2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
27 #include "transaction.h"
31 #define BTRFS_ROOT_TRANS_TAG 0
33 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
35 WARN_ON(transaction
->use_count
== 0);
36 transaction
->use_count
--;
37 if (transaction
->use_count
== 0) {
38 list_del_init(&transaction
->list
);
39 memset(transaction
, 0, sizeof(*transaction
));
40 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
44 static noinline
void switch_commit_root(struct btrfs_root
*root
)
46 free_extent_buffer(root
->commit_root
);
47 root
->commit_root
= btrfs_root_node(root
);
51 * either allocate a new transaction or hop into the existing one
53 static noinline
int join_transaction(struct btrfs_root
*root
)
55 struct btrfs_transaction
*cur_trans
;
56 cur_trans
= root
->fs_info
->running_transaction
;
58 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
,
61 root
->fs_info
->generation
++;
62 cur_trans
->num_writers
= 1;
63 cur_trans
->num_joined
= 0;
64 cur_trans
->transid
= root
->fs_info
->generation
;
65 init_waitqueue_head(&cur_trans
->writer_wait
);
66 init_waitqueue_head(&cur_trans
->commit_wait
);
67 cur_trans
->in_commit
= 0;
68 cur_trans
->blocked
= 0;
69 cur_trans
->use_count
= 1;
70 cur_trans
->commit_done
= 0;
71 cur_trans
->start_time
= get_seconds();
73 cur_trans
->delayed_refs
.root
= RB_ROOT
;
74 cur_trans
->delayed_refs
.num_entries
= 0;
75 cur_trans
->delayed_refs
.num_heads_ready
= 0;
76 cur_trans
->delayed_refs
.num_heads
= 0;
77 cur_trans
->delayed_refs
.flushing
= 0;
78 cur_trans
->delayed_refs
.run_delayed_start
= 0;
79 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
81 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
82 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
83 extent_io_tree_init(&cur_trans
->dirty_pages
,
84 root
->fs_info
->btree_inode
->i_mapping
,
86 spin_lock(&root
->fs_info
->new_trans_lock
);
87 root
->fs_info
->running_transaction
= cur_trans
;
88 spin_unlock(&root
->fs_info
->new_trans_lock
);
90 cur_trans
->num_writers
++;
91 cur_trans
->num_joined
++;
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
103 static noinline
int record_root_in_trans(struct btrfs_trans_handle
*trans
,
104 struct btrfs_root
*root
)
106 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
107 WARN_ON(root
== root
->fs_info
->extent_root
);
108 WARN_ON(root
->commit_root
!= root
->node
);
110 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
111 (unsigned long)root
->root_key
.objectid
,
112 BTRFS_ROOT_TRANS_TAG
);
113 root
->last_trans
= trans
->transid
;
114 btrfs_init_reloc_root(trans
, root
);
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
120 struct btrfs_root
*root
)
125 mutex_lock(&root
->fs_info
->trans_mutex
);
126 if (root
->last_trans
== trans
->transid
) {
127 mutex_unlock(&root
->fs_info
->trans_mutex
);
131 record_root_in_trans(trans
, root
);
132 mutex_unlock(&root
->fs_info
->trans_mutex
);
136 /* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
140 static void wait_current_trans(struct btrfs_root
*root
)
142 struct btrfs_transaction
*cur_trans
;
144 cur_trans
= root
->fs_info
->running_transaction
;
145 if (cur_trans
&& cur_trans
->blocked
) {
147 cur_trans
->use_count
++;
149 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
150 TASK_UNINTERRUPTIBLE
);
151 if (!cur_trans
->blocked
)
153 mutex_unlock(&root
->fs_info
->trans_mutex
);
155 mutex_lock(&root
->fs_info
->trans_mutex
);
157 finish_wait(&root
->fs_info
->transaction_wait
, &wait
);
158 put_transaction(cur_trans
);
162 enum btrfs_trans_type
{
169 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
171 if (!root
->fs_info
->log_root_recovering
&&
172 ((type
== TRANS_START
&& !root
->fs_info
->open_ioctl_trans
) ||
173 type
== TRANS_USERSPACE
))
178 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
179 u64 num_items
, int type
)
181 struct btrfs_trans_handle
*h
;
182 struct btrfs_transaction
*cur_trans
;
185 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
187 return ERR_PTR(-ENOMEM
);
189 if (type
!= TRANS_JOIN_NOLOCK
)
190 mutex_lock(&root
->fs_info
->trans_mutex
);
191 if (may_wait_transaction(root
, type
))
192 wait_current_trans(root
);
194 ret
= join_transaction(root
);
197 cur_trans
= root
->fs_info
->running_transaction
;
198 cur_trans
->use_count
++;
199 if (type
!= TRANS_JOIN_NOLOCK
)
200 mutex_unlock(&root
->fs_info
->trans_mutex
);
202 h
->transid
= cur_trans
->transid
;
203 h
->transaction
= cur_trans
;
206 h
->bytes_reserved
= 0;
207 h
->delayed_ref_updates
= 0;
211 if (cur_trans
->blocked
&& may_wait_transaction(root
, type
)) {
212 btrfs_commit_transaction(h
, root
);
217 ret
= btrfs_trans_reserve_metadata(h
, root
, num_items
);
218 if (ret
== -EAGAIN
) {
219 btrfs_commit_transaction(h
, root
);
223 btrfs_end_transaction(h
, root
);
228 if (type
!= TRANS_JOIN_NOLOCK
)
229 mutex_lock(&root
->fs_info
->trans_mutex
);
230 record_root_in_trans(h
, root
);
231 if (type
!= TRANS_JOIN_NOLOCK
)
232 mutex_unlock(&root
->fs_info
->trans_mutex
);
234 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
235 current
->journal_info
= h
;
239 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
242 return start_transaction(root
, num_items
, TRANS_START
);
244 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
,
247 return start_transaction(root
, 0, TRANS_JOIN
);
250 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
,
253 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
);
256 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*r
,
259 return start_transaction(r
, 0, TRANS_USERSPACE
);
262 /* wait for a transaction commit to be fully complete */
263 static noinline
int wait_for_commit(struct btrfs_root
*root
,
264 struct btrfs_transaction
*commit
)
267 mutex_lock(&root
->fs_info
->trans_mutex
);
268 while (!commit
->commit_done
) {
269 prepare_to_wait(&commit
->commit_wait
, &wait
,
270 TASK_UNINTERRUPTIBLE
);
271 if (commit
->commit_done
)
273 mutex_unlock(&root
->fs_info
->trans_mutex
);
275 mutex_lock(&root
->fs_info
->trans_mutex
);
277 mutex_unlock(&root
->fs_info
->trans_mutex
);
278 finish_wait(&commit
->commit_wait
, &wait
);
282 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
284 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
287 mutex_lock(&root
->fs_info
->trans_mutex
);
291 if (transid
<= root
->fs_info
->last_trans_committed
)
294 /* find specified transaction */
295 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
296 if (t
->transid
== transid
) {
300 if (t
->transid
> transid
)
305 goto out_unlock
; /* bad transid */
307 /* find newest transaction that is committing | committed */
308 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
318 goto out_unlock
; /* nothing committing|committed */
321 cur_trans
->use_count
++;
322 mutex_unlock(&root
->fs_info
->trans_mutex
);
324 wait_for_commit(root
, cur_trans
);
326 mutex_lock(&root
->fs_info
->trans_mutex
);
327 put_transaction(cur_trans
);
330 mutex_unlock(&root
->fs_info
->trans_mutex
);
336 * rate limit against the drop_snapshot code. This helps to slow down new
337 * operations if the drop_snapshot code isn't able to keep up.
339 static void throttle_on_drops(struct btrfs_root
*root
)
341 struct btrfs_fs_info
*info
= root
->fs_info
;
342 int harder_count
= 0;
345 if (atomic_read(&info
->throttles
)) {
348 thr
= atomic_read(&info
->throttle_gen
);
351 prepare_to_wait(&info
->transaction_throttle
,
352 &wait
, TASK_UNINTERRUPTIBLE
);
353 if (!atomic_read(&info
->throttles
)) {
354 finish_wait(&info
->transaction_throttle
, &wait
);
358 finish_wait(&info
->transaction_throttle
, &wait
);
359 } while (thr
== atomic_read(&info
->throttle_gen
));
362 if (root
->fs_info
->total_ref_cache_size
> 1 * 1024 * 1024 &&
366 if (root
->fs_info
->total_ref_cache_size
> 5 * 1024 * 1024 &&
370 if (root
->fs_info
->total_ref_cache_size
> 10 * 1024 * 1024 &&
377 void btrfs_throttle(struct btrfs_root
*root
)
379 mutex_lock(&root
->fs_info
->trans_mutex
);
380 if (!root
->fs_info
->open_ioctl_trans
)
381 wait_current_trans(root
);
382 mutex_unlock(&root
->fs_info
->trans_mutex
);
385 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
386 struct btrfs_root
*root
)
389 ret
= btrfs_block_rsv_check(trans
, root
,
390 &root
->fs_info
->global_block_rsv
, 0, 5);
394 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
395 struct btrfs_root
*root
)
397 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
400 if (cur_trans
->blocked
|| cur_trans
->delayed_refs
.flushing
)
403 updates
= trans
->delayed_ref_updates
;
404 trans
->delayed_ref_updates
= 0;
406 btrfs_run_delayed_refs(trans
, root
, updates
);
408 return should_end_transaction(trans
, root
);
411 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
412 struct btrfs_root
*root
, int throttle
, int lock
)
414 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
415 struct btrfs_fs_info
*info
= root
->fs_info
;
419 unsigned long cur
= trans
->delayed_ref_updates
;
420 trans
->delayed_ref_updates
= 0;
422 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
423 trans
->delayed_ref_updates
= 0;
426 * do a full flush if the transaction is trying
429 if (trans
->transaction
->delayed_refs
.flushing
)
431 btrfs_run_delayed_refs(trans
, root
, cur
);
438 btrfs_trans_release_metadata(trans
, root
);
440 if (lock
&& !root
->fs_info
->open_ioctl_trans
&&
441 should_end_transaction(trans
, root
))
442 trans
->transaction
->blocked
= 1;
444 if (lock
&& cur_trans
->blocked
&& !cur_trans
->in_commit
) {
446 return btrfs_commit_transaction(trans
, root
);
448 wake_up_process(info
->transaction_kthread
);
452 mutex_lock(&info
->trans_mutex
);
453 WARN_ON(cur_trans
!= info
->running_transaction
);
454 WARN_ON(cur_trans
->num_writers
< 1);
455 cur_trans
->num_writers
--;
458 if (waitqueue_active(&cur_trans
->writer_wait
))
459 wake_up(&cur_trans
->writer_wait
);
460 put_transaction(cur_trans
);
462 mutex_unlock(&info
->trans_mutex
);
464 if (current
->journal_info
== trans
)
465 current
->journal_info
= NULL
;
466 memset(trans
, 0, sizeof(*trans
));
467 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
470 btrfs_run_delayed_iputs(root
);
475 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
476 struct btrfs_root
*root
)
478 return __btrfs_end_transaction(trans
, root
, 0, 1);
481 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
482 struct btrfs_root
*root
)
484 return __btrfs_end_transaction(trans
, root
, 1, 1);
487 int btrfs_end_transaction_nolock(struct btrfs_trans_handle
*trans
,
488 struct btrfs_root
*root
)
490 return __btrfs_end_transaction(trans
, root
, 0, 0);
494 * when btree blocks are allocated, they have some corresponding bits set for
495 * them in one of two extent_io trees. This is used to make sure all of
496 * those extents are sent to disk but does not wait on them
498 int btrfs_write_marked_extents(struct btrfs_root
*root
,
499 struct extent_io_tree
*dirty_pages
, int mark
)
505 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
511 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
515 while (start
<= end
) {
518 index
= start
>> PAGE_CACHE_SHIFT
;
519 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
520 page
= find_get_page(btree_inode
->i_mapping
, index
);
524 btree_lock_page_hook(page
);
525 if (!page
->mapping
) {
527 page_cache_release(page
);
531 if (PageWriteback(page
)) {
533 wait_on_page_writeback(page
);
536 page_cache_release(page
);
540 err
= write_one_page(page
, 0);
543 page_cache_release(page
);
552 * when btree blocks are allocated, they have some corresponding bits set for
553 * them in one of two extent_io trees. This is used to make sure all of
554 * those extents are on disk for transaction or log commit. We wait
555 * on all the pages and clear them from the dirty pages state tree
557 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
558 struct extent_io_tree
*dirty_pages
, int mark
)
564 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
570 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
575 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
576 while (start
<= end
) {
577 index
= start
>> PAGE_CACHE_SHIFT
;
578 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
579 page
= find_get_page(btree_inode
->i_mapping
, index
);
582 if (PageDirty(page
)) {
583 btree_lock_page_hook(page
);
584 wait_on_page_writeback(page
);
585 err
= write_one_page(page
, 0);
589 wait_on_page_writeback(page
);
590 page_cache_release(page
);
600 * when btree blocks are allocated, they have some corresponding bits set for
601 * them in one of two extent_io trees. This is used to make sure all of
602 * those extents are on disk for transaction or log commit
604 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
605 struct extent_io_tree
*dirty_pages
, int mark
)
610 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
611 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
615 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
616 struct btrfs_root
*root
)
618 if (!trans
|| !trans
->transaction
) {
619 struct inode
*btree_inode
;
620 btree_inode
= root
->fs_info
->btree_inode
;
621 return filemap_write_and_wait(btree_inode
->i_mapping
);
623 return btrfs_write_and_wait_marked_extents(root
,
624 &trans
->transaction
->dirty_pages
,
629 * this is used to update the root pointer in the tree of tree roots.
631 * But, in the case of the extent allocation tree, updating the root
632 * pointer may allocate blocks which may change the root of the extent
635 * So, this loops and repeats and makes sure the cowonly root didn't
636 * change while the root pointer was being updated in the metadata.
638 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
639 struct btrfs_root
*root
)
644 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
646 old_root_used
= btrfs_root_used(&root
->root_item
);
647 btrfs_write_dirty_block_groups(trans
, root
);
650 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
651 if (old_root_bytenr
== root
->node
->start
&&
652 old_root_used
== btrfs_root_used(&root
->root_item
))
655 btrfs_set_root_node(&root
->root_item
, root
->node
);
656 ret
= btrfs_update_root(trans
, tree_root
,
661 old_root_used
= btrfs_root_used(&root
->root_item
);
662 ret
= btrfs_write_dirty_block_groups(trans
, root
);
666 if (root
!= root
->fs_info
->extent_root
)
667 switch_commit_root(root
);
673 * update all the cowonly tree roots on disk
675 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
676 struct btrfs_root
*root
)
678 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
679 struct list_head
*next
;
680 struct extent_buffer
*eb
;
683 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
686 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
687 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
688 btrfs_tree_unlock(eb
);
689 free_extent_buffer(eb
);
691 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
694 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
695 next
= fs_info
->dirty_cowonly_roots
.next
;
697 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
699 update_cowonly_root(trans
, root
);
702 down_write(&fs_info
->extent_commit_sem
);
703 switch_commit_root(fs_info
->extent_root
);
704 up_write(&fs_info
->extent_commit_sem
);
710 * dead roots are old snapshots that need to be deleted. This allocates
711 * a dirty root struct and adds it into the list of dead roots that need to
714 int btrfs_add_dead_root(struct btrfs_root
*root
)
716 mutex_lock(&root
->fs_info
->trans_mutex
);
717 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
718 mutex_unlock(&root
->fs_info
->trans_mutex
);
723 * update all the cowonly tree roots on disk
725 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
726 struct btrfs_root
*root
)
728 struct btrfs_root
*gang
[8];
729 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
735 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
738 BTRFS_ROOT_TRANS_TAG
);
741 for (i
= 0; i
< ret
; i
++) {
743 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
744 (unsigned long)root
->root_key
.objectid
,
745 BTRFS_ROOT_TRANS_TAG
);
747 btrfs_free_log(trans
, root
);
748 btrfs_update_reloc_root(trans
, root
);
749 btrfs_orphan_commit_root(trans
, root
);
751 if (root
->commit_root
!= root
->node
) {
752 switch_commit_root(root
);
753 btrfs_set_root_node(&root
->root_item
,
757 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
768 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
769 * otherwise every leaf in the btree is read and defragged.
771 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
773 struct btrfs_fs_info
*info
= root
->fs_info
;
774 struct btrfs_trans_handle
*trans
;
778 if (xchg(&root
->defrag_running
, 1))
782 trans
= btrfs_start_transaction(root
, 0);
784 return PTR_ERR(trans
);
786 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
788 nr
= trans
->blocks_used
;
789 btrfs_end_transaction(trans
, root
);
790 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
793 if (root
->fs_info
->closing
|| ret
!= -EAGAIN
)
796 root
->defrag_running
= 0;
802 * when dropping snapshots, we generate a ton of delayed refs, and it makes
803 * sense not to join the transaction while it is trying to flush the current
804 * queue of delayed refs out.
806 * This is used by the drop snapshot code only
808 static noinline
int wait_transaction_pre_flush(struct btrfs_fs_info
*info
)
812 mutex_lock(&info
->trans_mutex
);
813 while (info
->running_transaction
&&
814 info
->running_transaction
->delayed_refs
.flushing
) {
815 prepare_to_wait(&info
->transaction_wait
, &wait
,
816 TASK_UNINTERRUPTIBLE
);
817 mutex_unlock(&info
->trans_mutex
);
821 mutex_lock(&info
->trans_mutex
);
822 finish_wait(&info
->transaction_wait
, &wait
);
824 mutex_unlock(&info
->trans_mutex
);
829 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
832 int btrfs_drop_dead_root(struct btrfs_root
*root
)
834 struct btrfs_trans_handle
*trans
;
835 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
841 * we don't want to jump in and create a bunch of
842 * delayed refs if the transaction is starting to close
844 wait_transaction_pre_flush(tree_root
->fs_info
);
845 trans
= btrfs_start_transaction(tree_root
, 1);
848 * we've joined a transaction, make sure it isn't
851 if (trans
->transaction
->delayed_refs
.flushing
) {
852 btrfs_end_transaction(trans
, tree_root
);
856 ret
= btrfs_drop_snapshot(trans
, root
);
860 ret
= btrfs_update_root(trans
, tree_root
,
866 nr
= trans
->blocks_used
;
867 ret
= btrfs_end_transaction(trans
, tree_root
);
870 btrfs_btree_balance_dirty(tree_root
, nr
);
875 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
878 nr
= trans
->blocks_used
;
879 ret
= btrfs_end_transaction(trans
, tree_root
);
882 free_extent_buffer(root
->node
);
883 free_extent_buffer(root
->commit_root
);
886 btrfs_btree_balance_dirty(tree_root
, nr
);
892 * new snapshots need to be created at a very specific time in the
893 * transaction commit. This does the actual creation
895 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
896 struct btrfs_fs_info
*fs_info
,
897 struct btrfs_pending_snapshot
*pending
)
899 struct btrfs_key key
;
900 struct btrfs_root_item
*new_root_item
;
901 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
902 struct btrfs_root
*root
= pending
->root
;
903 struct btrfs_root
*parent_root
;
904 struct inode
*parent_inode
;
905 struct dentry
*parent
;
906 struct dentry
*dentry
;
907 struct extent_buffer
*tmp
;
908 struct extent_buffer
*old
;
914 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
915 if (!new_root_item
) {
916 pending
->error
= -ENOMEM
;
920 ret
= btrfs_find_free_objectid(trans
, tree_root
, 0, &objectid
);
922 pending
->error
= ret
;
926 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
927 btrfs_orphan_pre_snapshot(trans
, pending
, &to_reserve
);
929 if (to_reserve
> 0) {
930 ret
= btrfs_block_rsv_add(trans
, root
, &pending
->block_rsv
,
933 pending
->error
= ret
;
938 key
.objectid
= objectid
;
939 key
.offset
= (u64
)-1;
940 key
.type
= BTRFS_ROOT_ITEM_KEY
;
942 trans
->block_rsv
= &pending
->block_rsv
;
944 dentry
= pending
->dentry
;
945 parent
= dget_parent(dentry
);
946 parent_inode
= parent
->d_inode
;
947 parent_root
= BTRFS_I(parent_inode
)->root
;
948 record_root_in_trans(trans
, parent_root
);
951 * insert the directory item
953 ret
= btrfs_set_inode_index(parent_inode
, &index
);
955 ret
= btrfs_insert_dir_item(trans
, parent_root
,
956 dentry
->d_name
.name
, dentry
->d_name
.len
,
957 parent_inode
->i_ino
, &key
,
958 BTRFS_FT_DIR
, index
);
961 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
962 dentry
->d_name
.len
* 2);
963 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
966 record_root_in_trans(trans
, root
);
967 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
968 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
970 old
= btrfs_lock_root_node(root
);
971 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
972 btrfs_set_lock_blocking(old
);
974 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
975 btrfs_tree_unlock(old
);
976 free_extent_buffer(old
);
978 btrfs_set_root_node(new_root_item
, tmp
);
979 /* record when the snapshot was created in key.offset */
980 key
.offset
= trans
->transid
;
981 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
982 btrfs_tree_unlock(tmp
);
983 free_extent_buffer(tmp
);
987 * insert root back/forward references
989 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
990 parent_root
->root_key
.objectid
,
991 parent_inode
->i_ino
, index
,
992 dentry
->d_name
.name
, dentry
->d_name
.len
);
996 key
.offset
= (u64
)-1;
997 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
998 BUG_ON(IS_ERR(pending
->snap
));
1000 btrfs_reloc_post_snapshot(trans
, pending
);
1001 btrfs_orphan_post_snapshot(trans
, pending
);
1003 kfree(new_root_item
);
1004 btrfs_block_rsv_release(root
, &pending
->block_rsv
, (u64
)-1);
1009 * create all the snapshots we've scheduled for creation
1011 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1012 struct btrfs_fs_info
*fs_info
)
1014 struct btrfs_pending_snapshot
*pending
;
1015 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1018 list_for_each_entry(pending
, head
, list
) {
1019 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1025 static void update_super_roots(struct btrfs_root
*root
)
1027 struct btrfs_root_item
*root_item
;
1028 struct btrfs_super_block
*super
;
1030 super
= &root
->fs_info
->super_copy
;
1032 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1033 super
->chunk_root
= root_item
->bytenr
;
1034 super
->chunk_root_generation
= root_item
->generation
;
1035 super
->chunk_root_level
= root_item
->level
;
1037 root_item
= &root
->fs_info
->tree_root
->root_item
;
1038 super
->root
= root_item
->bytenr
;
1039 super
->generation
= root_item
->generation
;
1040 super
->root_level
= root_item
->level
;
1041 if (super
->cache_generation
!= 0 || btrfs_test_opt(root
, SPACE_CACHE
))
1042 super
->cache_generation
= root_item
->generation
;
1045 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1048 spin_lock(&info
->new_trans_lock
);
1049 if (info
->running_transaction
)
1050 ret
= info
->running_transaction
->in_commit
;
1051 spin_unlock(&info
->new_trans_lock
);
1055 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1058 spin_lock(&info
->new_trans_lock
);
1059 if (info
->running_transaction
)
1060 ret
= info
->running_transaction
->blocked
;
1061 spin_unlock(&info
->new_trans_lock
);
1066 * wait for the current transaction commit to start and block subsequent
1069 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1070 struct btrfs_transaction
*trans
)
1074 if (trans
->in_commit
)
1078 prepare_to_wait(&root
->fs_info
->transaction_blocked_wait
, &wait
,
1079 TASK_UNINTERRUPTIBLE
);
1080 if (trans
->in_commit
) {
1081 finish_wait(&root
->fs_info
->transaction_blocked_wait
,
1085 mutex_unlock(&root
->fs_info
->trans_mutex
);
1087 mutex_lock(&root
->fs_info
->trans_mutex
);
1088 finish_wait(&root
->fs_info
->transaction_blocked_wait
, &wait
);
1093 * wait for the current transaction to start and then become unblocked.
1096 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1097 struct btrfs_transaction
*trans
)
1101 if (trans
->commit_done
|| (trans
->in_commit
&& !trans
->blocked
))
1105 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
1106 TASK_UNINTERRUPTIBLE
);
1107 if (trans
->commit_done
||
1108 (trans
->in_commit
&& !trans
->blocked
)) {
1109 finish_wait(&root
->fs_info
->transaction_wait
,
1113 mutex_unlock(&root
->fs_info
->trans_mutex
);
1115 mutex_lock(&root
->fs_info
->trans_mutex
);
1116 finish_wait(&root
->fs_info
->transaction_wait
,
1122 * commit transactions asynchronously. once btrfs_commit_transaction_async
1123 * returns, any subsequent transaction will not be allowed to join.
1125 struct btrfs_async_commit
{
1126 struct btrfs_trans_handle
*newtrans
;
1127 struct btrfs_root
*root
;
1128 struct delayed_work work
;
1131 static void do_async_commit(struct work_struct
*work
)
1133 struct btrfs_async_commit
*ac
=
1134 container_of(work
, struct btrfs_async_commit
, work
.work
);
1136 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1140 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1141 struct btrfs_root
*root
,
1142 int wait_for_unblock
)
1144 struct btrfs_async_commit
*ac
;
1145 struct btrfs_transaction
*cur_trans
;
1147 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1150 INIT_DELAYED_WORK(&ac
->work
, do_async_commit
);
1152 ac
->newtrans
= btrfs_join_transaction(root
, 0);
1154 /* take transaction reference */
1155 mutex_lock(&root
->fs_info
->trans_mutex
);
1156 cur_trans
= trans
->transaction
;
1157 cur_trans
->use_count
++;
1158 mutex_unlock(&root
->fs_info
->trans_mutex
);
1160 btrfs_end_transaction(trans
, root
);
1161 schedule_delayed_work(&ac
->work
, 0);
1163 /* wait for transaction to start and unblock */
1164 mutex_lock(&root
->fs_info
->trans_mutex
);
1165 if (wait_for_unblock
)
1166 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1168 wait_current_trans_commit_start(root
, cur_trans
);
1169 put_transaction(cur_trans
);
1170 mutex_unlock(&root
->fs_info
->trans_mutex
);
1176 * btrfs_transaction state sequence:
1177 * in_commit = 0, blocked = 0 (initial)
1178 * in_commit = 1, blocked = 1
1182 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1183 struct btrfs_root
*root
)
1185 unsigned long joined
= 0;
1186 struct btrfs_transaction
*cur_trans
;
1187 struct btrfs_transaction
*prev_trans
= NULL
;
1190 int should_grow
= 0;
1191 unsigned long now
= get_seconds();
1192 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
1194 btrfs_run_ordered_operations(root
, 0);
1196 /* make a pass through all the delayed refs we have so far
1197 * any runnings procs may add more while we are here
1199 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1202 btrfs_trans_release_metadata(trans
, root
);
1204 cur_trans
= trans
->transaction
;
1206 * set the flushing flag so procs in this transaction have to
1207 * start sending their work down.
1209 cur_trans
->delayed_refs
.flushing
= 1;
1211 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1214 mutex_lock(&root
->fs_info
->trans_mutex
);
1215 if (cur_trans
->in_commit
) {
1216 cur_trans
->use_count
++;
1217 mutex_unlock(&root
->fs_info
->trans_mutex
);
1218 btrfs_end_transaction(trans
, root
);
1220 ret
= wait_for_commit(root
, cur_trans
);
1223 mutex_lock(&root
->fs_info
->trans_mutex
);
1224 put_transaction(cur_trans
);
1225 mutex_unlock(&root
->fs_info
->trans_mutex
);
1230 trans
->transaction
->in_commit
= 1;
1231 trans
->transaction
->blocked
= 1;
1232 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1234 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1235 prev_trans
= list_entry(cur_trans
->list
.prev
,
1236 struct btrfs_transaction
, list
);
1237 if (!prev_trans
->commit_done
) {
1238 prev_trans
->use_count
++;
1239 mutex_unlock(&root
->fs_info
->trans_mutex
);
1241 wait_for_commit(root
, prev_trans
);
1243 mutex_lock(&root
->fs_info
->trans_mutex
);
1244 put_transaction(prev_trans
);
1248 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
1252 int snap_pending
= 0;
1253 joined
= cur_trans
->num_joined
;
1254 if (!list_empty(&trans
->transaction
->pending_snapshots
))
1257 WARN_ON(cur_trans
!= trans
->transaction
);
1258 mutex_unlock(&root
->fs_info
->trans_mutex
);
1260 if (flush_on_commit
|| snap_pending
) {
1261 btrfs_start_delalloc_inodes(root
, 1);
1262 ret
= btrfs_wait_ordered_extents(root
, 0, 1);
1267 * rename don't use btrfs_join_transaction, so, once we
1268 * set the transaction to blocked above, we aren't going
1269 * to get any new ordered operations. We can safely run
1270 * it here and no for sure that nothing new will be added
1273 btrfs_run_ordered_operations(root
, 1);
1275 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
1276 TASK_UNINTERRUPTIBLE
);
1279 if (cur_trans
->num_writers
> 1)
1280 schedule_timeout(MAX_SCHEDULE_TIMEOUT
);
1281 else if (should_grow
)
1282 schedule_timeout(1);
1284 mutex_lock(&root
->fs_info
->trans_mutex
);
1285 finish_wait(&cur_trans
->writer_wait
, &wait
);
1286 } while (cur_trans
->num_writers
> 1 ||
1287 (should_grow
&& cur_trans
->num_joined
!= joined
));
1289 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1292 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1295 WARN_ON(cur_trans
!= trans
->transaction
);
1297 /* btrfs_commit_tree_roots is responsible for getting the
1298 * various roots consistent with each other. Every pointer
1299 * in the tree of tree roots has to point to the most up to date
1300 * root for every subvolume and other tree. So, we have to keep
1301 * the tree logging code from jumping in and changing any
1304 * At this point in the commit, there can't be any tree-log
1305 * writers, but a little lower down we drop the trans mutex
1306 * and let new people in. By holding the tree_log_mutex
1307 * from now until after the super is written, we avoid races
1308 * with the tree-log code.
1310 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1312 ret
= commit_fs_roots(trans
, root
);
1315 /* commit_fs_roots gets rid of all the tree log roots, it is now
1316 * safe to free the root of tree log roots
1318 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1320 ret
= commit_cowonly_roots(trans
, root
);
1323 btrfs_prepare_extent_commit(trans
, root
);
1325 cur_trans
= root
->fs_info
->running_transaction
;
1326 spin_lock(&root
->fs_info
->new_trans_lock
);
1327 root
->fs_info
->running_transaction
= NULL
;
1328 spin_unlock(&root
->fs_info
->new_trans_lock
);
1330 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1331 root
->fs_info
->tree_root
->node
);
1332 switch_commit_root(root
->fs_info
->tree_root
);
1334 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1335 root
->fs_info
->chunk_root
->node
);
1336 switch_commit_root(root
->fs_info
->chunk_root
);
1338 update_super_roots(root
);
1340 if (!root
->fs_info
->log_root_recovering
) {
1341 btrfs_set_super_log_root(&root
->fs_info
->super_copy
, 0);
1342 btrfs_set_super_log_root_level(&root
->fs_info
->super_copy
, 0);
1345 memcpy(&root
->fs_info
->super_for_commit
, &root
->fs_info
->super_copy
,
1346 sizeof(root
->fs_info
->super_copy
));
1348 trans
->transaction
->blocked
= 0;
1350 wake_up(&root
->fs_info
->transaction_wait
);
1352 mutex_unlock(&root
->fs_info
->trans_mutex
);
1353 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1355 write_ctree_super(trans
, root
, 0);
1358 * the super is written, we can safely allow the tree-loggers
1359 * to go about their business
1361 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1363 btrfs_finish_extent_commit(trans
, root
);
1365 mutex_lock(&root
->fs_info
->trans_mutex
);
1367 cur_trans
->commit_done
= 1;
1369 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1371 wake_up(&cur_trans
->commit_wait
);
1373 put_transaction(cur_trans
);
1374 put_transaction(cur_trans
);
1376 mutex_unlock(&root
->fs_info
->trans_mutex
);
1378 if (current
->journal_info
== trans
)
1379 current
->journal_info
= NULL
;
1381 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1383 if (current
!= root
->fs_info
->transaction_kthread
)
1384 btrfs_run_delayed_iputs(root
);
1390 * interface function to delete all the snapshots we have scheduled for deletion
1392 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1395 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1397 mutex_lock(&fs_info
->trans_mutex
);
1398 list_splice_init(&fs_info
->dead_roots
, &list
);
1399 mutex_unlock(&fs_info
->trans_mutex
);
1401 while (!list_empty(&list
)) {
1402 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1403 list_del(&root
->root_list
);
1405 if (btrfs_header_backref_rev(root
->node
) <
1406 BTRFS_MIXED_BACKREF_REV
)
1407 btrfs_drop_snapshot(root
, NULL
, 0);
1409 btrfs_drop_snapshot(root
, NULL
, 1);