[PATCH] dm-md-dependency-tree-in-sysfs-holders-slaves-subdirectory-tidy
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / mv643xx_eth.c
blob9f2661355a4acf3973e55b15d0ba24ba9d112959
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
53 /* Static function declarations */
54 static void eth_port_uc_addr_get(struct net_device *dev,
55 unsigned char *MacAddr);
56 static void eth_port_set_multicast_list(struct net_device *);
57 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58 unsigned int queues);
59 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60 unsigned int queues);
61 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63 static int mv643xx_eth_open(struct net_device *);
64 static int mv643xx_eth_stop(struct net_device *);
65 static int mv643xx_eth_change_mtu(struct net_device *, int);
66 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
67 static void eth_port_init_mac_tables(unsigned int eth_port_num);
68 #ifdef MV643XX_NAPI
69 static int mv643xx_poll(struct net_device *dev, int *budget);
70 #endif
71 static int ethernet_phy_get(unsigned int eth_port_num);
72 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
73 static int ethernet_phy_detect(unsigned int eth_port_num);
74 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
75 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
76 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
77 static struct ethtool_ops mv643xx_ethtool_ops;
79 static char mv643xx_driver_name[] = "mv643xx_eth";
80 static char mv643xx_driver_version[] = "1.0";
82 static void __iomem *mv643xx_eth_shared_base;
84 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
85 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
87 static inline u32 mv_read(int offset)
89 void __iomem *reg_base;
91 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
93 return readl(reg_base + offset);
96 static inline void mv_write(int offset, u32 data)
98 void __iomem *reg_base;
100 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
101 writel(data, reg_base + offset);
105 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
107 * Input : pointer to ethernet interface network device structure
108 * new mtu size
109 * Output : 0 upon success, -EINVAL upon failure
111 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
113 if ((new_mtu > 9500) || (new_mtu < 64))
114 return -EINVAL;
116 dev->mtu = new_mtu;
118 * Stop then re-open the interface. This will allocate RX skb's with
119 * the new MTU.
120 * There is a possible danger that the open will not successed, due
121 * to memory is full, which might fail the open function.
123 if (netif_running(dev)) {
124 mv643xx_eth_stop(dev);
125 if (mv643xx_eth_open(dev))
126 printk(KERN_ERR
127 "%s: Fatal error on opening device\n",
128 dev->name);
131 return 0;
135 * mv643xx_eth_rx_refill_descs
137 * Fills / refills RX queue on a certain gigabit ethernet port
139 * Input : pointer to ethernet interface network device structure
140 * Output : N/A
142 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
144 struct mv643xx_private *mp = netdev_priv(dev);
145 struct pkt_info pkt_info;
146 struct sk_buff *skb;
147 int unaligned;
149 while (mp->rx_desc_count < mp->rx_ring_size) {
150 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + ETH_DMA_ALIGN);
151 if (!skb)
152 break;
153 mp->rx_desc_count++;
154 unaligned = (u32)skb->data & (ETH_DMA_ALIGN - 1);
155 if (unaligned)
156 skb_reserve(skb, ETH_DMA_ALIGN - unaligned);
157 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
158 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
159 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
160 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
161 pkt_info.return_info = skb;
162 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
163 printk(KERN_ERR
164 "%s: Error allocating RX Ring\n", dev->name);
165 break;
167 skb_reserve(skb, ETH_HW_IP_ALIGN);
170 * If RX ring is empty of SKB, set a timer to try allocating
171 * again at a later time.
173 if (mp->rx_desc_count == 0) {
174 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
175 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
176 add_timer(&mp->timeout);
181 * mv643xx_eth_rx_refill_descs_timer_wrapper
183 * Timer routine to wake up RX queue filling task. This function is
184 * used only in case the RX queue is empty, and all alloc_skb has
185 * failed (due to out of memory event).
187 * Input : pointer to ethernet interface network device structure
188 * Output : N/A
190 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
192 mv643xx_eth_rx_refill_descs((struct net_device *)data);
196 * mv643xx_eth_update_mac_address
198 * Update the MAC address of the port in the address table
200 * Input : pointer to ethernet interface network device structure
201 * Output : N/A
203 static void mv643xx_eth_update_mac_address(struct net_device *dev)
205 struct mv643xx_private *mp = netdev_priv(dev);
206 unsigned int port_num = mp->port_num;
208 eth_port_init_mac_tables(port_num);
209 eth_port_uc_addr_set(port_num, dev->dev_addr);
213 * mv643xx_eth_set_rx_mode
215 * Change from promiscuos to regular rx mode
217 * Input : pointer to ethernet interface network device structure
218 * Output : N/A
220 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
222 struct mv643xx_private *mp = netdev_priv(dev);
223 u32 config_reg;
225 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
226 if (dev->flags & IFF_PROMISC)
227 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
228 else
229 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
230 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
232 eth_port_set_multicast_list(dev);
236 * mv643xx_eth_set_mac_address
238 * Change the interface's mac address.
239 * No special hardware thing should be done because interface is always
240 * put in promiscuous mode.
242 * Input : pointer to ethernet interface network device structure and
243 * a pointer to the designated entry to be added to the cache.
244 * Output : zero upon success, negative upon failure
246 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
248 int i;
250 for (i = 0; i < 6; i++)
251 /* +2 is for the offset of the HW addr type */
252 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
253 mv643xx_eth_update_mac_address(dev);
254 return 0;
258 * mv643xx_eth_tx_timeout
260 * Called upon a timeout on transmitting a packet
262 * Input : pointer to ethernet interface network device structure.
263 * Output : N/A
265 static void mv643xx_eth_tx_timeout(struct net_device *dev)
267 struct mv643xx_private *mp = netdev_priv(dev);
269 printk(KERN_INFO "%s: TX timeout ", dev->name);
271 /* Do the reset outside of interrupt context */
272 schedule_work(&mp->tx_timeout_task);
276 * mv643xx_eth_tx_timeout_task
278 * Actual routine to reset the adapter when a timeout on Tx has occurred
280 static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
282 struct mv643xx_private *mp = netdev_priv(dev);
284 netif_device_detach(dev);
285 eth_port_reset(mp->port_num);
286 eth_port_start(dev);
287 netif_device_attach(dev);
291 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
293 * If force is non-zero, frees uncompleted descriptors as well
295 int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
297 struct mv643xx_private *mp = netdev_priv(dev);
298 struct eth_tx_desc *desc;
299 u32 cmd_sts;
300 struct sk_buff *skb;
301 unsigned long flags;
302 int tx_index;
303 dma_addr_t addr;
304 int count;
305 int released = 0;
307 while (mp->tx_desc_count > 0) {
308 spin_lock_irqsave(&mp->lock, flags);
309 tx_index = mp->tx_used_desc_q;
310 desc = &mp->p_tx_desc_area[tx_index];
311 cmd_sts = desc->cmd_sts;
313 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
314 spin_unlock_irqrestore(&mp->lock, flags);
315 return released;
318 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
319 mp->tx_desc_count--;
321 addr = desc->buf_ptr;
322 count = desc->byte_cnt;
323 skb = mp->tx_skb[tx_index];
324 if (skb)
325 mp->tx_skb[tx_index] = NULL;
327 spin_unlock_irqrestore(&mp->lock, flags);
329 if (cmd_sts & ETH_ERROR_SUMMARY) {
330 printk("%s: Error in TX\n", dev->name);
331 mp->stats.tx_errors++;
334 if (cmd_sts & ETH_TX_FIRST_DESC)
335 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
336 else
337 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
339 if (skb)
340 dev_kfree_skb_irq(skb);
342 released = 1;
345 return released;
348 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
350 struct mv643xx_private *mp = netdev_priv(dev);
352 if (mv643xx_eth_free_tx_descs(dev, 0) &&
353 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
354 netif_wake_queue(dev);
357 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
359 mv643xx_eth_free_tx_descs(dev, 1);
363 * mv643xx_eth_receive
365 * This function is forward packets that are received from the port's
366 * queues toward kernel core or FastRoute them to another interface.
368 * Input : dev - a pointer to the required interface
369 * max - maximum number to receive (0 means unlimted)
371 * Output : number of served packets
373 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
375 struct mv643xx_private *mp = netdev_priv(dev);
376 struct net_device_stats *stats = &mp->stats;
377 unsigned int received_packets = 0;
378 struct sk_buff *skb;
379 struct pkt_info pkt_info;
381 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
382 mp->rx_desc_count--;
383 received_packets++;
386 * Update statistics.
387 * Note byte count includes 4 byte CRC count
389 stats->rx_packets++;
390 stats->rx_bytes += pkt_info.byte_cnt;
391 skb = pkt_info.return_info;
393 * In case received a packet without first / last bits on OR
394 * the error summary bit is on, the packets needs to be dropeed.
396 if (((pkt_info.cmd_sts
397 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
398 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
399 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
400 stats->rx_dropped++;
401 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
402 ETH_RX_LAST_DESC)) !=
403 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
404 if (net_ratelimit())
405 printk(KERN_ERR
406 "%s: Received packet spread "
407 "on multiple descriptors\n",
408 dev->name);
410 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
411 stats->rx_errors++;
413 dev_kfree_skb_irq(skb);
414 } else {
416 * The -4 is for the CRC in the trailer of the
417 * received packet
419 skb_put(skb, pkt_info.byte_cnt - 4);
420 skb->dev = dev;
422 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
423 skb->ip_summed = CHECKSUM_UNNECESSARY;
424 skb->csum = htons(
425 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
427 skb->protocol = eth_type_trans(skb, dev);
428 #ifdef MV643XX_NAPI
429 netif_receive_skb(skb);
430 #else
431 netif_rx(skb);
432 #endif
434 dev->last_rx = jiffies;
436 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
438 return received_packets;
441 /* Set the mv643xx port configuration register for the speed/duplex mode. */
442 static void mv643xx_eth_update_pscr(struct net_device *dev,
443 struct ethtool_cmd *ecmd)
445 struct mv643xx_private *mp = netdev_priv(dev);
446 int port_num = mp->port_num;
447 u32 o_pscr, n_pscr;
448 unsigned int queues;
450 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
451 n_pscr = o_pscr;
453 /* clear speed, duplex and rx buffer size fields */
454 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
455 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
456 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
457 MV643XX_ETH_MAX_RX_PACKET_MASK);
459 if (ecmd->duplex == DUPLEX_FULL)
460 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
462 if (ecmd->speed == SPEED_1000)
463 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
464 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
465 else {
466 if (ecmd->speed == SPEED_100)
467 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
468 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
471 if (n_pscr != o_pscr) {
472 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
473 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
474 n_pscr);
475 else {
476 queues = mv643xx_eth_port_disable_tx(port_num);
478 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
479 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
480 o_pscr);
481 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
482 n_pscr);
483 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
484 n_pscr);
485 if (queues)
486 mv643xx_eth_port_enable_tx(port_num, queues);
492 * mv643xx_eth_int_handler
494 * Main interrupt handler for the gigbit ethernet ports
496 * Input : irq - irq number (not used)
497 * dev_id - a pointer to the required interface's data structure
498 * regs - not used
499 * Output : N/A
502 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
503 struct pt_regs *regs)
505 struct net_device *dev = (struct net_device *)dev_id;
506 struct mv643xx_private *mp = netdev_priv(dev);
507 u32 eth_int_cause, eth_int_cause_ext = 0;
508 unsigned int port_num = mp->port_num;
510 /* Read interrupt cause registers */
511 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
512 ETH_INT_UNMASK_ALL;
513 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
514 eth_int_cause_ext = mv_read(
515 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
516 ETH_INT_UNMASK_ALL_EXT;
517 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
518 ~eth_int_cause_ext);
521 /* PHY status changed */
522 if (eth_int_cause_ext & ETH_INT_CAUSE_PHY) {
523 struct ethtool_cmd cmd;
525 if (mii_link_ok(&mp->mii)) {
526 mii_ethtool_gset(&mp->mii, &cmd);
527 mv643xx_eth_update_pscr(dev, &cmd);
528 mv643xx_eth_port_enable_tx(port_num,
529 ETH_TX_QUEUES_ENABLED);
530 if (!netif_carrier_ok(dev)) {
531 netif_carrier_on(dev);
532 if (mp->tx_ring_size - mp->tx_desc_count >=
533 MAX_DESCS_PER_SKB)
534 netif_wake_queue(dev);
536 } else if (netif_carrier_ok(dev)) {
537 netif_stop_queue(dev);
538 netif_carrier_off(dev);
542 #ifdef MV643XX_NAPI
543 if (eth_int_cause & ETH_INT_CAUSE_RX) {
544 /* schedule the NAPI poll routine to maintain port */
545 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
546 ETH_INT_MASK_ALL);
547 /* wait for previous write to complete */
548 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
550 netif_rx_schedule(dev);
552 #else
553 if (eth_int_cause & ETH_INT_CAUSE_RX)
554 mv643xx_eth_receive_queue(dev, INT_MAX);
555 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
556 mv643xx_eth_free_completed_tx_descs(dev);
557 #endif
560 * If no real interrupt occured, exit.
561 * This can happen when using gigE interrupt coalescing mechanism.
563 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
564 return IRQ_NONE;
566 return IRQ_HANDLED;
569 #ifdef MV643XX_COAL
572 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
574 * DESCRIPTION:
575 * This routine sets the RX coalescing interrupt mechanism parameter.
576 * This parameter is a timeout counter, that counts in 64 t_clk
577 * chunks ; that when timeout event occurs a maskable interrupt
578 * occurs.
579 * The parameter is calculated using the tClk of the MV-643xx chip
580 * , and the required delay of the interrupt in usec.
582 * INPUT:
583 * unsigned int eth_port_num Ethernet port number
584 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
585 * unsigned int delay Delay in usec
587 * OUTPUT:
588 * Interrupt coalescing mechanism value is set in MV-643xx chip.
590 * RETURN:
591 * The interrupt coalescing value set in the gigE port.
594 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
595 unsigned int t_clk, unsigned int delay)
597 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
599 /* Set RX Coalescing mechanism */
600 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
601 ((coal & 0x3fff) << 8) |
602 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
603 & 0xffc000ff));
605 return coal;
607 #endif
610 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
612 * DESCRIPTION:
613 * This routine sets the TX coalescing interrupt mechanism parameter.
614 * This parameter is a timeout counter, that counts in 64 t_clk
615 * chunks ; that when timeout event occurs a maskable interrupt
616 * occurs.
617 * The parameter is calculated using the t_cLK frequency of the
618 * MV-643xx chip and the required delay in the interrupt in uSec
620 * INPUT:
621 * unsigned int eth_port_num Ethernet port number
622 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
623 * unsigned int delay Delay in uSeconds
625 * OUTPUT:
626 * Interrupt coalescing mechanism value is set in MV-643xx chip.
628 * RETURN:
629 * The interrupt coalescing value set in the gigE port.
632 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
633 unsigned int t_clk, unsigned int delay)
635 unsigned int coal;
636 coal = ((t_clk / 1000000) * delay) / 64;
637 /* Set TX Coalescing mechanism */
638 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
639 coal << 4);
640 return coal;
644 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
646 * DESCRIPTION:
647 * This function prepares a Rx chained list of descriptors and packet
648 * buffers in a form of a ring. The routine must be called after port
649 * initialization routine and before port start routine.
650 * The Ethernet SDMA engine uses CPU bus addresses to access the various
651 * devices in the system (i.e. DRAM). This function uses the ethernet
652 * struct 'virtual to physical' routine (set by the user) to set the ring
653 * with physical addresses.
655 * INPUT:
656 * struct mv643xx_private *mp Ethernet Port Control srtuct.
658 * OUTPUT:
659 * The routine updates the Ethernet port control struct with information
660 * regarding the Rx descriptors and buffers.
662 * RETURN:
663 * None.
665 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
667 volatile struct eth_rx_desc *p_rx_desc;
668 int rx_desc_num = mp->rx_ring_size;
669 int i;
671 /* initialize the next_desc_ptr links in the Rx descriptors ring */
672 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
673 for (i = 0; i < rx_desc_num; i++) {
674 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
675 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
678 /* Save Rx desc pointer to driver struct. */
679 mp->rx_curr_desc_q = 0;
680 mp->rx_used_desc_q = 0;
682 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
686 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
688 * DESCRIPTION:
689 * This function prepares a Tx chained list of descriptors and packet
690 * buffers in a form of a ring. The routine must be called after port
691 * initialization routine and before port start routine.
692 * The Ethernet SDMA engine uses CPU bus addresses to access the various
693 * devices in the system (i.e. DRAM). This function uses the ethernet
694 * struct 'virtual to physical' routine (set by the user) to set the ring
695 * with physical addresses.
697 * INPUT:
698 * struct mv643xx_private *mp Ethernet Port Control srtuct.
700 * OUTPUT:
701 * The routine updates the Ethernet port control struct with information
702 * regarding the Tx descriptors and buffers.
704 * RETURN:
705 * None.
707 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
709 int tx_desc_num = mp->tx_ring_size;
710 struct eth_tx_desc *p_tx_desc;
711 int i;
713 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
714 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
715 for (i = 0; i < tx_desc_num; i++) {
716 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
717 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
720 mp->tx_curr_desc_q = 0;
721 mp->tx_used_desc_q = 0;
723 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
726 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
728 struct mv643xx_private *mp = netdev_priv(dev);
729 int err;
731 spin_lock_irq(&mp->lock);
732 err = mii_ethtool_sset(&mp->mii, cmd);
733 spin_unlock_irq(&mp->lock);
735 return err;
738 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
740 struct mv643xx_private *mp = netdev_priv(dev);
741 int err;
743 spin_lock_irq(&mp->lock);
744 err = mii_ethtool_gset(&mp->mii, cmd);
745 spin_unlock_irq(&mp->lock);
747 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
748 cmd->supported &= ~SUPPORTED_1000baseT_Half;
749 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
751 return err;
755 * mv643xx_eth_open
757 * This function is called when openning the network device. The function
758 * should initialize all the hardware, initialize cyclic Rx/Tx
759 * descriptors chain and buffers and allocate an IRQ to the network
760 * device.
762 * Input : a pointer to the network device structure
764 * Output : zero of success , nonzero if fails.
767 static int mv643xx_eth_open(struct net_device *dev)
769 struct mv643xx_private *mp = netdev_priv(dev);
770 unsigned int port_num = mp->port_num;
771 unsigned int size;
772 int err;
774 err = request_irq(dev->irq, mv643xx_eth_int_handler,
775 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
776 if (err) {
777 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
778 port_num);
779 return -EAGAIN;
782 eth_port_init(mp);
784 memset(&mp->timeout, 0, sizeof(struct timer_list));
785 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
786 mp->timeout.data = (unsigned long)dev;
788 /* Allocate RX and TX skb rings */
789 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
790 GFP_KERNEL);
791 if (!mp->rx_skb) {
792 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
793 err = -ENOMEM;
794 goto out_free_irq;
796 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
797 GFP_KERNEL);
798 if (!mp->tx_skb) {
799 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
800 err = -ENOMEM;
801 goto out_free_rx_skb;
804 /* Allocate TX ring */
805 mp->tx_desc_count = 0;
806 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
807 mp->tx_desc_area_size = size;
809 if (mp->tx_sram_size) {
810 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
811 mp->tx_sram_size);
812 mp->tx_desc_dma = mp->tx_sram_addr;
813 } else
814 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
815 &mp->tx_desc_dma,
816 GFP_KERNEL);
818 if (!mp->p_tx_desc_area) {
819 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
820 dev->name, size);
821 err = -ENOMEM;
822 goto out_free_tx_skb;
824 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
825 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
827 ether_init_tx_desc_ring(mp);
829 /* Allocate RX ring */
830 mp->rx_desc_count = 0;
831 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
832 mp->rx_desc_area_size = size;
834 if (mp->rx_sram_size) {
835 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
836 mp->rx_sram_size);
837 mp->rx_desc_dma = mp->rx_sram_addr;
838 } else
839 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
840 &mp->rx_desc_dma,
841 GFP_KERNEL);
843 if (!mp->p_rx_desc_area) {
844 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
845 dev->name, size);
846 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
847 dev->name);
848 if (mp->rx_sram_size)
849 iounmap(mp->p_tx_desc_area);
850 else
851 dma_free_coherent(NULL, mp->tx_desc_area_size,
852 mp->p_tx_desc_area, mp->tx_desc_dma);
853 err = -ENOMEM;
854 goto out_free_tx_skb;
856 memset((void *)mp->p_rx_desc_area, 0, size);
858 ether_init_rx_desc_ring(mp);
860 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
862 /* Clear any pending ethernet port interrupts */
863 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
864 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
866 eth_port_start(dev);
868 /* Interrupt Coalescing */
870 #ifdef MV643XX_COAL
871 mp->rx_int_coal =
872 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
873 #endif
875 mp->tx_int_coal =
876 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
878 /* Unmask phy and link status changes interrupts */
879 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
880 ETH_INT_UNMASK_ALL_EXT);
882 /* Unmask RX buffer and TX end interrupt */
883 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
885 return 0;
887 out_free_tx_skb:
888 kfree(mp->tx_skb);
889 out_free_rx_skb:
890 kfree(mp->rx_skb);
891 out_free_irq:
892 free_irq(dev->irq, dev);
894 return err;
897 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
899 struct mv643xx_private *mp = netdev_priv(dev);
901 /* Stop Tx Queues */
902 mv643xx_eth_port_disable_tx(mp->port_num);
904 /* Free outstanding skb's on TX ring */
905 mv643xx_eth_free_all_tx_descs(dev);
907 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
909 /* Free TX ring */
910 if (mp->tx_sram_size)
911 iounmap(mp->p_tx_desc_area);
912 else
913 dma_free_coherent(NULL, mp->tx_desc_area_size,
914 mp->p_tx_desc_area, mp->tx_desc_dma);
917 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
919 struct mv643xx_private *mp = netdev_priv(dev);
920 unsigned int port_num = mp->port_num;
921 int curr;
923 /* Stop RX Queues */
924 mv643xx_eth_port_disable_rx(port_num);
926 /* Free preallocated skb's on RX rings */
927 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
928 if (mp->rx_skb[curr]) {
929 dev_kfree_skb(mp->rx_skb[curr]);
930 mp->rx_desc_count--;
934 if (mp->rx_desc_count)
935 printk(KERN_ERR
936 "%s: Error in freeing Rx Ring. %d skb's still"
937 " stuck in RX Ring - ignoring them\n", dev->name,
938 mp->rx_desc_count);
939 /* Free RX ring */
940 if (mp->rx_sram_size)
941 iounmap(mp->p_rx_desc_area);
942 else
943 dma_free_coherent(NULL, mp->rx_desc_area_size,
944 mp->p_rx_desc_area, mp->rx_desc_dma);
948 * mv643xx_eth_stop
950 * This function is used when closing the network device.
951 * It updates the hardware,
952 * release all memory that holds buffers and descriptors and release the IRQ.
953 * Input : a pointer to the device structure
954 * Output : zero if success , nonzero if fails
957 static int mv643xx_eth_stop(struct net_device *dev)
959 struct mv643xx_private *mp = netdev_priv(dev);
960 unsigned int port_num = mp->port_num;
962 /* Mask all interrupts on ethernet port */
963 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
964 /* wait for previous write to complete */
965 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
967 #ifdef MV643XX_NAPI
968 netif_poll_disable(dev);
969 #endif
970 netif_carrier_off(dev);
971 netif_stop_queue(dev);
973 eth_port_reset(mp->port_num);
975 mv643xx_eth_free_tx_rings(dev);
976 mv643xx_eth_free_rx_rings(dev);
978 #ifdef MV643XX_NAPI
979 netif_poll_enable(dev);
980 #endif
982 free_irq(dev->irq, dev);
984 return 0;
987 #ifdef MV643XX_NAPI
989 * mv643xx_poll
991 * This function is used in case of NAPI
993 static int mv643xx_poll(struct net_device *dev, int *budget)
995 struct mv643xx_private *mp = netdev_priv(dev);
996 int done = 1, orig_budget, work_done;
997 unsigned int port_num = mp->port_num;
999 #ifdef MV643XX_TX_FAST_REFILL
1000 if (++mp->tx_clean_threshold > 5) {
1001 mv643xx_eth_free_completed_tx_descs(dev);
1002 mp->tx_clean_threshold = 0;
1004 #endif
1006 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1007 != (u32) mp->rx_used_desc_q) {
1008 orig_budget = *budget;
1009 if (orig_budget > dev->quota)
1010 orig_budget = dev->quota;
1011 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1012 *budget -= work_done;
1013 dev->quota -= work_done;
1014 if (work_done >= orig_budget)
1015 done = 0;
1018 if (done) {
1019 netif_rx_complete(dev);
1020 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1021 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1022 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1023 ETH_INT_UNMASK_ALL);
1026 return done ? 0 : 1;
1028 #endif
1031 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1033 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1034 * This helper function detects that case.
1037 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1039 unsigned int frag;
1040 skb_frag_t *fragp;
1042 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1043 fragp = &skb_shinfo(skb)->frags[frag];
1044 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1045 return 1;
1047 return 0;
1051 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1053 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1055 int tx_desc_curr;
1057 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1059 tx_desc_curr = mp->tx_curr_desc_q;
1060 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1062 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1064 return tx_desc_curr;
1068 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1070 * Ensure the data for each fragment to be transmitted is mapped properly,
1071 * then fill in descriptors in the tx hw queue.
1073 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1074 struct sk_buff *skb)
1076 int frag;
1077 int tx_index;
1078 struct eth_tx_desc *desc;
1080 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1081 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1083 tx_index = eth_alloc_tx_desc_index(mp);
1084 desc = &mp->p_tx_desc_area[tx_index];
1086 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1087 /* Last Frag enables interrupt and frees the skb */
1088 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1089 desc->cmd_sts |= ETH_ZERO_PADDING |
1090 ETH_TX_LAST_DESC |
1091 ETH_TX_ENABLE_INTERRUPT;
1092 mp->tx_skb[tx_index] = skb;
1093 } else
1094 mp->tx_skb[tx_index] = 0;
1096 desc = &mp->p_tx_desc_area[tx_index];
1097 desc->l4i_chk = 0;
1098 desc->byte_cnt = this_frag->size;
1099 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1100 this_frag->page_offset,
1101 this_frag->size,
1102 DMA_TO_DEVICE);
1107 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1109 * Ensure the data for an skb to be transmitted is mapped properly,
1110 * then fill in descriptors in the tx hw queue and start the hardware.
1112 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1113 struct sk_buff *skb)
1115 int tx_index;
1116 struct eth_tx_desc *desc;
1117 u32 cmd_sts;
1118 int length;
1119 int nr_frags = skb_shinfo(skb)->nr_frags;
1121 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1123 tx_index = eth_alloc_tx_desc_index(mp);
1124 desc = &mp->p_tx_desc_area[tx_index];
1126 if (nr_frags) {
1127 eth_tx_fill_frag_descs(mp, skb);
1129 length = skb_headlen(skb);
1130 mp->tx_skb[tx_index] = 0;
1131 } else {
1132 cmd_sts |= ETH_ZERO_PADDING |
1133 ETH_TX_LAST_DESC |
1134 ETH_TX_ENABLE_INTERRUPT;
1135 length = skb->len;
1136 mp->tx_skb[tx_index] = skb;
1139 desc->byte_cnt = length;
1140 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1142 if (skb->ip_summed == CHECKSUM_HW) {
1143 BUG_ON(skb->protocol != ETH_P_IP);
1145 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1146 ETH_GEN_IP_V_4_CHECKSUM |
1147 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1149 switch (skb->nh.iph->protocol) {
1150 case IPPROTO_UDP:
1151 cmd_sts |= ETH_UDP_FRAME;
1152 desc->l4i_chk = skb->h.uh->check;
1153 break;
1154 case IPPROTO_TCP:
1155 desc->l4i_chk = skb->h.th->check;
1156 break;
1157 default:
1158 BUG();
1160 } else {
1161 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1162 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1163 desc->l4i_chk = 0;
1166 /* ensure all other descriptors are written before first cmd_sts */
1167 wmb();
1168 desc->cmd_sts = cmd_sts;
1170 /* ensure all descriptors are written before poking hardware */
1171 wmb();
1172 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1174 mp->tx_desc_count += nr_frags + 1;
1178 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1181 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1183 struct mv643xx_private *mp = netdev_priv(dev);
1184 struct net_device_stats *stats = &mp->stats;
1185 unsigned long flags;
1187 BUG_ON(netif_queue_stopped(dev));
1188 BUG_ON(skb == NULL);
1189 BUG_ON(mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB);
1191 if (has_tiny_unaligned_frags(skb)) {
1192 if ((skb_linearize(skb, GFP_ATOMIC) != 0)) {
1193 stats->tx_dropped++;
1194 printk(KERN_DEBUG "%s: failed to linearize tiny "
1195 "unaligned fragment\n", dev->name);
1196 return 1;
1200 spin_lock_irqsave(&mp->lock, flags);
1202 eth_tx_submit_descs_for_skb(mp, skb);
1203 stats->tx_bytes = skb->len;
1204 stats->tx_packets++;
1205 dev->trans_start = jiffies;
1207 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1208 netif_stop_queue(dev);
1210 spin_unlock_irqrestore(&mp->lock, flags);
1212 return 0; /* success */
1216 * mv643xx_eth_get_stats
1218 * Returns a pointer to the interface statistics.
1220 * Input : dev - a pointer to the required interface
1222 * Output : a pointer to the interface's statistics
1225 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1227 struct mv643xx_private *mp = netdev_priv(dev);
1229 return &mp->stats;
1232 #ifdef CONFIG_NET_POLL_CONTROLLER
1233 static void mv643xx_netpoll(struct net_device *netdev)
1235 struct mv643xx_private *mp = netdev_priv(netdev);
1236 int port_num = mp->port_num;
1238 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1239 /* wait for previous write to complete */
1240 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1242 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
1244 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1246 #endif
1248 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1249 int speed, int duplex,
1250 struct ethtool_cmd *cmd)
1252 struct mv643xx_private *mp = netdev_priv(dev);
1254 memset(cmd, 0, sizeof(*cmd));
1256 cmd->port = PORT_MII;
1257 cmd->transceiver = XCVR_INTERNAL;
1258 cmd->phy_address = phy_address;
1260 if (speed == 0) {
1261 cmd->autoneg = AUTONEG_ENABLE;
1262 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1263 cmd->speed = SPEED_100;
1264 cmd->advertising = ADVERTISED_10baseT_Half |
1265 ADVERTISED_10baseT_Full |
1266 ADVERTISED_100baseT_Half |
1267 ADVERTISED_100baseT_Full;
1268 if (mp->mii.supports_gmii)
1269 cmd->advertising |= ADVERTISED_1000baseT_Full;
1270 } else {
1271 cmd->autoneg = AUTONEG_DISABLE;
1272 cmd->speed = speed;
1273 cmd->duplex = duplex;
1278 * mv643xx_eth_probe
1280 * First function called after registering the network device.
1281 * It's purpose is to initialize the device as an ethernet device,
1282 * fill the ethernet device structure with pointers * to functions,
1283 * and set the MAC address of the interface
1285 * Input : struct device *
1286 * Output : -ENOMEM if failed , 0 if success
1288 static int mv643xx_eth_probe(struct platform_device *pdev)
1290 struct mv643xx_eth_platform_data *pd;
1291 int port_num = pdev->id;
1292 struct mv643xx_private *mp;
1293 struct net_device *dev;
1294 u8 *p;
1295 struct resource *res;
1296 int err;
1297 struct ethtool_cmd cmd;
1298 int duplex = DUPLEX_HALF;
1299 int speed = 0; /* default to auto-negotiation */
1301 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1302 if (!dev)
1303 return -ENOMEM;
1305 platform_set_drvdata(pdev, dev);
1307 mp = netdev_priv(dev);
1309 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1310 BUG_ON(!res);
1311 dev->irq = res->start;
1313 mp->port_num = port_num;
1315 dev->open = mv643xx_eth_open;
1316 dev->stop = mv643xx_eth_stop;
1317 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1318 dev->get_stats = mv643xx_eth_get_stats;
1319 dev->set_mac_address = mv643xx_eth_set_mac_address;
1320 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1322 /* No need to Tx Timeout */
1323 dev->tx_timeout = mv643xx_eth_tx_timeout;
1324 #ifdef MV643XX_NAPI
1325 dev->poll = mv643xx_poll;
1326 dev->weight = 64;
1327 #endif
1329 #ifdef CONFIG_NET_POLL_CONTROLLER
1330 dev->poll_controller = mv643xx_netpoll;
1331 #endif
1333 dev->watchdog_timeo = 2 * HZ;
1334 dev->tx_queue_len = mp->tx_ring_size;
1335 dev->base_addr = 0;
1336 dev->change_mtu = mv643xx_eth_change_mtu;
1337 dev->do_ioctl = mv643xx_eth_do_ioctl;
1338 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1340 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1341 #ifdef MAX_SKB_FRAGS
1343 * Zero copy can only work if we use Discovery II memory. Else, we will
1344 * have to map the buffers to ISA memory which is only 16 MB
1346 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1347 #endif
1348 #endif
1350 /* Configure the timeout task */
1351 INIT_WORK(&mp->tx_timeout_task,
1352 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1354 spin_lock_init(&mp->lock);
1356 /* set default config values */
1357 eth_port_uc_addr_get(dev, dev->dev_addr);
1358 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1359 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1361 pd = pdev->dev.platform_data;
1362 if (pd) {
1363 if (pd->mac_addr)
1364 memcpy(dev->dev_addr, pd->mac_addr, 6);
1366 if (pd->phy_addr || pd->force_phy_addr)
1367 ethernet_phy_set(port_num, pd->phy_addr);
1369 if (pd->rx_queue_size)
1370 mp->rx_ring_size = pd->rx_queue_size;
1372 if (pd->tx_queue_size)
1373 mp->tx_ring_size = pd->tx_queue_size;
1375 if (pd->tx_sram_size) {
1376 mp->tx_sram_size = pd->tx_sram_size;
1377 mp->tx_sram_addr = pd->tx_sram_addr;
1380 if (pd->rx_sram_size) {
1381 mp->rx_sram_size = pd->rx_sram_size;
1382 mp->rx_sram_addr = pd->rx_sram_addr;
1385 duplex = pd->duplex;
1386 speed = pd->speed;
1389 /* Hook up MII support for ethtool */
1390 mp->mii.dev = dev;
1391 mp->mii.mdio_read = mv643xx_mdio_read;
1392 mp->mii.mdio_write = mv643xx_mdio_write;
1393 mp->mii.phy_id = ethernet_phy_get(port_num);
1394 mp->mii.phy_id_mask = 0x3f;
1395 mp->mii.reg_num_mask = 0x1f;
1397 err = ethernet_phy_detect(port_num);
1398 if (err) {
1399 pr_debug("MV643xx ethernet port %d: "
1400 "No PHY detected at addr %d\n",
1401 port_num, ethernet_phy_get(port_num));
1402 goto out;
1405 ethernet_phy_reset(port_num);
1406 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1407 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1408 mv643xx_eth_update_pscr(dev, &cmd);
1409 mv643xx_set_settings(dev, &cmd);
1411 err = register_netdev(dev);
1412 if (err)
1413 goto out;
1415 p = dev->dev_addr;
1416 printk(KERN_NOTICE
1417 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1418 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1420 if (dev->features & NETIF_F_SG)
1421 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1423 if (dev->features & NETIF_F_IP_CSUM)
1424 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1425 dev->name);
1427 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1428 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1429 #endif
1431 #ifdef MV643XX_COAL
1432 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1433 dev->name);
1434 #endif
1436 #ifdef MV643XX_NAPI
1437 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1438 #endif
1440 if (mp->tx_sram_size > 0)
1441 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1443 return 0;
1445 out:
1446 free_netdev(dev);
1448 return err;
1451 static int mv643xx_eth_remove(struct platform_device *pdev)
1453 struct net_device *dev = platform_get_drvdata(pdev);
1455 unregister_netdev(dev);
1456 flush_scheduled_work();
1458 free_netdev(dev);
1459 platform_set_drvdata(pdev, NULL);
1460 return 0;
1463 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1465 struct resource *res;
1467 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1469 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470 if (res == NULL)
1471 return -ENODEV;
1473 mv643xx_eth_shared_base = ioremap(res->start,
1474 MV643XX_ETH_SHARED_REGS_SIZE);
1475 if (mv643xx_eth_shared_base == NULL)
1476 return -ENOMEM;
1478 return 0;
1482 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1484 iounmap(mv643xx_eth_shared_base);
1485 mv643xx_eth_shared_base = NULL;
1487 return 0;
1490 static struct platform_driver mv643xx_eth_driver = {
1491 .probe = mv643xx_eth_probe,
1492 .remove = mv643xx_eth_remove,
1493 .driver = {
1494 .name = MV643XX_ETH_NAME,
1498 static struct platform_driver mv643xx_eth_shared_driver = {
1499 .probe = mv643xx_eth_shared_probe,
1500 .remove = mv643xx_eth_shared_remove,
1501 .driver = {
1502 .name = MV643XX_ETH_SHARED_NAME,
1507 * mv643xx_init_module
1509 * Registers the network drivers into the Linux kernel
1511 * Input : N/A
1513 * Output : N/A
1515 static int __init mv643xx_init_module(void)
1517 int rc;
1519 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1520 if (!rc) {
1521 rc = platform_driver_register(&mv643xx_eth_driver);
1522 if (rc)
1523 platform_driver_unregister(&mv643xx_eth_shared_driver);
1525 return rc;
1529 * mv643xx_cleanup_module
1531 * Registers the network drivers into the Linux kernel
1533 * Input : N/A
1535 * Output : N/A
1537 static void __exit mv643xx_cleanup_module(void)
1539 platform_driver_unregister(&mv643xx_eth_driver);
1540 platform_driver_unregister(&mv643xx_eth_shared_driver);
1543 module_init(mv643xx_init_module);
1544 module_exit(mv643xx_cleanup_module);
1546 MODULE_LICENSE("GPL");
1547 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1548 " and Dale Farnsworth");
1549 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1552 * The second part is the low level driver of the gigE ethernet ports.
1556 * Marvell's Gigabit Ethernet controller low level driver
1558 * DESCRIPTION:
1559 * This file introduce low level API to Marvell's Gigabit Ethernet
1560 * controller. This Gigabit Ethernet Controller driver API controls
1561 * 1) Operations (i.e. port init, start, reset etc').
1562 * 2) Data flow (i.e. port send, receive etc').
1563 * Each Gigabit Ethernet port is controlled via
1564 * struct mv643xx_private.
1565 * This struct includes user configuration information as well as
1566 * driver internal data needed for its operations.
1568 * Supported Features:
1569 * - This low level driver is OS independent. Allocating memory for
1570 * the descriptor rings and buffers are not within the scope of
1571 * this driver.
1572 * - The user is free from Rx/Tx queue managing.
1573 * - This low level driver introduce functionality API that enable
1574 * the to operate Marvell's Gigabit Ethernet Controller in a
1575 * convenient way.
1576 * - Simple Gigabit Ethernet port operation API.
1577 * - Simple Gigabit Ethernet port data flow API.
1578 * - Data flow and operation API support per queue functionality.
1579 * - Support cached descriptors for better performance.
1580 * - Enable access to all four DRAM banks and internal SRAM memory
1581 * spaces.
1582 * - PHY access and control API.
1583 * - Port control register configuration API.
1584 * - Full control over Unicast and Multicast MAC configurations.
1586 * Operation flow:
1588 * Initialization phase
1589 * This phase complete the initialization of the the
1590 * mv643xx_private struct.
1591 * User information regarding port configuration has to be set
1592 * prior to calling the port initialization routine.
1594 * In this phase any port Tx/Rx activity is halted, MIB counters
1595 * are cleared, PHY address is set according to user parameter and
1596 * access to DRAM and internal SRAM memory spaces.
1598 * Driver ring initialization
1599 * Allocating memory for the descriptor rings and buffers is not
1600 * within the scope of this driver. Thus, the user is required to
1601 * allocate memory for the descriptors ring and buffers. Those
1602 * memory parameters are used by the Rx and Tx ring initialization
1603 * routines in order to curve the descriptor linked list in a form
1604 * of a ring.
1605 * Note: Pay special attention to alignment issues when using
1606 * cached descriptors/buffers. In this phase the driver store
1607 * information in the mv643xx_private struct regarding each queue
1608 * ring.
1610 * Driver start
1611 * This phase prepares the Ethernet port for Rx and Tx activity.
1612 * It uses the information stored in the mv643xx_private struct to
1613 * initialize the various port registers.
1615 * Data flow:
1616 * All packet references to/from the driver are done using
1617 * struct pkt_info.
1618 * This struct is a unified struct used with Rx and Tx operations.
1619 * This way the user is not required to be familiar with neither
1620 * Tx nor Rx descriptors structures.
1621 * The driver's descriptors rings are management by indexes.
1622 * Those indexes controls the ring resources and used to indicate
1623 * a SW resource error:
1624 * 'current'
1625 * This index points to the current available resource for use. For
1626 * example in Rx process this index will point to the descriptor
1627 * that will be passed to the user upon calling the receive
1628 * routine. In Tx process, this index will point to the descriptor
1629 * that will be assigned with the user packet info and transmitted.
1630 * 'used'
1631 * This index points to the descriptor that need to restore its
1632 * resources. For example in Rx process, using the Rx buffer return
1633 * API will attach the buffer returned in packet info to the
1634 * descriptor pointed by 'used'. In Tx process, using the Tx
1635 * descriptor return will merely return the user packet info with
1636 * the command status of the transmitted buffer pointed by the
1637 * 'used' index. Nevertheless, it is essential to use this routine
1638 * to update the 'used' index.
1639 * 'first'
1640 * This index supports Tx Scatter-Gather. It points to the first
1641 * descriptor of a packet assembled of multiple buffers. For
1642 * example when in middle of Such packet we have a Tx resource
1643 * error the 'curr' index get the value of 'first' to indicate
1644 * that the ring returned to its state before trying to transmit
1645 * this packet.
1647 * Receive operation:
1648 * The eth_port_receive API set the packet information struct,
1649 * passed by the caller, with received information from the
1650 * 'current' SDMA descriptor.
1651 * It is the user responsibility to return this resource back
1652 * to the Rx descriptor ring to enable the reuse of this source.
1653 * Return Rx resource is done using the eth_rx_return_buff API.
1655 * Prior to calling the initialization routine eth_port_init() the user
1656 * must set the following fields under mv643xx_private struct:
1657 * port_num User Ethernet port number.
1658 * port_config User port configuration value.
1659 * port_config_extend User port config extend value.
1660 * port_sdma_config User port SDMA config value.
1661 * port_serial_control User port serial control value.
1663 * This driver data flow is done using the struct pkt_info which
1664 * is a unified struct for Rx and Tx operations:
1666 * byte_cnt Tx/Rx descriptor buffer byte count.
1667 * l4i_chk CPU provided TCP Checksum. For Tx operation
1668 * only.
1669 * cmd_sts Tx/Rx descriptor command status.
1670 * buf_ptr Tx/Rx descriptor buffer pointer.
1671 * return_info Tx/Rx user resource return information.
1674 /* PHY routines */
1675 static int ethernet_phy_get(unsigned int eth_port_num);
1676 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1678 /* Ethernet Port routines */
1679 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1682 * eth_port_init - Initialize the Ethernet port driver
1684 * DESCRIPTION:
1685 * This function prepares the ethernet port to start its activity:
1686 * 1) Completes the ethernet port driver struct initialization toward port
1687 * start routine.
1688 * 2) Resets the device to a quiescent state in case of warm reboot.
1689 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1690 * 4) Clean MAC tables. The reset status of those tables is unknown.
1691 * 5) Set PHY address.
1692 * Note: Call this routine prior to eth_port_start routine and after
1693 * setting user values in the user fields of Ethernet port control
1694 * struct.
1696 * INPUT:
1697 * struct mv643xx_private *mp Ethernet port control struct
1699 * OUTPUT:
1700 * See description.
1702 * RETURN:
1703 * None.
1705 static void eth_port_init(struct mv643xx_private *mp)
1707 mp->rx_resource_err = 0;
1709 eth_port_reset(mp->port_num);
1711 eth_port_init_mac_tables(mp->port_num);
1715 * eth_port_start - Start the Ethernet port activity.
1717 * DESCRIPTION:
1718 * This routine prepares the Ethernet port for Rx and Tx activity:
1719 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1720 * has been initialized a descriptor's ring (using
1721 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1722 * 2. Initialize and enable the Ethernet configuration port by writing to
1723 * the port's configuration and command registers.
1724 * 3. Initialize and enable the SDMA by writing to the SDMA's
1725 * configuration and command registers. After completing these steps,
1726 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1728 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1729 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1730 * and ether_init_rx_desc_ring for Rx queues).
1732 * INPUT:
1733 * dev - a pointer to the required interface
1735 * OUTPUT:
1736 * Ethernet port is ready to receive and transmit.
1738 * RETURN:
1739 * None.
1741 static void eth_port_start(struct net_device *dev)
1743 struct mv643xx_private *mp = netdev_priv(dev);
1744 unsigned int port_num = mp->port_num;
1745 int tx_curr_desc, rx_curr_desc;
1746 u32 pscr;
1747 struct ethtool_cmd ethtool_cmd;
1749 /* Assignment of Tx CTRP of given queue */
1750 tx_curr_desc = mp->tx_curr_desc_q;
1751 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1752 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1754 /* Assignment of Rx CRDP of given queue */
1755 rx_curr_desc = mp->rx_curr_desc_q;
1756 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1757 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1759 /* Add the assigned Ethernet address to the port's address table */
1760 eth_port_uc_addr_set(port_num, dev->dev_addr);
1762 /* Assign port configuration and command. */
1763 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1764 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1766 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1767 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1769 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1771 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
1772 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1774 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1775 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1776 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1777 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1778 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1780 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1782 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1783 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1785 /* Assign port SDMA configuration */
1786 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1787 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1789 /* Enable port Rx. */
1790 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1792 /* Disable port bandwidth limits by clearing MTU register */
1793 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1795 /* save phy settings across reset */
1796 mv643xx_get_settings(dev, &ethtool_cmd);
1797 ethernet_phy_reset(mp->port_num);
1798 mv643xx_set_settings(dev, &ethtool_cmd);
1802 * eth_port_uc_addr_set - This function Set the port Unicast address.
1804 * DESCRIPTION:
1805 * This function Set the port Ethernet MAC address.
1807 * INPUT:
1808 * unsigned int eth_port_num Port number.
1809 * char * p_addr Address to be set
1811 * OUTPUT:
1812 * Set MAC address low and high registers. also calls
1813 * eth_port_set_filter_table_entry() to set the unicast
1814 * table with the proper information.
1816 * RETURN:
1817 * N/A.
1820 static void eth_port_uc_addr_set(unsigned int eth_port_num,
1821 unsigned char *p_addr)
1823 unsigned int mac_h;
1824 unsigned int mac_l;
1825 int table;
1827 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1828 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1829 (p_addr[3] << 0);
1831 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1832 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1834 /* Accept frames of this address */
1835 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(eth_port_num);
1836 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1840 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1841 * (MAC address) from the ethernet hw registers.
1843 * DESCRIPTION:
1844 * This function retrieves the port Ethernet MAC address.
1846 * INPUT:
1847 * unsigned int eth_port_num Port number.
1848 * char *MacAddr pointer where the MAC address is stored
1850 * OUTPUT:
1851 * Copy the MAC address to the location pointed to by MacAddr
1853 * RETURN:
1854 * N/A.
1857 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1859 struct mv643xx_private *mp = netdev_priv(dev);
1860 unsigned int mac_h;
1861 unsigned int mac_l;
1863 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1864 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1866 p_addr[0] = (mac_h >> 24) & 0xff;
1867 p_addr[1] = (mac_h >> 16) & 0xff;
1868 p_addr[2] = (mac_h >> 8) & 0xff;
1869 p_addr[3] = mac_h & 0xff;
1870 p_addr[4] = (mac_l >> 8) & 0xff;
1871 p_addr[5] = mac_l & 0xff;
1875 * The entries in each table are indexed by a hash of a packet's MAC
1876 * address. One bit in each entry determines whether the packet is
1877 * accepted. There are 4 entries (each 8 bits wide) in each register
1878 * of the table. The bits in each entry are defined as follows:
1879 * 0 Accept=1, Drop=0
1880 * 3-1 Queue (ETH_Q0=0)
1881 * 7-4 Reserved = 0;
1883 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1885 unsigned int table_reg;
1886 unsigned int tbl_offset;
1887 unsigned int reg_offset;
1889 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1890 reg_offset = entry % 4; /* Entry offset within the register */
1892 /* Set "accepts frame bit" at specified table entry */
1893 table_reg = mv_read(table + tbl_offset);
1894 table_reg |= 0x01 << (8 * reg_offset);
1895 mv_write(table + tbl_offset, table_reg);
1899 * eth_port_mc_addr - Multicast address settings.
1901 * The MV device supports multicast using two tables:
1902 * 1) Special Multicast Table for MAC addresses of the form
1903 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1904 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1905 * Table entries in the DA-Filter table.
1906 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1907 * is used as an index to the Other Multicast Table entries in the
1908 * DA-Filter table. This function calculates the CRC-8bit value.
1909 * In either case, eth_port_set_filter_table_entry() is then called
1910 * to set to set the actual table entry.
1912 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1914 unsigned int mac_h;
1915 unsigned int mac_l;
1916 unsigned char crc_result = 0;
1917 int table;
1918 int mac_array[48];
1919 int crc[8];
1920 int i;
1922 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1923 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1924 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1925 (eth_port_num);
1926 eth_port_set_filter_table_entry(table, p_addr[5]);
1927 return;
1930 /* Calculate CRC-8 out of the given address */
1931 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1932 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1933 (p_addr[4] << 8) | (p_addr[5] << 0);
1935 for (i = 0; i < 32; i++)
1936 mac_array[i] = (mac_l >> i) & 0x1;
1937 for (i = 32; i < 48; i++)
1938 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1940 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1941 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1942 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1943 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1944 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1946 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1947 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1948 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1949 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1950 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1951 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1952 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1954 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1955 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1956 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1957 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1958 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
1959 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
1961 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1962 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1963 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1964 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1965 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
1966 mac_array[3] ^ mac_array[2] ^ mac_array[1];
1968 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1969 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1970 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1971 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1972 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
1973 mac_array[3] ^ mac_array[2];
1975 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1976 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1977 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
1978 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
1979 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
1980 mac_array[4] ^ mac_array[3];
1982 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
1983 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
1984 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
1985 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
1986 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
1987 mac_array[4];
1989 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
1990 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
1991 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
1992 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
1993 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
1995 for (i = 0; i < 8; i++)
1996 crc_result = crc_result | (crc[i] << i);
1998 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
1999 eth_port_set_filter_table_entry(table, crc_result);
2003 * Set the entire multicast list based on dev->mc_list.
2005 static void eth_port_set_multicast_list(struct net_device *dev)
2008 struct dev_mc_list *mc_list;
2009 int i;
2010 int table_index;
2011 struct mv643xx_private *mp = netdev_priv(dev);
2012 unsigned int eth_port_num = mp->port_num;
2014 /* If the device is in promiscuous mode or in all multicast mode,
2015 * we will fully populate both multicast tables with accept.
2016 * This is guaranteed to yield a match on all multicast addresses...
2018 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2019 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2020 /* Set all entries in DA filter special multicast
2021 * table (Ex_dFSMT)
2022 * Set for ETH_Q0 for now
2023 * Bits
2024 * 0 Accept=1, Drop=0
2025 * 3-1 Queue ETH_Q0=0
2026 * 7-4 Reserved = 0;
2028 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2030 /* Set all entries in DA filter other multicast
2031 * table (Ex_dFOMT)
2032 * Set for ETH_Q0 for now
2033 * Bits
2034 * 0 Accept=1, Drop=0
2035 * 3-1 Queue ETH_Q0=0
2036 * 7-4 Reserved = 0;
2038 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2040 return;
2043 /* We will clear out multicast tables every time we get the list.
2044 * Then add the entire new list...
2046 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2047 /* Clear DA filter special multicast table (Ex_dFSMT) */
2048 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2049 (eth_port_num) + table_index, 0);
2051 /* Clear DA filter other multicast table (Ex_dFOMT) */
2052 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2053 (eth_port_num) + table_index, 0);
2056 /* Get pointer to net_device multicast list and add each one... */
2057 for (i = 0, mc_list = dev->mc_list;
2058 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2059 i++, mc_list = mc_list->next)
2060 if (mc_list->dmi_addrlen == 6)
2061 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2065 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2067 * DESCRIPTION:
2068 * Go through all the DA filter tables (Unicast, Special Multicast &
2069 * Other Multicast) and set each entry to 0.
2071 * INPUT:
2072 * unsigned int eth_port_num Ethernet Port number.
2074 * OUTPUT:
2075 * Multicast and Unicast packets are rejected.
2077 * RETURN:
2078 * None.
2080 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2082 int table_index;
2084 /* Clear DA filter unicast table (Ex_dFUT) */
2085 for (table_index = 0; table_index <= 0xC; table_index += 4)
2086 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2087 (eth_port_num) + table_index, 0);
2089 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2090 /* Clear DA filter special multicast table (Ex_dFSMT) */
2091 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2092 (eth_port_num) + table_index, 0);
2093 /* Clear DA filter other multicast table (Ex_dFOMT) */
2094 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2095 (eth_port_num) + table_index, 0);
2100 * eth_clear_mib_counters - Clear all MIB counters
2102 * DESCRIPTION:
2103 * This function clears all MIB counters of a specific ethernet port.
2104 * A read from the MIB counter will reset the counter.
2106 * INPUT:
2107 * unsigned int eth_port_num Ethernet Port number.
2109 * OUTPUT:
2110 * After reading all MIB counters, the counters resets.
2112 * RETURN:
2113 * MIB counter value.
2116 static void eth_clear_mib_counters(unsigned int eth_port_num)
2118 int i;
2120 /* Perform dummy reads from MIB counters */
2121 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2122 i += 4)
2123 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2126 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2128 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2131 static void eth_update_mib_counters(struct mv643xx_private *mp)
2133 struct mv643xx_mib_counters *p = &mp->mib_counters;
2134 int offset;
2136 p->good_octets_received +=
2137 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2138 p->good_octets_received +=
2139 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2141 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2142 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2143 offset += 4)
2144 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2146 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2147 p->good_octets_sent +=
2148 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2150 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2151 offset <= ETH_MIB_LATE_COLLISION;
2152 offset += 4)
2153 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2157 * ethernet_phy_detect - Detect whether a phy is present
2159 * DESCRIPTION:
2160 * This function tests whether there is a PHY present on
2161 * the specified port.
2163 * INPUT:
2164 * unsigned int eth_port_num Ethernet Port number.
2166 * OUTPUT:
2167 * None
2169 * RETURN:
2170 * 0 on success
2171 * -ENODEV on failure
2174 static int ethernet_phy_detect(unsigned int port_num)
2176 unsigned int phy_reg_data0;
2177 int auto_neg;
2179 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2180 auto_neg = phy_reg_data0 & 0x1000;
2181 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2182 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2184 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2185 if ((phy_reg_data0 & 0x1000) == auto_neg)
2186 return -ENODEV; /* change didn't take */
2188 phy_reg_data0 ^= 0x1000;
2189 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2190 return 0;
2194 * ethernet_phy_get - Get the ethernet port PHY address.
2196 * DESCRIPTION:
2197 * This routine returns the given ethernet port PHY address.
2199 * INPUT:
2200 * unsigned int eth_port_num Ethernet Port number.
2202 * OUTPUT:
2203 * None.
2205 * RETURN:
2206 * PHY address.
2209 static int ethernet_phy_get(unsigned int eth_port_num)
2211 unsigned int reg_data;
2213 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2215 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2219 * ethernet_phy_set - Set the ethernet port PHY address.
2221 * DESCRIPTION:
2222 * This routine sets the given ethernet port PHY address.
2224 * INPUT:
2225 * unsigned int eth_port_num Ethernet Port number.
2226 * int phy_addr PHY address.
2228 * OUTPUT:
2229 * None.
2231 * RETURN:
2232 * None.
2235 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2237 u32 reg_data;
2238 int addr_shift = 5 * eth_port_num;
2240 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2241 reg_data &= ~(0x1f << addr_shift);
2242 reg_data |= (phy_addr & 0x1f) << addr_shift;
2243 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2247 * ethernet_phy_reset - Reset Ethernet port PHY.
2249 * DESCRIPTION:
2250 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2252 * INPUT:
2253 * unsigned int eth_port_num Ethernet Port number.
2255 * OUTPUT:
2256 * The PHY is reset.
2258 * RETURN:
2259 * None.
2262 static void ethernet_phy_reset(unsigned int eth_port_num)
2264 unsigned int phy_reg_data;
2266 /* Reset the PHY */
2267 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2268 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2269 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2271 /* wait for PHY to come out of reset */
2272 do {
2273 udelay(1);
2274 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2275 } while (phy_reg_data & 0x8000);
2278 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2279 unsigned int queues)
2281 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2284 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2285 unsigned int queues)
2287 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2290 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2292 u32 queues;
2294 /* Stop Tx port activity. Check port Tx activity. */
2295 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2296 & 0xFF;
2297 if (queues) {
2298 /* Issue stop command for active queues only */
2299 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2300 (queues << 8));
2302 /* Wait for all Tx activity to terminate. */
2303 /* Check port cause register that all Tx queues are stopped */
2304 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2305 & 0xFF)
2306 udelay(PHY_WAIT_MICRO_SECONDS);
2308 /* Wait for Tx FIFO to empty */
2309 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2310 ETH_PORT_TX_FIFO_EMPTY)
2311 udelay(PHY_WAIT_MICRO_SECONDS);
2314 return queues;
2317 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2319 u32 queues;
2321 /* Stop Rx port activity. Check port Rx activity. */
2322 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2323 & 0xFF;
2324 if (queues) {
2325 /* Issue stop command for active queues only */
2326 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2327 (queues << 8));
2329 /* Wait for all Rx activity to terminate. */
2330 /* Check port cause register that all Rx queues are stopped */
2331 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2332 & 0xFF)
2333 udelay(PHY_WAIT_MICRO_SECONDS);
2336 return queues;
2340 * eth_port_reset - Reset Ethernet port
2342 * DESCRIPTION:
2343 * This routine resets the chip by aborting any SDMA engine activity and
2344 * clearing the MIB counters. The Receiver and the Transmit unit are in
2345 * idle state after this command is performed and the port is disabled.
2347 * INPUT:
2348 * unsigned int eth_port_num Ethernet Port number.
2350 * OUTPUT:
2351 * Channel activity is halted.
2353 * RETURN:
2354 * None.
2357 static void eth_port_reset(unsigned int port_num)
2359 unsigned int reg_data;
2361 mv643xx_eth_port_disable_tx(port_num);
2362 mv643xx_eth_port_disable_rx(port_num);
2364 /* Clear all MIB counters */
2365 eth_clear_mib_counters(port_num);
2367 /* Reset the Enable bit in the Configuration Register */
2368 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2369 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2370 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2371 MV643XX_ETH_FORCE_LINK_PASS);
2372 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2377 * eth_port_read_smi_reg - Read PHY registers
2379 * DESCRIPTION:
2380 * This routine utilize the SMI interface to interact with the PHY in
2381 * order to perform PHY register read.
2383 * INPUT:
2384 * unsigned int port_num Ethernet Port number.
2385 * unsigned int phy_reg PHY register address offset.
2386 * unsigned int *value Register value buffer.
2388 * OUTPUT:
2389 * Write the value of a specified PHY register into given buffer.
2391 * RETURN:
2392 * false if the PHY is busy or read data is not in valid state.
2393 * true otherwise.
2396 static void eth_port_read_smi_reg(unsigned int port_num,
2397 unsigned int phy_reg, unsigned int *value)
2399 int phy_addr = ethernet_phy_get(port_num);
2400 unsigned long flags;
2401 int i;
2403 /* the SMI register is a shared resource */
2404 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2406 /* wait for the SMI register to become available */
2407 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2408 if (i == PHY_WAIT_ITERATIONS) {
2409 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2410 goto out;
2412 udelay(PHY_WAIT_MICRO_SECONDS);
2415 mv_write(MV643XX_ETH_SMI_REG,
2416 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2418 /* now wait for the data to be valid */
2419 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2420 if (i == PHY_WAIT_ITERATIONS) {
2421 printk("mv643xx PHY read timeout, port %d\n", port_num);
2422 goto out;
2424 udelay(PHY_WAIT_MICRO_SECONDS);
2427 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2428 out:
2429 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2433 * eth_port_write_smi_reg - Write to PHY registers
2435 * DESCRIPTION:
2436 * This routine utilize the SMI interface to interact with the PHY in
2437 * order to perform writes to PHY registers.
2439 * INPUT:
2440 * unsigned int eth_port_num Ethernet Port number.
2441 * unsigned int phy_reg PHY register address offset.
2442 * unsigned int value Register value.
2444 * OUTPUT:
2445 * Write the given value to the specified PHY register.
2447 * RETURN:
2448 * false if the PHY is busy.
2449 * true otherwise.
2452 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2453 unsigned int phy_reg, unsigned int value)
2455 int phy_addr;
2456 int i;
2457 unsigned long flags;
2459 phy_addr = ethernet_phy_get(eth_port_num);
2461 /* the SMI register is a shared resource */
2462 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2464 /* wait for the SMI register to become available */
2465 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2466 if (i == PHY_WAIT_ITERATIONS) {
2467 printk("mv643xx PHY busy timeout, port %d\n",
2468 eth_port_num);
2469 goto out;
2471 udelay(PHY_WAIT_MICRO_SECONDS);
2474 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2475 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2476 out:
2477 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2481 * Wrappers for MII support library.
2483 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2485 int val;
2486 struct mv643xx_private *mp = netdev_priv(dev);
2488 eth_port_read_smi_reg(mp->port_num, location, &val);
2489 return val;
2492 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2494 struct mv643xx_private *mp = netdev_priv(dev);
2495 eth_port_write_smi_reg(mp->port_num, location, val);
2499 * eth_port_receive - Get received information from Rx ring.
2501 * DESCRIPTION:
2502 * This routine returns the received data to the caller. There is no
2503 * data copying during routine operation. All information is returned
2504 * using pointer to packet information struct passed from the caller.
2505 * If the routine exhausts Rx ring resources then the resource error flag
2506 * is set.
2508 * INPUT:
2509 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2510 * struct pkt_info *p_pkt_info User packet buffer.
2512 * OUTPUT:
2513 * Rx ring current and used indexes are updated.
2515 * RETURN:
2516 * ETH_ERROR in case the routine can not access Rx desc ring.
2517 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2518 * ETH_END_OF_JOB if there is no received data.
2519 * ETH_OK otherwise.
2521 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2522 struct pkt_info *p_pkt_info)
2524 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2525 volatile struct eth_rx_desc *p_rx_desc;
2526 unsigned int command_status;
2527 unsigned long flags;
2529 /* Do not process Rx ring in case of Rx ring resource error */
2530 if (mp->rx_resource_err)
2531 return ETH_QUEUE_FULL;
2533 spin_lock_irqsave(&mp->lock, flags);
2535 /* Get the Rx Desc ring 'curr and 'used' indexes */
2536 rx_curr_desc = mp->rx_curr_desc_q;
2537 rx_used_desc = mp->rx_used_desc_q;
2539 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2541 /* The following parameters are used to save readings from memory */
2542 command_status = p_rx_desc->cmd_sts;
2543 rmb();
2545 /* Nothing to receive... */
2546 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2547 spin_unlock_irqrestore(&mp->lock, flags);
2548 return ETH_END_OF_JOB;
2551 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2552 p_pkt_info->cmd_sts = command_status;
2553 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2554 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2555 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2558 * Clean the return info field to indicate that the
2559 * packet has been moved to the upper layers
2561 mp->rx_skb[rx_curr_desc] = NULL;
2563 /* Update current index in data structure */
2564 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2565 mp->rx_curr_desc_q = rx_next_curr_desc;
2567 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2568 if (rx_next_curr_desc == rx_used_desc)
2569 mp->rx_resource_err = 1;
2571 spin_unlock_irqrestore(&mp->lock, flags);
2573 return ETH_OK;
2577 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2579 * DESCRIPTION:
2580 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2581 * next 'used' descriptor and attached the returned buffer to it.
2582 * In case the Rx ring was in "resource error" condition, where there are
2583 * no available Rx resources, the function resets the resource error flag.
2585 * INPUT:
2586 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2587 * struct pkt_info *p_pkt_info Information on returned buffer.
2589 * OUTPUT:
2590 * New available Rx resource in Rx descriptor ring.
2592 * RETURN:
2593 * ETH_ERROR in case the routine can not access Rx desc ring.
2594 * ETH_OK otherwise.
2596 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2597 struct pkt_info *p_pkt_info)
2599 int used_rx_desc; /* Where to return Rx resource */
2600 volatile struct eth_rx_desc *p_used_rx_desc;
2601 unsigned long flags;
2603 spin_lock_irqsave(&mp->lock, flags);
2605 /* Get 'used' Rx descriptor */
2606 used_rx_desc = mp->rx_used_desc_q;
2607 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2609 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2610 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2611 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2613 /* Flush the write pipe */
2615 /* Return the descriptor to DMA ownership */
2616 wmb();
2617 p_used_rx_desc->cmd_sts =
2618 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2619 wmb();
2621 /* Move the used descriptor pointer to the next descriptor */
2622 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2624 /* Any Rx return cancels the Rx resource error status */
2625 mp->rx_resource_err = 0;
2627 spin_unlock_irqrestore(&mp->lock, flags);
2629 return ETH_OK;
2632 /************* Begin ethtool support *************************/
2634 struct mv643xx_stats {
2635 char stat_string[ETH_GSTRING_LEN];
2636 int sizeof_stat;
2637 int stat_offset;
2640 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2641 offsetof(struct mv643xx_private, m)
2643 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2644 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2645 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2646 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2647 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2648 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2649 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2650 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2651 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2652 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2653 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2654 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2655 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2656 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2657 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2658 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2659 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2660 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2661 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2662 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2663 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2664 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2665 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2666 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2667 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2668 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2669 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2670 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2671 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2672 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2673 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2674 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2675 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2676 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2677 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2678 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2679 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2680 { "collision", MV643XX_STAT(mib_counters.collision) },
2681 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2684 #define MV643XX_STATS_LEN \
2685 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2687 static void mv643xx_get_drvinfo(struct net_device *netdev,
2688 struct ethtool_drvinfo *drvinfo)
2690 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2691 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2692 strncpy(drvinfo->fw_version, "N/A", 32);
2693 strncpy(drvinfo->bus_info, "mv643xx", 32);
2694 drvinfo->n_stats = MV643XX_STATS_LEN;
2697 static int mv643xx_get_stats_count(struct net_device *netdev)
2699 return MV643XX_STATS_LEN;
2702 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2703 struct ethtool_stats *stats, uint64_t *data)
2705 struct mv643xx_private *mp = netdev->priv;
2706 int i;
2708 eth_update_mib_counters(mp);
2710 for (i = 0; i < MV643XX_STATS_LEN; i++) {
2711 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2712 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2713 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2717 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2718 uint8_t *data)
2720 int i;
2722 switch(stringset) {
2723 case ETH_SS_STATS:
2724 for (i=0; i < MV643XX_STATS_LEN; i++) {
2725 memcpy(data + i * ETH_GSTRING_LEN,
2726 mv643xx_gstrings_stats[i].stat_string,
2727 ETH_GSTRING_LEN);
2729 break;
2733 static u32 mv643xx_eth_get_link(struct net_device *dev)
2735 struct mv643xx_private *mp = netdev_priv(dev);
2737 return mii_link_ok(&mp->mii);
2740 static int mv643xx_eth_nway_restart(struct net_device *dev)
2742 struct mv643xx_private *mp = netdev_priv(dev);
2744 return mii_nway_restart(&mp->mii);
2747 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2749 struct mv643xx_private *mp = netdev_priv(dev);
2751 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2754 static struct ethtool_ops mv643xx_ethtool_ops = {
2755 .get_settings = mv643xx_get_settings,
2756 .set_settings = mv643xx_set_settings,
2757 .get_drvinfo = mv643xx_get_drvinfo,
2758 .get_link = mv643xx_eth_get_link,
2759 .get_sg = ethtool_op_get_sg,
2760 .set_sg = ethtool_op_set_sg,
2761 .get_strings = mv643xx_get_strings,
2762 .get_stats_count = mv643xx_get_stats_count,
2763 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2764 .get_strings = mv643xx_get_strings,
2765 .get_stats_count = mv643xx_get_stats_count,
2766 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2767 .nway_reset = mv643xx_eth_nway_restart,
2770 /************* End ethtool support *************************/