2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/statfs.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
34 #include "transaction.h"
35 #include "btrfs_inode.h"
37 #include "print-tree.h"
43 /* simple helper to fault in pages and copy. This should go away
44 * and be replaced with calls into generic code.
46 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
48 struct page
**prepared_pages
,
53 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
56 while (write_bytes
> 0) {
57 size_t count
= min_t(size_t,
58 PAGE_CACHE_SIZE
- offset
, write_bytes
);
59 struct page
*page
= prepared_pages
[pg
];
61 * Copy data from userspace to the current page
63 * Disable pagefault to avoid recursive lock since
64 * the pages are already locked
67 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
70 /* Flush processor's dcache for this page */
71 flush_dcache_page(page
);
72 iov_iter_advance(i
, copied
);
73 write_bytes
-= copied
;
74 total_copied
+= copied
;
76 /* Return to btrfs_file_aio_write to fault page */
77 if (unlikely(copied
== 0)) {
81 if (unlikely(copied
< PAGE_CACHE_SIZE
- offset
)) {
92 * unlocks pages after btrfs_file_write is done with them
94 static noinline
void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
97 for (i
= 0; i
< num_pages
; i
++) {
100 /* page checked is some magic around finding pages that
101 * have been modified without going through btrfs_set_page_dirty
104 ClearPageChecked(pages
[i
]);
105 unlock_page(pages
[i
]);
106 mark_page_accessed(pages
[i
]);
107 page_cache_release(pages
[i
]);
112 * after copy_from_user, pages need to be dirtied and we need to make
113 * sure holes are created between the current EOF and the start of
114 * any next extents (if required).
116 * this also makes the decision about creating an inline extent vs
117 * doing real data extents, marking pages dirty and delalloc as required.
119 static noinline
int dirty_and_release_pages(struct btrfs_trans_handle
*trans
,
120 struct btrfs_root
*root
,
129 struct inode
*inode
= fdentry(file
)->d_inode
;
132 u64 end_of_last_block
;
133 u64 end_pos
= pos
+ write_bytes
;
134 loff_t isize
= i_size_read(inode
);
136 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
137 num_bytes
= (write_bytes
+ pos
- start_pos
+
138 root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
140 end_of_last_block
= start_pos
+ num_bytes
- 1;
141 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
145 for (i
= 0; i
< num_pages
; i
++) {
146 struct page
*p
= pages
[i
];
151 if (end_pos
> isize
) {
152 i_size_write(inode
, end_pos
);
153 /* we've only changed i_size in ram, and we haven't updated
154 * the disk i_size. There is no need to log the inode
162 * this drops all the extents in the cache that intersect the range
163 * [start, end]. Existing extents are split as required.
165 int btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
168 struct extent_map
*em
;
169 struct extent_map
*split
= NULL
;
170 struct extent_map
*split2
= NULL
;
171 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
172 u64 len
= end
- start
+ 1;
178 WARN_ON(end
< start
);
179 if (end
== (u64
)-1) {
185 split
= alloc_extent_map(GFP_NOFS
);
187 split2
= alloc_extent_map(GFP_NOFS
);
189 write_lock(&em_tree
->lock
);
190 em
= lookup_extent_mapping(em_tree
, start
, len
);
192 write_unlock(&em_tree
->lock
);
196 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
197 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
199 write_unlock(&em_tree
->lock
);
202 start
= em
->start
+ em
->len
;
204 len
= start
+ len
- (em
->start
+ em
->len
);
206 write_unlock(&em_tree
->lock
);
209 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
210 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
211 remove_extent_mapping(em_tree
, em
);
213 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
215 split
->start
= em
->start
;
216 split
->len
= start
- em
->start
;
217 split
->orig_start
= em
->orig_start
;
218 split
->block_start
= em
->block_start
;
221 split
->block_len
= em
->block_len
;
223 split
->block_len
= split
->len
;
225 split
->bdev
= em
->bdev
;
226 split
->flags
= flags
;
227 ret
= add_extent_mapping(em_tree
, split
);
229 free_extent_map(split
);
233 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
234 testend
&& em
->start
+ em
->len
> start
+ len
) {
235 u64 diff
= start
+ len
- em
->start
;
237 split
->start
= start
+ len
;
238 split
->len
= em
->start
+ em
->len
- (start
+ len
);
239 split
->bdev
= em
->bdev
;
240 split
->flags
= flags
;
243 split
->block_len
= em
->block_len
;
244 split
->block_start
= em
->block_start
;
245 split
->orig_start
= em
->orig_start
;
247 split
->block_len
= split
->len
;
248 split
->block_start
= em
->block_start
+ diff
;
249 split
->orig_start
= split
->start
;
252 ret
= add_extent_mapping(em_tree
, split
);
254 free_extent_map(split
);
257 write_unlock(&em_tree
->lock
);
261 /* once for the tree*/
265 free_extent_map(split
);
267 free_extent_map(split2
);
272 * this is very complex, but the basic idea is to drop all extents
273 * in the range start - end. hint_block is filled in with a block number
274 * that would be a good hint to the block allocator for this file.
276 * If an extent intersects the range but is not entirely inside the range
277 * it is either truncated or split. Anything entirely inside the range
278 * is deleted from the tree.
280 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
281 u64 start
, u64 end
, u64
*hint_byte
, int drop_cache
)
283 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
284 struct extent_buffer
*leaf
;
285 struct btrfs_file_extent_item
*fi
;
286 struct btrfs_path
*path
;
287 struct btrfs_key key
;
288 struct btrfs_key new_key
;
289 u64 search_start
= start
;
292 u64 extent_offset
= 0;
301 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
303 path
= btrfs_alloc_path();
309 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
313 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
314 leaf
= path
->nodes
[0];
315 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
316 if (key
.objectid
== inode
->i_ino
&&
317 key
.type
== BTRFS_EXTENT_DATA_KEY
)
322 leaf
= path
->nodes
[0];
323 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
325 ret
= btrfs_next_leaf(root
, path
);
332 leaf
= path
->nodes
[0];
336 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
337 if (key
.objectid
> inode
->i_ino
||
338 key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
341 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
342 struct btrfs_file_extent_item
);
343 extent_type
= btrfs_file_extent_type(leaf
, fi
);
345 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
346 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
347 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
348 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
349 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
350 extent_end
= key
.offset
+
351 btrfs_file_extent_num_bytes(leaf
, fi
);
352 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
353 extent_end
= key
.offset
+
354 btrfs_file_extent_inline_len(leaf
, fi
);
357 extent_end
= search_start
;
360 if (extent_end
<= search_start
) {
365 search_start
= max(key
.offset
, start
);
367 btrfs_release_path(root
, path
);
372 * | - range to drop - |
373 * | -------- extent -------- |
375 if (start
> key
.offset
&& end
< extent_end
) {
377 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
379 memcpy(&new_key
, &key
, sizeof(new_key
));
380 new_key
.offset
= start
;
381 ret
= btrfs_duplicate_item(trans
, root
, path
,
383 if (ret
== -EAGAIN
) {
384 btrfs_release_path(root
, path
);
390 leaf
= path
->nodes
[0];
391 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
392 struct btrfs_file_extent_item
);
393 btrfs_set_file_extent_num_bytes(leaf
, fi
,
396 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
397 struct btrfs_file_extent_item
);
399 extent_offset
+= start
- key
.offset
;
400 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
401 btrfs_set_file_extent_num_bytes(leaf
, fi
,
403 btrfs_mark_buffer_dirty(leaf
);
405 if (disk_bytenr
> 0) {
406 ret
= btrfs_inc_extent_ref(trans
, root
,
407 disk_bytenr
, num_bytes
, 0,
408 root
->root_key
.objectid
,
410 start
- extent_offset
);
412 *hint_byte
= disk_bytenr
;
417 * | ---- range to drop ----- |
418 * | -------- extent -------- |
420 if (start
<= key
.offset
&& end
< extent_end
) {
421 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
423 memcpy(&new_key
, &key
, sizeof(new_key
));
424 new_key
.offset
= end
;
425 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
427 extent_offset
+= end
- key
.offset
;
428 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
429 btrfs_set_file_extent_num_bytes(leaf
, fi
,
431 btrfs_mark_buffer_dirty(leaf
);
432 if (disk_bytenr
> 0) {
433 inode_sub_bytes(inode
, end
- key
.offset
);
434 *hint_byte
= disk_bytenr
;
439 search_start
= extent_end
;
441 * | ---- range to drop ----- |
442 * | -------- extent -------- |
444 if (start
> key
.offset
&& end
>= extent_end
) {
446 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
448 btrfs_set_file_extent_num_bytes(leaf
, fi
,
450 btrfs_mark_buffer_dirty(leaf
);
451 if (disk_bytenr
> 0) {
452 inode_sub_bytes(inode
, extent_end
- start
);
453 *hint_byte
= disk_bytenr
;
455 if (end
== extent_end
)
463 * | ---- range to drop ----- |
464 * | ------ extent ------ |
466 if (start
<= key
.offset
&& end
>= extent_end
) {
468 del_slot
= path
->slots
[0];
471 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
475 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
476 inode_sub_bytes(inode
,
477 extent_end
- key
.offset
);
478 extent_end
= ALIGN(extent_end
,
480 } else if (disk_bytenr
> 0) {
481 ret
= btrfs_free_extent(trans
, root
,
482 disk_bytenr
, num_bytes
, 0,
483 root
->root_key
.objectid
,
484 key
.objectid
, key
.offset
-
487 inode_sub_bytes(inode
,
488 extent_end
- key
.offset
);
489 *hint_byte
= disk_bytenr
;
492 if (end
== extent_end
)
495 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
500 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
507 btrfs_release_path(root
, path
);
515 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
519 btrfs_free_path(path
);
523 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
524 u64 objectid
, u64 bytenr
, u64 orig_offset
,
525 u64
*start
, u64
*end
)
527 struct btrfs_file_extent_item
*fi
;
528 struct btrfs_key key
;
531 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
534 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
535 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
538 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
539 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
540 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
541 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
542 btrfs_file_extent_compression(leaf
, fi
) ||
543 btrfs_file_extent_encryption(leaf
, fi
) ||
544 btrfs_file_extent_other_encoding(leaf
, fi
))
547 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
548 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
557 * Mark extent in the range start - end as written.
559 * This changes extent type from 'pre-allocated' to 'regular'. If only
560 * part of extent is marked as written, the extent will be split into
563 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
564 struct inode
*inode
, u64 start
, u64 end
)
566 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
567 struct extent_buffer
*leaf
;
568 struct btrfs_path
*path
;
569 struct btrfs_file_extent_item
*fi
;
570 struct btrfs_key key
;
571 struct btrfs_key new_key
;
584 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
586 path
= btrfs_alloc_path();
591 key
.objectid
= inode
->i_ino
;
592 key
.type
= BTRFS_EXTENT_DATA_KEY
;
595 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
596 if (ret
> 0 && path
->slots
[0] > 0)
599 leaf
= path
->nodes
[0];
600 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
601 BUG_ON(key
.objectid
!= inode
->i_ino
||
602 key
.type
!= BTRFS_EXTENT_DATA_KEY
);
603 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
604 struct btrfs_file_extent_item
);
605 BUG_ON(btrfs_file_extent_type(leaf
, fi
) !=
606 BTRFS_FILE_EXTENT_PREALLOC
);
607 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
608 BUG_ON(key
.offset
> start
|| extent_end
< end
);
610 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
611 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
612 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
613 memcpy(&new_key
, &key
, sizeof(new_key
));
615 if (start
== key
.offset
&& end
< extent_end
) {
618 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
619 inode
->i_ino
, bytenr
, orig_offset
,
620 &other_start
, &other_end
)) {
621 new_key
.offset
= end
;
622 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
623 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
624 struct btrfs_file_extent_item
);
625 btrfs_set_file_extent_num_bytes(leaf
, fi
,
627 btrfs_set_file_extent_offset(leaf
, fi
,
629 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
630 struct btrfs_file_extent_item
);
631 btrfs_set_file_extent_num_bytes(leaf
, fi
,
633 btrfs_mark_buffer_dirty(leaf
);
638 if (start
> key
.offset
&& end
== extent_end
) {
641 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
642 inode
->i_ino
, bytenr
, orig_offset
,
643 &other_start
, &other_end
)) {
644 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
645 struct btrfs_file_extent_item
);
646 btrfs_set_file_extent_num_bytes(leaf
, fi
,
649 new_key
.offset
= start
;
650 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
652 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
653 struct btrfs_file_extent_item
);
654 btrfs_set_file_extent_num_bytes(leaf
, fi
,
656 btrfs_set_file_extent_offset(leaf
, fi
,
657 start
- orig_offset
);
658 btrfs_mark_buffer_dirty(leaf
);
663 while (start
> key
.offset
|| end
< extent_end
) {
664 if (key
.offset
== start
)
667 new_key
.offset
= split
;
668 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
669 if (ret
== -EAGAIN
) {
670 btrfs_release_path(root
, path
);
675 leaf
= path
->nodes
[0];
676 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
677 struct btrfs_file_extent_item
);
678 btrfs_set_file_extent_num_bytes(leaf
, fi
,
681 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
682 struct btrfs_file_extent_item
);
684 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
685 btrfs_set_file_extent_num_bytes(leaf
, fi
,
687 btrfs_mark_buffer_dirty(leaf
);
689 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
690 root
->root_key
.objectid
,
691 inode
->i_ino
, orig_offset
);
694 if (split
== start
) {
697 BUG_ON(start
!= key
.offset
);
706 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
707 inode
->i_ino
, bytenr
, orig_offset
,
708 &other_start
, &other_end
)) {
710 btrfs_release_path(root
, path
);
713 extent_end
= other_end
;
714 del_slot
= path
->slots
[0] + 1;
716 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
717 0, root
->root_key
.objectid
,
718 inode
->i_ino
, orig_offset
);
723 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
724 inode
->i_ino
, bytenr
, orig_offset
,
725 &other_start
, &other_end
)) {
727 btrfs_release_path(root
, path
);
730 key
.offset
= other_start
;
731 del_slot
= path
->slots
[0];
733 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
734 0, root
->root_key
.objectid
,
735 inode
->i_ino
, orig_offset
);
739 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
740 struct btrfs_file_extent_item
);
741 btrfs_set_file_extent_type(leaf
, fi
,
742 BTRFS_FILE_EXTENT_REG
);
743 btrfs_mark_buffer_dirty(leaf
);
745 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
746 struct btrfs_file_extent_item
);
747 btrfs_set_file_extent_type(leaf
, fi
,
748 BTRFS_FILE_EXTENT_REG
);
749 btrfs_set_file_extent_num_bytes(leaf
, fi
,
750 extent_end
- key
.offset
);
751 btrfs_mark_buffer_dirty(leaf
);
753 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
757 btrfs_free_path(path
);
762 * this gets pages into the page cache and locks them down, it also properly
763 * waits for data=ordered extents to finish before allowing the pages to be
766 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
767 struct page
**pages
, size_t num_pages
,
768 loff_t pos
, unsigned long first_index
,
769 unsigned long last_index
, size_t write_bytes
)
771 struct extent_state
*cached_state
= NULL
;
773 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
774 struct inode
*inode
= fdentry(file
)->d_inode
;
779 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
780 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
782 if (start_pos
> inode
->i_size
) {
783 err
= btrfs_cont_expand(inode
, start_pos
);
788 memset(pages
, 0, num_pages
* sizeof(struct page
*));
790 for (i
= 0; i
< num_pages
; i
++) {
791 pages
[i
] = grab_cache_page(inode
->i_mapping
, index
+ i
);
796 wait_on_page_writeback(pages
[i
]);
798 if (start_pos
< inode
->i_size
) {
799 struct btrfs_ordered_extent
*ordered
;
800 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
801 start_pos
, last_pos
- 1, 0, &cached_state
,
803 ordered
= btrfs_lookup_first_ordered_extent(inode
,
806 ordered
->file_offset
+ ordered
->len
> start_pos
&&
807 ordered
->file_offset
< last_pos
) {
808 btrfs_put_ordered_extent(ordered
);
809 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
810 start_pos
, last_pos
- 1,
811 &cached_state
, GFP_NOFS
);
812 for (i
= 0; i
< num_pages
; i
++) {
813 unlock_page(pages
[i
]);
814 page_cache_release(pages
[i
]);
816 btrfs_wait_ordered_range(inode
, start_pos
,
817 last_pos
- start_pos
);
821 btrfs_put_ordered_extent(ordered
);
823 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
824 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
825 EXTENT_DO_ACCOUNTING
, 0, 0, &cached_state
,
827 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
828 start_pos
, last_pos
- 1, &cached_state
,
831 for (i
= 0; i
< num_pages
; i
++) {
832 clear_page_dirty_for_io(pages
[i
]);
833 set_page_extent_mapped(pages
[i
]);
834 WARN_ON(!PageLocked(pages
[i
]));
839 static ssize_t
btrfs_file_aio_write(struct kiocb
*iocb
,
840 const struct iovec
*iov
,
841 unsigned long nr_segs
, loff_t pos
)
843 struct file
*file
= iocb
->ki_filp
;
844 struct inode
*inode
= fdentry(file
)->d_inode
;
845 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
846 struct page
*pinned
[2];
847 struct page
**pages
= NULL
;
849 loff_t
*ppos
= &iocb
->ki_pos
;
851 ssize_t num_written
= 0;
857 unsigned long first_index
;
858 unsigned long last_index
;
864 will_write
= ((file
->f_flags
& O_DSYNC
) || IS_SYNC(inode
) ||
865 (file
->f_flags
& O_DIRECT
));
872 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
874 mutex_lock(&inode
->i_mutex
);
876 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
881 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
882 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
889 err
= file_remove_suid(file
);
893 file_update_time(file
);
894 BTRFS_I(inode
)->sequence
++;
896 if (unlikely(file
->f_flags
& O_DIRECT
)) {
897 num_written
= generic_file_direct_write(iocb
, iov
, &nr_segs
,
901 * the generic O_DIRECT will update in-memory i_size after the
902 * DIOs are done. But our endio handlers that update the on
903 * disk i_size never update past the in memory i_size. So we
904 * need one more update here to catch any additions to the
907 if (inode
->i_size
!= BTRFS_I(inode
)->disk_i_size
) {
908 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
909 mark_inode_dirty(inode
);
912 if (num_written
< 0) {
916 } else if (num_written
== count
) {
917 /* pick up pos changes done by the generic code */
922 * We are going to do buffered for the rest of the range, so we
923 * need to make sure to invalidate the buffered pages when we're
930 iov_iter_init(&i
, iov
, nr_segs
, count
, num_written
);
931 nrptrs
= min((iov_iter_count(&i
) + PAGE_CACHE_SIZE
- 1) /
932 PAGE_CACHE_SIZE
, PAGE_CACHE_SIZE
/
933 (sizeof(struct page
*)));
934 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
936 /* generic_write_checks can change our pos */
939 first_index
= pos
>> PAGE_CACHE_SHIFT
;
940 last_index
= (pos
+ iov_iter_count(&i
)) >> PAGE_CACHE_SHIFT
;
943 * there are lots of better ways to do this, but this code
944 * makes sure the first and last page in the file range are
945 * up to date and ready for cow
947 if ((pos
& (PAGE_CACHE_SIZE
- 1))) {
948 pinned
[0] = grab_cache_page(inode
->i_mapping
, first_index
);
949 if (!PageUptodate(pinned
[0])) {
950 ret
= btrfs_readpage(NULL
, pinned
[0]);
952 wait_on_page_locked(pinned
[0]);
954 unlock_page(pinned
[0]);
957 if ((pos
+ iov_iter_count(&i
)) & (PAGE_CACHE_SIZE
- 1)) {
958 pinned
[1] = grab_cache_page(inode
->i_mapping
, last_index
);
959 if (!PageUptodate(pinned
[1])) {
960 ret
= btrfs_readpage(NULL
, pinned
[1]);
962 wait_on_page_locked(pinned
[1]);
964 unlock_page(pinned
[1]);
968 while (iov_iter_count(&i
) > 0) {
969 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
970 size_t write_bytes
= min(iov_iter_count(&i
),
971 nrptrs
* (size_t)PAGE_CACHE_SIZE
-
973 size_t num_pages
= (write_bytes
+ PAGE_CACHE_SIZE
- 1) >>
976 WARN_ON(num_pages
> nrptrs
);
977 memset(pages
, 0, sizeof(struct page
*) * nrptrs
);
980 * Fault pages before locking them in prepare_pages
981 * to avoid recursive lock
983 if (unlikely(iov_iter_fault_in_readable(&i
, write_bytes
))) {
988 ret
= btrfs_delalloc_reserve_space(inode
,
989 num_pages
<< PAGE_CACHE_SHIFT
);
993 ret
= prepare_pages(root
, file
, pages
, num_pages
,
994 pos
, first_index
, last_index
,
997 btrfs_delalloc_release_space(inode
,
998 num_pages
<< PAGE_CACHE_SHIFT
);
1002 copied
= btrfs_copy_from_user(pos
, num_pages
,
1003 write_bytes
, pages
, &i
);
1004 dirty_pages
= (copied
+ PAGE_CACHE_SIZE
- 1) >>
1007 if (num_pages
> dirty_pages
) {
1010 &BTRFS_I(inode
)->outstanding_extents
);
1011 btrfs_delalloc_release_space(inode
,
1012 (num_pages
- dirty_pages
) <<
1017 dirty_and_release_pages(NULL
, root
, file
, pages
,
1018 dirty_pages
, pos
, copied
);
1021 btrfs_drop_pages(pages
, num_pages
);
1025 filemap_fdatawrite_range(inode
->i_mapping
, pos
,
1028 balance_dirty_pages_ratelimited_nr(
1032 (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1033 btrfs_btree_balance_dirty(root
, 1);
1034 btrfs_throttle(root
);
1039 num_written
+= copied
;
1044 mutex_unlock(&inode
->i_mutex
);
1050 page_cache_release(pinned
[0]);
1052 page_cache_release(pinned
[1]);
1056 * we want to make sure fsync finds this change
1057 * but we haven't joined a transaction running right now.
1059 * Later on, someone is sure to update the inode and get the
1060 * real transid recorded.
1062 * We set last_trans now to the fs_info generation + 1,
1063 * this will either be one more than the running transaction
1064 * or the generation used for the next transaction if there isn't
1065 * one running right now.
1067 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1069 if (num_written
> 0 && will_write
) {
1070 struct btrfs_trans_handle
*trans
;
1072 err
= btrfs_wait_ordered_range(inode
, start_pos
, num_written
);
1076 if ((file
->f_flags
& O_DSYNC
) || IS_SYNC(inode
)) {
1077 trans
= btrfs_start_transaction(root
, 0);
1078 if (IS_ERR(trans
)) {
1079 num_written
= PTR_ERR(trans
);
1082 mutex_lock(&inode
->i_mutex
);
1083 ret
= btrfs_log_dentry_safe(trans
, root
,
1085 mutex_unlock(&inode
->i_mutex
);
1087 ret
= btrfs_sync_log(trans
, root
);
1089 btrfs_end_transaction(trans
, root
);
1091 btrfs_commit_transaction(trans
, root
);
1092 } else if (ret
!= BTRFS_NO_LOG_SYNC
) {
1093 btrfs_commit_transaction(trans
, root
);
1095 btrfs_end_transaction(trans
, root
);
1098 if (file
->f_flags
& O_DIRECT
&& buffered
) {
1099 invalidate_mapping_pages(inode
->i_mapping
,
1100 start_pos
>> PAGE_CACHE_SHIFT
,
1101 (start_pos
+ num_written
- 1) >> PAGE_CACHE_SHIFT
);
1105 current
->backing_dev_info
= NULL
;
1106 return num_written
? num_written
: err
;
1109 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1112 * ordered_data_close is set by settattr when we are about to truncate
1113 * a file from a non-zero size to a zero size. This tries to
1114 * flush down new bytes that may have been written if the
1115 * application were using truncate to replace a file in place.
1117 if (BTRFS_I(inode
)->ordered_data_close
) {
1118 BTRFS_I(inode
)->ordered_data_close
= 0;
1119 btrfs_add_ordered_operation(NULL
, BTRFS_I(inode
)->root
, inode
);
1120 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1121 filemap_flush(inode
->i_mapping
);
1123 if (filp
->private_data
)
1124 btrfs_ioctl_trans_end(filp
);
1129 * fsync call for both files and directories. This logs the inode into
1130 * the tree log instead of forcing full commits whenever possible.
1132 * It needs to call filemap_fdatawait so that all ordered extent updates are
1133 * in the metadata btree are up to date for copying to the log.
1135 * It drops the inode mutex before doing the tree log commit. This is an
1136 * important optimization for directories because holding the mutex prevents
1137 * new operations on the dir while we write to disk.
1139 int btrfs_sync_file(struct file
*file
, int datasync
)
1141 struct dentry
*dentry
= file
->f_path
.dentry
;
1142 struct inode
*inode
= dentry
->d_inode
;
1143 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1145 struct btrfs_trans_handle
*trans
;
1148 /* we wait first, since the writeback may change the inode */
1150 /* the VFS called filemap_fdatawrite for us */
1151 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1155 * check the transaction that last modified this inode
1156 * and see if its already been committed
1158 if (!BTRFS_I(inode
)->last_trans
)
1162 * if the last transaction that changed this file was before
1163 * the current transaction, we can bail out now without any
1166 mutex_lock(&root
->fs_info
->trans_mutex
);
1167 if (BTRFS_I(inode
)->last_trans
<=
1168 root
->fs_info
->last_trans_committed
) {
1169 BTRFS_I(inode
)->last_trans
= 0;
1170 mutex_unlock(&root
->fs_info
->trans_mutex
);
1173 mutex_unlock(&root
->fs_info
->trans_mutex
);
1176 * ok we haven't committed the transaction yet, lets do a commit
1178 if (file
->private_data
)
1179 btrfs_ioctl_trans_end(file
);
1181 trans
= btrfs_start_transaction(root
, 0);
1182 if (IS_ERR(trans
)) {
1183 ret
= PTR_ERR(trans
);
1187 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
);
1191 /* we've logged all the items and now have a consistent
1192 * version of the file in the log. It is possible that
1193 * someone will come in and modify the file, but that's
1194 * fine because the log is consistent on disk, and we
1195 * have references to all of the file's extents
1197 * It is possible that someone will come in and log the
1198 * file again, but that will end up using the synchronization
1199 * inside btrfs_sync_log to keep things safe.
1201 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1203 if (ret
!= BTRFS_NO_LOG_SYNC
) {
1205 ret
= btrfs_commit_transaction(trans
, root
);
1207 ret
= btrfs_sync_log(trans
, root
);
1209 ret
= btrfs_end_transaction(trans
, root
);
1211 ret
= btrfs_commit_transaction(trans
, root
);
1214 ret
= btrfs_end_transaction(trans
, root
);
1216 mutex_lock(&dentry
->d_inode
->i_mutex
);
1218 return ret
> 0 ? -EIO
: ret
;
1221 static const struct vm_operations_struct btrfs_file_vm_ops
= {
1222 .fault
= filemap_fault
,
1223 .page_mkwrite
= btrfs_page_mkwrite
,
1226 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1228 struct address_space
*mapping
= filp
->f_mapping
;
1230 if (!mapping
->a_ops
->readpage
)
1233 file_accessed(filp
);
1234 vma
->vm_ops
= &btrfs_file_vm_ops
;
1235 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1240 const struct file_operations btrfs_file_operations
= {
1241 .llseek
= generic_file_llseek
,
1242 .read
= do_sync_read
,
1243 .write
= do_sync_write
,
1244 .aio_read
= generic_file_aio_read
,
1245 .splice_read
= generic_file_splice_read
,
1246 .aio_write
= btrfs_file_aio_write
,
1247 .mmap
= btrfs_file_mmap
,
1248 .open
= generic_file_open
,
1249 .release
= btrfs_release_file
,
1250 .fsync
= btrfs_sync_file
,
1251 .unlocked_ioctl
= btrfs_ioctl
,
1252 #ifdef CONFIG_COMPAT
1253 .compat_ioctl
= btrfs_ioctl
,