1650 dev
->MEAR_cache
&= ~MEAR_MDC
;
1651 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1652 readl(dev
->base
+ MEAR
);
1654 /* enable output, set bit */
1655 dev
->MEAR_cache
|= MEAR_MDDIR
;
1657 dev
->MEAR_cache
|= MEAR_MDIO
;
1659 dev
->MEAR_cache
&= ~MEAR_MDIO
;
1661 /* set the output bit */
1662 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1663 readl(dev
->base
+ MEAR
);
1665 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1668 /* drive MDC high causing the data bit to be latched */
1669 dev
->MEAR_cache
|= MEAR_MDC
;
1670 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1671 readl(dev
->base
+ MEAR
);
1677 static int ns83820_mii_read_bit(struct ns83820
*dev
)
1681 /* drive MDC low, disable output */
1682 dev
->MEAR_cache
&= ~MEAR_MDC
;
1683 dev
->MEAR_cache
&= ~MEAR_MDDIR
;
1684 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1685 readl(dev
->base
+ MEAR
);
1687 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1690 /* drive MDC high causing the data bit to be latched */
1691 bit
= (readl(dev
->base
+ MEAR
) & MEAR_MDIO
) ? 1 : 0;
1692 dev
->MEAR_cache
|= MEAR_MDC
;
1693 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1701 static unsigned ns83820_mii_read_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
)
1706 /* read some garbage so that we eventually sync up */
1707 for (i
=0; i
<64; i
++)
1708 ns83820_mii_read_bit(dev
);
1710 ns83820_mii_write_bit(dev
, 0); /* start */
1711 ns83820_mii_write_bit(dev
, 1);
1712 ns83820_mii_write_bit(dev
, 1); /* opcode read */
1713 ns83820_mii_write_bit(dev
, 0);
1715 /* write out the phy address: 5 bits, msb first */
1717 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1719 /* write out the register address, 5 bits, msb first */
1721 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1723 ns83820_mii_read_bit(dev
); /* turn around cycles */
1724 ns83820_mii_read_bit(dev
);
1726 /* read in the register data, 16 bits msb first */
1727 for (i
=0; i
<16; i
++) {
1729 data
|= ns83820_mii_read_bit(dev
);
1735 static unsigned ns83820_mii_write_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
, unsigned data
)
1739 /* read some garbage so that we eventually sync up */
1740 for (i
=0; i
<64; i
++)
1741 ns83820_mii_read_bit(dev
);
1743 ns83820_mii_write_bit(dev
, 0); /* start */
1744 ns83820_mii_write_bit(dev
, 1);
1745 ns83820_mii_write_bit(dev
, 0); /* opcode read */
1746 ns83820_mii_write_bit(dev
, 1);
1748 /* write out the phy address: 5 bits, msb first */
1750 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1752 /* write out the register address, 5 bits, msb first */
1754 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1756 ns83820_mii_read_bit(dev
); /* turn around cycles */
1757 ns83820_mii_read_bit(dev
);
1759 /* read in the register data, 16 bits msb first */
1760 for (i
=0; i
<16; i
++)
1761 ns83820_mii_write_bit(dev
, (data
>> (15 - i
)) & 1);
1766 static void ns83820_probe_phy(struct net_device
*ndev
)
1768 struct ns83820
*dev
= PRIV(ndev
);
1771 #define MII_PHYIDR1 0x02
1772 #define MII_PHYIDR2 0x03
1777 ns83820_mii_read_reg(dev
, 1, 0x09);
1778 ns83820_mii_write_reg(dev
, 1, 0x10, 0x0d3e);
1780 tmp
= ns83820_mii_read_reg(dev
, 1, 0x00);
1781 ns83820_mii_write_reg(dev
, 1, 0x00, tmp
| 0x8000);
1783 ns83820_mii_read_reg(dev
, 1, 0x09);
1788 for (i
=1; i
<2; i
++) {
1791 a
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR1
);
1792 b
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR2
);
1794 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1795 // ndev->name, i, a, b);
1797 for (j
=0; j
<0x16; j
+=4) {
1798 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1800 ns83820_mii_read_reg(dev
, i
, 0 + j
),
1801 ns83820_mii_read_reg(dev
, i
, 1 + j
),
1802 ns83820_mii_read_reg(dev
, i
, 2 + j
),
1803 ns83820_mii_read_reg(dev
, i
, 3 + j
)
1809 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1810 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1811 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1812 a
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1814 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1815 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1816 b
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1817 dprintk("version: 0x%04x 0x%04x\n", a
, b
);
1822 static int __devinit
ns83820_init_one(struct pci_dev
*pci_dev
, const struct pci_device_id
*id
)
1824 struct net_device
*ndev
;
1825 struct ns83820
*dev
;
1830 /* See if we can set the dma mask early on; failure is fatal. */
1831 if (sizeof(dma_addr_t
) == 8 &&
1832 !pci_set_dma_mask(pci_dev
, 0xffffffffffffffffULL
)) {
1834 } else if (!pci_set_dma_mask(pci_dev
, 0xffffffff)) {
1837 printk(KERN_WARNING
"ns83820.c: pci_set_dma_mask failed!\n");
1841 ndev
= alloc_etherdev(sizeof(struct ns83820
));
1847 spin_lock_init(&dev
->rx_info
.lock
);
1848 spin_lock_init(&dev
->tx_lock
);
1849 spin_lock_init(&dev
->misc_lock
);
1850 dev
->pci_dev
= pci_dev
;
1852 SET_MODULE_OWNER(ndev
);
1853 SET_NETDEV_DEV(ndev
, &pci_dev
->dev
);
1855 INIT_WORK(&dev
->tq_refill
, queue_refill
, ndev
);
1856 tasklet_init(&dev
->rx_tasklet
, rx_action
, (unsigned long)ndev
);
1858 err
= pci_enable_device(pci_dev
);
1860 printk(KERN_INFO
"ns83820: pci_enable_dev failed: %d\n", err
);
1864 pci_set_master(pci_dev
);
1865 addr
= pci_resource_start(pci_dev
, 1);
1866 dev
->base
= ioremap_nocache(addr
, PAGE_SIZE
);
1867 dev
->tx_descs
= pci_alloc_consistent(pci_dev
,
1868 4 * DESC_SIZE
* NR_TX_DESC
, &dev
->tx_phy_descs
);
1869 dev
->rx_info
.descs
= pci_alloc_consistent(pci_dev
,
1870 4 * DESC_SIZE
* NR_RX_DESC
, &dev
->rx_info
.phy_descs
);
1872 if (!dev
->base
|| !dev
->tx_descs
|| !dev
->rx_info
.descs
)
1875 dprintk("%p: %08lx %p: %08lx\n",
1876 dev
->tx_descs
, (long)dev
->tx_phy_descs
,
1877 dev
->rx_info
.descs
, (long)dev
->rx_info
.phy_descs
);
1879 /* disable interrupts */
1880 writel(0, dev
->base
+ IMR
);
1881 writel(0, dev
->base
+ IER
);
1882 readl(dev
->base
+ IER
);
1886 err
= request_irq(pci_dev
->irq
, ns83820_irq
, SA_SHIRQ
,
1889 printk(KERN_INFO
"ns83820: unable to register irq %d\n",
1895 * FIXME: we are holding rtnl_lock() over obscenely long area only
1896 * because some of the setup code uses dev->name. It's Wrong(tm) -
1897 * we should be using driver-specific names for all that stuff.
1898 * For now that will do, but we really need to come back and kill
1899 * most of the dev_alloc_name() users later.
1902 err
= dev_alloc_name(ndev
, ndev
->name
);
1904 printk(KERN_INFO
"ns83820: unable to get netdev name: %d\n", err
);
1908 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1909 ndev
->name
, le32_to_cpu(readl(dev
->base
+ 0x22c)),
1910 pci_dev
->subsystem_vendor
, pci_dev
->subsystem_device
);
1912 ndev
->open
= ns83820_open
;
1913 ndev
->stop
= ns83820_stop
;
1914 ndev
->hard_start_xmit
= ns83820_hard_start_xmit
;
1915 ndev
->get_stats
= ns83820_get_stats
;
1916 ndev
->change_mtu
= ns83820_change_mtu
;
1917 ndev
->set_multicast_list
= ns83820_set_multicast
;
1918 SET_ETHTOOL_OPS(ndev
, &ops
);
1919 ndev
->tx_timeout
= ns83820_tx_timeout
;
1920 ndev
->watchdog_timeo
= 5 * HZ
;
1921 pci_set_drvdata(pci_dev
, ndev
);
1923 ns83820_do_reset(dev
, CR_RST
);
1925 /* Must reset the ram bist before running it */
1926 writel(PTSCR_RBIST_RST
, dev
->base
+ PTSCR
);
1927 ns83820_run_bist(ndev
, "sram bist", PTSCR_RBIST_EN
,
1928 PTSCR_RBIST_DONE
, PTSCR_RBIST_FAIL
);
1929 ns83820_run_bist(ndev
, "eeprom bist", PTSCR_EEBIST_EN
, 0,
1931 ns83820_run_bist(ndev
, "eeprom load", PTSCR_EELOAD_EN
, 0, 0);
1933 /* I love config registers */
1934 dev
->CFG_cache
= readl(dev
->base
+ CFG
);
1936 if ((dev
->CFG_cache
& CFG_PCI64_DET
)) {
1937 printk(KERN_INFO
"%s: detected 64 bit PCI data bus.\n",
1939 /*dev->CFG_cache |= CFG_DATA64_EN;*/
1940 if (!(dev
->CFG_cache
& CFG_DATA64_EN
))
1941 printk(KERN_INFO
"%s: EEPROM did not enable 64 bit bus. Disabled.\n",
1944 dev
->CFG_cache
&= ~(CFG_DATA64_EN
);
1946 dev
->CFG_cache
&= (CFG_TBI_EN
| CFG_MRM_DIS
| CFG_MWI_DIS
|
1947 CFG_T64ADDR
| CFG_DATA64_EN
| CFG_EXT_125
|
1949 dev
->CFG_cache
|= CFG_PINT_DUPSTS
| CFG_PINT_LNKSTS
| CFG_PINT_SPDSTS
|
1950 CFG_EXTSTS_EN
| CFG_EXD
| CFG_PESEL
;
1951 dev
->CFG_cache
|= CFG_REQALG
;
1952 dev
->CFG_cache
|= CFG_POW
;
1953 dev
->CFG_cache
|= CFG_TMRTEST
;
1955 /* When compiled with 64 bit addressing, we must always enable
1956 * the 64 bit descriptor format.
1958 if (sizeof(dma_addr_t
) == 8)
1959 dev
->CFG_cache
|= CFG_M64ADDR
;
1961 dev
->CFG_cache
|= CFG_T64ADDR
;
1963 /* Big endian mode does not seem to do what the docs suggest */
1964 dev
->CFG_cache
&= ~CFG_BEM
;
1966 /* setup optical transceiver if we have one */
1967 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1968 printk(KERN_INFO
"%s: enabling optical transceiver\n",
1970 writel(readl(dev
->base
+ GPIOR
) | 0x3e8, dev
->base
+ GPIOR
);
1972 /* setup auto negotiation feature advertisement */
1973 writel(readl(dev
->base
+ TANAR
)
1974 | TANAR_HALF_DUP
| TANAR_FULL_DUP
,
1977 /* start auto negotiation */
1978 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
1980 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
1981 dev
->linkstate
= LINK_AUTONEGOTIATE
;
1983 dev
->CFG_cache
|= CFG_MODE_1000
;
1986 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
1987 dprintk("CFG: %08x\n", dev
->CFG_cache
);
1990 printk(KERN_INFO
"%s: resetting phy\n", ndev
->name
);
1991 writel(dev
->CFG_cache
| CFG_PHY_RST
, dev
->base
+ CFG
);
1993 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
1996 #if 0 /* Huh? This sets the PCI latency register. Should be done via
1997 * the PCI layer. FIXME.
1999 if (readl(dev
->base
+ SRR
))
2000 writel(readl(dev
->base
+0x20c) | 0xfe00, dev
->base
+ 0x20c);
2003 /* Note! The DMA burst size interacts with packet
2004 * transmission, such that the largest packet that
2005 * can be transmitted is 8192 - FLTH - burst size.
2006 * If only the transmit fifo was larger...
2008 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2009 * some DELL and COMPAQ SMP systems */
2010 writel(TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
| TXCFG_MXDMA512
2011 | ((1600 / 32) * 0x100),
2014 /* Flush the interrupt holdoff timer */
2015 writel(0x000, dev
->base
+ IHR
);
2016 writel(0x100, dev
->base
+ IHR
);
2017 writel(0x000, dev
->base
+ IHR
);
2019 /* Set Rx to full duplex, don't accept runt, errored, long or length
2020 * range errored packets. Use 512 byte DMA.
2022 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2023 * some DELL and COMPAQ SMP systems
2024 * Turn on ALP, only we are accpeting Jumbo Packets */
2025 writel(RXCFG_AEP
| RXCFG_ARP
| RXCFG_AIRL
| RXCFG_RX_FD
2028 | (RXCFG_MXDMA512
) | 0, dev
->base
+ RXCFG
);
2030 /* Disable priority queueing */
2031 writel(0, dev
->base
+ PQCR
);
2033 /* Enable IP checksum validation and detetion of VLAN headers.
2034 * Note: do not set the reject options as at least the 0x102
2035 * revision of the chip does not properly accept IP fragments
2038 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2039 * the MAC it calculates the packetsize AFTER stripping the VLAN
2040 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2041 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2042 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2043 * it discrards it!. These guys......
2044 * also turn on tag stripping if hardware acceleration is enabled
2046 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2047 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2049 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2051 writel(VRCR_INIT_VALUE
, dev
->base
+ VRCR
);
2053 /* Enable per-packet TCP/UDP/IP checksumming
2054 * and per packet vlan tag insertion if
2055 * vlan hardware acceleration is enabled
2057 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2058 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2060 #define VTCR_INIT_VALUE VTCR_PPCHK
2062 writel(VTCR_INIT_VALUE
, dev
->base
+ VTCR
);
2064 /* Ramit : Enable async and sync pause frames */
2065 /* writel(0, dev->base + PCR); */
2066 writel((PCR_PS_MCAST
| PCR_PS_DA
| PCR_PSEN
| PCR_FFLO_4K
|
2067 PCR_FFHI_8K
| PCR_STLO_4
| PCR_STHI_8
| PCR_PAUSE_CNT
),
2070 /* Disable Wake On Lan */
2071 writel(0, dev
->base
+ WCSR
);
2073 ns83820_getmac(dev
, ndev
->dev_addr
);
2075 /* Yes, we support dumb IP checksum on transmit */
2076 ndev
->features
|= NETIF_F_SG
;
2077 ndev
->features
|= NETIF_F_IP_CSUM
;
2079 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2080 /* We also support hardware vlan acceleration */
2081 ndev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
2082 ndev
->vlan_rx_register
= ns83820_vlan_rx_register
;
2083 ndev
->vlan_rx_kill_vid
= ns83820_vlan_rx_kill_vid
;
2087 printk(KERN_INFO
"%s: using 64 bit addressing.\n",
2089 ndev
->features
|= NETIF_F_HIGHDMA
;
2092 printk(KERN_INFO
"%s: ns83820 v" VERSION
": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
2094 (unsigned)readl(dev
->base
+ SRR
) >> 8,
2095 (unsigned)readl(dev
->base
+ SRR
) & 0xff,
2096 ndev
->dev_addr
[0], ndev
->dev_addr
[1],
2097 ndev
->dev_addr
[2], ndev
->dev_addr
[3],
2098 ndev
->dev_addr
[4], ndev
->dev_addr
[5],
2100 (ndev
->features
& NETIF_F_HIGHDMA
) ? "h,sg" : "sg"
2103 #ifdef PHY_CODE_IS_FINISHED
2104 ns83820_probe_phy(ndev
);
2107 err
= register_netdevice(ndev
);
2109 printk(KERN_INFO
"ns83820: unable to register netdev: %d\n", err
);
2117 writel(0, dev
->base
+ IMR
); /* paranoia */
2118 writel(0, dev
->base
+ IER
);
2119 readl(dev
->base
+ IER
);
2122 free_irq(pci_dev
->irq
, ndev
);
2126 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
, dev
->tx_descs
, dev
->tx_phy_descs
);
2127 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
, dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2128 pci_disable_device(pci_dev
);
2131 pci_set_drvdata(pci_dev
, NULL
);
2136 static void __devexit
ns83820_remove_one(struct pci_dev
*pci_dev
)
2138 struct net_device
*ndev
= pci_get_drvdata(pci_dev
);
2139 struct ns83820
*dev
= PRIV(ndev
); /* ok even if NULL */
2141 if (!ndev
) /* paranoia */
2144 writel(0, dev
->base
+ IMR
); /* paranoia */
2145 writel(0, dev
->base
+ IER
);
2146 readl(dev
->base
+ IER
);
2148 unregister_netdev(ndev
);
2149 free_irq(dev
->pci_dev
->irq
, ndev
);
2151 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
,
2152 dev
->tx_descs
, dev
->tx_phy_descs
);
2153 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
,
2154 dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2155 pci_disable_device(dev
->pci_dev
);
2157 pci_set_drvdata(pci_dev
, NULL
);
2160 static struct pci_device_id ns83820_pci_tbl
[] = {
2161 { 0x100b, 0x0022, PCI_ANY_ID
, PCI_ANY_ID
, 0, .driver_data
= 0, },
2165 static struct pci_driver driver
= {
2167 .id_table
= ns83820_pci_tbl
,
2168 .probe
= ns83820_init_one
,
2169 .remove
= __devexit_p(ns83820_remove_one
),
2170 #if 0 /* FIXME: implement */
2177 static int __init
ns83820_init(void)
2179 printk(KERN_INFO
"ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2180 return pci_module_init(&driver
);
2183 static void __exit
ns83820_exit(void)
2185 pci_unregister_driver(&driver
);
2188 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2189 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2190 MODULE_LICENSE("GPL");
2192 MODULE_DEVICE_TABLE(pci
, ns83820_pci_tbl
);
2194 module_param(lnksts
, int, 0);
2195 MODULE_PARM_DESC(lnksts
, "Polarity of LNKSTS bit");
2197 module_param(ihr
, int, 0);
2198 MODULE_PARM_DESC(ihr
, "Time in 100 us increments to delay interrupts (range 0-127)");
2200 module_param(reset_phy
, int, 0);
2201 MODULE_PARM_DESC(reset_phy
, "Set to 1 to reset the PHY on startup");
2203 module_init(ns83820_init
);
2204 module_exit(ns83820_exit
);