Merge branch 'for-2.6.37' of git://linux-nfs.org/~bfields/linux
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / rmap.c
blob1a8bf76bfd038a7fe84fdd6b9443c4673c8ddd9f
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 void anon_vma_free(struct anon_vma *anon_vma)
75 kmem_cache_free(anon_vma_cachep, anon_vma);
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
83 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
88 /**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
96 * The common case will be that we already have one, but if
97 * if not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
113 * This must be called with the mmap_sem held for reading.
115 int anon_vma_prepare(struct vm_area_struct *vma)
117 struct anon_vma *anon_vma = vma->anon_vma;
118 struct anon_vma_chain *avc;
120 might_sleep();
121 if (unlikely(!anon_vma)) {
122 struct mm_struct *mm = vma->vm_mm;
123 struct anon_vma *allocated;
125 avc = anon_vma_chain_alloc();
126 if (!avc)
127 goto out_enomem;
129 anon_vma = find_mergeable_anon_vma(vma);
130 allocated = NULL;
131 if (!anon_vma) {
132 anon_vma = anon_vma_alloc();
133 if (unlikely(!anon_vma))
134 goto out_enomem_free_avc;
135 allocated = anon_vma;
137 * This VMA had no anon_vma yet. This anon_vma is
138 * the root of any anon_vma tree that might form.
140 anon_vma->root = anon_vma;
143 anon_vma_lock(anon_vma);
144 /* page_table_lock to protect against threads */
145 spin_lock(&mm->page_table_lock);
146 if (likely(!vma->anon_vma)) {
147 vma->anon_vma = anon_vma;
148 avc->anon_vma = anon_vma;
149 avc->vma = vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
151 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 allocated = NULL;
153 avc = NULL;
155 spin_unlock(&mm->page_table_lock);
156 anon_vma_unlock(anon_vma);
158 if (unlikely(allocated))
159 anon_vma_free(allocated);
160 if (unlikely(avc))
161 anon_vma_chain_free(avc);
163 return 0;
165 out_enomem_free_avc:
166 anon_vma_chain_free(avc);
167 out_enomem:
168 return -ENOMEM;
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 struct anon_vma_chain *avc,
173 struct anon_vma *anon_vma)
175 avc->vma = vma;
176 avc->anon_vma = anon_vma;
177 list_add(&avc->same_vma, &vma->anon_vma_chain);
179 anon_vma_lock(anon_vma);
180 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
181 anon_vma_unlock(anon_vma);
185 * Attach the anon_vmas from src to dst.
186 * Returns 0 on success, -ENOMEM on failure.
188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
190 struct anon_vma_chain *avc, *pavc;
192 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
193 avc = anon_vma_chain_alloc();
194 if (!avc)
195 goto enomem_failure;
196 anon_vma_chain_link(dst, avc, pavc->anon_vma);
198 return 0;
200 enomem_failure:
201 unlink_anon_vmas(dst);
202 return -ENOMEM;
206 * Attach vma to its own anon_vma, as well as to the anon_vmas that
207 * the corresponding VMA in the parent process is attached to.
208 * Returns 0 on success, non-zero on failure.
210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
212 struct anon_vma_chain *avc;
213 struct anon_vma *anon_vma;
215 /* Don't bother if the parent process has no anon_vma here. */
216 if (!pvma->anon_vma)
217 return 0;
220 * First, attach the new VMA to the parent VMA's anon_vmas,
221 * so rmap can find non-COWed pages in child processes.
223 if (anon_vma_clone(vma, pvma))
224 return -ENOMEM;
226 /* Then add our own anon_vma. */
227 anon_vma = anon_vma_alloc();
228 if (!anon_vma)
229 goto out_error;
230 avc = anon_vma_chain_alloc();
231 if (!avc)
232 goto out_error_free_anon_vma;
235 * The root anon_vma's spinlock is the lock actually used when we
236 * lock any of the anon_vmas in this anon_vma tree.
238 anon_vma->root = pvma->anon_vma->root;
240 * With KSM refcounts, an anon_vma can stay around longer than the
241 * process it belongs to. The root anon_vma needs to be pinned
242 * until this anon_vma is freed, because the lock lives in the root.
244 get_anon_vma(anon_vma->root);
245 /* Mark this anon_vma as the one where our new (COWed) pages go. */
246 vma->anon_vma = anon_vma;
247 anon_vma_chain_link(vma, avc, anon_vma);
249 return 0;
251 out_error_free_anon_vma:
252 anon_vma_free(anon_vma);
253 out_error:
254 unlink_anon_vmas(vma);
255 return -ENOMEM;
258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
260 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
261 int empty;
263 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
264 if (!anon_vma)
265 return;
267 anon_vma_lock(anon_vma);
268 list_del(&anon_vma_chain->same_anon_vma);
270 /* We must garbage collect the anon_vma if it's empty */
271 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
272 anon_vma_unlock(anon_vma);
274 if (empty) {
275 /* We no longer need the root anon_vma */
276 if (anon_vma->root != anon_vma)
277 drop_anon_vma(anon_vma->root);
278 anon_vma_free(anon_vma);
282 void unlink_anon_vmas(struct vm_area_struct *vma)
284 struct anon_vma_chain *avc, *next;
287 * Unlink each anon_vma chained to the VMA. This list is ordered
288 * from newest to oldest, ensuring the root anon_vma gets freed last.
290 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291 anon_vma_unlink(avc);
292 list_del(&avc->same_vma);
293 anon_vma_chain_free(avc);
297 static void anon_vma_ctor(void *data)
299 struct anon_vma *anon_vma = data;
301 spin_lock_init(&anon_vma->lock);
302 anonvma_external_refcount_init(anon_vma);
303 INIT_LIST_HEAD(&anon_vma->head);
306 void __init anon_vma_init(void)
308 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
309 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
310 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
314 * Getting a lock on a stable anon_vma from a page off the LRU is
315 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
317 struct anon_vma *__page_lock_anon_vma(struct page *page)
319 struct anon_vma *anon_vma, *root_anon_vma;
320 unsigned long anon_mapping;
322 rcu_read_lock();
323 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
324 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
325 goto out;
326 if (!page_mapped(page))
327 goto out;
329 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
330 root_anon_vma = ACCESS_ONCE(anon_vma->root);
331 spin_lock(&root_anon_vma->lock);
334 * If this page is still mapped, then its anon_vma cannot have been
335 * freed. But if it has been unmapped, we have no security against
336 * the anon_vma structure being freed and reused (for another anon_vma:
337 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
338 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
339 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
341 if (page_mapped(page))
342 return anon_vma;
344 spin_unlock(&root_anon_vma->lock);
345 out:
346 rcu_read_unlock();
347 return NULL;
350 void page_unlock_anon_vma(struct anon_vma *anon_vma)
351 __releases(&anon_vma->root->lock)
352 __releases(RCU)
354 anon_vma_unlock(anon_vma);
355 rcu_read_unlock();
359 * At what user virtual address is page expected in @vma?
360 * Returns virtual address or -EFAULT if page's index/offset is not
361 * within the range mapped the @vma.
363 static inline unsigned long
364 vma_address(struct page *page, struct vm_area_struct *vma)
366 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
367 unsigned long address;
369 if (unlikely(is_vm_hugetlb_page(vma)))
370 pgoff = page->index << huge_page_order(page_hstate(page));
371 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
372 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
373 /* page should be within @vma mapping range */
374 return -EFAULT;
376 return address;
380 * At what user virtual address is page expected in vma?
381 * Caller should check the page is actually part of the vma.
383 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
385 if (PageAnon(page)) {
386 struct anon_vma *page__anon_vma = page_anon_vma(page);
388 * Note: swapoff's unuse_vma() is more efficient with this
389 * check, and needs it to match anon_vma when KSM is active.
391 if (!vma->anon_vma || !page__anon_vma ||
392 vma->anon_vma->root != page__anon_vma->root)
393 return -EFAULT;
394 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
395 if (!vma->vm_file ||
396 vma->vm_file->f_mapping != page->mapping)
397 return -EFAULT;
398 } else
399 return -EFAULT;
400 return vma_address(page, vma);
404 * Check that @page is mapped at @address into @mm.
406 * If @sync is false, page_check_address may perform a racy check to avoid
407 * the page table lock when the pte is not present (helpful when reclaiming
408 * highly shared pages).
410 * On success returns with pte mapped and locked.
412 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
413 unsigned long address, spinlock_t **ptlp, int sync)
415 pgd_t *pgd;
416 pud_t *pud;
417 pmd_t *pmd;
418 pte_t *pte;
419 spinlock_t *ptl;
421 if (unlikely(PageHuge(page))) {
422 pte = huge_pte_offset(mm, address);
423 ptl = &mm->page_table_lock;
424 goto check;
427 pgd = pgd_offset(mm, address);
428 if (!pgd_present(*pgd))
429 return NULL;
431 pud = pud_offset(pgd, address);
432 if (!pud_present(*pud))
433 return NULL;
435 pmd = pmd_offset(pud, address);
436 if (!pmd_present(*pmd))
437 return NULL;
439 pte = pte_offset_map(pmd, address);
440 /* Make a quick check before getting the lock */
441 if (!sync && !pte_present(*pte)) {
442 pte_unmap(pte);
443 return NULL;
446 ptl = pte_lockptr(mm, pmd);
447 check:
448 spin_lock(ptl);
449 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
450 *ptlp = ptl;
451 return pte;
453 pte_unmap_unlock(pte, ptl);
454 return NULL;
458 * page_mapped_in_vma - check whether a page is really mapped in a VMA
459 * @page: the page to test
460 * @vma: the VMA to test
462 * Returns 1 if the page is mapped into the page tables of the VMA, 0
463 * if the page is not mapped into the page tables of this VMA. Only
464 * valid for normal file or anonymous VMAs.
466 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
468 unsigned long address;
469 pte_t *pte;
470 spinlock_t *ptl;
472 address = vma_address(page, vma);
473 if (address == -EFAULT) /* out of vma range */
474 return 0;
475 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
476 if (!pte) /* the page is not in this mm */
477 return 0;
478 pte_unmap_unlock(pte, ptl);
480 return 1;
484 * Subfunctions of page_referenced: page_referenced_one called
485 * repeatedly from either page_referenced_anon or page_referenced_file.
487 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
488 unsigned long address, unsigned int *mapcount,
489 unsigned long *vm_flags)
491 struct mm_struct *mm = vma->vm_mm;
492 pte_t *pte;
493 spinlock_t *ptl;
494 int referenced = 0;
496 pte = page_check_address(page, mm, address, &ptl, 0);
497 if (!pte)
498 goto out;
501 * Don't want to elevate referenced for mlocked page that gets this far,
502 * in order that it progresses to try_to_unmap and is moved to the
503 * unevictable list.
505 if (vma->vm_flags & VM_LOCKED) {
506 *mapcount = 1; /* break early from loop */
507 *vm_flags |= VM_LOCKED;
508 goto out_unmap;
511 if (ptep_clear_flush_young_notify(vma, address, pte)) {
513 * Don't treat a reference through a sequentially read
514 * mapping as such. If the page has been used in
515 * another mapping, we will catch it; if this other
516 * mapping is already gone, the unmap path will have
517 * set PG_referenced or activated the page.
519 if (likely(!VM_SequentialReadHint(vma)))
520 referenced++;
523 /* Pretend the page is referenced if the task has the
524 swap token and is in the middle of a page fault. */
525 if (mm != current->mm && has_swap_token(mm) &&
526 rwsem_is_locked(&mm->mmap_sem))
527 referenced++;
529 out_unmap:
530 (*mapcount)--;
531 pte_unmap_unlock(pte, ptl);
533 if (referenced)
534 *vm_flags |= vma->vm_flags;
535 out:
536 return referenced;
539 static int page_referenced_anon(struct page *page,
540 struct mem_cgroup *mem_cont,
541 unsigned long *vm_flags)
543 unsigned int mapcount;
544 struct anon_vma *anon_vma;
545 struct anon_vma_chain *avc;
546 int referenced = 0;
548 anon_vma = page_lock_anon_vma(page);
549 if (!anon_vma)
550 return referenced;
552 mapcount = page_mapcount(page);
553 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
554 struct vm_area_struct *vma = avc->vma;
555 unsigned long address = vma_address(page, vma);
556 if (address == -EFAULT)
557 continue;
559 * If we are reclaiming on behalf of a cgroup, skip
560 * counting on behalf of references from different
561 * cgroups
563 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
564 continue;
565 referenced += page_referenced_one(page, vma, address,
566 &mapcount, vm_flags);
567 if (!mapcount)
568 break;
571 page_unlock_anon_vma(anon_vma);
572 return referenced;
576 * page_referenced_file - referenced check for object-based rmap
577 * @page: the page we're checking references on.
578 * @mem_cont: target memory controller
579 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
581 * For an object-based mapped page, find all the places it is mapped and
582 * check/clear the referenced flag. This is done by following the page->mapping
583 * pointer, then walking the chain of vmas it holds. It returns the number
584 * of references it found.
586 * This function is only called from page_referenced for object-based pages.
588 static int page_referenced_file(struct page *page,
589 struct mem_cgroup *mem_cont,
590 unsigned long *vm_flags)
592 unsigned int mapcount;
593 struct address_space *mapping = page->mapping;
594 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
595 struct vm_area_struct *vma;
596 struct prio_tree_iter iter;
597 int referenced = 0;
600 * The caller's checks on page->mapping and !PageAnon have made
601 * sure that this is a file page: the check for page->mapping
602 * excludes the case just before it gets set on an anon page.
604 BUG_ON(PageAnon(page));
607 * The page lock not only makes sure that page->mapping cannot
608 * suddenly be NULLified by truncation, it makes sure that the
609 * structure at mapping cannot be freed and reused yet,
610 * so we can safely take mapping->i_mmap_lock.
612 BUG_ON(!PageLocked(page));
614 spin_lock(&mapping->i_mmap_lock);
617 * i_mmap_lock does not stabilize mapcount at all, but mapcount
618 * is more likely to be accurate if we note it after spinning.
620 mapcount = page_mapcount(page);
622 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
623 unsigned long address = vma_address(page, vma);
624 if (address == -EFAULT)
625 continue;
627 * If we are reclaiming on behalf of a cgroup, skip
628 * counting on behalf of references from different
629 * cgroups
631 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
632 continue;
633 referenced += page_referenced_one(page, vma, address,
634 &mapcount, vm_flags);
635 if (!mapcount)
636 break;
639 spin_unlock(&mapping->i_mmap_lock);
640 return referenced;
644 * page_referenced - test if the page was referenced
645 * @page: the page to test
646 * @is_locked: caller holds lock on the page
647 * @mem_cont: target memory controller
648 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
650 * Quick test_and_clear_referenced for all mappings to a page,
651 * returns the number of ptes which referenced the page.
653 int page_referenced(struct page *page,
654 int is_locked,
655 struct mem_cgroup *mem_cont,
656 unsigned long *vm_flags)
658 int referenced = 0;
659 int we_locked = 0;
661 *vm_flags = 0;
662 if (page_mapped(page) && page_rmapping(page)) {
663 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
664 we_locked = trylock_page(page);
665 if (!we_locked) {
666 referenced++;
667 goto out;
670 if (unlikely(PageKsm(page)))
671 referenced += page_referenced_ksm(page, mem_cont,
672 vm_flags);
673 else if (PageAnon(page))
674 referenced += page_referenced_anon(page, mem_cont,
675 vm_flags);
676 else if (page->mapping)
677 referenced += page_referenced_file(page, mem_cont,
678 vm_flags);
679 if (we_locked)
680 unlock_page(page);
682 out:
683 if (page_test_and_clear_young(page))
684 referenced++;
686 return referenced;
689 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
690 unsigned long address)
692 struct mm_struct *mm = vma->vm_mm;
693 pte_t *pte;
694 spinlock_t *ptl;
695 int ret = 0;
697 pte = page_check_address(page, mm, address, &ptl, 1);
698 if (!pte)
699 goto out;
701 if (pte_dirty(*pte) || pte_write(*pte)) {
702 pte_t entry;
704 flush_cache_page(vma, address, pte_pfn(*pte));
705 entry = ptep_clear_flush_notify(vma, address, pte);
706 entry = pte_wrprotect(entry);
707 entry = pte_mkclean(entry);
708 set_pte_at(mm, address, pte, entry);
709 ret = 1;
712 pte_unmap_unlock(pte, ptl);
713 out:
714 return ret;
717 static int page_mkclean_file(struct address_space *mapping, struct page *page)
719 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
720 struct vm_area_struct *vma;
721 struct prio_tree_iter iter;
722 int ret = 0;
724 BUG_ON(PageAnon(page));
726 spin_lock(&mapping->i_mmap_lock);
727 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
728 if (vma->vm_flags & VM_SHARED) {
729 unsigned long address = vma_address(page, vma);
730 if (address == -EFAULT)
731 continue;
732 ret += page_mkclean_one(page, vma, address);
735 spin_unlock(&mapping->i_mmap_lock);
736 return ret;
739 int page_mkclean(struct page *page)
741 int ret = 0;
743 BUG_ON(!PageLocked(page));
745 if (page_mapped(page)) {
746 struct address_space *mapping = page_mapping(page);
747 if (mapping) {
748 ret = page_mkclean_file(mapping, page);
749 if (page_test_dirty(page)) {
750 page_clear_dirty(page, 1);
751 ret = 1;
756 return ret;
758 EXPORT_SYMBOL_GPL(page_mkclean);
761 * page_move_anon_rmap - move a page to our anon_vma
762 * @page: the page to move to our anon_vma
763 * @vma: the vma the page belongs to
764 * @address: the user virtual address mapped
766 * When a page belongs exclusively to one process after a COW event,
767 * that page can be moved into the anon_vma that belongs to just that
768 * process, so the rmap code will not search the parent or sibling
769 * processes.
771 void page_move_anon_rmap(struct page *page,
772 struct vm_area_struct *vma, unsigned long address)
774 struct anon_vma *anon_vma = vma->anon_vma;
776 VM_BUG_ON(!PageLocked(page));
777 VM_BUG_ON(!anon_vma);
778 VM_BUG_ON(page->index != linear_page_index(vma, address));
780 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
781 page->mapping = (struct address_space *) anon_vma;
785 * __page_set_anon_rmap - set up new anonymous rmap
786 * @page: Page to add to rmap
787 * @vma: VM area to add page to.
788 * @address: User virtual address of the mapping
789 * @exclusive: the page is exclusively owned by the current process
791 static void __page_set_anon_rmap(struct page *page,
792 struct vm_area_struct *vma, unsigned long address, int exclusive)
794 struct anon_vma *anon_vma = vma->anon_vma;
796 BUG_ON(!anon_vma);
798 if (PageAnon(page))
799 return;
802 * If the page isn't exclusively mapped into this vma,
803 * we must use the _oldest_ possible anon_vma for the
804 * page mapping!
806 if (!exclusive)
807 anon_vma = anon_vma->root;
809 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
810 page->mapping = (struct address_space *) anon_vma;
811 page->index = linear_page_index(vma, address);
815 * __page_check_anon_rmap - sanity check anonymous rmap addition
816 * @page: the page to add the mapping to
817 * @vma: the vm area in which the mapping is added
818 * @address: the user virtual address mapped
820 static void __page_check_anon_rmap(struct page *page,
821 struct vm_area_struct *vma, unsigned long address)
823 #ifdef CONFIG_DEBUG_VM
825 * The page's anon-rmap details (mapping and index) are guaranteed to
826 * be set up correctly at this point.
828 * We have exclusion against page_add_anon_rmap because the caller
829 * always holds the page locked, except if called from page_dup_rmap,
830 * in which case the page is already known to be setup.
832 * We have exclusion against page_add_new_anon_rmap because those pages
833 * are initially only visible via the pagetables, and the pte is locked
834 * over the call to page_add_new_anon_rmap.
836 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
837 BUG_ON(page->index != linear_page_index(vma, address));
838 #endif
842 * page_add_anon_rmap - add pte mapping to an anonymous page
843 * @page: the page to add the mapping to
844 * @vma: the vm area in which the mapping is added
845 * @address: the user virtual address mapped
847 * The caller needs to hold the pte lock, and the page must be locked in
848 * the anon_vma case: to serialize mapping,index checking after setting,
849 * and to ensure that PageAnon is not being upgraded racily to PageKsm
850 * (but PageKsm is never downgraded to PageAnon).
852 void page_add_anon_rmap(struct page *page,
853 struct vm_area_struct *vma, unsigned long address)
855 do_page_add_anon_rmap(page, vma, address, 0);
859 * Special version of the above for do_swap_page, which often runs
860 * into pages that are exclusively owned by the current process.
861 * Everybody else should continue to use page_add_anon_rmap above.
863 void do_page_add_anon_rmap(struct page *page,
864 struct vm_area_struct *vma, unsigned long address, int exclusive)
866 int first = atomic_inc_and_test(&page->_mapcount);
867 if (first)
868 __inc_zone_page_state(page, NR_ANON_PAGES);
869 if (unlikely(PageKsm(page)))
870 return;
872 VM_BUG_ON(!PageLocked(page));
873 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
874 if (first)
875 __page_set_anon_rmap(page, vma, address, exclusive);
876 else
877 __page_check_anon_rmap(page, vma, address);
881 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
882 * @page: the page to add the mapping to
883 * @vma: the vm area in which the mapping is added
884 * @address: the user virtual address mapped
886 * Same as page_add_anon_rmap but must only be called on *new* pages.
887 * This means the inc-and-test can be bypassed.
888 * Page does not have to be locked.
890 void page_add_new_anon_rmap(struct page *page,
891 struct vm_area_struct *vma, unsigned long address)
893 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
894 SetPageSwapBacked(page);
895 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
896 __inc_zone_page_state(page, NR_ANON_PAGES);
897 __page_set_anon_rmap(page, vma, address, 1);
898 if (page_evictable(page, vma))
899 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
900 else
901 add_page_to_unevictable_list(page);
905 * page_add_file_rmap - add pte mapping to a file page
906 * @page: the page to add the mapping to
908 * The caller needs to hold the pte lock.
910 void page_add_file_rmap(struct page *page)
912 if (atomic_inc_and_test(&page->_mapcount)) {
913 __inc_zone_page_state(page, NR_FILE_MAPPED);
914 mem_cgroup_update_file_mapped(page, 1);
919 * page_remove_rmap - take down pte mapping from a page
920 * @page: page to remove mapping from
922 * The caller needs to hold the pte lock.
924 void page_remove_rmap(struct page *page)
926 /* page still mapped by someone else? */
927 if (!atomic_add_negative(-1, &page->_mapcount))
928 return;
931 * Now that the last pte has gone, s390 must transfer dirty
932 * flag from storage key to struct page. We can usually skip
933 * this if the page is anon, so about to be freed; but perhaps
934 * not if it's in swapcache - there might be another pte slot
935 * containing the swap entry, but page not yet written to swap.
937 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
938 page_clear_dirty(page, 1);
939 set_page_dirty(page);
942 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
943 * and not charged by memcg for now.
945 if (unlikely(PageHuge(page)))
946 return;
947 if (PageAnon(page)) {
948 mem_cgroup_uncharge_page(page);
949 __dec_zone_page_state(page, NR_ANON_PAGES);
950 } else {
951 __dec_zone_page_state(page, NR_FILE_MAPPED);
952 mem_cgroup_update_file_mapped(page, -1);
955 * It would be tidy to reset the PageAnon mapping here,
956 * but that might overwrite a racing page_add_anon_rmap
957 * which increments mapcount after us but sets mapping
958 * before us: so leave the reset to free_hot_cold_page,
959 * and remember that it's only reliable while mapped.
960 * Leaving it set also helps swapoff to reinstate ptes
961 * faster for those pages still in swapcache.
966 * Subfunctions of try_to_unmap: try_to_unmap_one called
967 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
969 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
970 unsigned long address, enum ttu_flags flags)
972 struct mm_struct *mm = vma->vm_mm;
973 pte_t *pte;
974 pte_t pteval;
975 spinlock_t *ptl;
976 int ret = SWAP_AGAIN;
978 pte = page_check_address(page, mm, address, &ptl, 0);
979 if (!pte)
980 goto out;
983 * If the page is mlock()d, we cannot swap it out.
984 * If it's recently referenced (perhaps page_referenced
985 * skipped over this mm) then we should reactivate it.
987 if (!(flags & TTU_IGNORE_MLOCK)) {
988 if (vma->vm_flags & VM_LOCKED)
989 goto out_mlock;
991 if (TTU_ACTION(flags) == TTU_MUNLOCK)
992 goto out_unmap;
994 if (!(flags & TTU_IGNORE_ACCESS)) {
995 if (ptep_clear_flush_young_notify(vma, address, pte)) {
996 ret = SWAP_FAIL;
997 goto out_unmap;
1001 /* Nuke the page table entry. */
1002 flush_cache_page(vma, address, page_to_pfn(page));
1003 pteval = ptep_clear_flush_notify(vma, address, pte);
1005 /* Move the dirty bit to the physical page now the pte is gone. */
1006 if (pte_dirty(pteval))
1007 set_page_dirty(page);
1009 /* Update high watermark before we lower rss */
1010 update_hiwater_rss(mm);
1012 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1013 if (PageAnon(page))
1014 dec_mm_counter(mm, MM_ANONPAGES);
1015 else
1016 dec_mm_counter(mm, MM_FILEPAGES);
1017 set_pte_at(mm, address, pte,
1018 swp_entry_to_pte(make_hwpoison_entry(page)));
1019 } else if (PageAnon(page)) {
1020 swp_entry_t entry = { .val = page_private(page) };
1022 if (PageSwapCache(page)) {
1024 * Store the swap location in the pte.
1025 * See handle_pte_fault() ...
1027 if (swap_duplicate(entry) < 0) {
1028 set_pte_at(mm, address, pte, pteval);
1029 ret = SWAP_FAIL;
1030 goto out_unmap;
1032 if (list_empty(&mm->mmlist)) {
1033 spin_lock(&mmlist_lock);
1034 if (list_empty(&mm->mmlist))
1035 list_add(&mm->mmlist, &init_mm.mmlist);
1036 spin_unlock(&mmlist_lock);
1038 dec_mm_counter(mm, MM_ANONPAGES);
1039 inc_mm_counter(mm, MM_SWAPENTS);
1040 } else if (PAGE_MIGRATION) {
1042 * Store the pfn of the page in a special migration
1043 * pte. do_swap_page() will wait until the migration
1044 * pte is removed and then restart fault handling.
1046 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1047 entry = make_migration_entry(page, pte_write(pteval));
1049 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1050 BUG_ON(pte_file(*pte));
1051 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1052 /* Establish migration entry for a file page */
1053 swp_entry_t entry;
1054 entry = make_migration_entry(page, pte_write(pteval));
1055 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1056 } else
1057 dec_mm_counter(mm, MM_FILEPAGES);
1059 page_remove_rmap(page);
1060 page_cache_release(page);
1062 out_unmap:
1063 pte_unmap_unlock(pte, ptl);
1064 out:
1065 return ret;
1067 out_mlock:
1068 pte_unmap_unlock(pte, ptl);
1072 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1073 * unstable result and race. Plus, We can't wait here because
1074 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1075 * if trylock failed, the page remain in evictable lru and later
1076 * vmscan could retry to move the page to unevictable lru if the
1077 * page is actually mlocked.
1079 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1080 if (vma->vm_flags & VM_LOCKED) {
1081 mlock_vma_page(page);
1082 ret = SWAP_MLOCK;
1084 up_read(&vma->vm_mm->mmap_sem);
1086 return ret;
1090 * objrmap doesn't work for nonlinear VMAs because the assumption that
1091 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1092 * Consequently, given a particular page and its ->index, we cannot locate the
1093 * ptes which are mapping that page without an exhaustive linear search.
1095 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1096 * maps the file to which the target page belongs. The ->vm_private_data field
1097 * holds the current cursor into that scan. Successive searches will circulate
1098 * around the vma's virtual address space.
1100 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1101 * more scanning pressure is placed against them as well. Eventually pages
1102 * will become fully unmapped and are eligible for eviction.
1104 * For very sparsely populated VMAs this is a little inefficient - chances are
1105 * there there won't be many ptes located within the scan cluster. In this case
1106 * maybe we could scan further - to the end of the pte page, perhaps.
1108 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1109 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1110 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1111 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1113 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1114 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1116 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1117 struct vm_area_struct *vma, struct page *check_page)
1119 struct mm_struct *mm = vma->vm_mm;
1120 pgd_t *pgd;
1121 pud_t *pud;
1122 pmd_t *pmd;
1123 pte_t *pte;
1124 pte_t pteval;
1125 spinlock_t *ptl;
1126 struct page *page;
1127 unsigned long address;
1128 unsigned long end;
1129 int ret = SWAP_AGAIN;
1130 int locked_vma = 0;
1132 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1133 end = address + CLUSTER_SIZE;
1134 if (address < vma->vm_start)
1135 address = vma->vm_start;
1136 if (end > vma->vm_end)
1137 end = vma->vm_end;
1139 pgd = pgd_offset(mm, address);
1140 if (!pgd_present(*pgd))
1141 return ret;
1143 pud = pud_offset(pgd, address);
1144 if (!pud_present(*pud))
1145 return ret;
1147 pmd = pmd_offset(pud, address);
1148 if (!pmd_present(*pmd))
1149 return ret;
1152 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1153 * keep the sem while scanning the cluster for mlocking pages.
1155 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1156 locked_vma = (vma->vm_flags & VM_LOCKED);
1157 if (!locked_vma)
1158 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1161 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1163 /* Update high watermark before we lower rss */
1164 update_hiwater_rss(mm);
1166 for (; address < end; pte++, address += PAGE_SIZE) {
1167 if (!pte_present(*pte))
1168 continue;
1169 page = vm_normal_page(vma, address, *pte);
1170 BUG_ON(!page || PageAnon(page));
1172 if (locked_vma) {
1173 mlock_vma_page(page); /* no-op if already mlocked */
1174 if (page == check_page)
1175 ret = SWAP_MLOCK;
1176 continue; /* don't unmap */
1179 if (ptep_clear_flush_young_notify(vma, address, pte))
1180 continue;
1182 /* Nuke the page table entry. */
1183 flush_cache_page(vma, address, pte_pfn(*pte));
1184 pteval = ptep_clear_flush_notify(vma, address, pte);
1186 /* If nonlinear, store the file page offset in the pte. */
1187 if (page->index != linear_page_index(vma, address))
1188 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1190 /* Move the dirty bit to the physical page now the pte is gone. */
1191 if (pte_dirty(pteval))
1192 set_page_dirty(page);
1194 page_remove_rmap(page);
1195 page_cache_release(page);
1196 dec_mm_counter(mm, MM_FILEPAGES);
1197 (*mapcount)--;
1199 pte_unmap_unlock(pte - 1, ptl);
1200 if (locked_vma)
1201 up_read(&vma->vm_mm->mmap_sem);
1202 return ret;
1205 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1207 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1209 if (!maybe_stack)
1210 return false;
1212 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1213 VM_STACK_INCOMPLETE_SETUP)
1214 return true;
1216 return false;
1220 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1221 * rmap method
1222 * @page: the page to unmap/unlock
1223 * @flags: action and flags
1225 * Find all the mappings of a page using the mapping pointer and the vma chains
1226 * contained in the anon_vma struct it points to.
1228 * This function is only called from try_to_unmap/try_to_munlock for
1229 * anonymous pages.
1230 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1231 * where the page was found will be held for write. So, we won't recheck
1232 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1233 * 'LOCKED.
1235 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1237 struct anon_vma *anon_vma;
1238 struct anon_vma_chain *avc;
1239 int ret = SWAP_AGAIN;
1241 anon_vma = page_lock_anon_vma(page);
1242 if (!anon_vma)
1243 return ret;
1245 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1246 struct vm_area_struct *vma = avc->vma;
1247 unsigned long address;
1250 * During exec, a temporary VMA is setup and later moved.
1251 * The VMA is moved under the anon_vma lock but not the
1252 * page tables leading to a race where migration cannot
1253 * find the migration ptes. Rather than increasing the
1254 * locking requirements of exec(), migration skips
1255 * temporary VMAs until after exec() completes.
1257 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1258 is_vma_temporary_stack(vma))
1259 continue;
1261 address = vma_address(page, vma);
1262 if (address == -EFAULT)
1263 continue;
1264 ret = try_to_unmap_one(page, vma, address, flags);
1265 if (ret != SWAP_AGAIN || !page_mapped(page))
1266 break;
1269 page_unlock_anon_vma(anon_vma);
1270 return ret;
1274 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1275 * @page: the page to unmap/unlock
1276 * @flags: action and flags
1278 * Find all the mappings of a page using the mapping pointer and the vma chains
1279 * contained in the address_space struct it points to.
1281 * This function is only called from try_to_unmap/try_to_munlock for
1282 * object-based pages.
1283 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1284 * where the page was found will be held for write. So, we won't recheck
1285 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1286 * 'LOCKED.
1288 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1290 struct address_space *mapping = page->mapping;
1291 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1292 struct vm_area_struct *vma;
1293 struct prio_tree_iter iter;
1294 int ret = SWAP_AGAIN;
1295 unsigned long cursor;
1296 unsigned long max_nl_cursor = 0;
1297 unsigned long max_nl_size = 0;
1298 unsigned int mapcount;
1300 spin_lock(&mapping->i_mmap_lock);
1301 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1302 unsigned long address = vma_address(page, vma);
1303 if (address == -EFAULT)
1304 continue;
1305 ret = try_to_unmap_one(page, vma, address, flags);
1306 if (ret != SWAP_AGAIN || !page_mapped(page))
1307 goto out;
1310 if (list_empty(&mapping->i_mmap_nonlinear))
1311 goto out;
1314 * We don't bother to try to find the munlocked page in nonlinears.
1315 * It's costly. Instead, later, page reclaim logic may call
1316 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1318 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1319 goto out;
1321 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1322 shared.vm_set.list) {
1323 cursor = (unsigned long) vma->vm_private_data;
1324 if (cursor > max_nl_cursor)
1325 max_nl_cursor = cursor;
1326 cursor = vma->vm_end - vma->vm_start;
1327 if (cursor > max_nl_size)
1328 max_nl_size = cursor;
1331 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1332 ret = SWAP_FAIL;
1333 goto out;
1337 * We don't try to search for this page in the nonlinear vmas,
1338 * and page_referenced wouldn't have found it anyway. Instead
1339 * just walk the nonlinear vmas trying to age and unmap some.
1340 * The mapcount of the page we came in with is irrelevant,
1341 * but even so use it as a guide to how hard we should try?
1343 mapcount = page_mapcount(page);
1344 if (!mapcount)
1345 goto out;
1346 cond_resched_lock(&mapping->i_mmap_lock);
1348 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1349 if (max_nl_cursor == 0)
1350 max_nl_cursor = CLUSTER_SIZE;
1352 do {
1353 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1354 shared.vm_set.list) {
1355 cursor = (unsigned long) vma->vm_private_data;
1356 while ( cursor < max_nl_cursor &&
1357 cursor < vma->vm_end - vma->vm_start) {
1358 if (try_to_unmap_cluster(cursor, &mapcount,
1359 vma, page) == SWAP_MLOCK)
1360 ret = SWAP_MLOCK;
1361 cursor += CLUSTER_SIZE;
1362 vma->vm_private_data = (void *) cursor;
1363 if ((int)mapcount <= 0)
1364 goto out;
1366 vma->vm_private_data = (void *) max_nl_cursor;
1368 cond_resched_lock(&mapping->i_mmap_lock);
1369 max_nl_cursor += CLUSTER_SIZE;
1370 } while (max_nl_cursor <= max_nl_size);
1373 * Don't loop forever (perhaps all the remaining pages are
1374 * in locked vmas). Reset cursor on all unreserved nonlinear
1375 * vmas, now forgetting on which ones it had fallen behind.
1377 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1378 vma->vm_private_data = NULL;
1379 out:
1380 spin_unlock(&mapping->i_mmap_lock);
1381 return ret;
1385 * try_to_unmap - try to remove all page table mappings to a page
1386 * @page: the page to get unmapped
1387 * @flags: action and flags
1389 * Tries to remove all the page table entries which are mapping this
1390 * page, used in the pageout path. Caller must hold the page lock.
1391 * Return values are:
1393 * SWAP_SUCCESS - we succeeded in removing all mappings
1394 * SWAP_AGAIN - we missed a mapping, try again later
1395 * SWAP_FAIL - the page is unswappable
1396 * SWAP_MLOCK - page is mlocked.
1398 int try_to_unmap(struct page *page, enum ttu_flags flags)
1400 int ret;
1402 BUG_ON(!PageLocked(page));
1404 if (unlikely(PageKsm(page)))
1405 ret = try_to_unmap_ksm(page, flags);
1406 else if (PageAnon(page))
1407 ret = try_to_unmap_anon(page, flags);
1408 else
1409 ret = try_to_unmap_file(page, flags);
1410 if (ret != SWAP_MLOCK && !page_mapped(page))
1411 ret = SWAP_SUCCESS;
1412 return ret;
1416 * try_to_munlock - try to munlock a page
1417 * @page: the page to be munlocked
1419 * Called from munlock code. Checks all of the VMAs mapping the page
1420 * to make sure nobody else has this page mlocked. The page will be
1421 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1423 * Return values are:
1425 * SWAP_AGAIN - no vma is holding page mlocked, or,
1426 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1427 * SWAP_FAIL - page cannot be located at present
1428 * SWAP_MLOCK - page is now mlocked.
1430 int try_to_munlock(struct page *page)
1432 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1434 if (unlikely(PageKsm(page)))
1435 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1436 else if (PageAnon(page))
1437 return try_to_unmap_anon(page, TTU_MUNLOCK);
1438 else
1439 return try_to_unmap_file(page, TTU_MUNLOCK);
1442 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1444 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1445 * if necessary. Be careful to do all the tests under the lock. Once
1446 * we know we are the last user, nobody else can get a reference and we
1447 * can do the freeing without the lock.
1449 void drop_anon_vma(struct anon_vma *anon_vma)
1451 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1452 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1453 struct anon_vma *root = anon_vma->root;
1454 int empty = list_empty(&anon_vma->head);
1455 int last_root_user = 0;
1456 int root_empty = 0;
1459 * The refcount on a non-root anon_vma got dropped. Drop
1460 * the refcount on the root and check if we need to free it.
1462 if (empty && anon_vma != root) {
1463 BUG_ON(atomic_read(&root->external_refcount) <= 0);
1464 last_root_user = atomic_dec_and_test(&root->external_refcount);
1465 root_empty = list_empty(&root->head);
1467 anon_vma_unlock(anon_vma);
1469 if (empty) {
1470 anon_vma_free(anon_vma);
1471 if (root_empty && last_root_user)
1472 anon_vma_free(root);
1476 #endif
1478 #ifdef CONFIG_MIGRATION
1480 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1481 * Called by migrate.c to remove migration ptes, but might be used more later.
1483 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1484 struct vm_area_struct *, unsigned long, void *), void *arg)
1486 struct anon_vma *anon_vma;
1487 struct anon_vma_chain *avc;
1488 int ret = SWAP_AGAIN;
1491 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1492 * because that depends on page_mapped(); but not all its usages
1493 * are holding mmap_sem. Users without mmap_sem are required to
1494 * take a reference count to prevent the anon_vma disappearing
1496 anon_vma = page_anon_vma(page);
1497 if (!anon_vma)
1498 return ret;
1499 anon_vma_lock(anon_vma);
1500 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1501 struct vm_area_struct *vma = avc->vma;
1502 unsigned long address = vma_address(page, vma);
1503 if (address == -EFAULT)
1504 continue;
1505 ret = rmap_one(page, vma, address, arg);
1506 if (ret != SWAP_AGAIN)
1507 break;
1509 anon_vma_unlock(anon_vma);
1510 return ret;
1513 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1514 struct vm_area_struct *, unsigned long, void *), void *arg)
1516 struct address_space *mapping = page->mapping;
1517 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1518 struct vm_area_struct *vma;
1519 struct prio_tree_iter iter;
1520 int ret = SWAP_AGAIN;
1522 if (!mapping)
1523 return ret;
1524 spin_lock(&mapping->i_mmap_lock);
1525 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1526 unsigned long address = vma_address(page, vma);
1527 if (address == -EFAULT)
1528 continue;
1529 ret = rmap_one(page, vma, address, arg);
1530 if (ret != SWAP_AGAIN)
1531 break;
1534 * No nonlinear handling: being always shared, nonlinear vmas
1535 * never contain migration ptes. Decide what to do about this
1536 * limitation to linear when we need rmap_walk() on nonlinear.
1538 spin_unlock(&mapping->i_mmap_lock);
1539 return ret;
1542 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1543 struct vm_area_struct *, unsigned long, void *), void *arg)
1545 VM_BUG_ON(!PageLocked(page));
1547 if (unlikely(PageKsm(page)))
1548 return rmap_walk_ksm(page, rmap_one, arg);
1549 else if (PageAnon(page))
1550 return rmap_walk_anon(page, rmap_one, arg);
1551 else
1552 return rmap_walk_file(page, rmap_one, arg);
1554 #endif /* CONFIG_MIGRATION */
1556 #ifdef CONFIG_HUGETLB_PAGE
1558 * The following three functions are for anonymous (private mapped) hugepages.
1559 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1560 * and no lru code, because we handle hugepages differently from common pages.
1562 static void __hugepage_set_anon_rmap(struct page *page,
1563 struct vm_area_struct *vma, unsigned long address, int exclusive)
1565 struct anon_vma *anon_vma = vma->anon_vma;
1567 BUG_ON(!anon_vma);
1569 if (PageAnon(page))
1570 return;
1571 if (!exclusive)
1572 anon_vma = anon_vma->root;
1574 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1575 page->mapping = (struct address_space *) anon_vma;
1576 page->index = linear_page_index(vma, address);
1579 void hugepage_add_anon_rmap(struct page *page,
1580 struct vm_area_struct *vma, unsigned long address)
1582 struct anon_vma *anon_vma = vma->anon_vma;
1583 int first;
1585 BUG_ON(!PageLocked(page));
1586 BUG_ON(!anon_vma);
1587 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1588 first = atomic_inc_and_test(&page->_mapcount);
1589 if (first)
1590 __hugepage_set_anon_rmap(page, vma, address, 0);
1593 void hugepage_add_new_anon_rmap(struct page *page,
1594 struct vm_area_struct *vma, unsigned long address)
1596 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1597 atomic_set(&page->_mapcount, 0);
1598 __hugepage_set_anon_rmap(page, vma, address, 1);
1600 #endif /* CONFIG_HUGETLB_PAGE */