PCI/PM: Report wakeup events before resuming devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ecryptfs / crypto.c
blobcbadc1bee6e7ecceeefa5131143e08783d006297
1 /**
2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
51 /**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
60 int x;
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
66 /**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
75 int x;
76 char tmp[3] = { 0, };
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
85 /**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
95 static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
99 struct scatterlist sg;
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
104 int rc = 0;
106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 sg_init_one(&sg, (u8 *)src, len);
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
113 ecryptfs_printk(KERN_ERR, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
115 rc);
116 goto out;
118 crypt_stat->hash_tfm = desc.tfm;
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
124 __func__, rc);
125 goto out;
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
131 __func__, rc);
132 goto out;
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
138 __func__, rc);
139 goto out;
141 out:
142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 return rc;
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 if (!(*algified_name)) {
158 rc = -ENOMEM;
159 goto out;
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164 out:
165 return rc;
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
174 * Generate the initialization vector from the given root IV and page
175 * offset.
177 * Returns zero on success; non-zero on error.
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
213 out:
214 return rc;
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
221 * Initialize the crypt_stat structure.
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
239 * Releases all memory associated with a crypt_stat struct.
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
245 if (crypt_stat->tfm)
246 crypto_free_blkcipher(crypt_stat->tfm);
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
269 mount_crypt_stat->num_global_auth_toks--;
270 if (auth_tok->global_auth_tok_key
271 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
272 key_put(auth_tok->global_auth_tok_key);
273 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
275 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
276 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
280 * virt_to_scatterlist
281 * @addr: Virtual address
282 * @size: Size of data; should be an even multiple of the block size
283 * @sg: Pointer to scatterlist array; set to NULL to obtain only
284 * the number of scatterlist structs required in array
285 * @sg_size: Max array size
287 * Fills in a scatterlist array with page references for a passed
288 * virtual address.
290 * Returns the number of scatterlist structs in array used
292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
293 int sg_size)
295 int i = 0;
296 struct page *pg;
297 int offset;
298 int remainder_of_page;
300 sg_init_table(sg, sg_size);
302 while (size > 0 && i < sg_size) {
303 pg = virt_to_page(addr);
304 offset = offset_in_page(addr);
305 if (sg)
306 sg_set_page(&sg[i], pg, 0, offset);
307 remainder_of_page = PAGE_CACHE_SIZE - offset;
308 if (size >= remainder_of_page) {
309 if (sg)
310 sg[i].length = remainder_of_page;
311 addr += remainder_of_page;
312 size -= remainder_of_page;
313 } else {
314 if (sg)
315 sg[i].length = size;
316 addr += size;
317 size = 0;
319 i++;
321 if (size > 0)
322 return -ENOMEM;
323 return i;
327 * encrypt_scatterlist
328 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329 * @dest_sg: Destination of encrypted data
330 * @src_sg: Data to be encrypted
331 * @size: Length of data to be encrypted
332 * @iv: iv to use during encryption
334 * Returns the number of bytes encrypted; negative value on error
336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
337 struct scatterlist *dest_sg,
338 struct scatterlist *src_sg, int size,
339 unsigned char *iv)
341 struct blkcipher_desc desc = {
342 .tfm = crypt_stat->tfm,
343 .info = iv,
344 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
346 int rc = 0;
348 BUG_ON(!crypt_stat || !crypt_stat->tfm
349 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
350 if (unlikely(ecryptfs_verbosity > 0)) {
351 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
352 crypt_stat->key_size);
353 ecryptfs_dump_hex(crypt_stat->key,
354 crypt_stat->key_size);
356 /* Consider doing this once, when the file is opened */
357 mutex_lock(&crypt_stat->cs_tfm_mutex);
358 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
359 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
360 crypt_stat->key_size);
361 crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 if (rc) {
364 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
365 rc);
366 mutex_unlock(&crypt_stat->cs_tfm_mutex);
367 rc = -EINVAL;
368 goto out;
370 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
371 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
372 mutex_unlock(&crypt_stat->cs_tfm_mutex);
373 out:
374 return rc;
378 * ecryptfs_lower_offset_for_extent
380 * Convert an eCryptfs page index into a lower byte offset
382 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
383 struct ecryptfs_crypt_stat *crypt_stat)
385 (*offset) = ecryptfs_lower_header_size(crypt_stat)
386 + (crypt_stat->extent_size * extent_num);
390 * ecryptfs_encrypt_extent
391 * @enc_extent_page: Allocated page into which to encrypt the data in
392 * @page
393 * @crypt_stat: crypt_stat containing cryptographic context for the
394 * encryption operation
395 * @page: Page containing plaintext data extent to encrypt
396 * @extent_offset: Page extent offset for use in generating IV
398 * Encrypts one extent of data.
400 * Return zero on success; non-zero otherwise
402 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
403 struct ecryptfs_crypt_stat *crypt_stat,
404 struct page *page,
405 unsigned long extent_offset)
407 loff_t extent_base;
408 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
409 int rc;
411 extent_base = (((loff_t)page->index)
412 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
413 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
414 (extent_base + extent_offset));
415 if (rc) {
416 ecryptfs_printk(KERN_ERR, "Error attempting to "
417 "derive IV for extent [0x%.16x]; "
418 "rc = [%d]\n", (extent_base + extent_offset),
419 rc);
420 goto out;
422 if (unlikely(ecryptfs_verbosity > 0)) {
423 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
424 "with iv:\n");
425 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
426 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
427 "encryption:\n");
428 ecryptfs_dump_hex((char *)
429 (page_address(page)
430 + (extent_offset * crypt_stat->extent_size)),
433 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
434 page, (extent_offset
435 * crypt_stat->extent_size),
436 crypt_stat->extent_size, extent_iv);
437 if (rc < 0) {
438 printk(KERN_ERR "%s: Error attempting to encrypt page with "
439 "page->index = [%ld], extent_offset = [%ld]; "
440 "rc = [%d]\n", __func__, page->index, extent_offset,
441 rc);
442 goto out;
444 rc = 0;
445 if (unlikely(ecryptfs_verbosity > 0)) {
446 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
447 "rc = [%d]\n", (extent_base + extent_offset),
448 rc);
449 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
450 "encryption:\n");
451 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
453 out:
454 return rc;
458 * ecryptfs_encrypt_page
459 * @page: Page mapped from the eCryptfs inode for the file; contains
460 * decrypted content that needs to be encrypted (to a temporary
461 * page; not in place) and written out to the lower file
463 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
464 * that eCryptfs pages may straddle the lower pages -- for instance,
465 * if the file was created on a machine with an 8K page size
466 * (resulting in an 8K header), and then the file is copied onto a
467 * host with a 32K page size, then when reading page 0 of the eCryptfs
468 * file, 24K of page 0 of the lower file will be read and decrypted,
469 * and then 8K of page 1 of the lower file will be read and decrypted.
471 * Returns zero on success; negative on error
473 int ecryptfs_encrypt_page(struct page *page)
475 struct inode *ecryptfs_inode;
476 struct ecryptfs_crypt_stat *crypt_stat;
477 char *enc_extent_virt;
478 struct page *enc_extent_page = NULL;
479 loff_t extent_offset;
480 int rc = 0;
482 ecryptfs_inode = page->mapping->host;
483 crypt_stat =
484 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
485 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
486 enc_extent_page = alloc_page(GFP_USER);
487 if (!enc_extent_page) {
488 rc = -ENOMEM;
489 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
490 "encrypted extent\n");
491 goto out;
493 enc_extent_virt = kmap(enc_extent_page);
494 for (extent_offset = 0;
495 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
496 extent_offset++) {
497 loff_t offset;
499 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
500 extent_offset);
501 if (rc) {
502 printk(KERN_ERR "%s: Error encrypting extent; "
503 "rc = [%d]\n", __func__, rc);
504 goto out;
506 ecryptfs_lower_offset_for_extent(
507 &offset, ((((loff_t)page->index)
508 * (PAGE_CACHE_SIZE
509 / crypt_stat->extent_size))
510 + extent_offset), crypt_stat);
511 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
512 offset, crypt_stat->extent_size);
513 if (rc < 0) {
514 ecryptfs_printk(KERN_ERR, "Error attempting "
515 "to write lower page; rc = [%d]"
516 "\n", rc);
517 goto out;
520 rc = 0;
521 out:
522 if (enc_extent_page) {
523 kunmap(enc_extent_page);
524 __free_page(enc_extent_page);
526 return rc;
529 static int ecryptfs_decrypt_extent(struct page *page,
530 struct ecryptfs_crypt_stat *crypt_stat,
531 struct page *enc_extent_page,
532 unsigned long extent_offset)
534 loff_t extent_base;
535 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
536 int rc;
538 extent_base = (((loff_t)page->index)
539 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
540 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
541 (extent_base + extent_offset));
542 if (rc) {
543 ecryptfs_printk(KERN_ERR, "Error attempting to "
544 "derive IV for extent [0x%.16x]; "
545 "rc = [%d]\n", (extent_base + extent_offset),
546 rc);
547 goto out;
549 if (unlikely(ecryptfs_verbosity > 0)) {
550 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
551 "with iv:\n");
552 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
553 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
554 "decryption:\n");
555 ecryptfs_dump_hex((char *)
556 (page_address(enc_extent_page)
557 + (extent_offset * crypt_stat->extent_size)),
560 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561 (extent_offset
562 * crypt_stat->extent_size),
563 enc_extent_page, 0,
564 crypt_stat->extent_size, extent_iv);
565 if (rc < 0) {
566 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567 "page->index = [%ld], extent_offset = [%ld]; "
568 "rc = [%d]\n", __func__, page->index, extent_offset,
569 rc);
570 goto out;
572 rc = 0;
573 if (unlikely(ecryptfs_verbosity > 0)) {
574 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
575 "rc = [%d]\n", (extent_base + extent_offset),
576 rc);
577 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
578 "decryption:\n");
579 ecryptfs_dump_hex((char *)(page_address(page)
580 + (extent_offset
581 * crypt_stat->extent_size)), 8);
583 out:
584 return rc;
588 * ecryptfs_decrypt_page
589 * @page: Page mapped from the eCryptfs inode for the file; data read
590 * and decrypted from the lower file will be written into this
591 * page
593 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
594 * that eCryptfs pages may straddle the lower pages -- for instance,
595 * if the file was created on a machine with an 8K page size
596 * (resulting in an 8K header), and then the file is copied onto a
597 * host with a 32K page size, then when reading page 0 of the eCryptfs
598 * file, 24K of page 0 of the lower file will be read and decrypted,
599 * and then 8K of page 1 of the lower file will be read and decrypted.
601 * Returns zero on success; negative on error
603 int ecryptfs_decrypt_page(struct page *page)
605 struct inode *ecryptfs_inode;
606 struct ecryptfs_crypt_stat *crypt_stat;
607 char *enc_extent_virt;
608 struct page *enc_extent_page = NULL;
609 unsigned long extent_offset;
610 int rc = 0;
612 ecryptfs_inode = page->mapping->host;
613 crypt_stat =
614 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
615 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
616 enc_extent_page = alloc_page(GFP_USER);
617 if (!enc_extent_page) {
618 rc = -ENOMEM;
619 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
620 "encrypted extent\n");
621 goto out;
623 enc_extent_virt = kmap(enc_extent_page);
624 for (extent_offset = 0;
625 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
626 extent_offset++) {
627 loff_t offset;
629 ecryptfs_lower_offset_for_extent(
630 &offset, ((page->index * (PAGE_CACHE_SIZE
631 / crypt_stat->extent_size))
632 + extent_offset), crypt_stat);
633 rc = ecryptfs_read_lower(enc_extent_virt, offset,
634 crypt_stat->extent_size,
635 ecryptfs_inode);
636 if (rc < 0) {
637 ecryptfs_printk(KERN_ERR, "Error attempting "
638 "to read lower page; rc = [%d]"
639 "\n", rc);
640 goto out;
642 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
643 extent_offset);
644 if (rc) {
645 printk(KERN_ERR "%s: Error encrypting extent; "
646 "rc = [%d]\n", __func__, rc);
647 goto out;
650 out:
651 if (enc_extent_page) {
652 kunmap(enc_extent_page);
653 __free_page(enc_extent_page);
655 return rc;
659 * decrypt_scatterlist
660 * @crypt_stat: Cryptographic context
661 * @dest_sg: The destination scatterlist to decrypt into
662 * @src_sg: The source scatterlist to decrypt from
663 * @size: The number of bytes to decrypt
664 * @iv: The initialization vector to use for the decryption
666 * Returns the number of bytes decrypted; negative value on error
668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
669 struct scatterlist *dest_sg,
670 struct scatterlist *src_sg, int size,
671 unsigned char *iv)
673 struct blkcipher_desc desc = {
674 .tfm = crypt_stat->tfm,
675 .info = iv,
676 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
678 int rc = 0;
680 /* Consider doing this once, when the file is opened */
681 mutex_lock(&crypt_stat->cs_tfm_mutex);
682 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
683 crypt_stat->key_size);
684 if (rc) {
685 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
686 rc);
687 mutex_unlock(&crypt_stat->cs_tfm_mutex);
688 rc = -EINVAL;
689 goto out;
691 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
692 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
693 mutex_unlock(&crypt_stat->cs_tfm_mutex);
694 if (rc) {
695 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
696 rc);
697 goto out;
699 rc = size;
700 out:
701 return rc;
705 * ecryptfs_encrypt_page_offset
706 * @crypt_stat: The cryptographic context
707 * @dst_page: The page to encrypt into
708 * @dst_offset: The offset in the page to encrypt into
709 * @src_page: The page to encrypt from
710 * @src_offset: The offset in the page to encrypt from
711 * @size: The number of bytes to encrypt
712 * @iv: The initialization vector to use for the encryption
714 * Returns the number of bytes encrypted
716 static int
717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
718 struct page *dst_page, int dst_offset,
719 struct page *src_page, int src_offset, int size,
720 unsigned char *iv)
722 struct scatterlist src_sg, dst_sg;
724 sg_init_table(&src_sg, 1);
725 sg_init_table(&dst_sg, 1);
727 sg_set_page(&src_sg, src_page, size, src_offset);
728 sg_set_page(&dst_sg, dst_page, size, dst_offset);
729 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
733 * ecryptfs_decrypt_page_offset
734 * @crypt_stat: The cryptographic context
735 * @dst_page: The page to decrypt into
736 * @dst_offset: The offset in the page to decrypt into
737 * @src_page: The page to decrypt from
738 * @src_offset: The offset in the page to decrypt from
739 * @size: The number of bytes to decrypt
740 * @iv: The initialization vector to use for the decryption
742 * Returns the number of bytes decrypted
744 static int
745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
746 struct page *dst_page, int dst_offset,
747 struct page *src_page, int src_offset, int size,
748 unsigned char *iv)
750 struct scatterlist src_sg, dst_sg;
752 sg_init_table(&src_sg, 1);
753 sg_set_page(&src_sg, src_page, size, src_offset);
755 sg_init_table(&dst_sg, 1);
756 sg_set_page(&dst_sg, dst_page, size, dst_offset);
758 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
764 * ecryptfs_init_crypt_ctx
765 * @crypt_stat: Uninitialized crypt stats structure
767 * Initialize the crypto context.
769 * TODO: Performance: Keep a cache of initialized cipher contexts;
770 * only init if needed
772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
774 char *full_alg_name;
775 int rc = -EINVAL;
777 if (!crypt_stat->cipher) {
778 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
779 goto out;
781 ecryptfs_printk(KERN_DEBUG,
782 "Initializing cipher [%s]; strlen = [%d]; "
783 "key_size_bits = [%d]\n",
784 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
785 crypt_stat->key_size << 3);
786 if (crypt_stat->tfm) {
787 rc = 0;
788 goto out;
790 mutex_lock(&crypt_stat->cs_tfm_mutex);
791 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
792 crypt_stat->cipher, "cbc");
793 if (rc)
794 goto out_unlock;
795 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
796 CRYPTO_ALG_ASYNC);
797 kfree(full_alg_name);
798 if (IS_ERR(crypt_stat->tfm)) {
799 rc = PTR_ERR(crypt_stat->tfm);
800 crypt_stat->tfm = NULL;
801 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
802 "Error initializing cipher [%s]\n",
803 crypt_stat->cipher);
804 goto out_unlock;
806 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
807 rc = 0;
808 out_unlock:
809 mutex_unlock(&crypt_stat->cs_tfm_mutex);
810 out:
811 return rc;
814 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
816 int extent_size_tmp;
818 crypt_stat->extent_mask = 0xFFFFFFFF;
819 crypt_stat->extent_shift = 0;
820 if (crypt_stat->extent_size == 0)
821 return;
822 extent_size_tmp = crypt_stat->extent_size;
823 while ((extent_size_tmp & 0x01) == 0) {
824 extent_size_tmp >>= 1;
825 crypt_stat->extent_mask <<= 1;
826 crypt_stat->extent_shift++;
830 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
832 /* Default values; may be overwritten as we are parsing the
833 * packets. */
834 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
835 set_extent_mask_and_shift(crypt_stat);
836 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
837 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
838 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
839 else {
840 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
841 crypt_stat->metadata_size =
842 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
843 else
844 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
849 * ecryptfs_compute_root_iv
850 * @crypt_stats
852 * On error, sets the root IV to all 0's.
854 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
856 int rc = 0;
857 char dst[MD5_DIGEST_SIZE];
859 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
860 BUG_ON(crypt_stat->iv_bytes <= 0);
861 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
862 rc = -EINVAL;
863 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
864 "cannot generate root IV\n");
865 goto out;
867 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
868 crypt_stat->key_size);
869 if (rc) {
870 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
871 "MD5 while generating root IV\n");
872 goto out;
874 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
875 out:
876 if (rc) {
877 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
878 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
880 return rc;
883 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
885 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
886 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
887 ecryptfs_compute_root_iv(crypt_stat);
888 if (unlikely(ecryptfs_verbosity > 0)) {
889 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
890 ecryptfs_dump_hex(crypt_stat->key,
891 crypt_stat->key_size);
896 * ecryptfs_copy_mount_wide_flags_to_inode_flags
897 * @crypt_stat: The inode's cryptographic context
898 * @mount_crypt_stat: The mount point's cryptographic context
900 * This function propagates the mount-wide flags to individual inode
901 * flags.
903 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
904 struct ecryptfs_crypt_stat *crypt_stat,
905 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
907 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
908 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
909 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
910 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
911 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
912 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
913 if (mount_crypt_stat->flags
914 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
915 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
916 else if (mount_crypt_stat->flags
917 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
918 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923 struct ecryptfs_crypt_stat *crypt_stat,
924 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
926 struct ecryptfs_global_auth_tok *global_auth_tok;
927 int rc = 0;
929 mutex_lock(&crypt_stat->keysig_list_mutex);
930 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
932 list_for_each_entry(global_auth_tok,
933 &mount_crypt_stat->global_auth_tok_list,
934 mount_crypt_stat_list) {
935 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
936 continue;
937 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
938 if (rc) {
939 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
940 goto out;
944 out:
945 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
946 mutex_unlock(&crypt_stat->keysig_list_mutex);
947 return rc;
951 * ecryptfs_set_default_crypt_stat_vals
952 * @crypt_stat: The inode's cryptographic context
953 * @mount_crypt_stat: The mount point's cryptographic context
955 * Default values in the event that policy does not override them.
957 static void ecryptfs_set_default_crypt_stat_vals(
958 struct ecryptfs_crypt_stat *crypt_stat,
959 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
961 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
962 mount_crypt_stat);
963 ecryptfs_set_default_sizes(crypt_stat);
964 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
965 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
966 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
967 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
968 crypt_stat->mount_crypt_stat = mount_crypt_stat;
972 * ecryptfs_new_file_context
973 * @ecryptfs_dentry: The eCryptfs dentry
975 * If the crypto context for the file has not yet been established,
976 * this is where we do that. Establishing a new crypto context
977 * involves the following decisions:
978 * - What cipher to use?
979 * - What set of authentication tokens to use?
980 * Here we just worry about getting enough information into the
981 * authentication tokens so that we know that they are available.
982 * We associate the available authentication tokens with the new file
983 * via the set of signatures in the crypt_stat struct. Later, when
984 * the headers are actually written out, we may again defer to
985 * userspace to perform the encryption of the session key; for the
986 * foreseeable future, this will be the case with public key packets.
988 * Returns zero on success; non-zero otherwise
990 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
992 struct ecryptfs_crypt_stat *crypt_stat =
993 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
994 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
995 &ecryptfs_superblock_to_private(
996 ecryptfs_dentry->d_sb)->mount_crypt_stat;
997 int cipher_name_len;
998 int rc = 0;
1000 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1001 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1002 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1003 mount_crypt_stat);
1004 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1005 mount_crypt_stat);
1006 if (rc) {
1007 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1008 "to the inode key sigs; rc = [%d]\n", rc);
1009 goto out;
1011 cipher_name_len =
1012 strlen(mount_crypt_stat->global_default_cipher_name);
1013 memcpy(crypt_stat->cipher,
1014 mount_crypt_stat->global_default_cipher_name,
1015 cipher_name_len);
1016 crypt_stat->cipher[cipher_name_len] = '\0';
1017 crypt_stat->key_size =
1018 mount_crypt_stat->global_default_cipher_key_size;
1019 ecryptfs_generate_new_key(crypt_stat);
1020 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1021 if (rc)
1022 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1023 "context for cipher [%s]: rc = [%d]\n",
1024 crypt_stat->cipher, rc);
1025 out:
1026 return rc;
1030 * contains_ecryptfs_marker - check for the ecryptfs marker
1031 * @data: The data block in which to check
1033 * Returns one if marker found; zero if not found
1035 static int contains_ecryptfs_marker(char *data)
1037 u32 m_1, m_2;
1039 m_1 = get_unaligned_be32(data);
1040 m_2 = get_unaligned_be32(data + 4);
1041 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1042 return 1;
1043 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1044 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1045 MAGIC_ECRYPTFS_MARKER);
1046 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1047 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1048 return 0;
1051 struct ecryptfs_flag_map_elem {
1052 u32 file_flag;
1053 u32 local_flag;
1056 /* Add support for additional flags by adding elements here. */
1057 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1058 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1059 {0x00000002, ECRYPTFS_ENCRYPTED},
1060 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1061 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1065 * ecryptfs_process_flags
1066 * @crypt_stat: The cryptographic context
1067 * @page_virt: Source data to be parsed
1068 * @bytes_read: Updated with the number of bytes read
1070 * Returns zero on success; non-zero if the flag set is invalid
1072 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1073 char *page_virt, int *bytes_read)
1075 int rc = 0;
1076 int i;
1077 u32 flags;
1079 flags = get_unaligned_be32(page_virt);
1080 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1081 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1082 if (flags & ecryptfs_flag_map[i].file_flag) {
1083 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1084 } else
1085 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1086 /* Version is in top 8 bits of the 32-bit flag vector */
1087 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1088 (*bytes_read) = 4;
1089 return rc;
1093 * write_ecryptfs_marker
1094 * @page_virt: The pointer to in a page to begin writing the marker
1095 * @written: Number of bytes written
1097 * Marker = 0x3c81b7f5
1099 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1101 u32 m_1, m_2;
1103 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1104 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1105 put_unaligned_be32(m_1, page_virt);
1106 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1107 put_unaligned_be32(m_2, page_virt);
1108 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1111 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1112 struct ecryptfs_crypt_stat *crypt_stat,
1113 size_t *written)
1115 u32 flags = 0;
1116 int i;
1118 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1119 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1120 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1121 flags |= ecryptfs_flag_map[i].file_flag;
1122 /* Version is in top 8 bits of the 32-bit flag vector */
1123 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1124 put_unaligned_be32(flags, page_virt);
1125 (*written) = 4;
1128 struct ecryptfs_cipher_code_str_map_elem {
1129 char cipher_str[16];
1130 u8 cipher_code;
1133 /* Add support for additional ciphers by adding elements here. The
1134 * cipher_code is whatever OpenPGP applicatoins use to identify the
1135 * ciphers. List in order of probability. */
1136 static struct ecryptfs_cipher_code_str_map_elem
1137 ecryptfs_cipher_code_str_map[] = {
1138 {"aes",RFC2440_CIPHER_AES_128 },
1139 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1140 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1141 {"cast5", RFC2440_CIPHER_CAST_5},
1142 {"twofish", RFC2440_CIPHER_TWOFISH},
1143 {"cast6", RFC2440_CIPHER_CAST_6},
1144 {"aes", RFC2440_CIPHER_AES_192},
1145 {"aes", RFC2440_CIPHER_AES_256}
1149 * ecryptfs_code_for_cipher_string
1150 * @cipher_name: The string alias for the cipher
1151 * @key_bytes: Length of key in bytes; used for AES code selection
1153 * Returns zero on no match, or the cipher code on match
1155 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1157 int i;
1158 u8 code = 0;
1159 struct ecryptfs_cipher_code_str_map_elem *map =
1160 ecryptfs_cipher_code_str_map;
1162 if (strcmp(cipher_name, "aes") == 0) {
1163 switch (key_bytes) {
1164 case 16:
1165 code = RFC2440_CIPHER_AES_128;
1166 break;
1167 case 24:
1168 code = RFC2440_CIPHER_AES_192;
1169 break;
1170 case 32:
1171 code = RFC2440_CIPHER_AES_256;
1173 } else {
1174 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1175 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1176 code = map[i].cipher_code;
1177 break;
1180 return code;
1184 * ecryptfs_cipher_code_to_string
1185 * @str: Destination to write out the cipher name
1186 * @cipher_code: The code to convert to cipher name string
1188 * Returns zero on success
1190 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1192 int rc = 0;
1193 int i;
1195 str[0] = '\0';
1196 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1197 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1198 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1199 if (str[0] == '\0') {
1200 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1201 "[%d]\n", cipher_code);
1202 rc = -EINVAL;
1204 return rc;
1207 int ecryptfs_read_and_validate_header_region(char *data,
1208 struct inode *ecryptfs_inode)
1210 struct ecryptfs_crypt_stat *crypt_stat =
1211 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1212 int rc;
1214 if (crypt_stat->extent_size == 0)
1215 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1216 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1217 ecryptfs_inode);
1218 if (rc < 0) {
1219 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1220 __func__, rc);
1221 goto out;
1223 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1224 rc = -EINVAL;
1225 } else
1226 rc = 0;
1227 out:
1228 return rc;
1231 void
1232 ecryptfs_write_header_metadata(char *virt,
1233 struct ecryptfs_crypt_stat *crypt_stat,
1234 size_t *written)
1236 u32 header_extent_size;
1237 u16 num_header_extents_at_front;
1239 header_extent_size = (u32)crypt_stat->extent_size;
1240 num_header_extents_at_front =
1241 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1242 put_unaligned_be32(header_extent_size, virt);
1243 virt += 4;
1244 put_unaligned_be16(num_header_extents_at_front, virt);
1245 (*written) = 6;
1248 struct kmem_cache *ecryptfs_header_cache_1;
1249 struct kmem_cache *ecryptfs_header_cache_2;
1252 * ecryptfs_write_headers_virt
1253 * @page_virt: The virtual address to write the headers to
1254 * @max: The size of memory allocated at page_virt
1255 * @size: Set to the number of bytes written by this function
1256 * @crypt_stat: The cryptographic context
1257 * @ecryptfs_dentry: The eCryptfs dentry
1259 * Format version: 1
1261 * Header Extent:
1262 * Octets 0-7: Unencrypted file size (big-endian)
1263 * Octets 8-15: eCryptfs special marker
1264 * Octets 16-19: Flags
1265 * Octet 16: File format version number (between 0 and 255)
1266 * Octets 17-18: Reserved
1267 * Octet 19: Bit 1 (lsb): Reserved
1268 * Bit 2: Encrypted?
1269 * Bits 3-8: Reserved
1270 * Octets 20-23: Header extent size (big-endian)
1271 * Octets 24-25: Number of header extents at front of file
1272 * (big-endian)
1273 * Octet 26: Begin RFC 2440 authentication token packet set
1274 * Data Extent 0:
1275 * Lower data (CBC encrypted)
1276 * Data Extent 1:
1277 * Lower data (CBC encrypted)
1278 * ...
1280 * Returns zero on success
1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1283 size_t *size,
1284 struct ecryptfs_crypt_stat *crypt_stat,
1285 struct dentry *ecryptfs_dentry)
1287 int rc;
1288 size_t written;
1289 size_t offset;
1291 offset = ECRYPTFS_FILE_SIZE_BYTES;
1292 write_ecryptfs_marker((page_virt + offset), &written);
1293 offset += written;
1294 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1295 &written);
1296 offset += written;
1297 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1298 &written);
1299 offset += written;
1300 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1301 ecryptfs_dentry, &written,
1302 max - offset);
1303 if (rc)
1304 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1305 "set; rc = [%d]\n", rc);
1306 if (size) {
1307 offset += written;
1308 *size = offset;
1310 return rc;
1313 static int
1314 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1315 char *virt, size_t virt_len)
1317 int rc;
1319 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1320 0, virt_len);
1321 if (rc < 0)
1322 printk(KERN_ERR "%s: Error attempting to write header "
1323 "information to lower file; rc = [%d]\n", __func__, rc);
1324 else
1325 rc = 0;
1326 return rc;
1329 static int
1330 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1331 char *page_virt, size_t size)
1333 int rc;
1335 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1336 size, 0);
1337 return rc;
1340 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1341 unsigned int order)
1343 struct page *page;
1345 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1346 if (page)
1347 return (unsigned long) page_address(page);
1348 return 0;
1352 * ecryptfs_write_metadata
1353 * @ecryptfs_dentry: The eCryptfs dentry
1355 * Write the file headers out. This will likely involve a userspace
1356 * callout, in which the session key is encrypted with one or more
1357 * public keys and/or the passphrase necessary to do the encryption is
1358 * retrieved via a prompt. Exactly what happens at this point should
1359 * be policy-dependent.
1361 * Returns zero on success; non-zero on error
1363 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1365 struct ecryptfs_crypt_stat *crypt_stat =
1366 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1367 unsigned int order;
1368 char *virt;
1369 size_t virt_len;
1370 size_t size = 0;
1371 int rc = 0;
1373 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1374 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1375 printk(KERN_ERR "Key is invalid; bailing out\n");
1376 rc = -EINVAL;
1377 goto out;
1379 } else {
1380 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1381 __func__);
1382 rc = -EINVAL;
1383 goto out;
1385 virt_len = crypt_stat->metadata_size;
1386 order = get_order(virt_len);
1387 /* Released in this function */
1388 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1389 if (!virt) {
1390 printk(KERN_ERR "%s: Out of memory\n", __func__);
1391 rc = -ENOMEM;
1392 goto out;
1394 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1395 ecryptfs_dentry);
1396 if (unlikely(rc)) {
1397 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1398 __func__, rc);
1399 goto out_free;
1401 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1402 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1403 size);
1404 else
1405 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1406 virt_len);
1407 if (rc) {
1408 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1409 "rc = [%d]\n", __func__, rc);
1410 goto out_free;
1412 out_free:
1413 free_pages((unsigned long)virt, order);
1414 out:
1415 return rc;
1418 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1419 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1420 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1421 char *virt, int *bytes_read,
1422 int validate_header_size)
1424 int rc = 0;
1425 u32 header_extent_size;
1426 u16 num_header_extents_at_front;
1428 header_extent_size = get_unaligned_be32(virt);
1429 virt += sizeof(__be32);
1430 num_header_extents_at_front = get_unaligned_be16(virt);
1431 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1432 * (size_t)header_extent_size));
1433 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1434 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1435 && (crypt_stat->metadata_size
1436 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1437 rc = -EINVAL;
1438 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1439 crypt_stat->metadata_size);
1441 return rc;
1445 * set_default_header_data
1446 * @crypt_stat: The cryptographic context
1448 * For version 0 file format; this function is only for backwards
1449 * compatibility for files created with the prior versions of
1450 * eCryptfs.
1452 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1454 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1458 * ecryptfs_read_headers_virt
1459 * @page_virt: The virtual address into which to read the headers
1460 * @crypt_stat: The cryptographic context
1461 * @ecryptfs_dentry: The eCryptfs dentry
1462 * @validate_header_size: Whether to validate the header size while reading
1464 * Read/parse the header data. The header format is detailed in the
1465 * comment block for the ecryptfs_write_headers_virt() function.
1467 * Returns zero on success
1469 static int ecryptfs_read_headers_virt(char *page_virt,
1470 struct ecryptfs_crypt_stat *crypt_stat,
1471 struct dentry *ecryptfs_dentry,
1472 int validate_header_size)
1474 int rc = 0;
1475 int offset;
1476 int bytes_read;
1478 ecryptfs_set_default_sizes(crypt_stat);
1479 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1480 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1481 offset = ECRYPTFS_FILE_SIZE_BYTES;
1482 rc = contains_ecryptfs_marker(page_virt + offset);
1483 if (rc == 0) {
1484 rc = -EINVAL;
1485 goto out;
1487 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1488 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1489 &bytes_read);
1490 if (rc) {
1491 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1492 goto out;
1494 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1495 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1496 "file version [%d] is supported by this "
1497 "version of eCryptfs\n",
1498 crypt_stat->file_version,
1499 ECRYPTFS_SUPPORTED_FILE_VERSION);
1500 rc = -EINVAL;
1501 goto out;
1503 offset += bytes_read;
1504 if (crypt_stat->file_version >= 1) {
1505 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1506 &bytes_read, validate_header_size);
1507 if (rc) {
1508 ecryptfs_printk(KERN_WARNING, "Error reading header "
1509 "metadata; rc = [%d]\n", rc);
1511 offset += bytes_read;
1512 } else
1513 set_default_header_data(crypt_stat);
1514 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1515 ecryptfs_dentry);
1516 out:
1517 return rc;
1521 * ecryptfs_read_xattr_region
1522 * @page_virt: The vitual address into which to read the xattr data
1523 * @ecryptfs_inode: The eCryptfs inode
1525 * Attempts to read the crypto metadata from the extended attribute
1526 * region of the lower file.
1528 * Returns zero on success; non-zero on error
1530 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1532 struct dentry *lower_dentry =
1533 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1534 ssize_t size;
1535 int rc = 0;
1537 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1538 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1539 if (size < 0) {
1540 if (unlikely(ecryptfs_verbosity > 0))
1541 printk(KERN_INFO "Error attempting to read the [%s] "
1542 "xattr from the lower file; return value = "
1543 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1544 rc = -EINVAL;
1545 goto out;
1547 out:
1548 return rc;
1551 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1552 struct dentry *ecryptfs_dentry)
1554 int rc;
1556 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1557 if (rc)
1558 goto out;
1559 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1560 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1561 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1562 rc = -EINVAL;
1564 out:
1565 return rc;
1569 * ecryptfs_read_metadata
1571 * Common entry point for reading file metadata. From here, we could
1572 * retrieve the header information from the header region of the file,
1573 * the xattr region of the file, or some other repostory that is
1574 * stored separately from the file itself. The current implementation
1575 * supports retrieving the metadata information from the file contents
1576 * and from the xattr region.
1578 * Returns zero if valid headers found and parsed; non-zero otherwise
1580 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1582 int rc = 0;
1583 char *page_virt = NULL;
1584 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1585 struct ecryptfs_crypt_stat *crypt_stat =
1586 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1587 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1588 &ecryptfs_superblock_to_private(
1589 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1591 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1592 mount_crypt_stat);
1593 /* Read the first page from the underlying file */
1594 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1595 if (!page_virt) {
1596 rc = -ENOMEM;
1597 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1598 __func__);
1599 goto out;
1601 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1602 ecryptfs_inode);
1603 if (rc >= 0)
1604 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1605 ecryptfs_dentry,
1606 ECRYPTFS_VALIDATE_HEADER_SIZE);
1607 if (rc) {
1608 memset(page_virt, 0, PAGE_CACHE_SIZE);
1609 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1610 if (rc) {
1611 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1612 "file header region or xattr region\n");
1613 rc = -EINVAL;
1614 goto out;
1616 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1617 ecryptfs_dentry,
1618 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1619 if (rc) {
1620 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1621 "file xattr region either\n");
1622 rc = -EINVAL;
1624 if (crypt_stat->mount_crypt_stat->flags
1625 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1626 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1627 } else {
1628 printk(KERN_WARNING "Attempt to access file with "
1629 "crypto metadata only in the extended attribute "
1630 "region, but eCryptfs was mounted without "
1631 "xattr support enabled. eCryptfs will not treat "
1632 "this like an encrypted file.\n");
1633 rc = -EINVAL;
1636 out:
1637 if (page_virt) {
1638 memset(page_virt, 0, PAGE_CACHE_SIZE);
1639 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1641 return rc;
1645 * ecryptfs_encrypt_filename - encrypt filename
1647 * CBC-encrypts the filename. We do not want to encrypt the same
1648 * filename with the same key and IV, which may happen with hard
1649 * links, so we prepend random bits to each filename.
1651 * Returns zero on success; non-zero otherwise
1653 static int
1654 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1655 struct ecryptfs_crypt_stat *crypt_stat,
1656 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1658 int rc = 0;
1660 filename->encrypted_filename = NULL;
1661 filename->encrypted_filename_size = 0;
1662 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1663 || (mount_crypt_stat && (mount_crypt_stat->flags
1664 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1665 size_t packet_size;
1666 size_t remaining_bytes;
1668 rc = ecryptfs_write_tag_70_packet(
1669 NULL, NULL,
1670 &filename->encrypted_filename_size,
1671 mount_crypt_stat, NULL,
1672 filename->filename_size);
1673 if (rc) {
1674 printk(KERN_ERR "%s: Error attempting to get packet "
1675 "size for tag 72; rc = [%d]\n", __func__,
1676 rc);
1677 filename->encrypted_filename_size = 0;
1678 goto out;
1680 filename->encrypted_filename =
1681 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1682 if (!filename->encrypted_filename) {
1683 printk(KERN_ERR "%s: Out of memory whilst attempting "
1684 "to kmalloc [%zd] bytes\n", __func__,
1685 filename->encrypted_filename_size);
1686 rc = -ENOMEM;
1687 goto out;
1689 remaining_bytes = filename->encrypted_filename_size;
1690 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1691 &remaining_bytes,
1692 &packet_size,
1693 mount_crypt_stat,
1694 filename->filename,
1695 filename->filename_size);
1696 if (rc) {
1697 printk(KERN_ERR "%s: Error attempting to generate "
1698 "tag 70 packet; rc = [%d]\n", __func__,
1699 rc);
1700 kfree(filename->encrypted_filename);
1701 filename->encrypted_filename = NULL;
1702 filename->encrypted_filename_size = 0;
1703 goto out;
1705 filename->encrypted_filename_size = packet_size;
1706 } else {
1707 printk(KERN_ERR "%s: No support for requested filename "
1708 "encryption method in this release\n", __func__);
1709 rc = -EOPNOTSUPP;
1710 goto out;
1712 out:
1713 return rc;
1716 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1717 const char *name, size_t name_size)
1719 int rc = 0;
1721 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1722 if (!(*copied_name)) {
1723 rc = -ENOMEM;
1724 goto out;
1726 memcpy((void *)(*copied_name), (void *)name, name_size);
1727 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1728 * in printing out the
1729 * string in debug
1730 * messages */
1731 (*copied_name_size) = name_size;
1732 out:
1733 return rc;
1737 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1738 * @key_tfm: Crypto context for key material, set by this function
1739 * @cipher_name: Name of the cipher
1740 * @key_size: Size of the key in bytes
1742 * Returns zero on success. Any crypto_tfm structs allocated here
1743 * should be released by other functions, such as on a superblock put
1744 * event, regardless of whether this function succeeds for fails.
1746 static int
1747 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1748 char *cipher_name, size_t *key_size)
1750 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1751 char *full_alg_name = NULL;
1752 int rc;
1754 *key_tfm = NULL;
1755 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1756 rc = -EINVAL;
1757 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1758 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1759 goto out;
1761 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1762 "ecb");
1763 if (rc)
1764 goto out;
1765 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1766 if (IS_ERR(*key_tfm)) {
1767 rc = PTR_ERR(*key_tfm);
1768 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1769 "[%s]; rc = [%d]\n", full_alg_name, rc);
1770 goto out;
1772 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1773 if (*key_size == 0) {
1774 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1776 *key_size = alg->max_keysize;
1778 get_random_bytes(dummy_key, *key_size);
1779 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1780 if (rc) {
1781 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1782 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1783 rc);
1784 rc = -EINVAL;
1785 goto out;
1787 out:
1788 kfree(full_alg_name);
1789 return rc;
1792 struct kmem_cache *ecryptfs_key_tfm_cache;
1793 static struct list_head key_tfm_list;
1794 struct mutex key_tfm_list_mutex;
1796 int __init ecryptfs_init_crypto(void)
1798 mutex_init(&key_tfm_list_mutex);
1799 INIT_LIST_HEAD(&key_tfm_list);
1800 return 0;
1804 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1806 * Called only at module unload time
1808 int ecryptfs_destroy_crypto(void)
1810 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1812 mutex_lock(&key_tfm_list_mutex);
1813 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1814 key_tfm_list) {
1815 list_del(&key_tfm->key_tfm_list);
1816 if (key_tfm->key_tfm)
1817 crypto_free_blkcipher(key_tfm->key_tfm);
1818 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1820 mutex_unlock(&key_tfm_list_mutex);
1821 return 0;
1825 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1826 size_t key_size)
1828 struct ecryptfs_key_tfm *tmp_tfm;
1829 int rc = 0;
1831 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1833 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1834 if (key_tfm != NULL)
1835 (*key_tfm) = tmp_tfm;
1836 if (!tmp_tfm) {
1837 rc = -ENOMEM;
1838 printk(KERN_ERR "Error attempting to allocate from "
1839 "ecryptfs_key_tfm_cache\n");
1840 goto out;
1842 mutex_init(&tmp_tfm->key_tfm_mutex);
1843 strncpy(tmp_tfm->cipher_name, cipher_name,
1844 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1845 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1846 tmp_tfm->key_size = key_size;
1847 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1848 tmp_tfm->cipher_name,
1849 &tmp_tfm->key_size);
1850 if (rc) {
1851 printk(KERN_ERR "Error attempting to initialize key TFM "
1852 "cipher with name = [%s]; rc = [%d]\n",
1853 tmp_tfm->cipher_name, rc);
1854 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1855 if (key_tfm != NULL)
1856 (*key_tfm) = NULL;
1857 goto out;
1859 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1860 out:
1861 return rc;
1865 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1866 * @cipher_name: the name of the cipher to search for
1867 * @key_tfm: set to corresponding tfm if found
1869 * Searches for cached key_tfm matching @cipher_name
1870 * Must be called with &key_tfm_list_mutex held
1871 * Returns 1 if found, with @key_tfm set
1872 * Returns 0 if not found, with @key_tfm set to NULL
1874 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1876 struct ecryptfs_key_tfm *tmp_key_tfm;
1878 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1880 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1881 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1882 if (key_tfm)
1883 (*key_tfm) = tmp_key_tfm;
1884 return 1;
1887 if (key_tfm)
1888 (*key_tfm) = NULL;
1889 return 0;
1893 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1895 * @tfm: set to cached tfm found, or new tfm created
1896 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1897 * @cipher_name: the name of the cipher to search for and/or add
1899 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1900 * Searches for cached item first, and creates new if not found.
1901 * Returns 0 on success, non-zero if adding new cipher failed
1903 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1904 struct mutex **tfm_mutex,
1905 char *cipher_name)
1907 struct ecryptfs_key_tfm *key_tfm;
1908 int rc = 0;
1910 (*tfm) = NULL;
1911 (*tfm_mutex) = NULL;
1913 mutex_lock(&key_tfm_list_mutex);
1914 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1915 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1916 if (rc) {
1917 printk(KERN_ERR "Error adding new key_tfm to list; "
1918 "rc = [%d]\n", rc);
1919 goto out;
1922 (*tfm) = key_tfm->key_tfm;
1923 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1924 out:
1925 mutex_unlock(&key_tfm_list_mutex);
1926 return rc;
1929 /* 64 characters forming a 6-bit target field */
1930 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1931 "EFGHIJKLMNOPQRST"
1932 "UVWXYZabcdefghij"
1933 "klmnopqrstuvwxyz");
1935 /* We could either offset on every reverse map or just pad some 0x00's
1936 * at the front here */
1937 static const unsigned char filename_rev_map[] = {
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1942 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1943 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1944 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1945 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1946 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1947 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1948 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1949 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1950 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1951 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1952 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1953 0x3D, 0x3E, 0x3F
1957 * ecryptfs_encode_for_filename
1958 * @dst: Destination location for encoded filename
1959 * @dst_size: Size of the encoded filename in bytes
1960 * @src: Source location for the filename to encode
1961 * @src_size: Size of the source in bytes
1963 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1964 unsigned char *src, size_t src_size)
1966 size_t num_blocks;
1967 size_t block_num = 0;
1968 size_t dst_offset = 0;
1969 unsigned char last_block[3];
1971 if (src_size == 0) {
1972 (*dst_size) = 0;
1973 goto out;
1975 num_blocks = (src_size / 3);
1976 if ((src_size % 3) == 0) {
1977 memcpy(last_block, (&src[src_size - 3]), 3);
1978 } else {
1979 num_blocks++;
1980 last_block[2] = 0x00;
1981 switch (src_size % 3) {
1982 case 1:
1983 last_block[0] = src[src_size - 1];
1984 last_block[1] = 0x00;
1985 break;
1986 case 2:
1987 last_block[0] = src[src_size - 2];
1988 last_block[1] = src[src_size - 1];
1991 (*dst_size) = (num_blocks * 4);
1992 if (!dst)
1993 goto out;
1994 while (block_num < num_blocks) {
1995 unsigned char *src_block;
1996 unsigned char dst_block[4];
1998 if (block_num == (num_blocks - 1))
1999 src_block = last_block;
2000 else
2001 src_block = &src[block_num * 3];
2002 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2003 dst_block[1] = (((src_block[0] << 4) & 0x30)
2004 | ((src_block[1] >> 4) & 0x0F));
2005 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2006 | ((src_block[2] >> 6) & 0x03));
2007 dst_block[3] = (src_block[2] & 0x3F);
2008 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2009 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2010 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2011 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2012 block_num++;
2014 out:
2015 return;
2019 * ecryptfs_decode_from_filename
2020 * @dst: If NULL, this function only sets @dst_size and returns. If
2021 * non-NULL, this function decodes the encoded octets in @src
2022 * into the memory that @dst points to.
2023 * @dst_size: Set to the size of the decoded string.
2024 * @src: The encoded set of octets to decode.
2025 * @src_size: The size of the encoded set of octets to decode.
2027 static void
2028 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2029 const unsigned char *src, size_t src_size)
2031 u8 current_bit_offset = 0;
2032 size_t src_byte_offset = 0;
2033 size_t dst_byte_offset = 0;
2035 if (dst == NULL) {
2036 /* Not exact; conservatively long. Every block of 4
2037 * encoded characters decodes into a block of 3
2038 * decoded characters. This segment of code provides
2039 * the caller with the maximum amount of allocated
2040 * space that @dst will need to point to in a
2041 * subsequent call. */
2042 (*dst_size) = (((src_size + 1) * 3) / 4);
2043 goto out;
2045 while (src_byte_offset < src_size) {
2046 unsigned char src_byte =
2047 filename_rev_map[(int)src[src_byte_offset]];
2049 switch (current_bit_offset) {
2050 case 0:
2051 dst[dst_byte_offset] = (src_byte << 2);
2052 current_bit_offset = 6;
2053 break;
2054 case 6:
2055 dst[dst_byte_offset++] |= (src_byte >> 4);
2056 dst[dst_byte_offset] = ((src_byte & 0xF)
2057 << 4);
2058 current_bit_offset = 4;
2059 break;
2060 case 4:
2061 dst[dst_byte_offset++] |= (src_byte >> 2);
2062 dst[dst_byte_offset] = (src_byte << 6);
2063 current_bit_offset = 2;
2064 break;
2065 case 2:
2066 dst[dst_byte_offset++] |= (src_byte);
2067 dst[dst_byte_offset] = 0;
2068 current_bit_offset = 0;
2069 break;
2071 src_byte_offset++;
2073 (*dst_size) = dst_byte_offset;
2074 out:
2075 return;
2079 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2080 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2081 * @name: The plaintext name
2082 * @length: The length of the plaintext
2083 * @encoded_name: The encypted name
2085 * Encrypts and encodes a filename into something that constitutes a
2086 * valid filename for a filesystem, with printable characters.
2088 * We assume that we have a properly initialized crypto context,
2089 * pointed to by crypt_stat->tfm.
2091 * Returns zero on success; non-zero on otherwise
2093 int ecryptfs_encrypt_and_encode_filename(
2094 char **encoded_name,
2095 size_t *encoded_name_size,
2096 struct ecryptfs_crypt_stat *crypt_stat,
2097 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2098 const char *name, size_t name_size)
2100 size_t encoded_name_no_prefix_size;
2101 int rc = 0;
2103 (*encoded_name) = NULL;
2104 (*encoded_name_size) = 0;
2105 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2106 || (mount_crypt_stat && (mount_crypt_stat->flags
2107 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2108 struct ecryptfs_filename *filename;
2110 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2111 if (!filename) {
2112 printk(KERN_ERR "%s: Out of memory whilst attempting "
2113 "to kzalloc [%zd] bytes\n", __func__,
2114 sizeof(*filename));
2115 rc = -ENOMEM;
2116 goto out;
2118 filename->filename = (char *)name;
2119 filename->filename_size = name_size;
2120 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2121 mount_crypt_stat);
2122 if (rc) {
2123 printk(KERN_ERR "%s: Error attempting to encrypt "
2124 "filename; rc = [%d]\n", __func__, rc);
2125 kfree(filename);
2126 goto out;
2128 ecryptfs_encode_for_filename(
2129 NULL, &encoded_name_no_prefix_size,
2130 filename->encrypted_filename,
2131 filename->encrypted_filename_size);
2132 if ((crypt_stat && (crypt_stat->flags
2133 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2134 || (mount_crypt_stat
2135 && (mount_crypt_stat->flags
2136 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2137 (*encoded_name_size) =
2138 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2139 + encoded_name_no_prefix_size);
2140 else
2141 (*encoded_name_size) =
2142 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2143 + encoded_name_no_prefix_size);
2144 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2145 if (!(*encoded_name)) {
2146 printk(KERN_ERR "%s: Out of memory whilst attempting "
2147 "to kzalloc [%zd] bytes\n", __func__,
2148 (*encoded_name_size));
2149 rc = -ENOMEM;
2150 kfree(filename->encrypted_filename);
2151 kfree(filename);
2152 goto out;
2154 if ((crypt_stat && (crypt_stat->flags
2155 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2156 || (mount_crypt_stat
2157 && (mount_crypt_stat->flags
2158 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2159 memcpy((*encoded_name),
2160 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2161 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2162 ecryptfs_encode_for_filename(
2163 ((*encoded_name)
2164 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2165 &encoded_name_no_prefix_size,
2166 filename->encrypted_filename,
2167 filename->encrypted_filename_size);
2168 (*encoded_name_size) =
2169 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2170 + encoded_name_no_prefix_size);
2171 (*encoded_name)[(*encoded_name_size)] = '\0';
2172 } else {
2173 rc = -EOPNOTSUPP;
2175 if (rc) {
2176 printk(KERN_ERR "%s: Error attempting to encode "
2177 "encrypted filename; rc = [%d]\n", __func__,
2178 rc);
2179 kfree((*encoded_name));
2180 (*encoded_name) = NULL;
2181 (*encoded_name_size) = 0;
2183 kfree(filename->encrypted_filename);
2184 kfree(filename);
2185 } else {
2186 rc = ecryptfs_copy_filename(encoded_name,
2187 encoded_name_size,
2188 name, name_size);
2190 out:
2191 return rc;
2195 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2196 * @plaintext_name: The plaintext name
2197 * @plaintext_name_size: The plaintext name size
2198 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2199 * @name: The filename in cipher text
2200 * @name_size: The cipher text name size
2202 * Decrypts and decodes the filename.
2204 * Returns zero on error; non-zero otherwise
2206 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2207 size_t *plaintext_name_size,
2208 struct dentry *ecryptfs_dir_dentry,
2209 const char *name, size_t name_size)
2211 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2212 &ecryptfs_superblock_to_private(
2213 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2214 char *decoded_name;
2215 size_t decoded_name_size;
2216 size_t packet_size;
2217 int rc = 0;
2219 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2220 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2221 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2222 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2223 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2224 const char *orig_name = name;
2225 size_t orig_name_size = name_size;
2227 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2228 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2229 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2230 name, name_size);
2231 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2232 if (!decoded_name) {
2233 printk(KERN_ERR "%s: Out of memory whilst attempting "
2234 "to kmalloc [%zd] bytes\n", __func__,
2235 decoded_name_size);
2236 rc = -ENOMEM;
2237 goto out;
2239 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2240 name, name_size);
2241 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2242 plaintext_name_size,
2243 &packet_size,
2244 mount_crypt_stat,
2245 decoded_name,
2246 decoded_name_size);
2247 if (rc) {
2248 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2249 "from filename; copying through filename "
2250 "as-is\n", __func__);
2251 rc = ecryptfs_copy_filename(plaintext_name,
2252 plaintext_name_size,
2253 orig_name, orig_name_size);
2254 goto out_free;
2256 } else {
2257 rc = ecryptfs_copy_filename(plaintext_name,
2258 plaintext_name_size,
2259 name, name_size);
2260 goto out;
2262 out_free:
2263 kfree(decoded_name);
2264 out:
2265 return rc;