2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
38 #include <linux/platform_device.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/slab.h>
44 #include <linux/timer.h>
46 #include "picoxcell_crypto_regs.h"
49 * The threshold for the number of entries in the CMD FIFO available before
50 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
51 * number of interrupts raised to the CPU.
53 #define CMD0_IRQ_THRESHOLD 1
56 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
57 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
58 * When there are packets in flight but lower than the threshold, we enable
59 * the timer and at expiry, attempt to remove any processed packets from the
60 * queue and if there are still packets left, schedule the timer again.
62 #define PACKET_TIMEOUT 1
64 /* The priority to register each algorithm with. */
65 #define SPACC_CRYPTO_ALG_PRIORITY 10000
67 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
68 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
69 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
70 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
71 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
72 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
73 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
74 #define SPACC_CRYPTO_L2_MAX_CTXS 128
75 #define SPACC_CRYPTO_L2_FIFO_SZ 128
77 #define MAX_DDT_LEN 16
79 /* DDT format. This must match the hardware DDT format exactly. */
86 * Asynchronous crypto request structure.
88 * This structure defines a request that is either queued for processing or
92 struct list_head list
;
93 struct spacc_engine
*engine
;
94 struct crypto_async_request
*req
;
98 dma_addr_t src_addr
, dst_addr
;
99 struct spacc_ddt
*src_ddt
, *dst_ddt
;
100 void (*complete
)(struct spacc_req
*req
);
102 /* AEAD specific bits. */
108 struct spacc_engine
{
110 struct list_head pending
;
114 struct list_head completed
;
115 struct list_head in_progress
;
116 struct tasklet_struct complete
;
117 unsigned long fifo_sz
;
118 void __iomem
*cipher_ctx_base
;
119 void __iomem
*hash_key_base
;
120 struct spacc_alg
*algs
;
122 struct list_head registered_algs
;
129 struct timer_list packet_timeout
;
130 unsigned stat_irq_thresh
;
131 struct dma_pool
*req_pool
;
134 /* Algorithm type mask. */
135 #define SPACC_CRYPTO_ALG_MASK 0x7
137 /* SPACC definition of a crypto algorithm. */
139 unsigned long ctrl_default
;
141 struct crypto_alg alg
;
142 struct spacc_engine
*engine
;
143 struct list_head entry
;
148 /* Generic context structure for any algorithm type. */
149 struct spacc_generic_ctx
{
150 struct spacc_engine
*engine
;
156 /* Block cipher context. */
157 struct spacc_ablk_ctx
{
158 struct spacc_generic_ctx generic
;
159 u8 key
[AES_MAX_KEY_SIZE
];
162 * The fallback cipher. If the operation can't be done in hardware,
163 * fallback to a software version.
165 struct crypto_ablkcipher
*sw_cipher
;
168 /* AEAD cipher context. */
169 struct spacc_aead_ctx
{
170 struct spacc_generic_ctx generic
;
171 u8 cipher_key
[AES_MAX_KEY_SIZE
];
172 u8 hash_ctx
[SPACC_CRYPTO_IPSEC_HASH_PG_SZ
];
175 struct crypto_aead
*sw_cipher
;
177 u8 salt
[AES_BLOCK_SIZE
];
180 static int spacc_ablk_submit(struct spacc_req
*req
);
182 static inline struct spacc_alg
*to_spacc_alg(struct crypto_alg
*alg
)
184 return alg
? container_of(alg
, struct spacc_alg
, alg
) : NULL
;
187 static inline int spacc_fifo_cmd_full(struct spacc_engine
*engine
)
189 u32 fifo_stat
= readl(engine
->regs
+ SPA_FIFO_STAT_REG_OFFSET
);
191 return fifo_stat
& SPA_FIFO_CMD_FULL
;
195 * Given a cipher context, and a context number, get the base address of the
198 * Returns the address of the context page where the key/context may
201 static inline void __iomem
*spacc_ctx_page_addr(struct spacc_generic_ctx
*ctx
,
205 return is_cipher_ctx
? ctx
->engine
->cipher_ctx_base
+
206 (indx
* ctx
->engine
->cipher_pg_sz
) :
207 ctx
->engine
->hash_key_base
+ (indx
* ctx
->engine
->hash_pg_sz
);
210 /* The context pages can only be written with 32-bit accesses. */
211 static inline void memcpy_toio32(u32 __iomem
*dst
, const void *src
,
214 const u32
*src32
= (const u32
*) src
;
217 writel(*src32
++, dst
++);
220 static void spacc_cipher_write_ctx(struct spacc_generic_ctx
*ctx
,
221 void __iomem
*page_addr
, const u8
*key
,
222 size_t key_len
, const u8
*iv
, size_t iv_len
)
224 void __iomem
*key_ptr
= page_addr
+ ctx
->key_offs
;
225 void __iomem
*iv_ptr
= page_addr
+ ctx
->iv_offs
;
227 memcpy_toio32(key_ptr
, key
, key_len
/ 4);
228 memcpy_toio32(iv_ptr
, iv
, iv_len
/ 4);
232 * Load a context into the engines context memory.
234 * Returns the index of the context page where the context was loaded.
236 static unsigned spacc_load_ctx(struct spacc_generic_ctx
*ctx
,
237 const u8
*ciph_key
, size_t ciph_len
,
238 const u8
*iv
, size_t ivlen
, const u8
*hash_key
,
241 unsigned indx
= ctx
->engine
->next_ctx
++;
242 void __iomem
*ciph_page_addr
, *hash_page_addr
;
244 ciph_page_addr
= spacc_ctx_page_addr(ctx
, indx
, 1);
245 hash_page_addr
= spacc_ctx_page_addr(ctx
, indx
, 0);
247 ctx
->engine
->next_ctx
&= ctx
->engine
->fifo_sz
- 1;
248 spacc_cipher_write_ctx(ctx
, ciph_page_addr
, ciph_key
, ciph_len
, iv
,
250 writel(ciph_len
| (indx
<< SPA_KEY_SZ_CTX_INDEX_OFFSET
) |
251 (1 << SPA_KEY_SZ_CIPHER_OFFSET
),
252 ctx
->engine
->regs
+ SPA_KEY_SZ_REG_OFFSET
);
255 memcpy_toio32(hash_page_addr
, hash_key
, hash_len
/ 4);
256 writel(hash_len
| (indx
<< SPA_KEY_SZ_CTX_INDEX_OFFSET
),
257 ctx
->engine
->regs
+ SPA_KEY_SZ_REG_OFFSET
);
263 /* Count the number of scatterlist entries in a scatterlist. */
264 static int sg_count(struct scatterlist
*sg_list
, int nbytes
)
266 struct scatterlist
*sg
= sg_list
;
271 nbytes
-= sg
->length
;
278 static inline void ddt_set(struct spacc_ddt
*ddt
, dma_addr_t phys
, size_t len
)
285 * Take a crypto request and scatterlists for the data and turn them into DDTs
286 * for passing to the crypto engines. This also DMA maps the data so that the
287 * crypto engines can DMA to/from them.
289 static struct spacc_ddt
*spacc_sg_to_ddt(struct spacc_engine
*engine
,
290 struct scatterlist
*payload
,
292 enum dma_data_direction dir
,
293 dma_addr_t
*ddt_phys
)
295 unsigned nents
, mapped_ents
;
296 struct scatterlist
*cur
;
297 struct spacc_ddt
*ddt
;
300 nents
= sg_count(payload
, nbytes
);
301 mapped_ents
= dma_map_sg(engine
->dev
, payload
, nents
, dir
);
303 if (mapped_ents
+ 1 > MAX_DDT_LEN
)
306 ddt
= dma_pool_alloc(engine
->req_pool
, GFP_ATOMIC
, ddt_phys
);
310 for_each_sg(payload
, cur
, mapped_ents
, i
)
311 ddt_set(&ddt
[i
], sg_dma_address(cur
), sg_dma_len(cur
));
312 ddt_set(&ddt
[mapped_ents
], 0, 0);
317 dma_unmap_sg(engine
->dev
, payload
, nents
, dir
);
321 static int spacc_aead_make_ddts(struct spacc_req
*req
, u8
*giv
)
323 struct aead_request
*areq
= container_of(req
->req
, struct aead_request
,
325 struct spacc_engine
*engine
= req
->engine
;
326 struct spacc_ddt
*src_ddt
, *dst_ddt
;
327 unsigned ivsize
= crypto_aead_ivsize(crypto_aead_reqtfm(areq
));
328 unsigned nents
= sg_count(areq
->src
, areq
->cryptlen
);
330 struct scatterlist
*cur
;
331 int i
, dst_ents
, src_ents
, assoc_ents
;
332 u8
*iv
= giv
? giv
: areq
->iv
;
334 src_ddt
= dma_pool_alloc(engine
->req_pool
, GFP_ATOMIC
, &req
->src_addr
);
338 dst_ddt
= dma_pool_alloc(engine
->req_pool
, GFP_ATOMIC
, &req
->dst_addr
);
340 dma_pool_free(engine
->req_pool
, src_ddt
, req
->src_addr
);
344 req
->src_ddt
= src_ddt
;
345 req
->dst_ddt
= dst_ddt
;
347 assoc_ents
= dma_map_sg(engine
->dev
, areq
->assoc
,
348 sg_count(areq
->assoc
, areq
->assoclen
), DMA_TO_DEVICE
);
349 if (areq
->src
!= areq
->dst
) {
350 src_ents
= dma_map_sg(engine
->dev
, areq
->src
, nents
,
352 dst_ents
= dma_map_sg(engine
->dev
, areq
->dst
, nents
,
355 src_ents
= dma_map_sg(engine
->dev
, areq
->src
, nents
,
361 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
362 * formed by the crypto block and sent as the ESP IV for IPSEC.
364 iv_addr
= dma_map_single(engine
->dev
, iv
, ivsize
,
365 giv
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
366 req
->giv_pa
= iv_addr
;
369 * Map the associated data. For decryption we don't copy the
372 for_each_sg(areq
->assoc
, cur
, assoc_ents
, i
) {
373 ddt_set(src_ddt
++, sg_dma_address(cur
), sg_dma_len(cur
));
375 ddt_set(dst_ddt
++, sg_dma_address(cur
),
378 ddt_set(src_ddt
++, iv_addr
, ivsize
);
380 if (giv
|| req
->is_encrypt
)
381 ddt_set(dst_ddt
++, iv_addr
, ivsize
);
384 * Now map in the payload for the source and destination and terminate
385 * with the NULL pointers.
387 for_each_sg(areq
->src
, cur
, src_ents
, i
) {
388 ddt_set(src_ddt
++, sg_dma_address(cur
), sg_dma_len(cur
));
389 if (areq
->src
== areq
->dst
)
390 ddt_set(dst_ddt
++, sg_dma_address(cur
),
394 for_each_sg(areq
->dst
, cur
, dst_ents
, i
)
395 ddt_set(dst_ddt
++, sg_dma_address(cur
),
398 ddt_set(src_ddt
, 0, 0);
399 ddt_set(dst_ddt
, 0, 0);
404 static void spacc_aead_free_ddts(struct spacc_req
*req
)
406 struct aead_request
*areq
= container_of(req
->req
, struct aead_request
,
408 struct spacc_alg
*alg
= to_spacc_alg(req
->req
->tfm
->__crt_alg
);
409 struct spacc_ablk_ctx
*aead_ctx
= crypto_tfm_ctx(req
->req
->tfm
);
410 struct spacc_engine
*engine
= aead_ctx
->generic
.engine
;
411 unsigned ivsize
= alg
->alg
.cra_aead
.ivsize
;
412 unsigned nents
= sg_count(areq
->src
, areq
->cryptlen
);
414 if (areq
->src
!= areq
->dst
) {
415 dma_unmap_sg(engine
->dev
, areq
->src
, nents
, DMA_TO_DEVICE
);
416 dma_unmap_sg(engine
->dev
, areq
->dst
,
417 sg_count(areq
->dst
, areq
->cryptlen
),
420 dma_unmap_sg(engine
->dev
, areq
->src
, nents
, DMA_BIDIRECTIONAL
);
422 dma_unmap_sg(engine
->dev
, areq
->assoc
,
423 sg_count(areq
->assoc
, areq
->assoclen
), DMA_TO_DEVICE
);
425 dma_unmap_single(engine
->dev
, req
->giv_pa
, ivsize
, DMA_BIDIRECTIONAL
);
427 dma_pool_free(engine
->req_pool
, req
->src_ddt
, req
->src_addr
);
428 dma_pool_free(engine
->req_pool
, req
->dst_ddt
, req
->dst_addr
);
431 static void spacc_free_ddt(struct spacc_req
*req
, struct spacc_ddt
*ddt
,
432 dma_addr_t ddt_addr
, struct scatterlist
*payload
,
433 unsigned nbytes
, enum dma_data_direction dir
)
435 unsigned nents
= sg_count(payload
, nbytes
);
437 dma_unmap_sg(req
->engine
->dev
, payload
, nents
, dir
);
438 dma_pool_free(req
->engine
->req_pool
, ddt
, ddt_addr
);
442 * Set key for a DES operation in an AEAD cipher. This also performs weak key
443 * checking if required.
445 static int spacc_aead_des_setkey(struct crypto_aead
*aead
, const u8
*key
,
448 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
449 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
450 u32 tmp
[DES_EXPKEY_WORDS
];
452 if (unlikely(!des_ekey(tmp
, key
)) &&
453 (crypto_aead_get_flags(aead
)) & CRYPTO_TFM_REQ_WEAK_KEY
) {
454 tfm
->crt_flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
458 memcpy(ctx
->cipher_key
, key
, len
);
459 ctx
->cipher_key_len
= len
;
464 /* Set the key for the AES block cipher component of the AEAD transform. */
465 static int spacc_aead_aes_setkey(struct crypto_aead
*aead
, const u8
*key
,
468 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
469 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
472 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473 * request for any other size (192 bits) then we need to do a software
476 if (len
!= AES_KEYSIZE_128
&& len
!= AES_KEYSIZE_256
) {
478 * Set the fallback transform to use the same request flags as
479 * the hardware transform.
481 ctx
->sw_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
482 ctx
->sw_cipher
->base
.crt_flags
|=
483 tfm
->crt_flags
& CRYPTO_TFM_REQ_MASK
;
484 return crypto_aead_setkey(ctx
->sw_cipher
, key
, len
);
487 memcpy(ctx
->cipher_key
, key
, len
);
488 ctx
->cipher_key_len
= len
;
493 static int spacc_aead_setkey(struct crypto_aead
*tfm
, const u8
*key
,
496 struct spacc_aead_ctx
*ctx
= crypto_aead_ctx(tfm
);
497 struct spacc_alg
*alg
= to_spacc_alg(tfm
->base
.__crt_alg
);
498 struct rtattr
*rta
= (void *)key
;
499 struct crypto_authenc_key_param
*param
;
500 unsigned int authkeylen
, enckeylen
;
503 if (!RTA_OK(rta
, keylen
))
506 if (rta
->rta_type
!= CRYPTO_AUTHENC_KEYA_PARAM
)
509 if (RTA_PAYLOAD(rta
) < sizeof(*param
))
512 param
= RTA_DATA(rta
);
513 enckeylen
= be32_to_cpu(param
->enckeylen
);
515 key
+= RTA_ALIGN(rta
->rta_len
);
516 keylen
-= RTA_ALIGN(rta
->rta_len
);
518 if (keylen
< enckeylen
)
521 authkeylen
= keylen
- enckeylen
;
523 if (enckeylen
> AES_MAX_KEY_SIZE
)
526 if ((alg
->ctrl_default
& SPACC_CRYPTO_ALG_MASK
) ==
527 SPA_CTRL_CIPH_ALG_AES
)
528 err
= spacc_aead_aes_setkey(tfm
, key
+ authkeylen
, enckeylen
);
530 err
= spacc_aead_des_setkey(tfm
, key
+ authkeylen
, enckeylen
);
535 memcpy(ctx
->hash_ctx
, key
, authkeylen
);
536 ctx
->hash_key_len
= authkeylen
;
541 crypto_aead_set_flags(tfm
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
545 static int spacc_aead_setauthsize(struct crypto_aead
*tfm
,
546 unsigned int authsize
)
548 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(crypto_aead_tfm(tfm
));
550 ctx
->auth_size
= authsize
;
556 * Check if an AEAD request requires a fallback operation. Some requests can't
557 * be completed in hardware because the hardware may not support certain key
558 * sizes. In these cases we need to complete the request in software.
560 static int spacc_aead_need_fallback(struct spacc_req
*req
)
562 struct aead_request
*aead_req
;
563 struct crypto_tfm
*tfm
= req
->req
->tfm
;
564 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
565 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
566 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
568 aead_req
= container_of(req
->req
, struct aead_request
, base
);
570 * If we have a non-supported key-length, then we need to do a
573 if ((spacc_alg
->ctrl_default
& SPACC_CRYPTO_ALG_MASK
) ==
574 SPA_CTRL_CIPH_ALG_AES
&&
575 ctx
->cipher_key_len
!= AES_KEYSIZE_128
&&
576 ctx
->cipher_key_len
!= AES_KEYSIZE_256
)
582 static int spacc_aead_do_fallback(struct aead_request
*req
, unsigned alg_type
,
585 struct crypto_tfm
*old_tfm
= crypto_aead_tfm(crypto_aead_reqtfm(req
));
586 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(old_tfm
);
589 if (ctx
->sw_cipher
) {
591 * Change the request to use the software fallback transform,
592 * and once the ciphering has completed, put the old transform
593 * back into the request.
595 aead_request_set_tfm(req
, ctx
->sw_cipher
);
596 err
= is_encrypt
? crypto_aead_encrypt(req
) :
597 crypto_aead_decrypt(req
);
598 aead_request_set_tfm(req
, __crypto_aead_cast(old_tfm
));
605 static void spacc_aead_complete(struct spacc_req
*req
)
607 spacc_aead_free_ddts(req
);
608 req
->req
->complete(req
->req
, req
->result
);
611 static int spacc_aead_submit(struct spacc_req
*req
)
613 struct crypto_tfm
*tfm
= req
->req
->tfm
;
614 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
615 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
616 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
617 struct spacc_engine
*engine
= ctx
->generic
.engine
;
618 u32 ctrl
, proc_len
, assoc_len
;
619 struct aead_request
*aead_req
=
620 container_of(req
->req
, struct aead_request
, base
);
622 req
->result
= -EINPROGRESS
;
623 req
->ctx_id
= spacc_load_ctx(&ctx
->generic
, ctx
->cipher_key
,
624 ctx
->cipher_key_len
, aead_req
->iv
, alg
->cra_aead
.ivsize
,
625 ctx
->hash_ctx
, ctx
->hash_key_len
);
627 /* Set the source and destination DDT pointers. */
628 writel(req
->src_addr
, engine
->regs
+ SPA_SRC_PTR_REG_OFFSET
);
629 writel(req
->dst_addr
, engine
->regs
+ SPA_DST_PTR_REG_OFFSET
);
630 writel(0, engine
->regs
+ SPA_OFFSET_REG_OFFSET
);
632 assoc_len
= aead_req
->assoclen
;
633 proc_len
= aead_req
->cryptlen
+ assoc_len
;
636 * If we aren't generating an IV, then we need to include the IV in the
637 * associated data so that it is included in the hash.
640 assoc_len
+= crypto_aead_ivsize(crypto_aead_reqtfm(aead_req
));
641 proc_len
+= crypto_aead_ivsize(crypto_aead_reqtfm(aead_req
));
643 proc_len
+= req
->giv_len
;
646 * If we are decrypting, we need to take the length of the ICV out of
647 * the processing length.
649 if (!req
->is_encrypt
)
650 proc_len
-= ctx
->auth_size
;
652 writel(proc_len
, engine
->regs
+ SPA_PROC_LEN_REG_OFFSET
);
653 writel(assoc_len
, engine
->regs
+ SPA_AAD_LEN_REG_OFFSET
);
654 writel(ctx
->auth_size
, engine
->regs
+ SPA_ICV_LEN_REG_OFFSET
);
655 writel(0, engine
->regs
+ SPA_ICV_OFFSET_REG_OFFSET
);
656 writel(0, engine
->regs
+ SPA_AUX_INFO_REG_OFFSET
);
658 ctrl
= spacc_alg
->ctrl_default
| (req
->ctx_id
<< SPA_CTRL_CTX_IDX
) |
659 (1 << SPA_CTRL_ICV_APPEND
);
661 ctrl
|= (1 << SPA_CTRL_ENCRYPT_IDX
) | (1 << SPA_CTRL_AAD_COPY
);
663 ctrl
|= (1 << SPA_CTRL_KEY_EXP
);
665 mod_timer(&engine
->packet_timeout
, jiffies
+ PACKET_TIMEOUT
);
667 writel(ctrl
, engine
->regs
+ SPA_CTRL_REG_OFFSET
);
672 static int spacc_req_submit(struct spacc_req
*req
);
674 static void spacc_push(struct spacc_engine
*engine
)
676 struct spacc_req
*req
;
678 while (!list_empty(&engine
->pending
) &&
679 engine
->in_flight
+ 1 <= engine
->fifo_sz
) {
682 req
= list_first_entry(&engine
->pending
, struct spacc_req
,
684 list_move_tail(&req
->list
, &engine
->in_progress
);
686 req
->result
= spacc_req_submit(req
);
691 * Setup an AEAD request for processing. This will configure the engine, load
692 * the context and then start the packet processing.
694 * @giv Pointer to destination address for a generated IV. If the
695 * request does not need to generate an IV then this should be set to NULL.
697 static int spacc_aead_setup(struct aead_request
*req
, u8
*giv
,
698 unsigned alg_type
, bool is_encrypt
)
700 struct crypto_alg
*alg
= req
->base
.tfm
->__crt_alg
;
701 struct spacc_engine
*engine
= to_spacc_alg(alg
)->engine
;
702 struct spacc_req
*dev_req
= aead_request_ctx(req
);
703 int err
= -EINPROGRESS
;
705 unsigned ivsize
= crypto_aead_ivsize(crypto_aead_reqtfm(req
));
708 dev_req
->giv_len
= ivsize
;
709 dev_req
->req
= &req
->base
;
710 dev_req
->is_encrypt
= is_encrypt
;
711 dev_req
->result
= -EBUSY
;
712 dev_req
->engine
= engine
;
713 dev_req
->complete
= spacc_aead_complete
;
715 if (unlikely(spacc_aead_need_fallback(dev_req
)))
716 return spacc_aead_do_fallback(req
, alg_type
, is_encrypt
);
718 spacc_aead_make_ddts(dev_req
, dev_req
->giv
);
721 spin_lock_irqsave(&engine
->hw_lock
, flags
);
722 if (unlikely(spacc_fifo_cmd_full(engine
)) ||
723 engine
->in_flight
+ 1 > engine
->fifo_sz
) {
724 if (!(req
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)) {
726 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
729 list_add_tail(&dev_req
->list
, &engine
->pending
);
731 list_add_tail(&dev_req
->list
, &engine
->pending
);
734 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
739 spacc_aead_free_ddts(dev_req
);
744 static int spacc_aead_encrypt(struct aead_request
*req
)
746 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
747 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
748 struct spacc_alg
*alg
= to_spacc_alg(tfm
->__crt_alg
);
750 return spacc_aead_setup(req
, NULL
, alg
->type
, 1);
753 static int spacc_aead_givencrypt(struct aead_givcrypt_request
*req
)
755 struct crypto_aead
*tfm
= aead_givcrypt_reqtfm(req
);
756 struct spacc_aead_ctx
*ctx
= crypto_aead_ctx(tfm
);
757 size_t ivsize
= crypto_aead_ivsize(tfm
);
758 struct spacc_alg
*alg
= to_spacc_alg(tfm
->base
.__crt_alg
);
762 memcpy(req
->areq
.iv
, ctx
->salt
, ivsize
);
764 if (ivsize
> sizeof(u64
)) {
765 memset(req
->giv
, 0, ivsize
- sizeof(u64
));
768 seq
= cpu_to_be64(req
->seq
);
769 memcpy(req
->giv
+ ivsize
- len
, &seq
, len
);
771 return spacc_aead_setup(&req
->areq
, req
->giv
, alg
->type
, 1);
774 static int spacc_aead_decrypt(struct aead_request
*req
)
776 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
777 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
778 struct spacc_alg
*alg
= to_spacc_alg(tfm
->__crt_alg
);
780 return spacc_aead_setup(req
, NULL
, alg
->type
, 0);
784 * Initialise a new AEAD context. This is responsible for allocating the
785 * fallback cipher and initialising the context.
787 static int spacc_aead_cra_init(struct crypto_tfm
*tfm
)
789 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
790 struct crypto_alg
*alg
= tfm
->__crt_alg
;
791 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
792 struct spacc_engine
*engine
= spacc_alg
->engine
;
794 ctx
->generic
.flags
= spacc_alg
->type
;
795 ctx
->generic
.engine
= engine
;
796 ctx
->sw_cipher
= crypto_alloc_aead(alg
->cra_name
, 0,
798 CRYPTO_ALG_NEED_FALLBACK
);
799 if (IS_ERR(ctx
->sw_cipher
)) {
800 dev_warn(engine
->dev
, "failed to allocate fallback for %s\n",
802 ctx
->sw_cipher
= NULL
;
804 ctx
->generic
.key_offs
= spacc_alg
->key_offs
;
805 ctx
->generic
.iv_offs
= spacc_alg
->iv_offs
;
807 get_random_bytes(ctx
->salt
, sizeof(ctx
->salt
));
809 tfm
->crt_aead
.reqsize
= sizeof(struct spacc_req
);
815 * Destructor for an AEAD context. This is called when the transform is freed
816 * and must free the fallback cipher.
818 static void spacc_aead_cra_exit(struct crypto_tfm
*tfm
)
820 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
823 crypto_free_aead(ctx
->sw_cipher
);
824 ctx
->sw_cipher
= NULL
;
828 * Set the DES key for a block cipher transform. This also performs weak key
829 * checking if the transform has requested it.
831 static int spacc_des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
834 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
835 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
836 u32 tmp
[DES_EXPKEY_WORDS
];
838 if (len
> DES3_EDE_KEY_SIZE
) {
839 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
843 if (unlikely(!des_ekey(tmp
, key
)) &&
844 (crypto_ablkcipher_get_flags(cipher
) & CRYPTO_TFM_REQ_WEAK_KEY
)) {
845 tfm
->crt_flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
849 memcpy(ctx
->key
, key
, len
);
856 * Set the key for an AES block cipher. Some key lengths are not supported in
857 * hardware so this must also check whether a fallback is needed.
859 static int spacc_aes_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
862 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
863 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
866 if (len
> AES_MAX_KEY_SIZE
) {
867 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
872 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
873 * request for any other size (192 bits) then we need to do a software
876 if ((len
!= AES_KEYSIZE_128
|| len
!= AES_KEYSIZE_256
) &&
879 * Set the fallback transform to use the same request flags as
880 * the hardware transform.
882 ctx
->sw_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
883 ctx
->sw_cipher
->base
.crt_flags
|=
884 cipher
->base
.crt_flags
& CRYPTO_TFM_REQ_MASK
;
886 err
= crypto_ablkcipher_setkey(ctx
->sw_cipher
, key
, len
);
888 goto sw_setkey_failed
;
889 } else if ((len
!= AES_KEYSIZE_128
|| len
!= AES_KEYSIZE_256
) &&
893 memcpy(ctx
->key
, key
, len
);
897 if (err
&& ctx
->sw_cipher
) {
898 tfm
->crt_flags
&= ~CRYPTO_TFM_RES_MASK
;
900 ctx
->sw_cipher
->base
.crt_flags
& CRYPTO_TFM_RES_MASK
;
906 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher
*cipher
,
907 const u8
*key
, unsigned int len
)
909 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
910 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
913 if (len
> AES_MAX_KEY_SIZE
) {
914 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
919 memcpy(ctx
->key
, key
, len
);
926 static int spacc_ablk_need_fallback(struct spacc_req
*req
)
928 struct spacc_ablk_ctx
*ctx
;
929 struct crypto_tfm
*tfm
= req
->req
->tfm
;
930 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
931 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
933 ctx
= crypto_tfm_ctx(tfm
);
935 return (spacc_alg
->ctrl_default
& SPACC_CRYPTO_ALG_MASK
) ==
936 SPA_CTRL_CIPH_ALG_AES
&&
937 ctx
->key_len
!= AES_KEYSIZE_128
&&
938 ctx
->key_len
!= AES_KEYSIZE_256
;
941 static void spacc_ablk_complete(struct spacc_req
*req
)
943 struct ablkcipher_request
*ablk_req
=
944 container_of(req
->req
, struct ablkcipher_request
, base
);
946 if (ablk_req
->src
!= ablk_req
->dst
) {
947 spacc_free_ddt(req
, req
->src_ddt
, req
->src_addr
, ablk_req
->src
,
948 ablk_req
->nbytes
, DMA_TO_DEVICE
);
949 spacc_free_ddt(req
, req
->dst_ddt
, req
->dst_addr
, ablk_req
->dst
,
950 ablk_req
->nbytes
, DMA_FROM_DEVICE
);
952 spacc_free_ddt(req
, req
->dst_ddt
, req
->dst_addr
, ablk_req
->dst
,
953 ablk_req
->nbytes
, DMA_BIDIRECTIONAL
);
955 req
->req
->complete(req
->req
, req
->result
);
958 static int spacc_ablk_submit(struct spacc_req
*req
)
960 struct crypto_tfm
*tfm
= req
->req
->tfm
;
961 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
962 struct ablkcipher_request
*ablk_req
= ablkcipher_request_cast(req
->req
);
963 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
964 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
965 struct spacc_engine
*engine
= ctx
->generic
.engine
;
968 req
->ctx_id
= spacc_load_ctx(&ctx
->generic
, ctx
->key
,
969 ctx
->key_len
, ablk_req
->info
, alg
->cra_ablkcipher
.ivsize
,
972 writel(req
->src_addr
, engine
->regs
+ SPA_SRC_PTR_REG_OFFSET
);
973 writel(req
->dst_addr
, engine
->regs
+ SPA_DST_PTR_REG_OFFSET
);
974 writel(0, engine
->regs
+ SPA_OFFSET_REG_OFFSET
);
976 writel(ablk_req
->nbytes
, engine
->regs
+ SPA_PROC_LEN_REG_OFFSET
);
977 writel(0, engine
->regs
+ SPA_ICV_OFFSET_REG_OFFSET
);
978 writel(0, engine
->regs
+ SPA_AUX_INFO_REG_OFFSET
);
979 writel(0, engine
->regs
+ SPA_AAD_LEN_REG_OFFSET
);
981 ctrl
= spacc_alg
->ctrl_default
| (req
->ctx_id
<< SPA_CTRL_CTX_IDX
) |
982 (req
->is_encrypt
? (1 << SPA_CTRL_ENCRYPT_IDX
) :
983 (1 << SPA_CTRL_KEY_EXP
));
985 mod_timer(&engine
->packet_timeout
, jiffies
+ PACKET_TIMEOUT
);
987 writel(ctrl
, engine
->regs
+ SPA_CTRL_REG_OFFSET
);
992 static int spacc_ablk_do_fallback(struct ablkcipher_request
*req
,
993 unsigned alg_type
, bool is_encrypt
)
995 struct crypto_tfm
*old_tfm
=
996 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req
));
997 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(old_tfm
);
1000 if (!ctx
->sw_cipher
)
1004 * Change the request to use the software fallback transform, and once
1005 * the ciphering has completed, put the old transform back into the
1008 ablkcipher_request_set_tfm(req
, ctx
->sw_cipher
);
1009 err
= is_encrypt
? crypto_ablkcipher_encrypt(req
) :
1010 crypto_ablkcipher_decrypt(req
);
1011 ablkcipher_request_set_tfm(req
, __crypto_ablkcipher_cast(old_tfm
));
1016 static int spacc_ablk_setup(struct ablkcipher_request
*req
, unsigned alg_type
,
1019 struct crypto_alg
*alg
= req
->base
.tfm
->__crt_alg
;
1020 struct spacc_engine
*engine
= to_spacc_alg(alg
)->engine
;
1021 struct spacc_req
*dev_req
= ablkcipher_request_ctx(req
);
1022 unsigned long flags
;
1025 dev_req
->req
= &req
->base
;
1026 dev_req
->is_encrypt
= is_encrypt
;
1027 dev_req
->engine
= engine
;
1028 dev_req
->complete
= spacc_ablk_complete
;
1029 dev_req
->result
= -EINPROGRESS
;
1031 if (unlikely(spacc_ablk_need_fallback(dev_req
)))
1032 return spacc_ablk_do_fallback(req
, alg_type
, is_encrypt
);
1035 * Create the DDT's for the engine. If we share the same source and
1036 * destination then we can optimize by reusing the DDT's.
1038 if (req
->src
!= req
->dst
) {
1039 dev_req
->src_ddt
= spacc_sg_to_ddt(engine
, req
->src
,
1040 req
->nbytes
, DMA_TO_DEVICE
, &dev_req
->src_addr
);
1041 if (!dev_req
->src_ddt
)
1044 dev_req
->dst_ddt
= spacc_sg_to_ddt(engine
, req
->dst
,
1045 req
->nbytes
, DMA_FROM_DEVICE
, &dev_req
->dst_addr
);
1046 if (!dev_req
->dst_ddt
)
1049 dev_req
->dst_ddt
= spacc_sg_to_ddt(engine
, req
->dst
,
1050 req
->nbytes
, DMA_BIDIRECTIONAL
, &dev_req
->dst_addr
);
1051 if (!dev_req
->dst_ddt
)
1054 dev_req
->src_ddt
= NULL
;
1055 dev_req
->src_addr
= dev_req
->dst_addr
;
1059 spin_lock_irqsave(&engine
->hw_lock
, flags
);
1061 * Check if the engine will accept the operation now. If it won't then
1062 * we either stick it on the end of a pending list if we can backlog,
1063 * or bailout with an error if not.
1065 if (unlikely(spacc_fifo_cmd_full(engine
)) ||
1066 engine
->in_flight
+ 1 > engine
->fifo_sz
) {
1067 if (!(req
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)) {
1069 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1072 list_add_tail(&dev_req
->list
, &engine
->pending
);
1074 list_add_tail(&dev_req
->list
, &engine
->pending
);
1077 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1082 spacc_free_ddt(dev_req
, dev_req
->dst_ddt
, dev_req
->dst_addr
, req
->dst
,
1083 req
->nbytes
, req
->src
== req
->dst
?
1084 DMA_BIDIRECTIONAL
: DMA_FROM_DEVICE
);
1086 if (req
->src
!= req
->dst
)
1087 spacc_free_ddt(dev_req
, dev_req
->src_ddt
, dev_req
->src_addr
,
1088 req
->src
, req
->nbytes
, DMA_TO_DEVICE
);
1093 static int spacc_ablk_cra_init(struct crypto_tfm
*tfm
)
1095 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1096 struct crypto_alg
*alg
= tfm
->__crt_alg
;
1097 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
1098 struct spacc_engine
*engine
= spacc_alg
->engine
;
1100 ctx
->generic
.flags
= spacc_alg
->type
;
1101 ctx
->generic
.engine
= engine
;
1102 if (alg
->cra_flags
& CRYPTO_ALG_NEED_FALLBACK
) {
1103 ctx
->sw_cipher
= crypto_alloc_ablkcipher(alg
->cra_name
, 0,
1104 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_NEED_FALLBACK
);
1105 if (IS_ERR(ctx
->sw_cipher
)) {
1106 dev_warn(engine
->dev
, "failed to allocate fallback for %s\n",
1108 ctx
->sw_cipher
= NULL
;
1111 ctx
->generic
.key_offs
= spacc_alg
->key_offs
;
1112 ctx
->generic
.iv_offs
= spacc_alg
->iv_offs
;
1114 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct spacc_req
);
1119 static void spacc_ablk_cra_exit(struct crypto_tfm
*tfm
)
1121 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1124 crypto_free_ablkcipher(ctx
->sw_cipher
);
1125 ctx
->sw_cipher
= NULL
;
1128 static int spacc_ablk_encrypt(struct ablkcipher_request
*req
)
1130 struct crypto_ablkcipher
*cipher
= crypto_ablkcipher_reqtfm(req
);
1131 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
1132 struct spacc_alg
*alg
= to_spacc_alg(tfm
->__crt_alg
);
1134 return spacc_ablk_setup(req
, alg
->type
, 1);
1137 static int spacc_ablk_decrypt(struct ablkcipher_request
*req
)
1139 struct crypto_ablkcipher
*cipher
= crypto_ablkcipher_reqtfm(req
);
1140 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
1141 struct spacc_alg
*alg
= to_spacc_alg(tfm
->__crt_alg
);
1143 return spacc_ablk_setup(req
, alg
->type
, 0);
1146 static inline int spacc_fifo_stat_empty(struct spacc_engine
*engine
)
1148 return readl(engine
->regs
+ SPA_FIFO_STAT_REG_OFFSET
) &
1149 SPA_FIFO_STAT_EMPTY
;
1152 static void spacc_process_done(struct spacc_engine
*engine
)
1154 struct spacc_req
*req
;
1155 unsigned long flags
;
1157 spin_lock_irqsave(&engine
->hw_lock
, flags
);
1159 while (!spacc_fifo_stat_empty(engine
)) {
1160 req
= list_first_entry(&engine
->in_progress
, struct spacc_req
,
1162 list_move_tail(&req
->list
, &engine
->completed
);
1163 --engine
->in_flight
;
1165 /* POP the status register. */
1166 writel(~0, engine
->regs
+ SPA_STAT_POP_REG_OFFSET
);
1167 req
->result
= (readl(engine
->regs
+ SPA_STATUS_REG_OFFSET
) &
1168 SPA_STATUS_RES_CODE_MASK
) >> SPA_STATUS_RES_CODE_OFFSET
;
1171 * Convert the SPAcc error status into the standard POSIX error
1174 if (unlikely(req
->result
)) {
1175 switch (req
->result
) {
1176 case SPA_STATUS_ICV_FAIL
:
1177 req
->result
= -EBADMSG
;
1180 case SPA_STATUS_MEMORY_ERROR
:
1181 dev_warn(engine
->dev
,
1182 "memory error triggered\n");
1183 req
->result
= -EFAULT
;
1186 case SPA_STATUS_BLOCK_ERROR
:
1187 dev_warn(engine
->dev
,
1188 "block error triggered\n");
1195 tasklet_schedule(&engine
->complete
);
1197 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1200 static irqreturn_t
spacc_spacc_irq(int irq
, void *dev
)
1202 struct spacc_engine
*engine
= (struct spacc_engine
*)dev
;
1203 u32 spacc_irq_stat
= readl(engine
->regs
+ SPA_IRQ_STAT_REG_OFFSET
);
1205 writel(spacc_irq_stat
, engine
->regs
+ SPA_IRQ_STAT_REG_OFFSET
);
1206 spacc_process_done(engine
);
1211 static void spacc_packet_timeout(unsigned long data
)
1213 struct spacc_engine
*engine
= (struct spacc_engine
*)data
;
1215 spacc_process_done(engine
);
1218 static int spacc_req_submit(struct spacc_req
*req
)
1220 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
1222 if (CRYPTO_ALG_TYPE_AEAD
== (CRYPTO_ALG_TYPE_MASK
& alg
->cra_flags
))
1223 return spacc_aead_submit(req
);
1225 return spacc_ablk_submit(req
);
1228 static void spacc_spacc_complete(unsigned long data
)
1230 struct spacc_engine
*engine
= (struct spacc_engine
*)data
;
1231 struct spacc_req
*req
, *tmp
;
1232 unsigned long flags
;
1233 LIST_HEAD(completed
);
1235 spin_lock_irqsave(&engine
->hw_lock
, flags
);
1237 list_splice_init(&engine
->completed
, &completed
);
1239 if (engine
->in_flight
)
1240 mod_timer(&engine
->packet_timeout
, jiffies
+ PACKET_TIMEOUT
);
1242 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1244 list_for_each_entry_safe(req
, tmp
, &completed
, list
) {
1245 list_del(&req
->list
);
1251 static int spacc_suspend(struct device
*dev
)
1253 struct platform_device
*pdev
= to_platform_device(dev
);
1254 struct spacc_engine
*engine
= platform_get_drvdata(pdev
);
1257 * We only support standby mode. All we have to do is gate the clock to
1258 * the spacc. The hardware will preserve state until we turn it back
1261 clk_disable(engine
->clk
);
1266 static int spacc_resume(struct device
*dev
)
1268 struct platform_device
*pdev
= to_platform_device(dev
);
1269 struct spacc_engine
*engine
= platform_get_drvdata(pdev
);
1271 return clk_enable(engine
->clk
);
1274 static const struct dev_pm_ops spacc_pm_ops
= {
1275 .suspend
= spacc_suspend
,
1276 .resume
= spacc_resume
,
1278 #endif /* CONFIG_PM */
1280 static inline struct spacc_engine
*spacc_dev_to_engine(struct device
*dev
)
1282 return dev
? platform_get_drvdata(to_platform_device(dev
)) : NULL
;
1285 static ssize_t
spacc_stat_irq_thresh_show(struct device
*dev
,
1286 struct device_attribute
*attr
,
1289 struct spacc_engine
*engine
= spacc_dev_to_engine(dev
);
1291 return snprintf(buf
, PAGE_SIZE
, "%u\n", engine
->stat_irq_thresh
);
1294 static ssize_t
spacc_stat_irq_thresh_store(struct device
*dev
,
1295 struct device_attribute
*attr
,
1296 const char *buf
, size_t len
)
1298 struct spacc_engine
*engine
= spacc_dev_to_engine(dev
);
1299 unsigned long thresh
;
1301 if (strict_strtoul(buf
, 0, &thresh
))
1304 thresh
= clamp(thresh
, 1UL, engine
->fifo_sz
- 1);
1306 engine
->stat_irq_thresh
= thresh
;
1307 writel(engine
->stat_irq_thresh
<< SPA_IRQ_CTRL_STAT_CNT_OFFSET
,
1308 engine
->regs
+ SPA_IRQ_CTRL_REG_OFFSET
);
1312 static DEVICE_ATTR(stat_irq_thresh
, 0644, spacc_stat_irq_thresh_show
,
1313 spacc_stat_irq_thresh_store
);
1315 static struct spacc_alg ipsec_engine_algs
[] = {
1317 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
,
1319 .iv_offs
= AES_MAX_KEY_SIZE
,
1321 .cra_name
= "cbc(aes)",
1322 .cra_driver_name
= "cbc-aes-picoxcell",
1323 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1324 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1326 CRYPTO_ALG_NEED_FALLBACK
,
1327 .cra_blocksize
= AES_BLOCK_SIZE
,
1328 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1329 .cra_type
= &crypto_ablkcipher_type
,
1330 .cra_module
= THIS_MODULE
,
1332 .setkey
= spacc_aes_setkey
,
1333 .encrypt
= spacc_ablk_encrypt
,
1334 .decrypt
= spacc_ablk_decrypt
,
1335 .min_keysize
= AES_MIN_KEY_SIZE
,
1336 .max_keysize
= AES_MAX_KEY_SIZE
,
1337 .ivsize
= AES_BLOCK_SIZE
,
1339 .cra_init
= spacc_ablk_cra_init
,
1340 .cra_exit
= spacc_ablk_cra_exit
,
1345 .iv_offs
= AES_MAX_KEY_SIZE
,
1346 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_ECB
,
1348 .cra_name
= "ecb(aes)",
1349 .cra_driver_name
= "ecb-aes-picoxcell",
1350 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1351 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1352 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_NEED_FALLBACK
,
1353 .cra_blocksize
= AES_BLOCK_SIZE
,
1354 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1355 .cra_type
= &crypto_ablkcipher_type
,
1356 .cra_module
= THIS_MODULE
,
1358 .setkey
= spacc_aes_setkey
,
1359 .encrypt
= spacc_ablk_encrypt
,
1360 .decrypt
= spacc_ablk_decrypt
,
1361 .min_keysize
= AES_MIN_KEY_SIZE
,
1362 .max_keysize
= AES_MAX_KEY_SIZE
,
1364 .cra_init
= spacc_ablk_cra_init
,
1365 .cra_exit
= spacc_ablk_cra_exit
,
1369 .key_offs
= DES_BLOCK_SIZE
,
1371 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_CBC
,
1373 .cra_name
= "cbc(des)",
1374 .cra_driver_name
= "cbc-des-picoxcell",
1375 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1376 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1377 .cra_blocksize
= DES_BLOCK_SIZE
,
1378 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1379 .cra_type
= &crypto_ablkcipher_type
,
1380 .cra_module
= THIS_MODULE
,
1382 .setkey
= spacc_des_setkey
,
1383 .encrypt
= spacc_ablk_encrypt
,
1384 .decrypt
= spacc_ablk_decrypt
,
1385 .min_keysize
= DES_KEY_SIZE
,
1386 .max_keysize
= DES_KEY_SIZE
,
1387 .ivsize
= DES_BLOCK_SIZE
,
1389 .cra_init
= spacc_ablk_cra_init
,
1390 .cra_exit
= spacc_ablk_cra_exit
,
1394 .key_offs
= DES_BLOCK_SIZE
,
1396 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_ECB
,
1398 .cra_name
= "ecb(des)",
1399 .cra_driver_name
= "ecb-des-picoxcell",
1400 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1401 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1402 .cra_blocksize
= DES_BLOCK_SIZE
,
1403 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1404 .cra_type
= &crypto_ablkcipher_type
,
1405 .cra_module
= THIS_MODULE
,
1407 .setkey
= spacc_des_setkey
,
1408 .encrypt
= spacc_ablk_encrypt
,
1409 .decrypt
= spacc_ablk_decrypt
,
1410 .min_keysize
= DES_KEY_SIZE
,
1411 .max_keysize
= DES_KEY_SIZE
,
1413 .cra_init
= spacc_ablk_cra_init
,
1414 .cra_exit
= spacc_ablk_cra_exit
,
1418 .key_offs
= DES_BLOCK_SIZE
,
1420 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_CBC
,
1422 .cra_name
= "cbc(des3_ede)",
1423 .cra_driver_name
= "cbc-des3-ede-picoxcell",
1424 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1425 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1426 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1427 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1428 .cra_type
= &crypto_ablkcipher_type
,
1429 .cra_module
= THIS_MODULE
,
1431 .setkey
= spacc_des_setkey
,
1432 .encrypt
= spacc_ablk_encrypt
,
1433 .decrypt
= spacc_ablk_decrypt
,
1434 .min_keysize
= DES3_EDE_KEY_SIZE
,
1435 .max_keysize
= DES3_EDE_KEY_SIZE
,
1436 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1438 .cra_init
= spacc_ablk_cra_init
,
1439 .cra_exit
= spacc_ablk_cra_exit
,
1443 .key_offs
= DES_BLOCK_SIZE
,
1445 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_ECB
,
1447 .cra_name
= "ecb(des3_ede)",
1448 .cra_driver_name
= "ecb-des3-ede-picoxcell",
1449 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1450 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1451 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1452 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1453 .cra_type
= &crypto_ablkcipher_type
,
1454 .cra_module
= THIS_MODULE
,
1456 .setkey
= spacc_des_setkey
,
1457 .encrypt
= spacc_ablk_encrypt
,
1458 .decrypt
= spacc_ablk_decrypt
,
1459 .min_keysize
= DES3_EDE_KEY_SIZE
,
1460 .max_keysize
= DES3_EDE_KEY_SIZE
,
1462 .cra_init
= spacc_ablk_cra_init
,
1463 .cra_exit
= spacc_ablk_cra_exit
,
1467 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
|
1468 SPA_CTRL_HASH_ALG_SHA
| SPA_CTRL_HASH_MODE_HMAC
,
1470 .iv_offs
= AES_MAX_KEY_SIZE
,
1472 .cra_name
= "authenc(hmac(sha1),cbc(aes))",
1473 .cra_driver_name
= "authenc-hmac-sha1-cbc-aes-picoxcell",
1474 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1475 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1476 .cra_blocksize
= AES_BLOCK_SIZE
,
1477 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1478 .cra_type
= &crypto_aead_type
,
1479 .cra_module
= THIS_MODULE
,
1481 .setkey
= spacc_aead_setkey
,
1482 .setauthsize
= spacc_aead_setauthsize
,
1483 .encrypt
= spacc_aead_encrypt
,
1484 .decrypt
= spacc_aead_decrypt
,
1485 .givencrypt
= spacc_aead_givencrypt
,
1486 .ivsize
= AES_BLOCK_SIZE
,
1487 .maxauthsize
= SHA1_DIGEST_SIZE
,
1489 .cra_init
= spacc_aead_cra_init
,
1490 .cra_exit
= spacc_aead_cra_exit
,
1494 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
|
1495 SPA_CTRL_HASH_ALG_SHA256
|
1496 SPA_CTRL_HASH_MODE_HMAC
,
1498 .iv_offs
= AES_MAX_KEY_SIZE
,
1500 .cra_name
= "authenc(hmac(sha256),cbc(aes))",
1501 .cra_driver_name
= "authenc-hmac-sha256-cbc-aes-picoxcell",
1502 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1503 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1504 .cra_blocksize
= AES_BLOCK_SIZE
,
1505 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1506 .cra_type
= &crypto_aead_type
,
1507 .cra_module
= THIS_MODULE
,
1509 .setkey
= spacc_aead_setkey
,
1510 .setauthsize
= spacc_aead_setauthsize
,
1511 .encrypt
= spacc_aead_encrypt
,
1512 .decrypt
= spacc_aead_decrypt
,
1513 .givencrypt
= spacc_aead_givencrypt
,
1514 .ivsize
= AES_BLOCK_SIZE
,
1515 .maxauthsize
= SHA256_DIGEST_SIZE
,
1517 .cra_init
= spacc_aead_cra_init
,
1518 .cra_exit
= spacc_aead_cra_exit
,
1523 .iv_offs
= AES_MAX_KEY_SIZE
,
1524 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
|
1525 SPA_CTRL_HASH_ALG_MD5
| SPA_CTRL_HASH_MODE_HMAC
,
1527 .cra_name
= "authenc(hmac(md5),cbc(aes))",
1528 .cra_driver_name
= "authenc-hmac-md5-cbc-aes-picoxcell",
1529 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1530 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1531 .cra_blocksize
= AES_BLOCK_SIZE
,
1532 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1533 .cra_type
= &crypto_aead_type
,
1534 .cra_module
= THIS_MODULE
,
1536 .setkey
= spacc_aead_setkey
,
1537 .setauthsize
= spacc_aead_setauthsize
,
1538 .encrypt
= spacc_aead_encrypt
,
1539 .decrypt
= spacc_aead_decrypt
,
1540 .givencrypt
= spacc_aead_givencrypt
,
1541 .ivsize
= AES_BLOCK_SIZE
,
1542 .maxauthsize
= MD5_DIGEST_SIZE
,
1544 .cra_init
= spacc_aead_cra_init
,
1545 .cra_exit
= spacc_aead_cra_exit
,
1549 .key_offs
= DES_BLOCK_SIZE
,
1551 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_CBC
|
1552 SPA_CTRL_HASH_ALG_SHA
| SPA_CTRL_HASH_MODE_HMAC
,
1554 .cra_name
= "authenc(hmac(sha1),cbc(des3_ede))",
1555 .cra_driver_name
= "authenc-hmac-sha1-cbc-3des-picoxcell",
1556 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1557 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1558 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1559 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1560 .cra_type
= &crypto_aead_type
,
1561 .cra_module
= THIS_MODULE
,
1563 .setkey
= spacc_aead_setkey
,
1564 .setauthsize
= spacc_aead_setauthsize
,
1565 .encrypt
= spacc_aead_encrypt
,
1566 .decrypt
= spacc_aead_decrypt
,
1567 .givencrypt
= spacc_aead_givencrypt
,
1568 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1569 .maxauthsize
= SHA1_DIGEST_SIZE
,
1571 .cra_init
= spacc_aead_cra_init
,
1572 .cra_exit
= spacc_aead_cra_exit
,
1576 .key_offs
= DES_BLOCK_SIZE
,
1578 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
|
1579 SPA_CTRL_HASH_ALG_SHA256
|
1580 SPA_CTRL_HASH_MODE_HMAC
,
1582 .cra_name
= "authenc(hmac(sha256),cbc(des3_ede))",
1583 .cra_driver_name
= "authenc-hmac-sha256-cbc-3des-picoxcell",
1584 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1585 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1586 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1587 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1588 .cra_type
= &crypto_aead_type
,
1589 .cra_module
= THIS_MODULE
,
1591 .setkey
= spacc_aead_setkey
,
1592 .setauthsize
= spacc_aead_setauthsize
,
1593 .encrypt
= spacc_aead_encrypt
,
1594 .decrypt
= spacc_aead_decrypt
,
1595 .givencrypt
= spacc_aead_givencrypt
,
1596 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1597 .maxauthsize
= SHA256_DIGEST_SIZE
,
1599 .cra_init
= spacc_aead_cra_init
,
1600 .cra_exit
= spacc_aead_cra_exit
,
1604 .key_offs
= DES_BLOCK_SIZE
,
1606 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_CBC
|
1607 SPA_CTRL_HASH_ALG_MD5
| SPA_CTRL_HASH_MODE_HMAC
,
1609 .cra_name
= "authenc(hmac(md5),cbc(des3_ede))",
1610 .cra_driver_name
= "authenc-hmac-md5-cbc-3des-picoxcell",
1611 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1612 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1613 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1614 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1615 .cra_type
= &crypto_aead_type
,
1616 .cra_module
= THIS_MODULE
,
1618 .setkey
= spacc_aead_setkey
,
1619 .setauthsize
= spacc_aead_setauthsize
,
1620 .encrypt
= spacc_aead_encrypt
,
1621 .decrypt
= spacc_aead_decrypt
,
1622 .givencrypt
= spacc_aead_givencrypt
,
1623 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1624 .maxauthsize
= MD5_DIGEST_SIZE
,
1626 .cra_init
= spacc_aead_cra_init
,
1627 .cra_exit
= spacc_aead_cra_exit
,
1632 static struct spacc_alg l2_engine_algs
[] = {
1635 .iv_offs
= SPACC_CRYPTO_KASUMI_F8_KEY_LEN
,
1636 .ctrl_default
= SPA_CTRL_CIPH_ALG_KASUMI
|
1637 SPA_CTRL_CIPH_MODE_F8
,
1639 .cra_name
= "f8(kasumi)",
1640 .cra_driver_name
= "f8-kasumi-picoxcell",
1641 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1642 .cra_flags
= CRYPTO_ALG_TYPE_GIVCIPHER
| CRYPTO_ALG_ASYNC
,
1644 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1645 .cra_type
= &crypto_ablkcipher_type
,
1646 .cra_module
= THIS_MODULE
,
1648 .setkey
= spacc_kasumi_f8_setkey
,
1649 .encrypt
= spacc_ablk_encrypt
,
1650 .decrypt
= spacc_ablk_decrypt
,
1655 .cra_init
= spacc_ablk_cra_init
,
1656 .cra_exit
= spacc_ablk_cra_exit
,
1662 static const struct of_device_id spacc_of_id_table
[] = {
1663 { .compatible
= "picochip,spacc-ipsec" },
1664 { .compatible
= "picochip,spacc-l2" },
1667 #else /* CONFIG_OF */
1668 #define spacc_of_id_table NULL
1669 #endif /* CONFIG_OF */
1671 static bool spacc_is_compatible(struct platform_device
*pdev
,
1672 const char *spacc_type
)
1674 const struct platform_device_id
*platid
= platform_get_device_id(pdev
);
1676 if (platid
&& !strcmp(platid
->name
, spacc_type
))
1680 if (of_device_is_compatible(pdev
->dev
.of_node
, spacc_type
))
1682 #endif /* CONFIG_OF */
1687 static int __devinit
spacc_probe(struct platform_device
*pdev
)
1689 int i
, err
, ret
= -EINVAL
;
1690 struct resource
*mem
, *irq
;
1691 struct spacc_engine
*engine
= devm_kzalloc(&pdev
->dev
, sizeof(*engine
),
1696 if (spacc_is_compatible(pdev
, "picochip,spacc-ipsec")) {
1697 engine
->max_ctxs
= SPACC_CRYPTO_IPSEC_MAX_CTXS
;
1698 engine
->cipher_pg_sz
= SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ
;
1699 engine
->hash_pg_sz
= SPACC_CRYPTO_IPSEC_HASH_PG_SZ
;
1700 engine
->fifo_sz
= SPACC_CRYPTO_IPSEC_FIFO_SZ
;
1701 engine
->algs
= ipsec_engine_algs
;
1702 engine
->num_algs
= ARRAY_SIZE(ipsec_engine_algs
);
1703 } else if (spacc_is_compatible(pdev
, "picochip,spacc-l2")) {
1704 engine
->max_ctxs
= SPACC_CRYPTO_L2_MAX_CTXS
;
1705 engine
->cipher_pg_sz
= SPACC_CRYPTO_L2_CIPHER_PG_SZ
;
1706 engine
->hash_pg_sz
= SPACC_CRYPTO_L2_HASH_PG_SZ
;
1707 engine
->fifo_sz
= SPACC_CRYPTO_L2_FIFO_SZ
;
1708 engine
->algs
= l2_engine_algs
;
1709 engine
->num_algs
= ARRAY_SIZE(l2_engine_algs
);
1714 engine
->name
= dev_name(&pdev
->dev
);
1716 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1717 irq
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
1719 dev_err(&pdev
->dev
, "no memory/irq resource for engine\n");
1723 if (!devm_request_mem_region(&pdev
->dev
, mem
->start
, resource_size(mem
),
1727 engine
->regs
= devm_ioremap(&pdev
->dev
, mem
->start
, resource_size(mem
));
1728 if (!engine
->regs
) {
1729 dev_err(&pdev
->dev
, "memory map failed\n");
1733 if (devm_request_irq(&pdev
->dev
, irq
->start
, spacc_spacc_irq
, 0,
1734 engine
->name
, engine
)) {
1735 dev_err(engine
->dev
, "failed to request IRQ\n");
1739 engine
->dev
= &pdev
->dev
;
1740 engine
->cipher_ctx_base
= engine
->regs
+ SPA_CIPH_KEY_BASE_REG_OFFSET
;
1741 engine
->hash_key_base
= engine
->regs
+ SPA_HASH_KEY_BASE_REG_OFFSET
;
1743 engine
->req_pool
= dmam_pool_create(engine
->name
, engine
->dev
,
1744 MAX_DDT_LEN
* sizeof(struct spacc_ddt
), 8, SZ_64K
);
1745 if (!engine
->req_pool
)
1748 spin_lock_init(&engine
->hw_lock
);
1750 engine
->clk
= clk_get(&pdev
->dev
, "ref");
1751 if (IS_ERR(engine
->clk
)) {
1752 dev_info(&pdev
->dev
, "clk unavailable\n");
1753 device_remove_file(&pdev
->dev
, &dev_attr_stat_irq_thresh
);
1754 return PTR_ERR(engine
->clk
);
1757 if (clk_enable(engine
->clk
)) {
1758 dev_info(&pdev
->dev
, "unable to enable clk\n");
1759 clk_put(engine
->clk
);
1763 err
= device_create_file(&pdev
->dev
, &dev_attr_stat_irq_thresh
);
1765 clk_disable(engine
->clk
);
1766 clk_put(engine
->clk
);
1772 * Use an IRQ threshold of 50% as a default. This seems to be a
1773 * reasonable trade off of latency against throughput but can be
1774 * changed at runtime.
1776 engine
->stat_irq_thresh
= (engine
->fifo_sz
/ 2);
1779 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1780 * only submit a new packet for processing when we complete another in
1781 * the queue. This minimizes time spent in the interrupt handler.
1783 writel(engine
->stat_irq_thresh
<< SPA_IRQ_CTRL_STAT_CNT_OFFSET
,
1784 engine
->regs
+ SPA_IRQ_CTRL_REG_OFFSET
);
1785 writel(SPA_IRQ_EN_STAT_EN
| SPA_IRQ_EN_GLBL_EN
,
1786 engine
->regs
+ SPA_IRQ_EN_REG_OFFSET
);
1788 setup_timer(&engine
->packet_timeout
, spacc_packet_timeout
,
1789 (unsigned long)engine
);
1791 INIT_LIST_HEAD(&engine
->pending
);
1792 INIT_LIST_HEAD(&engine
->completed
);
1793 INIT_LIST_HEAD(&engine
->in_progress
);
1794 engine
->in_flight
= 0;
1795 tasklet_init(&engine
->complete
, spacc_spacc_complete
,
1796 (unsigned long)engine
);
1798 platform_set_drvdata(pdev
, engine
);
1800 INIT_LIST_HEAD(&engine
->registered_algs
);
1801 for (i
= 0; i
< engine
->num_algs
; ++i
) {
1802 engine
->algs
[i
].engine
= engine
;
1803 err
= crypto_register_alg(&engine
->algs
[i
].alg
);
1805 list_add_tail(&engine
->algs
[i
].entry
,
1806 &engine
->registered_algs
);
1810 dev_err(engine
->dev
, "failed to register alg \"%s\"\n",
1811 engine
->algs
[i
].alg
.cra_name
);
1813 dev_dbg(engine
->dev
, "registered alg \"%s\"\n",
1814 engine
->algs
[i
].alg
.cra_name
);
1820 static int __devexit
spacc_remove(struct platform_device
*pdev
)
1822 struct spacc_alg
*alg
, *next
;
1823 struct spacc_engine
*engine
= platform_get_drvdata(pdev
);
1825 del_timer_sync(&engine
->packet_timeout
);
1826 device_remove_file(&pdev
->dev
, &dev_attr_stat_irq_thresh
);
1828 list_for_each_entry_safe(alg
, next
, &engine
->registered_algs
, entry
) {
1829 list_del(&alg
->entry
);
1830 crypto_unregister_alg(&alg
->alg
);
1833 clk_disable(engine
->clk
);
1834 clk_put(engine
->clk
);
1839 static const struct platform_device_id spacc_id_table
[] = {
1840 { "picochip,spacc-ipsec", },
1841 { "picochip,spacc-l2", },
1844 static struct platform_driver spacc_driver
= {
1845 .probe
= spacc_probe
,
1846 .remove
= __devexit_p(spacc_remove
),
1848 .name
= "picochip,spacc",
1850 .pm
= &spacc_pm_ops
,
1851 #endif /* CONFIG_PM */
1852 .of_match_table
= spacc_of_id_table
,
1854 .id_table
= spacc_id_table
,
1857 static int __init
spacc_init(void)
1859 return platform_driver_register(&spacc_driver
);
1861 module_init(spacc_init
);
1863 static void __exit
spacc_exit(void)
1865 platform_driver_unregister(&spacc_driver
);
1867 module_exit(spacc_exit
);
1869 MODULE_LICENSE("GPL");
1870 MODULE_AUTHOR("Jamie Iles");