Documentation/filesystems/proc.txt: improve smaps field documentation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched_fair.c
blob933f3d1b62ea0affb63767f87152545f7659dc6f
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
157 return 0;
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
162 return se->parent;
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
168 int depth = 0;
170 for_each_sched_entity(se)
171 depth++;
173 return depth;
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
179 int se_depth, pse_depth;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct *task_of(struct sched_entity *se)
212 return container_of(se, struct task_struct, se);
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
217 return container_of(cfs_rq, struct rq, cfs);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
227 return &task_rq(p)->cfs;
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
235 return &rq->cfs;
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
241 return NULL;
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
246 return &cpu_rq(this_cpu)->cfs;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
255 return 1;
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
260 return NULL;
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
281 return min_vruntime;
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
290 return min_vruntime;
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
296 return (s64)(a->vruntime - b->vruntime) < 0;
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
301 return se->vruntime - cfs_rq->min_vruntime;
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
306 u64 vruntime = cfs_rq->min_vruntime;
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
337 * Find the right place in the rbtree:
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
379 struct rb_node *left = cfs_rq->rb_leftmost;
381 if (!left)
382 return NULL;
384 return rb_entry(left, struct sched_entity, run_node);
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
391 if (!last)
392 return NULL;
394 return rb_entry(last, struct sched_entity, run_node);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
409 if (ret || !write)
410 return ret;
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
423 return 0;
425 #endif
428 * delta /= w
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
436 return delta;
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64 __sched_period(unsigned long nr_running)
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
457 return period;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
464 * s = p*P[w/rw]
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
483 slice = calc_delta_mine(slice, se->load.weight, load);
485 return slice;
489 * We calculate the vruntime slice of a to be inserted task
491 * vs = s/w
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
506 unsigned long delta_exec_weighted;
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
511 curr->sum_exec_runtime += delta_exec;
512 schedstat_add(cfs_rq, exec_clock, delta_exec);
513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
515 curr->vruntime += delta_exec_weighted;
516 update_min_vruntime(cfs_rq);
519 static void update_curr(struct cfs_rq *cfs_rq)
521 struct sched_entity *curr = cfs_rq->curr;
522 u64 now = rq_of(cfs_rq)->clock_task;
523 unsigned long delta_exec;
525 if (unlikely(!curr))
526 return;
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
533 delta_exec = (unsigned long)(now - curr->exec_start);
534 if (!delta_exec)
535 return;
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544 cpuacct_charge(curtask, delta_exec);
545 account_group_exec_runtime(curtask, delta_exec);
549 static inline void
550 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
556 * Task is being enqueued - update stats:
558 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
564 if (se != cfs_rq->curr)
565 update_stats_wait_start(cfs_rq, se);
568 static void
569 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
576 #ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
581 #endif
582 schedstat_set(se->statistics.wait_start, 0);
585 static inline void
586 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
592 if (se != cfs_rq->curr)
593 update_stats_wait_end(cfs_rq, se);
597 * We are picking a new current task - update its stats:
599 static inline void
600 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
603 * We are starting a new run period:
605 se->exec_start = rq_of(cfs_rq)->clock_task;
608 /**************************************************
609 * Scheduling class queueing methods:
612 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613 static void
614 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
616 cfs_rq->task_weight += weight;
618 #else
619 static inline void
620 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
623 #endif
625 static void
626 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 update_load_add(&cfs_rq->load, se->load.weight);
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631 if (entity_is_task(se)) {
632 add_cfs_task_weight(cfs_rq, se->load.weight);
633 list_add(&se->group_node, &cfs_rq->tasks);
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
639 static void
640 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
642 update_load_sub(&cfs_rq->load, se->load.weight);
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645 if (entity_is_task(se)) {
646 add_cfs_task_weight(cfs_rq, -se->load.weight);
647 list_del_init(&se->group_node);
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
653 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 #ifdef CONFIG_SCHEDSTATS
656 struct task_struct *tsk = NULL;
658 if (entity_is_task(se))
659 tsk = task_of(se);
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
664 if ((s64)delta < 0)
665 delta = 0;
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
673 if (tsk) {
674 account_scheduler_latency(tsk, delta >> 10, 1);
675 trace_sched_stat_sleep(tsk, delta);
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
681 if ((s64)delta < 0)
682 delta = 0;
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
690 if (tsk) {
691 if (tsk->in_iowait) {
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
694 trace_sched_stat_iowait(tsk, delta);
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
707 account_scheduler_latency(tsk, delta >> 10, 0);
710 #endif
713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
715 #ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
718 if (d < 0)
719 d = -d;
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723 #endif
726 static void
727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
729 u64 vruntime = cfs_rq->min_vruntime;
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
737 if (initial && sched_feat(START_DEBIT))
738 vruntime += sched_vslice(cfs_rq, se);
740 /* sleeps up to a single latency don't count. */
741 if (!initial) {
742 unsigned long thresh = sysctl_sched_latency;
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
751 vruntime -= thresh;
754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
757 se->vruntime = vruntime;
760 static void
761 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
768 se->vruntime += cfs_rq->min_vruntime;
771 * Update run-time statistics of the 'current'.
773 update_curr(cfs_rq);
774 account_entity_enqueue(cfs_rq, se);
776 if (flags & ENQUEUE_WAKEUP) {
777 place_entity(cfs_rq, se, 0);
778 enqueue_sleeper(cfs_rq, se);
781 update_stats_enqueue(cfs_rq, se);
782 check_spread(cfs_rq, se);
783 if (se != cfs_rq->curr)
784 __enqueue_entity(cfs_rq, se);
787 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
789 if (!se || cfs_rq->last == se)
790 cfs_rq->last = NULL;
792 if (!se || cfs_rq->next == se)
793 cfs_rq->next = NULL;
796 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
798 for_each_sched_entity(se)
799 __clear_buddies(cfs_rq_of(se), se);
802 static void
803 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
806 * Update run-time statistics of the 'current'.
808 update_curr(cfs_rq);
810 update_stats_dequeue(cfs_rq, se);
811 if (flags & DEQUEUE_SLEEP) {
812 #ifdef CONFIG_SCHEDSTATS
813 if (entity_is_task(se)) {
814 struct task_struct *tsk = task_of(se);
816 if (tsk->state & TASK_INTERRUPTIBLE)
817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
818 if (tsk->state & TASK_UNINTERRUPTIBLE)
819 se->statistics.block_start = rq_of(cfs_rq)->clock;
821 #endif
824 clear_buddies(cfs_rq, se);
826 if (se != cfs_rq->curr)
827 __dequeue_entity(cfs_rq, se);
828 account_entity_dequeue(cfs_rq, se);
829 update_min_vruntime(cfs_rq);
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
836 if (!(flags & DEQUEUE_SLEEP))
837 se->vruntime -= cfs_rq->min_vruntime;
841 * Preempt the current task with a newly woken task if needed:
843 static void
844 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
846 unsigned long ideal_runtime, delta_exec;
848 ideal_runtime = sched_slice(cfs_rq, curr);
849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
850 if (delta_exec > ideal_runtime) {
851 resched_task(rq_of(cfs_rq)->curr);
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
856 clear_buddies(cfs_rq, curr);
857 return;
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
865 if (!sched_feat(WAKEUP_PREEMPT))
866 return;
868 if (delta_exec < sysctl_sched_min_granularity)
869 return;
871 if (cfs_rq->nr_running > 1) {
872 struct sched_entity *se = __pick_next_entity(cfs_rq);
873 s64 delta = curr->vruntime - se->vruntime;
875 if (delta > ideal_runtime)
876 resched_task(rq_of(cfs_rq)->curr);
880 static void
881 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
883 /* 'current' is not kept within the tree. */
884 if (se->on_rq) {
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
888 * runqueue.
890 update_stats_wait_end(cfs_rq, se);
891 __dequeue_entity(cfs_rq, se);
894 update_stats_curr_start(cfs_rq, se);
895 cfs_rq->curr = se;
896 #ifdef CONFIG_SCHEDSTATS
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
903 se->statistics.slice_max = max(se->statistics.slice_max,
904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
906 #endif
907 se->prev_sum_exec_runtime = se->sum_exec_runtime;
910 static int
911 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
913 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
915 struct sched_entity *se = __pick_next_entity(cfs_rq);
916 struct sched_entity *left = se;
918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919 se = cfs_rq->next;
922 * Prefer last buddy, try to return the CPU to a preempted task.
924 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925 se = cfs_rq->last;
927 clear_buddies(cfs_rq, se);
929 return se;
932 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
938 if (prev->on_rq)
939 update_curr(cfs_rq);
941 check_spread(cfs_rq, prev);
942 if (prev->on_rq) {
943 update_stats_wait_start(cfs_rq, prev);
944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq, prev);
947 cfs_rq->curr = NULL;
950 static void
951 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
954 * Update run-time statistics of the 'current'.
956 update_curr(cfs_rq);
958 #ifdef CONFIG_SCHED_HRTICK
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
963 if (queued) {
964 resched_task(rq_of(cfs_rq)->curr);
965 return;
968 * don't let the period tick interfere with the hrtick preemption
970 if (!sched_feat(DOUBLE_TICK) &&
971 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972 return;
973 #endif
975 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
976 check_preempt_tick(cfs_rq, curr);
979 /**************************************************
980 * CFS operations on tasks:
983 #ifdef CONFIG_SCHED_HRTICK
984 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
986 struct sched_entity *se = &p->se;
987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
989 WARN_ON(task_rq(p) != rq);
991 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992 u64 slice = sched_slice(cfs_rq, se);
993 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994 s64 delta = slice - ran;
996 if (delta < 0) {
997 if (rq->curr == p)
998 resched_task(p);
999 return;
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1006 if (rq->curr != p)
1007 delta = max_t(s64, 10000LL, delta);
1009 hrtick_start(rq, delta);
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1018 static void hrtick_update(struct rq *rq)
1020 struct task_struct *curr = rq->curr;
1022 if (curr->sched_class != &fair_sched_class)
1023 return;
1025 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026 hrtick_start_fair(rq, curr);
1028 #else /* !CONFIG_SCHED_HRTICK */
1029 static inline void
1030 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1034 static inline void hrtick_update(struct rq *rq)
1037 #endif
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1044 static void
1045 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1047 struct cfs_rq *cfs_rq;
1048 struct sched_entity *se = &p->se;
1050 for_each_sched_entity(se) {
1051 if (se->on_rq)
1052 break;
1053 cfs_rq = cfs_rq_of(se);
1054 enqueue_entity(cfs_rq, se, flags);
1055 flags = ENQUEUE_WAKEUP;
1058 hrtick_update(rq);
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1066 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1068 struct cfs_rq *cfs_rq;
1069 struct sched_entity *se = &p->se;
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
1073 dequeue_entity(cfs_rq, se, flags);
1074 /* Don't dequeue parent if it has other entities besides us */
1075 if (cfs_rq->load.weight)
1076 break;
1077 flags |= DEQUEUE_SLEEP;
1080 hrtick_update(rq);
1084 * sched_yield() support is very simple - we dequeue and enqueue.
1086 * If compat_yield is turned on then we requeue to the end of the tree.
1088 static void yield_task_fair(struct rq *rq)
1090 struct task_struct *curr = rq->curr;
1091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092 struct sched_entity *rightmost, *se = &curr->se;
1095 * Are we the only task in the tree?
1097 if (unlikely(cfs_rq->nr_running == 1))
1098 return;
1100 clear_buddies(cfs_rq, se);
1102 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1103 update_rq_clock(rq);
1105 * Update run-time statistics of the 'current'.
1107 update_curr(cfs_rq);
1109 return;
1112 * Find the rightmost entry in the rbtree:
1114 rightmost = __pick_last_entity(cfs_rq);
1116 * Already in the rightmost position?
1118 if (unlikely(!rightmost || entity_before(rightmost, se)))
1119 return;
1122 * Minimally necessary key value to be last in the tree:
1123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
1126 se->vruntime = rightmost->vruntime + 1;
1129 #ifdef CONFIG_SMP
1131 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1133 struct sched_entity *se = &p->se;
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1136 se->vruntime -= cfs_rq->min_vruntime;
1139 #ifdef CONFIG_FAIR_GROUP_SCHED
1141 * effective_load() calculates the load change as seen from the root_task_group
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1161 static long effective_load(struct task_group *tg, int cpu,
1162 long wl, long wg)
1164 struct sched_entity *se = tg->se[cpu];
1166 if (!tg->parent)
1167 return wl;
1170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1173 if (!wl && sched_feat(ASYM_EFF_LOAD))
1174 return wl;
1176 for_each_sched_entity(se) {
1177 long S, rw, s, a, b;
1178 long more_w;
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1184 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185 wl += more_w;
1186 wg += more_w;
1188 S = se->my_q->tg->shares;
1189 s = se->my_q->shares;
1190 rw = se->my_q->rq_weight;
1192 a = S*(rw + wl);
1193 b = S*rw + s*wg;
1195 wl = s*(a-b);
1197 if (likely(b))
1198 wl /= b;
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1207 wg = 0;
1210 return wl;
1213 #else
1215 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216 unsigned long wl, unsigned long wg)
1218 return wl;
1221 #endif
1223 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1225 unsigned long this_load, load;
1226 int idx, this_cpu, prev_cpu;
1227 unsigned long tl_per_task;
1228 struct task_group *tg;
1229 unsigned long weight;
1230 int balanced;
1232 idx = sd->wake_idx;
1233 this_cpu = smp_processor_id();
1234 prev_cpu = task_cpu(p);
1235 load = source_load(prev_cpu, idx);
1236 this_load = target_load(this_cpu, idx);
1239 * If sync wakeup then subtract the (maximum possible)
1240 * effect of the currently running task from the load
1241 * of the current CPU:
1243 rcu_read_lock();
1244 if (sync) {
1245 tg = task_group(current);
1246 weight = current->se.load.weight;
1248 this_load += effective_load(tg, this_cpu, -weight, -weight);
1249 load += effective_load(tg, prev_cpu, 0, -weight);
1252 tg = task_group(p);
1253 weight = p->se.load.weight;
1256 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1257 * due to the sync cause above having dropped this_load to 0, we'll
1258 * always have an imbalance, but there's really nothing you can do
1259 * about that, so that's good too.
1261 * Otherwise check if either cpus are near enough in load to allow this
1262 * task to be woken on this_cpu.
1264 if (this_load) {
1265 unsigned long this_eff_load, prev_eff_load;
1267 this_eff_load = 100;
1268 this_eff_load *= power_of(prev_cpu);
1269 this_eff_load *= this_load +
1270 effective_load(tg, this_cpu, weight, weight);
1272 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1273 prev_eff_load *= power_of(this_cpu);
1274 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1276 balanced = this_eff_load <= prev_eff_load;
1277 } else
1278 balanced = true;
1279 rcu_read_unlock();
1282 * If the currently running task will sleep within
1283 * a reasonable amount of time then attract this newly
1284 * woken task:
1286 if (sync && balanced)
1287 return 1;
1289 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1290 tl_per_task = cpu_avg_load_per_task(this_cpu);
1292 if (balanced ||
1293 (this_load <= load &&
1294 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1296 * This domain has SD_WAKE_AFFINE and
1297 * p is cache cold in this domain, and
1298 * there is no bad imbalance.
1300 schedstat_inc(sd, ttwu_move_affine);
1301 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1303 return 1;
1305 return 0;
1309 * find_idlest_group finds and returns the least busy CPU group within the
1310 * domain.
1312 static struct sched_group *
1313 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1314 int this_cpu, int load_idx)
1316 struct sched_group *idlest = NULL, *group = sd->groups;
1317 unsigned long min_load = ULONG_MAX, this_load = 0;
1318 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1320 do {
1321 unsigned long load, avg_load;
1322 int local_group;
1323 int i;
1325 /* Skip over this group if it has no CPUs allowed */
1326 if (!cpumask_intersects(sched_group_cpus(group),
1327 &p->cpus_allowed))
1328 continue;
1330 local_group = cpumask_test_cpu(this_cpu,
1331 sched_group_cpus(group));
1333 /* Tally up the load of all CPUs in the group */
1334 avg_load = 0;
1336 for_each_cpu(i, sched_group_cpus(group)) {
1337 /* Bias balancing toward cpus of our domain */
1338 if (local_group)
1339 load = source_load(i, load_idx);
1340 else
1341 load = target_load(i, load_idx);
1343 avg_load += load;
1346 /* Adjust by relative CPU power of the group */
1347 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1349 if (local_group) {
1350 this_load = avg_load;
1351 } else if (avg_load < min_load) {
1352 min_load = avg_load;
1353 idlest = group;
1355 } while (group = group->next, group != sd->groups);
1357 if (!idlest || 100*this_load < imbalance*min_load)
1358 return NULL;
1359 return idlest;
1363 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1365 static int
1366 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1368 unsigned long load, min_load = ULONG_MAX;
1369 int idlest = -1;
1370 int i;
1372 /* Traverse only the allowed CPUs */
1373 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1374 load = weighted_cpuload(i);
1376 if (load < min_load || (load == min_load && i == this_cpu)) {
1377 min_load = load;
1378 idlest = i;
1382 return idlest;
1386 * Try and locate an idle CPU in the sched_domain.
1388 static int select_idle_sibling(struct task_struct *p, int target)
1390 int cpu = smp_processor_id();
1391 int prev_cpu = task_cpu(p);
1392 struct sched_domain *sd;
1393 int i;
1396 * If the task is going to be woken-up on this cpu and if it is
1397 * already idle, then it is the right target.
1399 if (target == cpu && idle_cpu(cpu))
1400 return cpu;
1403 * If the task is going to be woken-up on the cpu where it previously
1404 * ran and if it is currently idle, then it the right target.
1406 if (target == prev_cpu && idle_cpu(prev_cpu))
1407 return prev_cpu;
1410 * Otherwise, iterate the domains and find an elegible idle cpu.
1412 for_each_domain(target, sd) {
1413 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1414 break;
1416 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1417 if (idle_cpu(i)) {
1418 target = i;
1419 break;
1424 * Lets stop looking for an idle sibling when we reached
1425 * the domain that spans the current cpu and prev_cpu.
1427 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1428 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1429 break;
1432 return target;
1436 * sched_balance_self: balance the current task (running on cpu) in domains
1437 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1438 * SD_BALANCE_EXEC.
1440 * Balance, ie. select the least loaded group.
1442 * Returns the target CPU number, or the same CPU if no balancing is needed.
1444 * preempt must be disabled.
1446 static int
1447 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
1454 int want_sd = 1;
1455 int sync = wake_flags & WF_SYNC;
1457 if (sd_flag & SD_BALANCE_WAKE) {
1458 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1459 want_affine = 1;
1460 new_cpu = prev_cpu;
1463 for_each_domain(cpu, tmp) {
1464 if (!(tmp->flags & SD_LOAD_BALANCE))
1465 continue;
1468 * If power savings logic is enabled for a domain, see if we
1469 * are not overloaded, if so, don't balance wider.
1471 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1472 unsigned long power = 0;
1473 unsigned long nr_running = 0;
1474 unsigned long capacity;
1475 int i;
1477 for_each_cpu(i, sched_domain_span(tmp)) {
1478 power += power_of(i);
1479 nr_running += cpu_rq(i)->cfs.nr_running;
1482 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1484 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1485 nr_running /= 2;
1487 if (nr_running < capacity)
1488 want_sd = 0;
1492 * If both cpu and prev_cpu are part of this domain,
1493 * cpu is a valid SD_WAKE_AFFINE target.
1495 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1496 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1497 affine_sd = tmp;
1498 want_affine = 0;
1501 if (!want_sd && !want_affine)
1502 break;
1504 if (!(tmp->flags & sd_flag))
1505 continue;
1507 if (want_sd)
1508 sd = tmp;
1511 #ifdef CONFIG_FAIR_GROUP_SCHED
1512 if (sched_feat(LB_SHARES_UPDATE)) {
1514 * Pick the largest domain to update shares over
1516 tmp = sd;
1517 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1518 tmp = affine_sd;
1520 if (tmp) {
1521 raw_spin_unlock(&rq->lock);
1522 update_shares(tmp);
1523 raw_spin_lock(&rq->lock);
1526 #endif
1528 if (affine_sd) {
1529 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1530 return select_idle_sibling(p, cpu);
1531 else
1532 return select_idle_sibling(p, prev_cpu);
1535 while (sd) {
1536 int load_idx = sd->forkexec_idx;
1537 struct sched_group *group;
1538 int weight;
1540 if (!(sd->flags & sd_flag)) {
1541 sd = sd->child;
1542 continue;
1545 if (sd_flag & SD_BALANCE_WAKE)
1546 load_idx = sd->wake_idx;
1548 group = find_idlest_group(sd, p, cpu, load_idx);
1549 if (!group) {
1550 sd = sd->child;
1551 continue;
1554 new_cpu = find_idlest_cpu(group, p, cpu);
1555 if (new_cpu == -1 || new_cpu == cpu) {
1556 /* Now try balancing at a lower domain level of cpu */
1557 sd = sd->child;
1558 continue;
1561 /* Now try balancing at a lower domain level of new_cpu */
1562 cpu = new_cpu;
1563 weight = sd->span_weight;
1564 sd = NULL;
1565 for_each_domain(cpu, tmp) {
1566 if (weight <= tmp->span_weight)
1567 break;
1568 if (tmp->flags & sd_flag)
1569 sd = tmp;
1571 /* while loop will break here if sd == NULL */
1574 return new_cpu;
1576 #endif /* CONFIG_SMP */
1578 static unsigned long
1579 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1581 unsigned long gran = sysctl_sched_wakeup_granularity;
1584 * Since its curr running now, convert the gran from real-time
1585 * to virtual-time in his units.
1587 * By using 'se' instead of 'curr' we penalize light tasks, so
1588 * they get preempted easier. That is, if 'se' < 'curr' then
1589 * the resulting gran will be larger, therefore penalizing the
1590 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1591 * be smaller, again penalizing the lighter task.
1593 * This is especially important for buddies when the leftmost
1594 * task is higher priority than the buddy.
1596 if (unlikely(se->load.weight != NICE_0_LOAD))
1597 gran = calc_delta_fair(gran, se);
1599 return gran;
1603 * Should 'se' preempt 'curr'.
1605 * |s1
1606 * |s2
1607 * |s3
1609 * |<--->|c
1611 * w(c, s1) = -1
1612 * w(c, s2) = 0
1613 * w(c, s3) = 1
1616 static int
1617 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1619 s64 gran, vdiff = curr->vruntime - se->vruntime;
1621 if (vdiff <= 0)
1622 return -1;
1624 gran = wakeup_gran(curr, se);
1625 if (vdiff > gran)
1626 return 1;
1628 return 0;
1631 static void set_last_buddy(struct sched_entity *se)
1633 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1634 for_each_sched_entity(se)
1635 cfs_rq_of(se)->last = se;
1639 static void set_next_buddy(struct sched_entity *se)
1641 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1642 for_each_sched_entity(se)
1643 cfs_rq_of(se)->next = se;
1648 * Preempt the current task with a newly woken task if needed:
1650 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1652 struct task_struct *curr = rq->curr;
1653 struct sched_entity *se = &curr->se, *pse = &p->se;
1654 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1655 int scale = cfs_rq->nr_running >= sched_nr_latency;
1657 if (unlikely(rt_prio(p->prio)))
1658 goto preempt;
1660 if (unlikely(p->sched_class != &fair_sched_class))
1661 return;
1663 if (unlikely(se == pse))
1664 return;
1666 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1667 set_next_buddy(pse);
1670 * We can come here with TIF_NEED_RESCHED already set from new task
1671 * wake up path.
1673 if (test_tsk_need_resched(curr))
1674 return;
1677 * Batch and idle tasks do not preempt (their preemption is driven by
1678 * the tick):
1680 if (unlikely(p->policy != SCHED_NORMAL))
1681 return;
1683 /* Idle tasks are by definition preempted by everybody. */
1684 if (unlikely(curr->policy == SCHED_IDLE))
1685 goto preempt;
1687 if (!sched_feat(WAKEUP_PREEMPT))
1688 return;
1690 update_curr(cfs_rq);
1691 find_matching_se(&se, &pse);
1692 BUG_ON(!pse);
1693 if (wakeup_preempt_entity(se, pse) == 1)
1694 goto preempt;
1696 return;
1698 preempt:
1699 resched_task(curr);
1701 * Only set the backward buddy when the current task is still
1702 * on the rq. This can happen when a wakeup gets interleaved
1703 * with schedule on the ->pre_schedule() or idle_balance()
1704 * point, either of which can * drop the rq lock.
1706 * Also, during early boot the idle thread is in the fair class,
1707 * for obvious reasons its a bad idea to schedule back to it.
1709 if (unlikely(!se->on_rq || curr == rq->idle))
1710 return;
1712 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1713 set_last_buddy(se);
1716 static struct task_struct *pick_next_task_fair(struct rq *rq)
1718 struct task_struct *p;
1719 struct cfs_rq *cfs_rq = &rq->cfs;
1720 struct sched_entity *se;
1722 if (!cfs_rq->nr_running)
1723 return NULL;
1725 do {
1726 se = pick_next_entity(cfs_rq);
1727 set_next_entity(cfs_rq, se);
1728 cfs_rq = group_cfs_rq(se);
1729 } while (cfs_rq);
1731 p = task_of(se);
1732 hrtick_start_fair(rq, p);
1734 return p;
1738 * Account for a descheduled task:
1740 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1742 struct sched_entity *se = &prev->se;
1743 struct cfs_rq *cfs_rq;
1745 for_each_sched_entity(se) {
1746 cfs_rq = cfs_rq_of(se);
1747 put_prev_entity(cfs_rq, se);
1751 #ifdef CONFIG_SMP
1752 /**************************************************
1753 * Fair scheduling class load-balancing methods:
1757 * pull_task - move a task from a remote runqueue to the local runqueue.
1758 * Both runqueues must be locked.
1760 static void pull_task(struct rq *src_rq, struct task_struct *p,
1761 struct rq *this_rq, int this_cpu)
1763 deactivate_task(src_rq, p, 0);
1764 set_task_cpu(p, this_cpu);
1765 activate_task(this_rq, p, 0);
1766 check_preempt_curr(this_rq, p, 0);
1768 /* re-arm NEWIDLE balancing when moving tasks */
1769 src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
1770 this_rq->idle_stamp = 0;
1774 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1776 static
1777 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1778 struct sched_domain *sd, enum cpu_idle_type idle,
1779 int *all_pinned)
1781 int tsk_cache_hot = 0;
1783 * We do not migrate tasks that are:
1784 * 1) running (obviously), or
1785 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1786 * 3) are cache-hot on their current CPU.
1788 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1789 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1790 return 0;
1792 *all_pinned = 0;
1794 if (task_running(rq, p)) {
1795 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1796 return 0;
1800 * Aggressive migration if:
1801 * 1) task is cache cold, or
1802 * 2) too many balance attempts have failed.
1805 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1806 if (!tsk_cache_hot ||
1807 sd->nr_balance_failed > sd->cache_nice_tries) {
1808 #ifdef CONFIG_SCHEDSTATS
1809 if (tsk_cache_hot) {
1810 schedstat_inc(sd, lb_hot_gained[idle]);
1811 schedstat_inc(p, se.statistics.nr_forced_migrations);
1813 #endif
1814 return 1;
1817 if (tsk_cache_hot) {
1818 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1819 return 0;
1821 return 1;
1825 * move_one_task tries to move exactly one task from busiest to this_rq, as
1826 * part of active balancing operations within "domain".
1827 * Returns 1 if successful and 0 otherwise.
1829 * Called with both runqueues locked.
1831 static int
1832 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1833 struct sched_domain *sd, enum cpu_idle_type idle)
1835 struct task_struct *p, *n;
1836 struct cfs_rq *cfs_rq;
1837 int pinned = 0;
1839 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1840 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1842 if (!can_migrate_task(p, busiest, this_cpu,
1843 sd, idle, &pinned))
1844 continue;
1846 pull_task(busiest, p, this_rq, this_cpu);
1848 * Right now, this is only the second place pull_task()
1849 * is called, so we can safely collect pull_task()
1850 * stats here rather than inside pull_task().
1852 schedstat_inc(sd, lb_gained[idle]);
1853 return 1;
1857 return 0;
1860 static unsigned long
1861 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1862 unsigned long max_load_move, struct sched_domain *sd,
1863 enum cpu_idle_type idle, int *all_pinned,
1864 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1866 int loops = 0, pulled = 0, pinned = 0;
1867 long rem_load_move = max_load_move;
1868 struct task_struct *p, *n;
1870 if (max_load_move == 0)
1871 goto out;
1873 pinned = 1;
1875 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1876 if (loops++ > sysctl_sched_nr_migrate)
1877 break;
1879 if ((p->se.load.weight >> 1) > rem_load_move ||
1880 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1881 continue;
1883 pull_task(busiest, p, this_rq, this_cpu);
1884 pulled++;
1885 rem_load_move -= p->se.load.weight;
1887 #ifdef CONFIG_PREEMPT
1889 * NEWIDLE balancing is a source of latency, so preemptible
1890 * kernels will stop after the first task is pulled to minimize
1891 * the critical section.
1893 if (idle == CPU_NEWLY_IDLE)
1894 break;
1895 #endif
1898 * We only want to steal up to the prescribed amount of
1899 * weighted load.
1901 if (rem_load_move <= 0)
1902 break;
1904 if (p->prio < *this_best_prio)
1905 *this_best_prio = p->prio;
1907 out:
1909 * Right now, this is one of only two places pull_task() is called,
1910 * so we can safely collect pull_task() stats here rather than
1911 * inside pull_task().
1913 schedstat_add(sd, lb_gained[idle], pulled);
1915 if (all_pinned)
1916 *all_pinned = pinned;
1918 return max_load_move - rem_load_move;
1921 #ifdef CONFIG_FAIR_GROUP_SCHED
1922 static unsigned long
1923 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1924 unsigned long max_load_move,
1925 struct sched_domain *sd, enum cpu_idle_type idle,
1926 int *all_pinned, int *this_best_prio)
1928 long rem_load_move = max_load_move;
1929 int busiest_cpu = cpu_of(busiest);
1930 struct task_group *tg;
1932 rcu_read_lock();
1933 update_h_load(busiest_cpu);
1935 list_for_each_entry_rcu(tg, &task_groups, list) {
1936 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1937 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1938 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1939 u64 rem_load, moved_load;
1942 * empty group
1944 if (!busiest_cfs_rq->task_weight)
1945 continue;
1947 rem_load = (u64)rem_load_move * busiest_weight;
1948 rem_load = div_u64(rem_load, busiest_h_load + 1);
1950 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1951 rem_load, sd, idle, all_pinned, this_best_prio,
1952 busiest_cfs_rq);
1954 if (!moved_load)
1955 continue;
1957 moved_load *= busiest_h_load;
1958 moved_load = div_u64(moved_load, busiest_weight + 1);
1960 rem_load_move -= moved_load;
1961 if (rem_load_move < 0)
1962 break;
1964 rcu_read_unlock();
1966 return max_load_move - rem_load_move;
1968 #else
1969 static unsigned long
1970 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1971 unsigned long max_load_move,
1972 struct sched_domain *sd, enum cpu_idle_type idle,
1973 int *all_pinned, int *this_best_prio)
1975 return balance_tasks(this_rq, this_cpu, busiest,
1976 max_load_move, sd, idle, all_pinned,
1977 this_best_prio, &busiest->cfs);
1979 #endif
1982 * move_tasks tries to move up to max_load_move weighted load from busiest to
1983 * this_rq, as part of a balancing operation within domain "sd".
1984 * Returns 1 if successful and 0 otherwise.
1986 * Called with both runqueues locked.
1988 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1989 unsigned long max_load_move,
1990 struct sched_domain *sd, enum cpu_idle_type idle,
1991 int *all_pinned)
1993 unsigned long total_load_moved = 0, load_moved;
1994 int this_best_prio = this_rq->curr->prio;
1996 do {
1997 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1998 max_load_move - total_load_moved,
1999 sd, idle, all_pinned, &this_best_prio);
2001 total_load_moved += load_moved;
2003 #ifdef CONFIG_PREEMPT
2005 * NEWIDLE balancing is a source of latency, so preemptible
2006 * kernels will stop after the first task is pulled to minimize
2007 * the critical section.
2009 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2010 break;
2012 if (raw_spin_is_contended(&this_rq->lock) ||
2013 raw_spin_is_contended(&busiest->lock))
2014 break;
2015 #endif
2016 } while (load_moved && max_load_move > total_load_moved);
2018 return total_load_moved > 0;
2021 /********** Helpers for find_busiest_group ************************/
2023 * sd_lb_stats - Structure to store the statistics of a sched_domain
2024 * during load balancing.
2026 struct sd_lb_stats {
2027 struct sched_group *busiest; /* Busiest group in this sd */
2028 struct sched_group *this; /* Local group in this sd */
2029 unsigned long total_load; /* Total load of all groups in sd */
2030 unsigned long total_pwr; /* Total power of all groups in sd */
2031 unsigned long avg_load; /* Average load across all groups in sd */
2033 /** Statistics of this group */
2034 unsigned long this_load;
2035 unsigned long this_load_per_task;
2036 unsigned long this_nr_running;
2037 unsigned long this_has_capacity;
2039 /* Statistics of the busiest group */
2040 unsigned long max_load;
2041 unsigned long busiest_load_per_task;
2042 unsigned long busiest_nr_running;
2043 unsigned long busiest_group_capacity;
2044 unsigned long busiest_has_capacity;
2046 int group_imb; /* Is there imbalance in this sd */
2047 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2048 int power_savings_balance; /* Is powersave balance needed for this sd */
2049 struct sched_group *group_min; /* Least loaded group in sd */
2050 struct sched_group *group_leader; /* Group which relieves group_min */
2051 unsigned long min_load_per_task; /* load_per_task in group_min */
2052 unsigned long leader_nr_running; /* Nr running of group_leader */
2053 unsigned long min_nr_running; /* Nr running of group_min */
2054 #endif
2058 * sg_lb_stats - stats of a sched_group required for load_balancing
2060 struct sg_lb_stats {
2061 unsigned long avg_load; /*Avg load across the CPUs of the group */
2062 unsigned long group_load; /* Total load over the CPUs of the group */
2063 unsigned long sum_nr_running; /* Nr tasks running in the group */
2064 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2065 unsigned long group_capacity;
2066 int group_imb; /* Is there an imbalance in the group ? */
2067 int group_has_capacity; /* Is there extra capacity in the group? */
2071 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2072 * @group: The group whose first cpu is to be returned.
2074 static inline unsigned int group_first_cpu(struct sched_group *group)
2076 return cpumask_first(sched_group_cpus(group));
2080 * get_sd_load_idx - Obtain the load index for a given sched domain.
2081 * @sd: The sched_domain whose load_idx is to be obtained.
2082 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2084 static inline int get_sd_load_idx(struct sched_domain *sd,
2085 enum cpu_idle_type idle)
2087 int load_idx;
2089 switch (idle) {
2090 case CPU_NOT_IDLE:
2091 load_idx = sd->busy_idx;
2092 break;
2094 case CPU_NEWLY_IDLE:
2095 load_idx = sd->newidle_idx;
2096 break;
2097 default:
2098 load_idx = sd->idle_idx;
2099 break;
2102 return load_idx;
2106 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2108 * init_sd_power_savings_stats - Initialize power savings statistics for
2109 * the given sched_domain, during load balancing.
2111 * @sd: Sched domain whose power-savings statistics are to be initialized.
2112 * @sds: Variable containing the statistics for sd.
2113 * @idle: Idle status of the CPU at which we're performing load-balancing.
2115 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2116 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2119 * Busy processors will not participate in power savings
2120 * balance.
2122 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2123 sds->power_savings_balance = 0;
2124 else {
2125 sds->power_savings_balance = 1;
2126 sds->min_nr_running = ULONG_MAX;
2127 sds->leader_nr_running = 0;
2132 * update_sd_power_savings_stats - Update the power saving stats for a
2133 * sched_domain while performing load balancing.
2135 * @group: sched_group belonging to the sched_domain under consideration.
2136 * @sds: Variable containing the statistics of the sched_domain
2137 * @local_group: Does group contain the CPU for which we're performing
2138 * load balancing ?
2139 * @sgs: Variable containing the statistics of the group.
2141 static inline void update_sd_power_savings_stats(struct sched_group *group,
2142 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2145 if (!sds->power_savings_balance)
2146 return;
2149 * If the local group is idle or completely loaded
2150 * no need to do power savings balance at this domain
2152 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2153 !sds->this_nr_running))
2154 sds->power_savings_balance = 0;
2157 * If a group is already running at full capacity or idle,
2158 * don't include that group in power savings calculations
2160 if (!sds->power_savings_balance ||
2161 sgs->sum_nr_running >= sgs->group_capacity ||
2162 !sgs->sum_nr_running)
2163 return;
2166 * Calculate the group which has the least non-idle load.
2167 * This is the group from where we need to pick up the load
2168 * for saving power
2170 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2171 (sgs->sum_nr_running == sds->min_nr_running &&
2172 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2173 sds->group_min = group;
2174 sds->min_nr_running = sgs->sum_nr_running;
2175 sds->min_load_per_task = sgs->sum_weighted_load /
2176 sgs->sum_nr_running;
2180 * Calculate the group which is almost near its
2181 * capacity but still has some space to pick up some load
2182 * from other group and save more power
2184 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2185 return;
2187 if (sgs->sum_nr_running > sds->leader_nr_running ||
2188 (sgs->sum_nr_running == sds->leader_nr_running &&
2189 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2190 sds->group_leader = group;
2191 sds->leader_nr_running = sgs->sum_nr_running;
2196 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2197 * @sds: Variable containing the statistics of the sched_domain
2198 * under consideration.
2199 * @this_cpu: Cpu at which we're currently performing load-balancing.
2200 * @imbalance: Variable to store the imbalance.
2202 * Description:
2203 * Check if we have potential to perform some power-savings balance.
2204 * If yes, set the busiest group to be the least loaded group in the
2205 * sched_domain, so that it's CPUs can be put to idle.
2207 * Returns 1 if there is potential to perform power-savings balance.
2208 * Else returns 0.
2210 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2211 int this_cpu, unsigned long *imbalance)
2213 if (!sds->power_savings_balance)
2214 return 0;
2216 if (sds->this != sds->group_leader ||
2217 sds->group_leader == sds->group_min)
2218 return 0;
2220 *imbalance = sds->min_load_per_task;
2221 sds->busiest = sds->group_min;
2223 return 1;
2226 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2227 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2228 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2230 return;
2233 static inline void update_sd_power_savings_stats(struct sched_group *group,
2234 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2236 return;
2239 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2240 int this_cpu, unsigned long *imbalance)
2242 return 0;
2244 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2247 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2249 return SCHED_LOAD_SCALE;
2252 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2254 return default_scale_freq_power(sd, cpu);
2257 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2259 unsigned long weight = sd->span_weight;
2260 unsigned long smt_gain = sd->smt_gain;
2262 smt_gain /= weight;
2264 return smt_gain;
2267 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2269 return default_scale_smt_power(sd, cpu);
2272 unsigned long scale_rt_power(int cpu)
2274 struct rq *rq = cpu_rq(cpu);
2275 u64 total, available;
2277 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2279 if (unlikely(total < rq->rt_avg)) {
2280 /* Ensures that power won't end up being negative */
2281 available = 0;
2282 } else {
2283 available = total - rq->rt_avg;
2286 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2287 total = SCHED_LOAD_SCALE;
2289 total >>= SCHED_LOAD_SHIFT;
2291 return div_u64(available, total);
2294 static void update_cpu_power(struct sched_domain *sd, int cpu)
2296 unsigned long weight = sd->span_weight;
2297 unsigned long power = SCHED_LOAD_SCALE;
2298 struct sched_group *sdg = sd->groups;
2300 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2301 if (sched_feat(ARCH_POWER))
2302 power *= arch_scale_smt_power(sd, cpu);
2303 else
2304 power *= default_scale_smt_power(sd, cpu);
2306 power >>= SCHED_LOAD_SHIFT;
2309 sdg->cpu_power_orig = power;
2311 if (sched_feat(ARCH_POWER))
2312 power *= arch_scale_freq_power(sd, cpu);
2313 else
2314 power *= default_scale_freq_power(sd, cpu);
2316 power >>= SCHED_LOAD_SHIFT;
2318 power *= scale_rt_power(cpu);
2319 power >>= SCHED_LOAD_SHIFT;
2321 if (!power)
2322 power = 1;
2324 cpu_rq(cpu)->cpu_power = power;
2325 sdg->cpu_power = power;
2328 static void update_group_power(struct sched_domain *sd, int cpu)
2330 struct sched_domain *child = sd->child;
2331 struct sched_group *group, *sdg = sd->groups;
2332 unsigned long power;
2334 if (!child) {
2335 update_cpu_power(sd, cpu);
2336 return;
2339 power = 0;
2341 group = child->groups;
2342 do {
2343 power += group->cpu_power;
2344 group = group->next;
2345 } while (group != child->groups);
2347 sdg->cpu_power = power;
2351 * Try and fix up capacity for tiny siblings, this is needed when
2352 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2353 * which on its own isn't powerful enough.
2355 * See update_sd_pick_busiest() and check_asym_packing().
2357 static inline int
2358 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2361 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2363 if (sd->level != SD_LV_SIBLING)
2364 return 0;
2367 * If ~90% of the cpu_power is still there, we're good.
2369 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2370 return 1;
2372 return 0;
2376 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2377 * @sd: The sched_domain whose statistics are to be updated.
2378 * @group: sched_group whose statistics are to be updated.
2379 * @this_cpu: Cpu for which load balance is currently performed.
2380 * @idle: Idle status of this_cpu
2381 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2382 * @sd_idle: Idle status of the sched_domain containing group.
2383 * @local_group: Does group contain this_cpu.
2384 * @cpus: Set of cpus considered for load balancing.
2385 * @balance: Should we balance.
2386 * @sgs: variable to hold the statistics for this group.
2388 static inline void update_sg_lb_stats(struct sched_domain *sd,
2389 struct sched_group *group, int this_cpu,
2390 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2391 int local_group, const struct cpumask *cpus,
2392 int *balance, struct sg_lb_stats *sgs)
2394 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2395 int i;
2396 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2397 unsigned long avg_load_per_task = 0;
2399 if (local_group)
2400 balance_cpu = group_first_cpu(group);
2402 /* Tally up the load of all CPUs in the group */
2403 max_cpu_load = 0;
2404 min_cpu_load = ~0UL;
2405 max_nr_running = 0;
2407 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2408 struct rq *rq = cpu_rq(i);
2410 if (*sd_idle && rq->nr_running)
2411 *sd_idle = 0;
2413 /* Bias balancing toward cpus of our domain */
2414 if (local_group) {
2415 if (idle_cpu(i) && !first_idle_cpu) {
2416 first_idle_cpu = 1;
2417 balance_cpu = i;
2420 load = target_load(i, load_idx);
2421 } else {
2422 load = source_load(i, load_idx);
2423 if (load > max_cpu_load) {
2424 max_cpu_load = load;
2425 max_nr_running = rq->nr_running;
2427 if (min_cpu_load > load)
2428 min_cpu_load = load;
2431 sgs->group_load += load;
2432 sgs->sum_nr_running += rq->nr_running;
2433 sgs->sum_weighted_load += weighted_cpuload(i);
2438 * First idle cpu or the first cpu(busiest) in this sched group
2439 * is eligible for doing load balancing at this and above
2440 * domains. In the newly idle case, we will allow all the cpu's
2441 * to do the newly idle load balance.
2443 if (idle != CPU_NEWLY_IDLE && local_group) {
2444 if (balance_cpu != this_cpu) {
2445 *balance = 0;
2446 return;
2448 update_group_power(sd, this_cpu);
2451 /* Adjust by relative CPU power of the group */
2452 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2455 * Consider the group unbalanced when the imbalance is larger
2456 * than the average weight of two tasks.
2458 * APZ: with cgroup the avg task weight can vary wildly and
2459 * might not be a suitable number - should we keep a
2460 * normalized nr_running number somewhere that negates
2461 * the hierarchy?
2463 if (sgs->sum_nr_running)
2464 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2466 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2467 sgs->group_imb = 1;
2469 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2470 if (!sgs->group_capacity)
2471 sgs->group_capacity = fix_small_capacity(sd, group);
2473 if (sgs->group_capacity > sgs->sum_nr_running)
2474 sgs->group_has_capacity = 1;
2478 * update_sd_pick_busiest - return 1 on busiest group
2479 * @sd: sched_domain whose statistics are to be checked
2480 * @sds: sched_domain statistics
2481 * @sg: sched_group candidate to be checked for being the busiest
2482 * @sgs: sched_group statistics
2483 * @this_cpu: the current cpu
2485 * Determine if @sg is a busier group than the previously selected
2486 * busiest group.
2488 static bool update_sd_pick_busiest(struct sched_domain *sd,
2489 struct sd_lb_stats *sds,
2490 struct sched_group *sg,
2491 struct sg_lb_stats *sgs,
2492 int this_cpu)
2494 if (sgs->avg_load <= sds->max_load)
2495 return false;
2497 if (sgs->sum_nr_running > sgs->group_capacity)
2498 return true;
2500 if (sgs->group_imb)
2501 return true;
2504 * ASYM_PACKING needs to move all the work to the lowest
2505 * numbered CPUs in the group, therefore mark all groups
2506 * higher than ourself as busy.
2508 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2509 this_cpu < group_first_cpu(sg)) {
2510 if (!sds->busiest)
2511 return true;
2513 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2514 return true;
2517 return false;
2521 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2522 * @sd: sched_domain whose statistics are to be updated.
2523 * @this_cpu: Cpu for which load balance is currently performed.
2524 * @idle: Idle status of this_cpu
2525 * @sd_idle: Idle status of the sched_domain containing sg.
2526 * @cpus: Set of cpus considered for load balancing.
2527 * @balance: Should we balance.
2528 * @sds: variable to hold the statistics for this sched_domain.
2530 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2531 enum cpu_idle_type idle, int *sd_idle,
2532 const struct cpumask *cpus, int *balance,
2533 struct sd_lb_stats *sds)
2535 struct sched_domain *child = sd->child;
2536 struct sched_group *sg = sd->groups;
2537 struct sg_lb_stats sgs;
2538 int load_idx, prefer_sibling = 0;
2540 if (child && child->flags & SD_PREFER_SIBLING)
2541 prefer_sibling = 1;
2543 init_sd_power_savings_stats(sd, sds, idle);
2544 load_idx = get_sd_load_idx(sd, idle);
2546 do {
2547 int local_group;
2549 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2550 memset(&sgs, 0, sizeof(sgs));
2551 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2552 local_group, cpus, balance, &sgs);
2554 if (local_group && !(*balance))
2555 return;
2557 sds->total_load += sgs.group_load;
2558 sds->total_pwr += sg->cpu_power;
2561 * In case the child domain prefers tasks go to siblings
2562 * first, lower the sg capacity to one so that we'll try
2563 * and move all the excess tasks away. We lower the capacity
2564 * of a group only if the local group has the capacity to fit
2565 * these excess tasks, i.e. nr_running < group_capacity. The
2566 * extra check prevents the case where you always pull from the
2567 * heaviest group when it is already under-utilized (possible
2568 * with a large weight task outweighs the tasks on the system).
2570 if (prefer_sibling && !local_group && sds->this_has_capacity)
2571 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2573 if (local_group) {
2574 sds->this_load = sgs.avg_load;
2575 sds->this = sg;
2576 sds->this_nr_running = sgs.sum_nr_running;
2577 sds->this_load_per_task = sgs.sum_weighted_load;
2578 sds->this_has_capacity = sgs.group_has_capacity;
2579 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2580 sds->max_load = sgs.avg_load;
2581 sds->busiest = sg;
2582 sds->busiest_nr_running = sgs.sum_nr_running;
2583 sds->busiest_group_capacity = sgs.group_capacity;
2584 sds->busiest_load_per_task = sgs.sum_weighted_load;
2585 sds->busiest_has_capacity = sgs.group_has_capacity;
2586 sds->group_imb = sgs.group_imb;
2589 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2590 sg = sg->next;
2591 } while (sg != sd->groups);
2594 int __weak arch_sd_sibling_asym_packing(void)
2596 return 0*SD_ASYM_PACKING;
2600 * check_asym_packing - Check to see if the group is packed into the
2601 * sched doman.
2603 * This is primarily intended to used at the sibling level. Some
2604 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2605 * case of POWER7, it can move to lower SMT modes only when higher
2606 * threads are idle. When in lower SMT modes, the threads will
2607 * perform better since they share less core resources. Hence when we
2608 * have idle threads, we want them to be the higher ones.
2610 * This packing function is run on idle threads. It checks to see if
2611 * the busiest CPU in this domain (core in the P7 case) has a higher
2612 * CPU number than the packing function is being run on. Here we are
2613 * assuming lower CPU number will be equivalent to lower a SMT thread
2614 * number.
2616 * Returns 1 when packing is required and a task should be moved to
2617 * this CPU. The amount of the imbalance is returned in *imbalance.
2619 * @sd: The sched_domain whose packing is to be checked.
2620 * @sds: Statistics of the sched_domain which is to be packed
2621 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2622 * @imbalance: returns amount of imbalanced due to packing.
2624 static int check_asym_packing(struct sched_domain *sd,
2625 struct sd_lb_stats *sds,
2626 int this_cpu, unsigned long *imbalance)
2628 int busiest_cpu;
2630 if (!(sd->flags & SD_ASYM_PACKING))
2631 return 0;
2633 if (!sds->busiest)
2634 return 0;
2636 busiest_cpu = group_first_cpu(sds->busiest);
2637 if (this_cpu > busiest_cpu)
2638 return 0;
2640 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2641 SCHED_LOAD_SCALE);
2642 return 1;
2646 * fix_small_imbalance - Calculate the minor imbalance that exists
2647 * amongst the groups of a sched_domain, during
2648 * load balancing.
2649 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2650 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2651 * @imbalance: Variable to store the imbalance.
2653 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2654 int this_cpu, unsigned long *imbalance)
2656 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2657 unsigned int imbn = 2;
2658 unsigned long scaled_busy_load_per_task;
2660 if (sds->this_nr_running) {
2661 sds->this_load_per_task /= sds->this_nr_running;
2662 if (sds->busiest_load_per_task >
2663 sds->this_load_per_task)
2664 imbn = 1;
2665 } else
2666 sds->this_load_per_task =
2667 cpu_avg_load_per_task(this_cpu);
2669 scaled_busy_load_per_task = sds->busiest_load_per_task
2670 * SCHED_LOAD_SCALE;
2671 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2673 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2674 (scaled_busy_load_per_task * imbn)) {
2675 *imbalance = sds->busiest_load_per_task;
2676 return;
2680 * OK, we don't have enough imbalance to justify moving tasks,
2681 * however we may be able to increase total CPU power used by
2682 * moving them.
2685 pwr_now += sds->busiest->cpu_power *
2686 min(sds->busiest_load_per_task, sds->max_load);
2687 pwr_now += sds->this->cpu_power *
2688 min(sds->this_load_per_task, sds->this_load);
2689 pwr_now /= SCHED_LOAD_SCALE;
2691 /* Amount of load we'd subtract */
2692 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2693 sds->busiest->cpu_power;
2694 if (sds->max_load > tmp)
2695 pwr_move += sds->busiest->cpu_power *
2696 min(sds->busiest_load_per_task, sds->max_load - tmp);
2698 /* Amount of load we'd add */
2699 if (sds->max_load * sds->busiest->cpu_power <
2700 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2701 tmp = (sds->max_load * sds->busiest->cpu_power) /
2702 sds->this->cpu_power;
2703 else
2704 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2705 sds->this->cpu_power;
2706 pwr_move += sds->this->cpu_power *
2707 min(sds->this_load_per_task, sds->this_load + tmp);
2708 pwr_move /= SCHED_LOAD_SCALE;
2710 /* Move if we gain throughput */
2711 if (pwr_move > pwr_now)
2712 *imbalance = sds->busiest_load_per_task;
2716 * calculate_imbalance - Calculate the amount of imbalance present within the
2717 * groups of a given sched_domain during load balance.
2718 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2719 * @this_cpu: Cpu for which currently load balance is being performed.
2720 * @imbalance: The variable to store the imbalance.
2722 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2723 unsigned long *imbalance)
2725 unsigned long max_pull, load_above_capacity = ~0UL;
2727 sds->busiest_load_per_task /= sds->busiest_nr_running;
2728 if (sds->group_imb) {
2729 sds->busiest_load_per_task =
2730 min(sds->busiest_load_per_task, sds->avg_load);
2734 * In the presence of smp nice balancing, certain scenarios can have
2735 * max load less than avg load(as we skip the groups at or below
2736 * its cpu_power, while calculating max_load..)
2738 if (sds->max_load < sds->avg_load) {
2739 *imbalance = 0;
2740 return fix_small_imbalance(sds, this_cpu, imbalance);
2743 if (!sds->group_imb) {
2745 * Don't want to pull so many tasks that a group would go idle.
2747 load_above_capacity = (sds->busiest_nr_running -
2748 sds->busiest_group_capacity);
2750 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2752 load_above_capacity /= sds->busiest->cpu_power;
2756 * We're trying to get all the cpus to the average_load, so we don't
2757 * want to push ourselves above the average load, nor do we wish to
2758 * reduce the max loaded cpu below the average load. At the same time,
2759 * we also don't want to reduce the group load below the group capacity
2760 * (so that we can implement power-savings policies etc). Thus we look
2761 * for the minimum possible imbalance.
2762 * Be careful of negative numbers as they'll appear as very large values
2763 * with unsigned longs.
2765 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2767 /* How much load to actually move to equalise the imbalance */
2768 *imbalance = min(max_pull * sds->busiest->cpu_power,
2769 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2770 / SCHED_LOAD_SCALE;
2773 * if *imbalance is less than the average load per runnable task
2774 * there is no gaurantee that any tasks will be moved so we'll have
2775 * a think about bumping its value to force at least one task to be
2776 * moved
2778 if (*imbalance < sds->busiest_load_per_task)
2779 return fix_small_imbalance(sds, this_cpu, imbalance);
2783 /******* find_busiest_group() helpers end here *********************/
2786 * find_busiest_group - Returns the busiest group within the sched_domain
2787 * if there is an imbalance. If there isn't an imbalance, and
2788 * the user has opted for power-savings, it returns a group whose
2789 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2790 * such a group exists.
2792 * Also calculates the amount of weighted load which should be moved
2793 * to restore balance.
2795 * @sd: The sched_domain whose busiest group is to be returned.
2796 * @this_cpu: The cpu for which load balancing is currently being performed.
2797 * @imbalance: Variable which stores amount of weighted load which should
2798 * be moved to restore balance/put a group to idle.
2799 * @idle: The idle status of this_cpu.
2800 * @sd_idle: The idleness of sd
2801 * @cpus: The set of CPUs under consideration for load-balancing.
2802 * @balance: Pointer to a variable indicating if this_cpu
2803 * is the appropriate cpu to perform load balancing at this_level.
2805 * Returns: - the busiest group if imbalance exists.
2806 * - If no imbalance and user has opted for power-savings balance,
2807 * return the least loaded group whose CPUs can be
2808 * put to idle by rebalancing its tasks onto our group.
2810 static struct sched_group *
2811 find_busiest_group(struct sched_domain *sd, int this_cpu,
2812 unsigned long *imbalance, enum cpu_idle_type idle,
2813 int *sd_idle, const struct cpumask *cpus, int *balance)
2815 struct sd_lb_stats sds;
2817 memset(&sds, 0, sizeof(sds));
2820 * Compute the various statistics relavent for load balancing at
2821 * this level.
2823 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2824 balance, &sds);
2826 /* Cases where imbalance does not exist from POV of this_cpu */
2827 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2828 * at this level.
2829 * 2) There is no busy sibling group to pull from.
2830 * 3) This group is the busiest group.
2831 * 4) This group is more busy than the avg busieness at this
2832 * sched_domain.
2833 * 5) The imbalance is within the specified limit.
2835 * Note: when doing newidle balance, if the local group has excess
2836 * capacity (i.e. nr_running < group_capacity) and the busiest group
2837 * does not have any capacity, we force a load balance to pull tasks
2838 * to the local group. In this case, we skip past checks 3, 4 and 5.
2840 if (!(*balance))
2841 goto ret;
2843 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
2844 check_asym_packing(sd, &sds, this_cpu, imbalance))
2845 return sds.busiest;
2847 if (!sds.busiest || sds.busiest_nr_running == 0)
2848 goto out_balanced;
2850 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
2851 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
2852 !sds.busiest_has_capacity)
2853 goto force_balance;
2855 if (sds.this_load >= sds.max_load)
2856 goto out_balanced;
2858 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2860 if (sds.this_load >= sds.avg_load)
2861 goto out_balanced;
2863 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2864 goto out_balanced;
2866 force_balance:
2867 /* Looks like there is an imbalance. Compute it */
2868 calculate_imbalance(&sds, this_cpu, imbalance);
2869 return sds.busiest;
2871 out_balanced:
2873 * There is no obvious imbalance. But check if we can do some balancing
2874 * to save power.
2876 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2877 return sds.busiest;
2878 ret:
2879 *imbalance = 0;
2880 return NULL;
2884 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2886 static struct rq *
2887 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
2888 enum cpu_idle_type idle, unsigned long imbalance,
2889 const struct cpumask *cpus)
2891 struct rq *busiest = NULL, *rq;
2892 unsigned long max_load = 0;
2893 int i;
2895 for_each_cpu(i, sched_group_cpus(group)) {
2896 unsigned long power = power_of(i);
2897 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2898 unsigned long wl;
2900 if (!capacity)
2901 capacity = fix_small_capacity(sd, group);
2903 if (!cpumask_test_cpu(i, cpus))
2904 continue;
2906 rq = cpu_rq(i);
2907 wl = weighted_cpuload(i);
2910 * When comparing with imbalance, use weighted_cpuload()
2911 * which is not scaled with the cpu power.
2913 if (capacity && rq->nr_running == 1 && wl > imbalance)
2914 continue;
2917 * For the load comparisons with the other cpu's, consider
2918 * the weighted_cpuload() scaled with the cpu power, so that
2919 * the load can be moved away from the cpu that is potentially
2920 * running at a lower capacity.
2922 wl = (wl * SCHED_LOAD_SCALE) / power;
2924 if (wl > max_load) {
2925 max_load = wl;
2926 busiest = rq;
2930 return busiest;
2934 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2935 * so long as it is large enough.
2937 #define MAX_PINNED_INTERVAL 512
2939 /* Working cpumask for load_balance and load_balance_newidle. */
2940 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2942 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
2943 int busiest_cpu, int this_cpu)
2945 if (idle == CPU_NEWLY_IDLE) {
2948 * ASYM_PACKING needs to force migrate tasks from busy but
2949 * higher numbered CPUs in order to pack all tasks in the
2950 * lowest numbered CPUs.
2952 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
2953 return 1;
2956 * The only task running in a non-idle cpu can be moved to this
2957 * cpu in an attempt to completely freeup the other CPU
2958 * package.
2960 * The package power saving logic comes from
2961 * find_busiest_group(). If there are no imbalance, then
2962 * f_b_g() will return NULL. However when sched_mc={1,2} then
2963 * f_b_g() will select a group from which a running task may be
2964 * pulled to this cpu in order to make the other package idle.
2965 * If there is no opportunity to make a package idle and if
2966 * there are no imbalance, then f_b_g() will return NULL and no
2967 * action will be taken in load_balance_newidle().
2969 * Under normal task pull operation due to imbalance, there
2970 * will be more than one task in the source run queue and
2971 * move_tasks() will succeed. ld_moved will be true and this
2972 * active balance code will not be triggered.
2974 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2975 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2976 return 0;
2978 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2979 return 0;
2982 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2985 static int active_load_balance_cpu_stop(void *data);
2988 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2989 * tasks if there is an imbalance.
2991 static int load_balance(int this_cpu, struct rq *this_rq,
2992 struct sched_domain *sd, enum cpu_idle_type idle,
2993 int *balance)
2995 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2996 struct sched_group *group;
2997 unsigned long imbalance;
2998 struct rq *busiest;
2999 unsigned long flags;
3000 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3002 cpumask_copy(cpus, cpu_active_mask);
3005 * When power savings policy is enabled for the parent domain, idle
3006 * sibling can pick up load irrespective of busy siblings. In this case,
3007 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3008 * portraying it as CPU_NOT_IDLE.
3010 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3011 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3012 sd_idle = 1;
3014 schedstat_inc(sd, lb_count[idle]);
3016 redo:
3017 update_shares(sd);
3018 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3019 cpus, balance);
3021 if (*balance == 0)
3022 goto out_balanced;
3024 if (!group) {
3025 schedstat_inc(sd, lb_nobusyg[idle]);
3026 goto out_balanced;
3029 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3030 if (!busiest) {
3031 schedstat_inc(sd, lb_nobusyq[idle]);
3032 goto out_balanced;
3035 BUG_ON(busiest == this_rq);
3037 schedstat_add(sd, lb_imbalance[idle], imbalance);
3039 ld_moved = 0;
3040 if (busiest->nr_running > 1) {
3042 * Attempt to move tasks. If find_busiest_group has found
3043 * an imbalance but busiest->nr_running <= 1, the group is
3044 * still unbalanced. ld_moved simply stays zero, so it is
3045 * correctly treated as an imbalance.
3047 local_irq_save(flags);
3048 double_rq_lock(this_rq, busiest);
3049 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3050 imbalance, sd, idle, &all_pinned);
3051 double_rq_unlock(this_rq, busiest);
3052 local_irq_restore(flags);
3055 * some other cpu did the load balance for us.
3057 if (ld_moved && this_cpu != smp_processor_id())
3058 resched_cpu(this_cpu);
3060 /* All tasks on this runqueue were pinned by CPU affinity */
3061 if (unlikely(all_pinned)) {
3062 cpumask_clear_cpu(cpu_of(busiest), cpus);
3063 if (!cpumask_empty(cpus))
3064 goto redo;
3065 goto out_balanced;
3069 if (!ld_moved) {
3070 schedstat_inc(sd, lb_failed[idle]);
3072 * Increment the failure counter only on periodic balance.
3073 * We do not want newidle balance, which can be very
3074 * frequent, pollute the failure counter causing
3075 * excessive cache_hot migrations and active balances.
3077 if (idle != CPU_NEWLY_IDLE)
3078 sd->nr_balance_failed++;
3080 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3081 this_cpu)) {
3082 raw_spin_lock_irqsave(&busiest->lock, flags);
3084 /* don't kick the active_load_balance_cpu_stop,
3085 * if the curr task on busiest cpu can't be
3086 * moved to this_cpu
3088 if (!cpumask_test_cpu(this_cpu,
3089 &busiest->curr->cpus_allowed)) {
3090 raw_spin_unlock_irqrestore(&busiest->lock,
3091 flags);
3092 all_pinned = 1;
3093 goto out_one_pinned;
3097 * ->active_balance synchronizes accesses to
3098 * ->active_balance_work. Once set, it's cleared
3099 * only after active load balance is finished.
3101 if (!busiest->active_balance) {
3102 busiest->active_balance = 1;
3103 busiest->push_cpu = this_cpu;
3104 active_balance = 1;
3106 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3108 if (active_balance)
3109 stop_one_cpu_nowait(cpu_of(busiest),
3110 active_load_balance_cpu_stop, busiest,
3111 &busiest->active_balance_work);
3114 * We've kicked active balancing, reset the failure
3115 * counter.
3117 sd->nr_balance_failed = sd->cache_nice_tries+1;
3119 } else
3120 sd->nr_balance_failed = 0;
3122 if (likely(!active_balance)) {
3123 /* We were unbalanced, so reset the balancing interval */
3124 sd->balance_interval = sd->min_interval;
3125 } else {
3127 * If we've begun active balancing, start to back off. This
3128 * case may not be covered by the all_pinned logic if there
3129 * is only 1 task on the busy runqueue (because we don't call
3130 * move_tasks).
3132 if (sd->balance_interval < sd->max_interval)
3133 sd->balance_interval *= 2;
3136 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3137 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3138 ld_moved = -1;
3140 goto out;
3142 out_balanced:
3143 schedstat_inc(sd, lb_balanced[idle]);
3145 sd->nr_balance_failed = 0;
3147 out_one_pinned:
3148 /* tune up the balancing interval */
3149 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3150 (sd->balance_interval < sd->max_interval))
3151 sd->balance_interval *= 2;
3153 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3154 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3155 ld_moved = -1;
3156 else
3157 ld_moved = 0;
3158 out:
3159 if (ld_moved)
3160 update_shares(sd);
3161 return ld_moved;
3165 * idle_balance is called by schedule() if this_cpu is about to become
3166 * idle. Attempts to pull tasks from other CPUs.
3168 static void idle_balance(int this_cpu, struct rq *this_rq)
3170 struct sched_domain *sd;
3171 int pulled_task = 0;
3172 unsigned long next_balance = jiffies + HZ;
3174 this_rq->idle_stamp = this_rq->clock;
3176 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3177 return;
3180 * Drop the rq->lock, but keep IRQ/preempt disabled.
3182 raw_spin_unlock(&this_rq->lock);
3184 for_each_domain(this_cpu, sd) {
3185 unsigned long interval;
3186 int balance = 1;
3188 if (!(sd->flags & SD_LOAD_BALANCE))
3189 continue;
3191 if (sd->flags & SD_BALANCE_NEWIDLE) {
3192 /* If we've pulled tasks over stop searching: */
3193 pulled_task = load_balance(this_cpu, this_rq,
3194 sd, CPU_NEWLY_IDLE, &balance);
3197 interval = msecs_to_jiffies(sd->balance_interval);
3198 if (time_after(next_balance, sd->last_balance + interval))
3199 next_balance = sd->last_balance + interval;
3200 if (pulled_task)
3201 break;
3204 raw_spin_lock(&this_rq->lock);
3206 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3208 * We are going idle. next_balance may be set based on
3209 * a busy processor. So reset next_balance.
3211 this_rq->next_balance = next_balance;
3216 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3217 * running tasks off the busiest CPU onto idle CPUs. It requires at
3218 * least 1 task to be running on each physical CPU where possible, and
3219 * avoids physical / logical imbalances.
3221 static int active_load_balance_cpu_stop(void *data)
3223 struct rq *busiest_rq = data;
3224 int busiest_cpu = cpu_of(busiest_rq);
3225 int target_cpu = busiest_rq->push_cpu;
3226 struct rq *target_rq = cpu_rq(target_cpu);
3227 struct sched_domain *sd;
3229 raw_spin_lock_irq(&busiest_rq->lock);
3231 /* make sure the requested cpu hasn't gone down in the meantime */
3232 if (unlikely(busiest_cpu != smp_processor_id() ||
3233 !busiest_rq->active_balance))
3234 goto out_unlock;
3236 /* Is there any task to move? */
3237 if (busiest_rq->nr_running <= 1)
3238 goto out_unlock;
3241 * This condition is "impossible", if it occurs
3242 * we need to fix it. Originally reported by
3243 * Bjorn Helgaas on a 128-cpu setup.
3245 BUG_ON(busiest_rq == target_rq);
3247 /* move a task from busiest_rq to target_rq */
3248 double_lock_balance(busiest_rq, target_rq);
3250 /* Search for an sd spanning us and the target CPU. */
3251 for_each_domain(target_cpu, sd) {
3252 if ((sd->flags & SD_LOAD_BALANCE) &&
3253 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3254 break;
3257 if (likely(sd)) {
3258 schedstat_inc(sd, alb_count);
3260 if (move_one_task(target_rq, target_cpu, busiest_rq,
3261 sd, CPU_IDLE))
3262 schedstat_inc(sd, alb_pushed);
3263 else
3264 schedstat_inc(sd, alb_failed);
3266 double_unlock_balance(busiest_rq, target_rq);
3267 out_unlock:
3268 busiest_rq->active_balance = 0;
3269 raw_spin_unlock_irq(&busiest_rq->lock);
3270 return 0;
3273 #ifdef CONFIG_NO_HZ
3275 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3277 static void trigger_sched_softirq(void *data)
3279 raise_softirq_irqoff(SCHED_SOFTIRQ);
3282 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3284 csd->func = trigger_sched_softirq;
3285 csd->info = NULL;
3286 csd->flags = 0;
3287 csd->priv = 0;
3291 * idle load balancing details
3292 * - One of the idle CPUs nominates itself as idle load_balancer, while
3293 * entering idle.
3294 * - This idle load balancer CPU will also go into tickless mode when
3295 * it is idle, just like all other idle CPUs
3296 * - When one of the busy CPUs notice that there may be an idle rebalancing
3297 * needed, they will kick the idle load balancer, which then does idle
3298 * load balancing for all the idle CPUs.
3300 static struct {
3301 atomic_t load_balancer;
3302 atomic_t first_pick_cpu;
3303 atomic_t second_pick_cpu;
3304 cpumask_var_t idle_cpus_mask;
3305 cpumask_var_t grp_idle_mask;
3306 unsigned long next_balance; /* in jiffy units */
3307 } nohz ____cacheline_aligned;
3309 int get_nohz_load_balancer(void)
3311 return atomic_read(&nohz.load_balancer);
3314 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3316 * lowest_flag_domain - Return lowest sched_domain containing flag.
3317 * @cpu: The cpu whose lowest level of sched domain is to
3318 * be returned.
3319 * @flag: The flag to check for the lowest sched_domain
3320 * for the given cpu.
3322 * Returns the lowest sched_domain of a cpu which contains the given flag.
3324 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3326 struct sched_domain *sd;
3328 for_each_domain(cpu, sd)
3329 if (sd && (sd->flags & flag))
3330 break;
3332 return sd;
3336 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3337 * @cpu: The cpu whose domains we're iterating over.
3338 * @sd: variable holding the value of the power_savings_sd
3339 * for cpu.
3340 * @flag: The flag to filter the sched_domains to be iterated.
3342 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3343 * set, starting from the lowest sched_domain to the highest.
3345 #define for_each_flag_domain(cpu, sd, flag) \
3346 for (sd = lowest_flag_domain(cpu, flag); \
3347 (sd && (sd->flags & flag)); sd = sd->parent)
3350 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3351 * @ilb_group: group to be checked for semi-idleness
3353 * Returns: 1 if the group is semi-idle. 0 otherwise.
3355 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3356 * and atleast one non-idle CPU. This helper function checks if the given
3357 * sched_group is semi-idle or not.
3359 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3361 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3362 sched_group_cpus(ilb_group));
3365 * A sched_group is semi-idle when it has atleast one busy cpu
3366 * and atleast one idle cpu.
3368 if (cpumask_empty(nohz.grp_idle_mask))
3369 return 0;
3371 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3372 return 0;
3374 return 1;
3377 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3378 * @cpu: The cpu which is nominating a new idle_load_balancer.
3380 * Returns: Returns the id of the idle load balancer if it exists,
3381 * Else, returns >= nr_cpu_ids.
3383 * This algorithm picks the idle load balancer such that it belongs to a
3384 * semi-idle powersavings sched_domain. The idea is to try and avoid
3385 * completely idle packages/cores just for the purpose of idle load balancing
3386 * when there are other idle cpu's which are better suited for that job.
3388 static int find_new_ilb(int cpu)
3390 struct sched_domain *sd;
3391 struct sched_group *ilb_group;
3394 * Have idle load balancer selection from semi-idle packages only
3395 * when power-aware load balancing is enabled
3397 if (!(sched_smt_power_savings || sched_mc_power_savings))
3398 goto out_done;
3401 * Optimize for the case when we have no idle CPUs or only one
3402 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3404 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3405 goto out_done;
3407 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3408 ilb_group = sd->groups;
3410 do {
3411 if (is_semi_idle_group(ilb_group))
3412 return cpumask_first(nohz.grp_idle_mask);
3414 ilb_group = ilb_group->next;
3416 } while (ilb_group != sd->groups);
3419 out_done:
3420 return nr_cpu_ids;
3422 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3423 static inline int find_new_ilb(int call_cpu)
3425 return nr_cpu_ids;
3427 #endif
3430 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3431 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3432 * CPU (if there is one).
3434 static void nohz_balancer_kick(int cpu)
3436 int ilb_cpu;
3438 nohz.next_balance++;
3440 ilb_cpu = get_nohz_load_balancer();
3442 if (ilb_cpu >= nr_cpu_ids) {
3443 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3444 if (ilb_cpu >= nr_cpu_ids)
3445 return;
3448 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3449 struct call_single_data *cp;
3451 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3452 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3453 __smp_call_function_single(ilb_cpu, cp, 0);
3455 return;
3459 * This routine will try to nominate the ilb (idle load balancing)
3460 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3461 * load balancing on behalf of all those cpus.
3463 * When the ilb owner becomes busy, we will not have new ilb owner until some
3464 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3465 * idle load balancing by kicking one of the idle CPUs.
3467 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3468 * ilb owner CPU in future (when there is a need for idle load balancing on
3469 * behalf of all idle CPUs).
3471 void select_nohz_load_balancer(int stop_tick)
3473 int cpu = smp_processor_id();
3475 if (stop_tick) {
3476 if (!cpu_active(cpu)) {
3477 if (atomic_read(&nohz.load_balancer) != cpu)
3478 return;
3481 * If we are going offline and still the leader,
3482 * give up!
3484 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3485 nr_cpu_ids) != cpu)
3486 BUG();
3488 return;
3491 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3493 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3494 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3495 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3496 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3498 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3499 int new_ilb;
3501 /* make me the ilb owner */
3502 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3503 cpu) != nr_cpu_ids)
3504 return;
3507 * Check to see if there is a more power-efficient
3508 * ilb.
3510 new_ilb = find_new_ilb(cpu);
3511 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3512 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3513 resched_cpu(new_ilb);
3514 return;
3516 return;
3518 } else {
3519 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3520 return;
3522 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3524 if (atomic_read(&nohz.load_balancer) == cpu)
3525 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3526 nr_cpu_ids) != cpu)
3527 BUG();
3529 return;
3531 #endif
3533 static DEFINE_SPINLOCK(balancing);
3536 * It checks each scheduling domain to see if it is due to be balanced,
3537 * and initiates a balancing operation if so.
3539 * Balancing parameters are set up in arch_init_sched_domains.
3541 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3543 int balance = 1;
3544 struct rq *rq = cpu_rq(cpu);
3545 unsigned long interval;
3546 struct sched_domain *sd;
3547 /* Earliest time when we have to do rebalance again */
3548 unsigned long next_balance = jiffies + 60*HZ;
3549 int update_next_balance = 0;
3550 int need_serialize;
3552 for_each_domain(cpu, sd) {
3553 if (!(sd->flags & SD_LOAD_BALANCE))
3554 continue;
3556 interval = sd->balance_interval;
3557 if (idle != CPU_IDLE)
3558 interval *= sd->busy_factor;
3560 /* scale ms to jiffies */
3561 interval = msecs_to_jiffies(interval);
3562 if (unlikely(!interval))
3563 interval = 1;
3564 if (interval > HZ*NR_CPUS/10)
3565 interval = HZ*NR_CPUS/10;
3567 need_serialize = sd->flags & SD_SERIALIZE;
3569 if (need_serialize) {
3570 if (!spin_trylock(&balancing))
3571 goto out;
3574 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3575 if (load_balance(cpu, rq, sd, idle, &balance)) {
3577 * We've pulled tasks over so either we're no
3578 * longer idle, or one of our SMT siblings is
3579 * not idle.
3581 idle = CPU_NOT_IDLE;
3583 sd->last_balance = jiffies;
3585 if (need_serialize)
3586 spin_unlock(&balancing);
3587 out:
3588 if (time_after(next_balance, sd->last_balance + interval)) {
3589 next_balance = sd->last_balance + interval;
3590 update_next_balance = 1;
3594 * Stop the load balance at this level. There is another
3595 * CPU in our sched group which is doing load balancing more
3596 * actively.
3598 if (!balance)
3599 break;
3603 * next_balance will be updated only when there is a need.
3604 * When the cpu is attached to null domain for ex, it will not be
3605 * updated.
3607 if (likely(update_next_balance))
3608 rq->next_balance = next_balance;
3611 #ifdef CONFIG_NO_HZ
3613 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3614 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3616 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3618 struct rq *this_rq = cpu_rq(this_cpu);
3619 struct rq *rq;
3620 int balance_cpu;
3622 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3623 return;
3625 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3626 if (balance_cpu == this_cpu)
3627 continue;
3630 * If this cpu gets work to do, stop the load balancing
3631 * work being done for other cpus. Next load
3632 * balancing owner will pick it up.
3634 if (need_resched()) {
3635 this_rq->nohz_balance_kick = 0;
3636 break;
3639 raw_spin_lock_irq(&this_rq->lock);
3640 update_rq_clock(this_rq);
3641 update_cpu_load(this_rq);
3642 raw_spin_unlock_irq(&this_rq->lock);
3644 rebalance_domains(balance_cpu, CPU_IDLE);
3646 rq = cpu_rq(balance_cpu);
3647 if (time_after(this_rq->next_balance, rq->next_balance))
3648 this_rq->next_balance = rq->next_balance;
3650 nohz.next_balance = this_rq->next_balance;
3651 this_rq->nohz_balance_kick = 0;
3655 * Current heuristic for kicking the idle load balancer
3656 * - first_pick_cpu is the one of the busy CPUs. It will kick
3657 * idle load balancer when it has more than one process active. This
3658 * eliminates the need for idle load balancing altogether when we have
3659 * only one running process in the system (common case).
3660 * - If there are more than one busy CPU, idle load balancer may have
3661 * to run for active_load_balance to happen (i.e., two busy CPUs are
3662 * SMT or core siblings and can run better if they move to different
3663 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3664 * which will kick idle load balancer as soon as it has any load.
3666 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3668 unsigned long now = jiffies;
3669 int ret;
3670 int first_pick_cpu, second_pick_cpu;
3672 if (time_before(now, nohz.next_balance))
3673 return 0;
3675 if (rq->idle_at_tick)
3676 return 0;
3678 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3679 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3681 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3682 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3683 return 0;
3685 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3686 if (ret == nr_cpu_ids || ret == cpu) {
3687 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3688 if (rq->nr_running > 1)
3689 return 1;
3690 } else {
3691 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3692 if (ret == nr_cpu_ids || ret == cpu) {
3693 if (rq->nr_running)
3694 return 1;
3697 return 0;
3699 #else
3700 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3701 #endif
3704 * run_rebalance_domains is triggered when needed from the scheduler tick.
3705 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3707 static void run_rebalance_domains(struct softirq_action *h)
3709 int this_cpu = smp_processor_id();
3710 struct rq *this_rq = cpu_rq(this_cpu);
3711 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3712 CPU_IDLE : CPU_NOT_IDLE;
3714 rebalance_domains(this_cpu, idle);
3717 * If this cpu has a pending nohz_balance_kick, then do the
3718 * balancing on behalf of the other idle cpus whose ticks are
3719 * stopped.
3721 nohz_idle_balance(this_cpu, idle);
3724 static inline int on_null_domain(int cpu)
3726 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3730 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3732 static inline void trigger_load_balance(struct rq *rq, int cpu)
3734 /* Don't need to rebalance while attached to NULL domain */
3735 if (time_after_eq(jiffies, rq->next_balance) &&
3736 likely(!on_null_domain(cpu)))
3737 raise_softirq(SCHED_SOFTIRQ);
3738 #ifdef CONFIG_NO_HZ
3739 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3740 nohz_balancer_kick(cpu);
3741 #endif
3744 static void rq_online_fair(struct rq *rq)
3746 update_sysctl();
3749 static void rq_offline_fair(struct rq *rq)
3751 update_sysctl();
3754 #else /* CONFIG_SMP */
3757 * on UP we do not need to balance between CPUs:
3759 static inline void idle_balance(int cpu, struct rq *rq)
3763 #endif /* CONFIG_SMP */
3766 * scheduler tick hitting a task of our scheduling class:
3768 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3770 struct cfs_rq *cfs_rq;
3771 struct sched_entity *se = &curr->se;
3773 for_each_sched_entity(se) {
3774 cfs_rq = cfs_rq_of(se);
3775 entity_tick(cfs_rq, se, queued);
3780 * called on fork with the child task as argument from the parent's context
3781 * - child not yet on the tasklist
3782 * - preemption disabled
3784 static void task_fork_fair(struct task_struct *p)
3786 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3787 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3788 int this_cpu = smp_processor_id();
3789 struct rq *rq = this_rq();
3790 unsigned long flags;
3792 raw_spin_lock_irqsave(&rq->lock, flags);
3794 update_rq_clock(rq);
3796 if (unlikely(task_cpu(p) != this_cpu)) {
3797 rcu_read_lock();
3798 __set_task_cpu(p, this_cpu);
3799 rcu_read_unlock();
3802 update_curr(cfs_rq);
3804 if (curr)
3805 se->vruntime = curr->vruntime;
3806 place_entity(cfs_rq, se, 1);
3808 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3810 * Upon rescheduling, sched_class::put_prev_task() will place
3811 * 'current' within the tree based on its new key value.
3813 swap(curr->vruntime, se->vruntime);
3814 resched_task(rq->curr);
3817 se->vruntime -= cfs_rq->min_vruntime;
3819 raw_spin_unlock_irqrestore(&rq->lock, flags);
3823 * Priority of the task has changed. Check to see if we preempt
3824 * the current task.
3826 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3827 int oldprio, int running)
3830 * Reschedule if we are currently running on this runqueue and
3831 * our priority decreased, or if we are not currently running on
3832 * this runqueue and our priority is higher than the current's
3834 if (running) {
3835 if (p->prio > oldprio)
3836 resched_task(rq->curr);
3837 } else
3838 check_preempt_curr(rq, p, 0);
3842 * We switched to the sched_fair class.
3844 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3845 int running)
3848 * We were most likely switched from sched_rt, so
3849 * kick off the schedule if running, otherwise just see
3850 * if we can still preempt the current task.
3852 if (running)
3853 resched_task(rq->curr);
3854 else
3855 check_preempt_curr(rq, p, 0);
3858 /* Account for a task changing its policy or group.
3860 * This routine is mostly called to set cfs_rq->curr field when a task
3861 * migrates between groups/classes.
3863 static void set_curr_task_fair(struct rq *rq)
3865 struct sched_entity *se = &rq->curr->se;
3867 for_each_sched_entity(se)
3868 set_next_entity(cfs_rq_of(se), se);
3871 #ifdef CONFIG_FAIR_GROUP_SCHED
3872 static void moved_group_fair(struct task_struct *p, int on_rq)
3874 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3876 update_curr(cfs_rq);
3877 if (!on_rq)
3878 place_entity(cfs_rq, &p->se, 1);
3880 #endif
3882 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3884 struct sched_entity *se = &task->se;
3885 unsigned int rr_interval = 0;
3888 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3889 * idle runqueue:
3891 if (rq->cfs.load.weight)
3892 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3894 return rr_interval;
3898 * All the scheduling class methods:
3900 static const struct sched_class fair_sched_class = {
3901 .next = &idle_sched_class,
3902 .enqueue_task = enqueue_task_fair,
3903 .dequeue_task = dequeue_task_fair,
3904 .yield_task = yield_task_fair,
3906 .check_preempt_curr = check_preempt_wakeup,
3908 .pick_next_task = pick_next_task_fair,
3909 .put_prev_task = put_prev_task_fair,
3911 #ifdef CONFIG_SMP
3912 .select_task_rq = select_task_rq_fair,
3914 .rq_online = rq_online_fair,
3915 .rq_offline = rq_offline_fair,
3917 .task_waking = task_waking_fair,
3918 #endif
3920 .set_curr_task = set_curr_task_fair,
3921 .task_tick = task_tick_fair,
3922 .task_fork = task_fork_fair,
3924 .prio_changed = prio_changed_fair,
3925 .switched_to = switched_to_fair,
3927 .get_rr_interval = get_rr_interval_fair,
3929 #ifdef CONFIG_FAIR_GROUP_SCHED
3930 .moved_group = moved_group_fair,
3931 #endif
3934 #ifdef CONFIG_SCHED_DEBUG
3935 static void print_cfs_stats(struct seq_file *m, int cpu)
3937 struct cfs_rq *cfs_rq;
3939 rcu_read_lock();
3940 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3941 print_cfs_rq(m, cpu, cfs_rq);
3942 rcu_read_unlock();
3944 #endif