2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
30 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
32 return entry
->file_offset
+ entry
->len
;
35 /* returns NULL if the insertion worked, or it returns the node it did find
38 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
41 struct rb_node
**p
= &root
->rb_node
;
42 struct rb_node
*parent
= NULL
;
43 struct btrfs_ordered_extent
*entry
;
47 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
49 if (file_offset
< entry
->file_offset
)
51 else if (file_offset
>= entry_end(entry
))
57 rb_link_node(node
, parent
, p
);
58 rb_insert_color(node
, root
);
63 * look for a given offset in the tree, and if it can't be found return the
66 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
67 struct rb_node
**prev_ret
)
69 struct rb_node
*n
= root
->rb_node
;
70 struct rb_node
*prev
= NULL
;
72 struct btrfs_ordered_extent
*entry
;
73 struct btrfs_ordered_extent
*prev_entry
= NULL
;
76 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
80 if (file_offset
< entry
->file_offset
)
82 else if (file_offset
>= entry_end(entry
))
90 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
94 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
96 if (file_offset
< entry_end(prev_entry
))
102 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
104 while (prev
&& file_offset
< entry_end(prev_entry
)) {
105 test
= rb_prev(prev
);
108 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
117 * helper to check if a given offset is inside a given entry
119 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
121 if (file_offset
< entry
->file_offset
||
122 entry
->file_offset
+ entry
->len
<= file_offset
)
127 static int range_overlaps(struct btrfs_ordered_extent
*entry
, u64 file_offset
,
130 if (file_offset
+ len
<= entry
->file_offset
||
131 entry
->file_offset
+ entry
->len
<= file_offset
)
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
140 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
143 struct rb_root
*root
= &tree
->tree
;
144 struct rb_node
*prev
;
146 struct btrfs_ordered_extent
*entry
;
149 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
151 if (offset_in_entry(entry
, file_offset
))
154 ret
= __tree_search(root
, file_offset
, &prev
);
162 /* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
168 * len is the length of the extent
170 * The tree is given a single reference on the ordered extent that was
173 static int __btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
174 u64 start
, u64 len
, u64 disk_len
,
177 struct btrfs_ordered_inode_tree
*tree
;
178 struct rb_node
*node
;
179 struct btrfs_ordered_extent
*entry
;
181 tree
= &BTRFS_I(inode
)->ordered_tree
;
182 entry
= kzalloc(sizeof(*entry
), GFP_NOFS
);
186 entry
->file_offset
= file_offset
;
187 entry
->start
= start
;
189 entry
->disk_len
= disk_len
;
190 entry
->bytes_left
= len
;
191 entry
->inode
= inode
;
192 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
193 set_bit(type
, &entry
->flags
);
196 set_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
);
198 /* one ref for the tree */
199 atomic_set(&entry
->refs
, 1);
200 init_waitqueue_head(&entry
->wait
);
201 INIT_LIST_HEAD(&entry
->list
);
202 INIT_LIST_HEAD(&entry
->root_extent_list
);
204 spin_lock(&tree
->lock
);
205 node
= tree_insert(&tree
->tree
, file_offset
,
208 spin_unlock(&tree
->lock
);
210 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
211 list_add_tail(&entry
->root_extent_list
,
212 &BTRFS_I(inode
)->root
->fs_info
->ordered_extents
);
213 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
219 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
220 u64 start
, u64 len
, u64 disk_len
, int type
)
222 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
226 int btrfs_add_ordered_extent_dio(struct inode
*inode
, u64 file_offset
,
227 u64 start
, u64 len
, u64 disk_len
, int type
)
229 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
234 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
235 * when an ordered extent is finished. If the list covers more than one
236 * ordered extent, it is split across multiples.
238 int btrfs_add_ordered_sum(struct inode
*inode
,
239 struct btrfs_ordered_extent
*entry
,
240 struct btrfs_ordered_sum
*sum
)
242 struct btrfs_ordered_inode_tree
*tree
;
244 tree
= &BTRFS_I(inode
)->ordered_tree
;
245 spin_lock(&tree
->lock
);
246 list_add_tail(&sum
->list
, &entry
->list
);
247 spin_unlock(&tree
->lock
);
252 * this is used to account for finished IO across a given range
253 * of the file. The IO may span ordered extents. If
254 * a given ordered_extent is completely done, 1 is returned, otherwise
257 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
258 * to make sure this function only returns 1 once for a given ordered extent.
260 * file_offset is updated to one byte past the range that is recorded as
261 * complete. This allows you to walk forward in the file.
263 int btrfs_dec_test_first_ordered_pending(struct inode
*inode
,
264 struct btrfs_ordered_extent
**cached
,
265 u64
*file_offset
, u64 io_size
)
267 struct btrfs_ordered_inode_tree
*tree
;
268 struct rb_node
*node
;
269 struct btrfs_ordered_extent
*entry
= NULL
;
275 tree
= &BTRFS_I(inode
)->ordered_tree
;
276 spin_lock(&tree
->lock
);
277 node
= tree_search(tree
, *file_offset
);
283 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
284 if (!offset_in_entry(entry
, *file_offset
)) {
289 dec_start
= max(*file_offset
, entry
->file_offset
);
290 dec_end
= min(*file_offset
+ io_size
, entry
->file_offset
+
292 *file_offset
= dec_end
;
293 if (dec_start
> dec_end
) {
294 printk(KERN_CRIT
"bad ordering dec_start %llu end %llu\n",
295 (unsigned long long)dec_start
,
296 (unsigned long long)dec_end
);
298 to_dec
= dec_end
- dec_start
;
299 if (to_dec
> entry
->bytes_left
) {
300 printk(KERN_CRIT
"bad ordered accounting left %llu size %llu\n",
301 (unsigned long long)entry
->bytes_left
,
302 (unsigned long long)to_dec
);
304 entry
->bytes_left
-= to_dec
;
305 if (entry
->bytes_left
== 0)
306 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
310 if (!ret
&& cached
&& entry
) {
312 atomic_inc(&entry
->refs
);
314 spin_unlock(&tree
->lock
);
319 * this is used to account for finished IO across a given range
320 * of the file. The IO should not span ordered extents. If
321 * a given ordered_extent is completely done, 1 is returned, otherwise
324 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
325 * to make sure this function only returns 1 once for a given ordered extent.
327 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
328 struct btrfs_ordered_extent
**cached
,
329 u64 file_offset
, u64 io_size
)
331 struct btrfs_ordered_inode_tree
*tree
;
332 struct rb_node
*node
;
333 struct btrfs_ordered_extent
*entry
= NULL
;
336 tree
= &BTRFS_I(inode
)->ordered_tree
;
337 spin_lock(&tree
->lock
);
338 node
= tree_search(tree
, file_offset
);
344 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
345 if (!offset_in_entry(entry
, file_offset
)) {
350 if (io_size
> entry
->bytes_left
) {
351 printk(KERN_CRIT
"bad ordered accounting left %llu size %llu\n",
352 (unsigned long long)entry
->bytes_left
,
353 (unsigned long long)io_size
);
355 entry
->bytes_left
-= io_size
;
356 if (entry
->bytes_left
== 0)
357 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
361 if (!ret
&& cached
&& entry
) {
363 atomic_inc(&entry
->refs
);
365 spin_unlock(&tree
->lock
);
370 * used to drop a reference on an ordered extent. This will free
371 * the extent if the last reference is dropped
373 int btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
375 struct list_head
*cur
;
376 struct btrfs_ordered_sum
*sum
;
378 if (atomic_dec_and_test(&entry
->refs
)) {
379 while (!list_empty(&entry
->list
)) {
380 cur
= entry
->list
.next
;
381 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
382 list_del(&sum
->list
);
391 * remove an ordered extent from the tree. No references are dropped
392 * and you must wake_up entry->wait. You must hold the tree lock
393 * while you call this function.
395 static int __btrfs_remove_ordered_extent(struct inode
*inode
,
396 struct btrfs_ordered_extent
*entry
)
398 struct btrfs_ordered_inode_tree
*tree
;
399 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
400 struct rb_node
*node
;
402 tree
= &BTRFS_I(inode
)->ordered_tree
;
403 node
= &entry
->rb_node
;
404 rb_erase(node
, &tree
->tree
);
406 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
408 spin_lock(&root
->fs_info
->ordered_extent_lock
);
409 list_del_init(&entry
->root_extent_list
);
412 * we have no more ordered extents for this inode and
413 * no dirty pages. We can safely remove it from the
414 * list of ordered extents
416 if (RB_EMPTY_ROOT(&tree
->tree
) &&
417 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
418 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
420 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
426 * remove an ordered extent from the tree. No references are dropped
427 * but any waiters are woken.
429 int btrfs_remove_ordered_extent(struct inode
*inode
,
430 struct btrfs_ordered_extent
*entry
)
432 struct btrfs_ordered_inode_tree
*tree
;
435 tree
= &BTRFS_I(inode
)->ordered_tree
;
436 spin_lock(&tree
->lock
);
437 ret
= __btrfs_remove_ordered_extent(inode
, entry
);
438 spin_unlock(&tree
->lock
);
439 wake_up(&entry
->wait
);
445 * wait for all the ordered extents in a root. This is done when balancing
446 * space between drives.
448 int btrfs_wait_ordered_extents(struct btrfs_root
*root
,
449 int nocow_only
, int delay_iput
)
451 struct list_head splice
;
452 struct list_head
*cur
;
453 struct btrfs_ordered_extent
*ordered
;
456 INIT_LIST_HEAD(&splice
);
458 spin_lock(&root
->fs_info
->ordered_extent_lock
);
459 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
460 while (!list_empty(&splice
)) {
462 ordered
= list_entry(cur
, struct btrfs_ordered_extent
,
465 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
) &&
466 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
467 list_move(&ordered
->root_extent_list
,
468 &root
->fs_info
->ordered_extents
);
469 cond_resched_lock(&root
->fs_info
->ordered_extent_lock
);
473 list_del_init(&ordered
->root_extent_list
);
474 atomic_inc(&ordered
->refs
);
477 * the inode may be getting freed (in sys_unlink path).
479 inode
= igrab(ordered
->inode
);
481 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
484 btrfs_start_ordered_extent(inode
, ordered
, 1);
485 btrfs_put_ordered_extent(ordered
);
487 btrfs_add_delayed_iput(inode
);
491 btrfs_put_ordered_extent(ordered
);
494 spin_lock(&root
->fs_info
->ordered_extent_lock
);
496 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
501 * this is used during transaction commit to write all the inodes
502 * added to the ordered operation list. These files must be fully on
503 * disk before the transaction commits.
505 * we have two modes here, one is to just start the IO via filemap_flush
506 * and the other is to wait for all the io. When we wait, we have an
507 * extra check to make sure the ordered operation list really is empty
510 int btrfs_run_ordered_operations(struct btrfs_root
*root
, int wait
)
512 struct btrfs_inode
*btrfs_inode
;
514 struct list_head splice
;
516 INIT_LIST_HEAD(&splice
);
518 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
519 spin_lock(&root
->fs_info
->ordered_extent_lock
);
521 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
523 while (!list_empty(&splice
)) {
524 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
527 inode
= &btrfs_inode
->vfs_inode
;
529 list_del_init(&btrfs_inode
->ordered_operations
);
532 * the inode may be getting freed (in sys_unlink path).
534 inode
= igrab(inode
);
536 if (!wait
&& inode
) {
537 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
538 &root
->fs_info
->ordered_operations
);
540 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
544 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
546 filemap_flush(inode
->i_mapping
);
547 btrfs_add_delayed_iput(inode
);
551 spin_lock(&root
->fs_info
->ordered_extent_lock
);
553 if (wait
&& !list_empty(&root
->fs_info
->ordered_operations
))
556 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
557 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
563 * Used to start IO or wait for a given ordered extent to finish.
565 * If wait is one, this effectively waits on page writeback for all the pages
566 * in the extent, and it waits on the io completion code to insert
567 * metadata into the btree corresponding to the extent
569 void btrfs_start_ordered_extent(struct inode
*inode
,
570 struct btrfs_ordered_extent
*entry
,
573 u64 start
= entry
->file_offset
;
574 u64 end
= start
+ entry
->len
- 1;
577 * pages in the range can be dirty, clean or writeback. We
578 * start IO on any dirty ones so the wait doesn't stall waiting
579 * for pdflush to find them
581 if (!test_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
))
582 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
584 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
590 * Used to wait on ordered extents across a large range of bytes.
592 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
596 struct btrfs_ordered_extent
*ordered
;
599 if (start
+ len
< start
) {
600 orig_end
= INT_LIMIT(loff_t
);
602 orig_end
= start
+ len
- 1;
603 if (orig_end
> INT_LIMIT(loff_t
))
604 orig_end
= INT_LIMIT(loff_t
);
607 /* start IO across the range first to instantiate any delalloc
610 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
612 /* The compression code will leave pages locked but return from
613 * writepage without setting the page writeback. Starting again
614 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
616 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
618 filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
623 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
626 if (ordered
->file_offset
> orig_end
) {
627 btrfs_put_ordered_extent(ordered
);
630 if (ordered
->file_offset
+ ordered
->len
< start
) {
631 btrfs_put_ordered_extent(ordered
);
635 btrfs_start_ordered_extent(inode
, ordered
, 1);
636 end
= ordered
->file_offset
;
637 btrfs_put_ordered_extent(ordered
);
638 if (end
== 0 || end
== start
)
642 if (found
|| test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, orig_end
,
643 EXTENT_DELALLOC
, 0, NULL
)) {
651 * find an ordered extent corresponding to file_offset. return NULL if
652 * nothing is found, otherwise take a reference on the extent and return it
654 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
657 struct btrfs_ordered_inode_tree
*tree
;
658 struct rb_node
*node
;
659 struct btrfs_ordered_extent
*entry
= NULL
;
661 tree
= &BTRFS_I(inode
)->ordered_tree
;
662 spin_lock(&tree
->lock
);
663 node
= tree_search(tree
, file_offset
);
667 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
668 if (!offset_in_entry(entry
, file_offset
))
671 atomic_inc(&entry
->refs
);
673 spin_unlock(&tree
->lock
);
677 /* Since the DIO code tries to lock a wide area we need to look for any ordered
678 * extents that exist in the range, rather than just the start of the range.
680 struct btrfs_ordered_extent
*btrfs_lookup_ordered_range(struct inode
*inode
,
684 struct btrfs_ordered_inode_tree
*tree
;
685 struct rb_node
*node
;
686 struct btrfs_ordered_extent
*entry
= NULL
;
688 tree
= &BTRFS_I(inode
)->ordered_tree
;
689 spin_lock(&tree
->lock
);
690 node
= tree_search(tree
, file_offset
);
692 node
= tree_search(tree
, file_offset
+ len
);
698 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
699 if (range_overlaps(entry
, file_offset
, len
))
702 if (entry
->file_offset
>= file_offset
+ len
) {
707 node
= rb_next(node
);
713 atomic_inc(&entry
->refs
);
714 spin_unlock(&tree
->lock
);
719 * lookup and return any extent before 'file_offset'. NULL is returned
722 struct btrfs_ordered_extent
*
723 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
725 struct btrfs_ordered_inode_tree
*tree
;
726 struct rb_node
*node
;
727 struct btrfs_ordered_extent
*entry
= NULL
;
729 tree
= &BTRFS_I(inode
)->ordered_tree
;
730 spin_lock(&tree
->lock
);
731 node
= tree_search(tree
, file_offset
);
735 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
736 atomic_inc(&entry
->refs
);
738 spin_unlock(&tree
->lock
);
743 * After an extent is done, call this to conditionally update the on disk
744 * i_size. i_size is updated to cover any fully written part of the file.
746 int btrfs_ordered_update_i_size(struct inode
*inode
, u64 offset
,
747 struct btrfs_ordered_extent
*ordered
)
749 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
750 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
754 u64 i_size
= i_size_read(inode
);
755 struct rb_node
*node
;
756 struct rb_node
*prev
= NULL
;
757 struct btrfs_ordered_extent
*test
;
761 offset
= entry_end(ordered
);
763 offset
= ALIGN(offset
, BTRFS_I(inode
)->root
->sectorsize
);
765 spin_lock(&tree
->lock
);
766 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
769 if (disk_i_size
> i_size
) {
770 BTRFS_I(inode
)->disk_i_size
= i_size
;
776 * if the disk i_size is already at the inode->i_size, or
777 * this ordered extent is inside the disk i_size, we're done
779 if (disk_i_size
== i_size
|| offset
<= disk_i_size
) {
784 * we can't update the disk_isize if there are delalloc bytes
785 * between disk_i_size and this ordered extent
787 if (test_range_bit(io_tree
, disk_i_size
, offset
- 1,
788 EXTENT_DELALLOC
, 0, NULL
)) {
792 * walk backward from this ordered extent to disk_i_size.
793 * if we find an ordered extent then we can't update disk i_size
797 node
= rb_prev(&ordered
->rb_node
);
799 prev
= tree_search(tree
, offset
);
801 * we insert file extents without involving ordered struct,
802 * so there should be no ordered struct cover this offset
805 test
= rb_entry(prev
, struct btrfs_ordered_extent
,
807 BUG_ON(offset_in_entry(test
, offset
));
812 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
813 if (test
->file_offset
+ test
->len
<= disk_i_size
)
815 if (test
->file_offset
>= i_size
)
817 if (test
->file_offset
>= disk_i_size
)
819 node
= rb_prev(node
);
821 new_i_size
= min_t(u64
, offset
, i_size
);
824 * at this point, we know we can safely update i_size to at least
825 * the offset from this ordered extent. But, we need to
826 * walk forward and see if ios from higher up in the file have
830 node
= rb_next(&ordered
->rb_node
);
833 node
= rb_next(prev
);
835 node
= rb_first(&tree
->tree
);
840 * do we have an area where IO might have finished
841 * between our ordered extent and the next one.
843 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
844 if (test
->file_offset
> offset
)
845 i_size_test
= test
->file_offset
;
847 i_size_test
= i_size
;
851 * i_size_test is the end of a region after this ordered
852 * extent where there are no ordered extents. As long as there
853 * are no delalloc bytes in this area, it is safe to update
854 * disk_i_size to the end of the region.
856 if (i_size_test
> offset
&&
857 !test_range_bit(io_tree
, offset
, i_size_test
- 1,
858 EXTENT_DELALLOC
, 0, NULL
)) {
859 new_i_size
= min_t(u64
, i_size_test
, i_size
);
861 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
865 * we need to remove the ordered extent with the tree lock held
866 * so that other people calling this function don't find our fully
867 * processed ordered entry and skip updating the i_size
870 __btrfs_remove_ordered_extent(inode
, ordered
);
871 spin_unlock(&tree
->lock
);
873 wake_up(&ordered
->wait
);
878 * search the ordered extents for one corresponding to 'offset' and
879 * try to find a checksum. This is used because we allow pages to
880 * be reclaimed before their checksum is actually put into the btree
882 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
885 struct btrfs_ordered_sum
*ordered_sum
;
886 struct btrfs_sector_sum
*sector_sums
;
887 struct btrfs_ordered_extent
*ordered
;
888 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
889 unsigned long num_sectors
;
891 u32 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
894 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
898 spin_lock(&tree
->lock
);
899 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
900 if (disk_bytenr
>= ordered_sum
->bytenr
) {
901 num_sectors
= ordered_sum
->len
/ sectorsize
;
902 sector_sums
= ordered_sum
->sums
;
903 for (i
= 0; i
< num_sectors
; i
++) {
904 if (sector_sums
[i
].bytenr
== disk_bytenr
) {
905 *sum
= sector_sums
[i
].sum
;
913 spin_unlock(&tree
->lock
);
914 btrfs_put_ordered_extent(ordered
);
920 * add a given inode to the list of inodes that must be fully on
921 * disk before a transaction commit finishes.
923 * This basically gives us the ext3 style data=ordered mode, and it is mostly
924 * used to make sure renamed files are fully on disk.
926 * It is a noop if the inode is already fully on disk.
928 * If trans is not null, we'll do a friendly check for a transaction that
929 * is already flushing things and force the IO down ourselves.
931 int btrfs_add_ordered_operation(struct btrfs_trans_handle
*trans
,
932 struct btrfs_root
*root
,
937 last_mod
= max(BTRFS_I(inode
)->generation
, BTRFS_I(inode
)->last_trans
);
940 * if this file hasn't been changed since the last transaction
941 * commit, we can safely return without doing anything
943 if (last_mod
< root
->fs_info
->last_trans_committed
)
947 * the transaction is already committing. Just start the IO and
948 * don't bother with all of this list nonsense
950 if (trans
&& root
->fs_info
->running_transaction
->blocked
) {
951 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
955 spin_lock(&root
->fs_info
->ordered_extent_lock
);
956 if (list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
957 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
958 &root
->fs_info
->ordered_operations
);
960 spin_unlock(&root
->fs_info
->ordered_extent_lock
);