PCI: enable driver multi-threaded probe
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / via-velocity.c
blob7d8808ce541f25b6f8615211e3a1f38a54c9c006
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * Big-endian support
12 * rx_copybreak/alignment
13 * Scatter gather
14 * More testing
16 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
17 * Additional fixes and clean up: Francois Romieu
19 * This source has not been verified for use in safety critical systems.
21 * Please direct queries about the revamped driver to the linux-kernel
22 * list not VIA.
24 * Original code:
26 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
27 * All rights reserved.
29 * This software may be redistributed and/or modified under
30 * the terms of the GNU General Public License as published by the Free
31 * Software Foundation; either version 2 of the License, or
32 * any later version.
34 * This program is distributed in the hope that it will be useful, but
35 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
36 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
37 * for more details.
39 * Author: Chuang Liang-Shing, AJ Jiang
41 * Date: Jan 24, 2003
43 * MODULE_LICENSE("GPL");
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/errno.h>
53 #include <linux/ioport.h>
54 #include <linux/pci.h>
55 #include <linux/kernel.h>
56 #include <linux/netdevice.h>
57 #include <linux/etherdevice.h>
58 #include <linux/skbuff.h>
59 #include <linux/delay.h>
60 #include <linux/timer.h>
61 #include <linux/slab.h>
62 #include <linux/interrupt.h>
63 #include <linux/string.h>
64 #include <linux/wait.h>
65 #include <asm/io.h>
66 #include <linux/if.h>
67 #include <asm/uaccess.h>
68 #include <linux/proc_fs.h>
69 #include <linux/inetdevice.h>
70 #include <linux/reboot.h>
71 #include <linux/ethtool.h>
72 #include <linux/mii.h>
73 #include <linux/in.h>
74 #include <linux/if_arp.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
81 #include "via-velocity.h"
84 static int velocity_nics = 0;
85 static int msglevel = MSG_LEVEL_INFO;
88 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
89 static const struct ethtool_ops velocity_ethtool_ops;
92 Define module options
95 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
96 MODULE_LICENSE("GPL");
97 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
99 #define VELOCITY_PARAM(N,D) \
100 static int N[MAX_UNITS]=OPTION_DEFAULT;\
101 module_param_array(N, int, NULL, 0); \
102 MODULE_PARM_DESC(N, D);
104 #define RX_DESC_MIN 64
105 #define RX_DESC_MAX 255
106 #define RX_DESC_DEF 64
107 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
109 #define TX_DESC_MIN 16
110 #define TX_DESC_MAX 256
111 #define TX_DESC_DEF 64
112 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
114 #define VLAN_ID_MIN 0
115 #define VLAN_ID_MAX 4095
116 #define VLAN_ID_DEF 0
117 /* VID_setting[] is used for setting the VID of NIC.
118 0: default VID.
119 1-4094: other VIDs.
121 VELOCITY_PARAM(VID_setting, "802.1Q VLAN ID");
123 #define RX_THRESH_MIN 0
124 #define RX_THRESH_MAX 3
125 #define RX_THRESH_DEF 0
126 /* rx_thresh[] is used for controlling the receive fifo threshold.
127 0: indicate the rxfifo threshold is 128 bytes.
128 1: indicate the rxfifo threshold is 512 bytes.
129 2: indicate the rxfifo threshold is 1024 bytes.
130 3: indicate the rxfifo threshold is store & forward.
132 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
134 #define DMA_LENGTH_MIN 0
135 #define DMA_LENGTH_MAX 7
136 #define DMA_LENGTH_DEF 0
138 /* DMA_length[] is used for controlling the DMA length
139 0: 8 DWORDs
140 1: 16 DWORDs
141 2: 32 DWORDs
142 3: 64 DWORDs
143 4: 128 DWORDs
144 5: 256 DWORDs
145 6: SF(flush till emply)
146 7: SF(flush till emply)
148 VELOCITY_PARAM(DMA_length, "DMA length");
150 #define TAGGING_DEF 0
151 /* enable_tagging[] is used for enabling 802.1Q VID tagging.
152 0: disable VID seeting(default).
153 1: enable VID setting.
155 VELOCITY_PARAM(enable_tagging, "Enable 802.1Q tagging");
157 #define IP_ALIG_DEF 0
158 /* IP_byte_align[] is used for IP header DWORD byte aligned
159 0: indicate the IP header won't be DWORD byte aligned.(Default) .
160 1: indicate the IP header will be DWORD byte aligned.
161 In some enviroment, the IP header should be DWORD byte aligned,
162 or the packet will be droped when we receive it. (eg: IPVS)
164 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
166 #define TX_CSUM_DEF 1
167 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
168 (We only support RX checksum offload now)
169 0: disable csum_offload[checksum offload
170 1: enable checksum offload. (Default)
172 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
174 #define FLOW_CNTL_DEF 1
175 #define FLOW_CNTL_MIN 1
176 #define FLOW_CNTL_MAX 5
178 /* flow_control[] is used for setting the flow control ability of NIC.
179 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
180 2: enable TX flow control.
181 3: enable RX flow control.
182 4: enable RX/TX flow control.
183 5: disable
185 VELOCITY_PARAM(flow_control, "Enable flow control ability");
187 #define MED_LNK_DEF 0
188 #define MED_LNK_MIN 0
189 #define MED_LNK_MAX 4
190 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
191 0: indicate autonegotiation for both speed and duplex mode
192 1: indicate 100Mbps half duplex mode
193 2: indicate 100Mbps full duplex mode
194 3: indicate 10Mbps half duplex mode
195 4: indicate 10Mbps full duplex mode
197 Note:
198 if EEPROM have been set to the force mode, this option is ignored
199 by driver.
201 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
203 #define VAL_PKT_LEN_DEF 0
204 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
205 0: Receive frame with invalid layer 2 length (Default)
206 1: Drop frame with invalid layer 2 length
208 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
210 #define WOL_OPT_DEF 0
211 #define WOL_OPT_MIN 0
212 #define WOL_OPT_MAX 7
213 /* wol_opts[] is used for controlling wake on lan behavior.
214 0: Wake up if recevied a magic packet. (Default)
215 1: Wake up if link status is on/off.
216 2: Wake up if recevied an arp packet.
217 4: Wake up if recevied any unicast packet.
218 Those value can be sumed up to support more than one option.
220 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
222 #define INT_WORKS_DEF 20
223 #define INT_WORKS_MIN 10
224 #define INT_WORKS_MAX 64
226 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
228 static int rx_copybreak = 200;
229 module_param(rx_copybreak, int, 0644);
230 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
232 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
233 const struct velocity_info_tbl *info);
234 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
235 static void velocity_print_info(struct velocity_info *vptr);
236 static int velocity_open(struct net_device *dev);
237 static int velocity_change_mtu(struct net_device *dev, int mtu);
238 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
239 static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs);
240 static void velocity_set_multi(struct net_device *dev);
241 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
242 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
243 static int velocity_close(struct net_device *dev);
244 static int velocity_receive_frame(struct velocity_info *, int idx);
245 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
246 static void velocity_free_rd_ring(struct velocity_info *vptr);
247 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
248 static int velocity_soft_reset(struct velocity_info *vptr);
249 static void mii_init(struct velocity_info *vptr, u32 mii_status);
250 static u32 velocity_get_link(struct net_device *dev);
251 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
252 static void velocity_print_link_status(struct velocity_info *vptr);
253 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
254 static void velocity_shutdown(struct velocity_info *vptr);
255 static void enable_flow_control_ability(struct velocity_info *vptr);
256 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
257 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
258 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
259 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
260 static u32 check_connection_type(struct mac_regs __iomem * regs);
261 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
263 #ifdef CONFIG_PM
265 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
266 static int velocity_resume(struct pci_dev *pdev);
268 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
270 static struct notifier_block velocity_inetaddr_notifier = {
271 .notifier_call = velocity_netdev_event,
274 static DEFINE_SPINLOCK(velocity_dev_list_lock);
275 static LIST_HEAD(velocity_dev_list);
277 static void velocity_register_notifier(void)
279 register_inetaddr_notifier(&velocity_inetaddr_notifier);
282 static void velocity_unregister_notifier(void)
284 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
287 #else /* CONFIG_PM */
289 #define velocity_register_notifier() do {} while (0)
290 #define velocity_unregister_notifier() do {} while (0)
292 #endif /* !CONFIG_PM */
295 * Internal board variants. At the moment we have only one
298 static const struct velocity_info_tbl chip_info_table[] __devinitdata = {
299 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
304 * Describe the PCI device identifiers that we support in this
305 * device driver. Used for hotplug autoloading.
308 static const struct pci_device_id velocity_id_table[] __devinitdata = {
309 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
313 MODULE_DEVICE_TABLE(pci, velocity_id_table);
316 * get_chip_name - identifier to name
317 * @id: chip identifier
319 * Given a chip identifier return a suitable description. Returns
320 * a pointer a static string valid while the driver is loaded.
323 static char __devinit *get_chip_name(enum chip_type chip_id)
325 int i;
326 for (i = 0; chip_info_table[i].name != NULL; i++)
327 if (chip_info_table[i].chip_id == chip_id)
328 break;
329 return chip_info_table[i].name;
333 * velocity_remove1 - device unplug
334 * @pdev: PCI device being removed
336 * Device unload callback. Called on an unplug or on module
337 * unload for each active device that is present. Disconnects
338 * the device from the network layer and frees all the resources
341 static void __devexit velocity_remove1(struct pci_dev *pdev)
343 struct net_device *dev = pci_get_drvdata(pdev);
344 struct velocity_info *vptr = netdev_priv(dev);
346 #ifdef CONFIG_PM
347 unsigned long flags;
349 spin_lock_irqsave(&velocity_dev_list_lock, flags);
350 if (!list_empty(&velocity_dev_list))
351 list_del(&vptr->list);
352 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
353 #endif
354 unregister_netdev(dev);
355 iounmap(vptr->mac_regs);
356 pci_release_regions(pdev);
357 pci_disable_device(pdev);
358 pci_set_drvdata(pdev, NULL);
359 free_netdev(dev);
361 velocity_nics--;
365 * velocity_set_int_opt - parser for integer options
366 * @opt: pointer to option value
367 * @val: value the user requested (or -1 for default)
368 * @min: lowest value allowed
369 * @max: highest value allowed
370 * @def: default value
371 * @name: property name
372 * @dev: device name
374 * Set an integer property in the module options. This function does
375 * all the verification and checking as well as reporting so that
376 * we don't duplicate code for each option.
379 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
381 if (val == -1)
382 *opt = def;
383 else if (val < min || val > max) {
384 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
385 devname, name, min, max);
386 *opt = def;
387 } else {
388 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
389 devname, name, val);
390 *opt = val;
395 * velocity_set_bool_opt - parser for boolean options
396 * @opt: pointer to option value
397 * @val: value the user requested (or -1 for default)
398 * @def: default value (yes/no)
399 * @flag: numeric value to set for true.
400 * @name: property name
401 * @dev: device name
403 * Set a boolean property in the module options. This function does
404 * all the verification and checking as well as reporting so that
405 * we don't duplicate code for each option.
408 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
410 (*opt) &= (~flag);
411 if (val == -1)
412 *opt |= (def ? flag : 0);
413 else if (val < 0 || val > 1) {
414 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
415 devname, name);
416 *opt |= (def ? flag : 0);
417 } else {
418 printk(KERN_INFO "%s: set parameter %s to %s\n",
419 devname, name, val ? "TRUE" : "FALSE");
420 *opt |= (val ? flag : 0);
425 * velocity_get_options - set options on device
426 * @opts: option structure for the device
427 * @index: index of option to use in module options array
428 * @devname: device name
430 * Turn the module and command options into a single structure
431 * for the current device
434 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
437 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
438 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
439 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
440 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
441 velocity_set_int_opt(&opts->vid, VID_setting[index], VLAN_ID_MIN, VLAN_ID_MAX, VLAN_ID_DEF, "VID_setting", devname);
442 velocity_set_bool_opt(&opts->flags, enable_tagging[index], TAGGING_DEF, VELOCITY_FLAGS_TAGGING, "enable_tagging", devname);
443 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
444 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
445 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
446 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
447 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
448 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
449 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
450 opts->numrx = (opts->numrx & ~3);
454 * velocity_init_cam_filter - initialise CAM
455 * @vptr: velocity to program
457 * Initialize the content addressable memory used for filters. Load
458 * appropriately according to the presence of VLAN
461 static void velocity_init_cam_filter(struct velocity_info *vptr)
463 struct mac_regs __iomem * regs = vptr->mac_regs;
465 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
466 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
467 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
469 /* Disable all CAMs */
470 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
471 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
472 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
473 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
475 /* Enable first VCAM */
476 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
477 /* If Tagging option is enabled and VLAN ID is not zero, then
478 turn on MCFG_RTGOPT also */
479 if (vptr->options.vid != 0)
480 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
482 mac_set_cam(regs, 0, (u8 *) & (vptr->options.vid), VELOCITY_VLAN_ID_CAM);
483 vptr->vCAMmask[0] |= 1;
484 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
485 } else {
486 u16 temp = 0;
487 mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
488 temp = 1;
489 mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
494 * velocity_rx_reset - handle a receive reset
495 * @vptr: velocity we are resetting
497 * Reset the ownership and status for the receive ring side.
498 * Hand all the receive queue to the NIC.
501 static void velocity_rx_reset(struct velocity_info *vptr)
504 struct mac_regs __iomem * regs = vptr->mac_regs;
505 int i;
507 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
510 * Init state, all RD entries belong to the NIC
512 for (i = 0; i < vptr->options.numrx; ++i)
513 vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
515 writew(vptr->options.numrx, &regs->RBRDU);
516 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
517 writew(0, &regs->RDIdx);
518 writew(vptr->options.numrx - 1, &regs->RDCSize);
522 * velocity_init_registers - initialise MAC registers
523 * @vptr: velocity to init
524 * @type: type of initialisation (hot or cold)
526 * Initialise the MAC on a reset or on first set up on the
527 * hardware.
530 static void velocity_init_registers(struct velocity_info *vptr,
531 enum velocity_init_type type)
533 struct mac_regs __iomem * regs = vptr->mac_regs;
534 int i, mii_status;
536 mac_wol_reset(regs);
538 switch (type) {
539 case VELOCITY_INIT_RESET:
540 case VELOCITY_INIT_WOL:
542 netif_stop_queue(vptr->dev);
545 * Reset RX to prevent RX pointer not on the 4X location
547 velocity_rx_reset(vptr);
548 mac_rx_queue_run(regs);
549 mac_rx_queue_wake(regs);
551 mii_status = velocity_get_opt_media_mode(vptr);
552 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
553 velocity_print_link_status(vptr);
554 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
555 netif_wake_queue(vptr->dev);
558 enable_flow_control_ability(vptr);
560 mac_clear_isr(regs);
561 writel(CR0_STOP, &regs->CR0Clr);
562 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
563 &regs->CR0Set);
565 break;
567 case VELOCITY_INIT_COLD:
568 default:
570 * Do reset
572 velocity_soft_reset(vptr);
573 mdelay(5);
575 mac_eeprom_reload(regs);
576 for (i = 0; i < 6; i++) {
577 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
580 * clear Pre_ACPI bit.
582 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
583 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
584 mac_set_dma_length(regs, vptr->options.DMA_length);
586 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
588 * Back off algorithm use original IEEE standard
590 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
593 * Init CAM filter
595 velocity_init_cam_filter(vptr);
598 * Set packet filter: Receive directed and broadcast address
600 velocity_set_multi(vptr->dev);
603 * Enable MII auto-polling
605 enable_mii_autopoll(regs);
607 vptr->int_mask = INT_MASK_DEF;
609 writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
610 writew(vptr->options.numrx - 1, &regs->RDCSize);
611 mac_rx_queue_run(regs);
612 mac_rx_queue_wake(regs);
614 writew(vptr->options.numtx - 1, &regs->TDCSize);
616 for (i = 0; i < vptr->num_txq; i++) {
617 writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
618 mac_tx_queue_run(regs, i);
621 init_flow_control_register(vptr);
623 writel(CR0_STOP, &regs->CR0Clr);
624 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
626 mii_status = velocity_get_opt_media_mode(vptr);
627 netif_stop_queue(vptr->dev);
629 mii_init(vptr, mii_status);
631 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
632 velocity_print_link_status(vptr);
633 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
634 netif_wake_queue(vptr->dev);
637 enable_flow_control_ability(vptr);
638 mac_hw_mibs_init(regs);
639 mac_write_int_mask(vptr->int_mask, regs);
640 mac_clear_isr(regs);
646 * velocity_soft_reset - soft reset
647 * @vptr: velocity to reset
649 * Kick off a soft reset of the velocity adapter and then poll
650 * until the reset sequence has completed before returning.
653 static int velocity_soft_reset(struct velocity_info *vptr)
655 struct mac_regs __iomem * regs = vptr->mac_regs;
656 int i = 0;
658 writel(CR0_SFRST, &regs->CR0Set);
660 for (i = 0; i < W_MAX_TIMEOUT; i++) {
661 udelay(5);
662 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
663 break;
666 if (i == W_MAX_TIMEOUT) {
667 writel(CR0_FORSRST, &regs->CR0Set);
668 /* FIXME: PCI POSTING */
669 /* delay 2ms */
670 mdelay(2);
672 return 0;
676 * velocity_found1 - set up discovered velocity card
677 * @pdev: PCI device
678 * @ent: PCI device table entry that matched
680 * Configure a discovered adapter from scratch. Return a negative
681 * errno error code on failure paths.
684 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
686 static int first = 1;
687 struct net_device *dev;
688 int i;
689 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
690 struct velocity_info *vptr;
691 struct mac_regs __iomem * regs;
692 int ret = -ENOMEM;
694 /* FIXME: this driver, like almost all other ethernet drivers,
695 * can support more than MAX_UNITS.
697 if (velocity_nics >= MAX_UNITS) {
698 dev_notice(&pdev->dev, "already found %d NICs.\n",
699 velocity_nics);
700 return -ENODEV;
703 dev = alloc_etherdev(sizeof(struct velocity_info));
704 if (!dev) {
705 dev_err(&pdev->dev, "allocate net device failed.\n");
706 goto out;
709 /* Chain it all together */
711 SET_MODULE_OWNER(dev);
712 SET_NETDEV_DEV(dev, &pdev->dev);
713 vptr = netdev_priv(dev);
716 if (first) {
717 printk(KERN_INFO "%s Ver. %s\n",
718 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
719 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
720 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
721 first = 0;
724 velocity_init_info(pdev, vptr, info);
726 vptr->dev = dev;
728 dev->irq = pdev->irq;
730 ret = pci_enable_device(pdev);
731 if (ret < 0)
732 goto err_free_dev;
734 ret = velocity_get_pci_info(vptr, pdev);
735 if (ret < 0) {
736 /* error message already printed */
737 goto err_disable;
740 ret = pci_request_regions(pdev, VELOCITY_NAME);
741 if (ret < 0) {
742 dev_err(&pdev->dev, "No PCI resources.\n");
743 goto err_disable;
746 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
747 if (regs == NULL) {
748 ret = -EIO;
749 goto err_release_res;
752 vptr->mac_regs = regs;
754 mac_wol_reset(regs);
756 dev->base_addr = vptr->ioaddr;
758 for (i = 0; i < 6; i++)
759 dev->dev_addr[i] = readb(&regs->PAR[i]);
762 velocity_get_options(&vptr->options, velocity_nics, dev->name);
765 * Mask out the options cannot be set to the chip
768 vptr->options.flags &= info->flags;
771 * Enable the chip specified capbilities
774 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
776 vptr->wol_opts = vptr->options.wol_opts;
777 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
779 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
781 dev->irq = pdev->irq;
782 dev->open = velocity_open;
783 dev->hard_start_xmit = velocity_xmit;
784 dev->stop = velocity_close;
785 dev->get_stats = velocity_get_stats;
786 dev->set_multicast_list = velocity_set_multi;
787 dev->do_ioctl = velocity_ioctl;
788 dev->ethtool_ops = &velocity_ethtool_ops;
789 dev->change_mtu = velocity_change_mtu;
790 #ifdef VELOCITY_ZERO_COPY_SUPPORT
791 dev->features |= NETIF_F_SG;
792 #endif
794 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM) {
795 dev->features |= NETIF_F_IP_CSUM;
798 ret = register_netdev(dev);
799 if (ret < 0)
800 goto err_iounmap;
802 if (velocity_get_link(dev))
803 netif_carrier_off(dev);
805 velocity_print_info(vptr);
806 pci_set_drvdata(pdev, dev);
808 /* and leave the chip powered down */
810 pci_set_power_state(pdev, PCI_D3hot);
811 #ifdef CONFIG_PM
813 unsigned long flags;
815 spin_lock_irqsave(&velocity_dev_list_lock, flags);
816 list_add(&vptr->list, &velocity_dev_list);
817 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
819 #endif
820 velocity_nics++;
821 out:
822 return ret;
824 err_iounmap:
825 iounmap(regs);
826 err_release_res:
827 pci_release_regions(pdev);
828 err_disable:
829 pci_disable_device(pdev);
830 err_free_dev:
831 free_netdev(dev);
832 goto out;
836 * velocity_print_info - per driver data
837 * @vptr: velocity
839 * Print per driver data as the kernel driver finds Velocity
840 * hardware
843 static void __devinit velocity_print_info(struct velocity_info *vptr)
845 struct net_device *dev = vptr->dev;
847 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
848 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
849 dev->name,
850 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
851 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
855 * velocity_init_info - init private data
856 * @pdev: PCI device
857 * @vptr: Velocity info
858 * @info: Board type
860 * Set up the initial velocity_info struct for the device that has been
861 * discovered.
864 static void __devinit velocity_init_info(struct pci_dev *pdev,
865 struct velocity_info *vptr,
866 const struct velocity_info_tbl *info)
868 memset(vptr, 0, sizeof(struct velocity_info));
870 vptr->pdev = pdev;
871 vptr->chip_id = info->chip_id;
872 vptr->num_txq = info->txqueue;
873 vptr->multicast_limit = MCAM_SIZE;
874 spin_lock_init(&vptr->lock);
875 INIT_LIST_HEAD(&vptr->list);
879 * velocity_get_pci_info - retrieve PCI info for device
880 * @vptr: velocity device
881 * @pdev: PCI device it matches
883 * Retrieve the PCI configuration space data that interests us from
884 * the kernel PCI layer
887 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
889 if (pci_read_config_byte(pdev, PCI_REVISION_ID, &vptr->rev_id) < 0)
890 return -EIO;
892 pci_set_master(pdev);
894 vptr->ioaddr = pci_resource_start(pdev, 0);
895 vptr->memaddr = pci_resource_start(pdev, 1);
897 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
898 dev_err(&pdev->dev,
899 "region #0 is not an I/O resource, aborting.\n");
900 return -EINVAL;
903 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
904 dev_err(&pdev->dev,
905 "region #1 is an I/O resource, aborting.\n");
906 return -EINVAL;
909 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
910 dev_err(&pdev->dev, "region #1 is too small.\n");
911 return -EINVAL;
913 vptr->pdev = pdev;
915 return 0;
919 * velocity_init_rings - set up DMA rings
920 * @vptr: Velocity to set up
922 * Allocate PCI mapped DMA rings for the receive and transmit layer
923 * to use.
926 static int velocity_init_rings(struct velocity_info *vptr)
928 int i;
929 unsigned int psize;
930 unsigned int tsize;
931 dma_addr_t pool_dma;
932 u8 *pool;
935 * Allocate all RD/TD rings a single pool
938 psize = vptr->options.numrx * sizeof(struct rx_desc) +
939 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
942 * pci_alloc_consistent() fulfills the requirement for 64 bytes
943 * alignment
945 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
947 if (pool == NULL) {
948 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
949 vptr->dev->name);
950 return -ENOMEM;
953 memset(pool, 0, psize);
955 vptr->rd_ring = (struct rx_desc *) pool;
957 vptr->rd_pool_dma = pool_dma;
959 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
960 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
961 &vptr->tx_bufs_dma);
963 if (vptr->tx_bufs == NULL) {
964 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
965 vptr->dev->name);
966 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
967 return -ENOMEM;
970 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
972 i = vptr->options.numrx * sizeof(struct rx_desc);
973 pool += i;
974 pool_dma += i;
975 for (i = 0; i < vptr->num_txq; i++) {
976 int offset = vptr->options.numtx * sizeof(struct tx_desc);
978 vptr->td_pool_dma[i] = pool_dma;
979 vptr->td_rings[i] = (struct tx_desc *) pool;
980 pool += offset;
981 pool_dma += offset;
983 return 0;
987 * velocity_free_rings - free PCI ring pointers
988 * @vptr: Velocity to free from
990 * Clean up the PCI ring buffers allocated to this velocity.
993 static void velocity_free_rings(struct velocity_info *vptr)
995 int size;
997 size = vptr->options.numrx * sizeof(struct rx_desc) +
998 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
1000 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1002 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1004 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1007 static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1009 struct mac_regs __iomem *regs = vptr->mac_regs;
1010 int avail, dirty, unusable;
1013 * RD number must be equal to 4X per hardware spec
1014 * (programming guide rev 1.20, p.13)
1016 if (vptr->rd_filled < 4)
1017 return;
1019 wmb();
1021 unusable = vptr->rd_filled & 0x0003;
1022 dirty = vptr->rd_dirty - unusable;
1023 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1024 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1025 vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
1028 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1029 vptr->rd_filled = unusable;
1032 static int velocity_rx_refill(struct velocity_info *vptr)
1034 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1036 do {
1037 struct rx_desc *rd = vptr->rd_ring + dirty;
1039 /* Fine for an all zero Rx desc at init time as well */
1040 if (rd->rdesc0.owner == OWNED_BY_NIC)
1041 break;
1043 if (!vptr->rd_info[dirty].skb) {
1044 ret = velocity_alloc_rx_buf(vptr, dirty);
1045 if (ret < 0)
1046 break;
1048 done++;
1049 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1050 } while (dirty != vptr->rd_curr);
1052 if (done) {
1053 vptr->rd_dirty = dirty;
1054 vptr->rd_filled += done;
1055 velocity_give_many_rx_descs(vptr);
1058 return ret;
1062 * velocity_init_rd_ring - set up receive ring
1063 * @vptr: velocity to configure
1065 * Allocate and set up the receive buffers for each ring slot and
1066 * assign them to the network adapter.
1069 static int velocity_init_rd_ring(struct velocity_info *vptr)
1071 int ret = -ENOMEM;
1072 unsigned int rsize = sizeof(struct velocity_rd_info) *
1073 vptr->options.numrx;
1075 vptr->rd_info = kmalloc(rsize, GFP_KERNEL);
1076 if(vptr->rd_info == NULL)
1077 goto out;
1078 memset(vptr->rd_info, 0, rsize);
1080 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1082 ret = velocity_rx_refill(vptr);
1083 if (ret < 0) {
1084 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1085 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1086 velocity_free_rd_ring(vptr);
1088 out:
1089 return ret;
1093 * velocity_free_rd_ring - free receive ring
1094 * @vptr: velocity to clean up
1096 * Free the receive buffers for each ring slot and any
1097 * attached socket buffers that need to go away.
1100 static void velocity_free_rd_ring(struct velocity_info *vptr)
1102 int i;
1104 if (vptr->rd_info == NULL)
1105 return;
1107 for (i = 0; i < vptr->options.numrx; i++) {
1108 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
1109 struct rx_desc *rd = vptr->rd_ring + i;
1111 memset(rd, 0, sizeof(*rd));
1113 if (!rd_info->skb)
1114 continue;
1115 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1116 PCI_DMA_FROMDEVICE);
1117 rd_info->skb_dma = (dma_addr_t) NULL;
1119 dev_kfree_skb(rd_info->skb);
1120 rd_info->skb = NULL;
1123 kfree(vptr->rd_info);
1124 vptr->rd_info = NULL;
1128 * velocity_init_td_ring - set up transmit ring
1129 * @vptr: velocity
1131 * Set up the transmit ring and chain the ring pointers together.
1132 * Returns zero on success or a negative posix errno code for
1133 * failure.
1136 static int velocity_init_td_ring(struct velocity_info *vptr)
1138 int i, j;
1139 dma_addr_t curr;
1140 struct tx_desc *td;
1141 struct velocity_td_info *td_info;
1142 unsigned int tsize = sizeof(struct velocity_td_info) *
1143 vptr->options.numtx;
1145 /* Init the TD ring entries */
1146 for (j = 0; j < vptr->num_txq; j++) {
1147 curr = vptr->td_pool_dma[j];
1149 vptr->td_infos[j] = kmalloc(tsize, GFP_KERNEL);
1150 if(vptr->td_infos[j] == NULL)
1152 while(--j >= 0)
1153 kfree(vptr->td_infos[j]);
1154 return -ENOMEM;
1156 memset(vptr->td_infos[j], 0, tsize);
1158 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1159 td = &(vptr->td_rings[j][i]);
1160 td_info = &(vptr->td_infos[j][i]);
1161 td_info->buf = vptr->tx_bufs +
1162 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1163 td_info->buf_dma = vptr->tx_bufs_dma +
1164 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1166 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1168 return 0;
1172 * FIXME: could we merge this with velocity_free_tx_buf ?
1175 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1176 int q, int n)
1178 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1179 int i;
1181 if (td_info == NULL)
1182 return;
1184 if (td_info->skb) {
1185 for (i = 0; i < td_info->nskb_dma; i++)
1187 if (td_info->skb_dma[i]) {
1188 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1189 td_info->skb->len, PCI_DMA_TODEVICE);
1190 td_info->skb_dma[i] = (dma_addr_t) NULL;
1193 dev_kfree_skb(td_info->skb);
1194 td_info->skb = NULL;
1199 * velocity_free_td_ring - free td ring
1200 * @vptr: velocity
1202 * Free up the transmit ring for this particular velocity adapter.
1203 * We free the ring contents but not the ring itself.
1206 static void velocity_free_td_ring(struct velocity_info *vptr)
1208 int i, j;
1210 for (j = 0; j < vptr->num_txq; j++) {
1211 if (vptr->td_infos[j] == NULL)
1212 continue;
1213 for (i = 0; i < vptr->options.numtx; i++) {
1214 velocity_free_td_ring_entry(vptr, j, i);
1217 kfree(vptr->td_infos[j]);
1218 vptr->td_infos[j] = NULL;
1223 * velocity_rx_srv - service RX interrupt
1224 * @vptr: velocity
1225 * @status: adapter status (unused)
1227 * Walk the receive ring of the velocity adapter and remove
1228 * any received packets from the receive queue. Hand the ring
1229 * slots back to the adapter for reuse.
1232 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1234 struct net_device_stats *stats = &vptr->stats;
1235 int rd_curr = vptr->rd_curr;
1236 int works = 0;
1238 do {
1239 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1241 if (!vptr->rd_info[rd_curr].skb)
1242 break;
1244 if (rd->rdesc0.owner == OWNED_BY_NIC)
1245 break;
1247 rmb();
1250 * Don't drop CE or RL error frame although RXOK is off
1252 if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
1253 if (velocity_receive_frame(vptr, rd_curr) < 0)
1254 stats->rx_dropped++;
1255 } else {
1256 if (rd->rdesc0.RSR & RSR_CRC)
1257 stats->rx_crc_errors++;
1258 if (rd->rdesc0.RSR & RSR_FAE)
1259 stats->rx_frame_errors++;
1261 stats->rx_dropped++;
1264 rd->inten = 1;
1266 vptr->dev->last_rx = jiffies;
1268 rd_curr++;
1269 if (rd_curr >= vptr->options.numrx)
1270 rd_curr = 0;
1271 } while (++works <= 15);
1273 vptr->rd_curr = rd_curr;
1275 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1276 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1277 "%s: rx buf allocation failure\n", vptr->dev->name);
1280 VAR_USED(stats);
1281 return works;
1285 * velocity_rx_csum - checksum process
1286 * @rd: receive packet descriptor
1287 * @skb: network layer packet buffer
1289 * Process the status bits for the received packet and determine
1290 * if the checksum was computed and verified by the hardware
1293 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1295 skb->ip_summed = CHECKSUM_NONE;
1297 if (rd->rdesc1.CSM & CSM_IPKT) {
1298 if (rd->rdesc1.CSM & CSM_IPOK) {
1299 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1300 (rd->rdesc1.CSM & CSM_UDPKT)) {
1301 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1302 return;
1305 skb->ip_summed = CHECKSUM_UNNECESSARY;
1311 * velocity_rx_copy - in place Rx copy for small packets
1312 * @rx_skb: network layer packet buffer candidate
1313 * @pkt_size: received data size
1314 * @rd: receive packet descriptor
1315 * @dev: network device
1317 * Replace the current skb that is scheduled for Rx processing by a
1318 * shorter, immediatly allocated skb, if the received packet is small
1319 * enough. This function returns a negative value if the received
1320 * packet is too big or if memory is exhausted.
1322 static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1323 struct velocity_info *vptr)
1325 int ret = -1;
1327 if (pkt_size < rx_copybreak) {
1328 struct sk_buff *new_skb;
1330 new_skb = dev_alloc_skb(pkt_size + 2);
1331 if (new_skb) {
1332 new_skb->dev = vptr->dev;
1333 new_skb->ip_summed = rx_skb[0]->ip_summed;
1335 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1336 skb_reserve(new_skb, 2);
1338 memcpy(new_skb->data, rx_skb[0]->data, pkt_size);
1339 *rx_skb = new_skb;
1340 ret = 0;
1344 return ret;
1348 * velocity_iph_realign - IP header alignment
1349 * @vptr: velocity we are handling
1350 * @skb: network layer packet buffer
1351 * @pkt_size: received data size
1353 * Align IP header on a 2 bytes boundary. This behavior can be
1354 * configured by the user.
1356 static inline void velocity_iph_realign(struct velocity_info *vptr,
1357 struct sk_buff *skb, int pkt_size)
1359 /* FIXME - memmove ? */
1360 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1361 int i;
1363 for (i = pkt_size; i >= 0; i--)
1364 *(skb->data + i + 2) = *(skb->data + i);
1365 skb_reserve(skb, 2);
1370 * velocity_receive_frame - received packet processor
1371 * @vptr: velocity we are handling
1372 * @idx: ring index
1374 * A packet has arrived. We process the packet and if appropriate
1375 * pass the frame up the network stack
1378 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1380 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1381 struct net_device_stats *stats = &vptr->stats;
1382 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1383 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1384 int pkt_len = rd->rdesc0.len;
1385 struct sk_buff *skb;
1387 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1388 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1389 stats->rx_length_errors++;
1390 return -EINVAL;
1393 if (rd->rdesc0.RSR & RSR_MAR)
1394 vptr->stats.multicast++;
1396 skb = rd_info->skb;
1397 skb->dev = vptr->dev;
1399 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1400 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1403 * Drop frame not meeting IEEE 802.3
1406 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1407 if (rd->rdesc0.RSR & RSR_RL) {
1408 stats->rx_length_errors++;
1409 return -EINVAL;
1413 pci_action = pci_dma_sync_single_for_device;
1415 velocity_rx_csum(rd, skb);
1417 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1418 velocity_iph_realign(vptr, skb, pkt_len);
1419 pci_action = pci_unmap_single;
1420 rd_info->skb = NULL;
1423 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1424 PCI_DMA_FROMDEVICE);
1426 skb_put(skb, pkt_len - 4);
1427 skb->protocol = eth_type_trans(skb, skb->dev);
1429 stats->rx_bytes += pkt_len;
1430 netif_rx(skb);
1432 return 0;
1436 * velocity_alloc_rx_buf - allocate aligned receive buffer
1437 * @vptr: velocity
1438 * @idx: ring index
1440 * Allocate a new full sized buffer for the reception of a frame and
1441 * map it into PCI space for the hardware to use. The hardware
1442 * requires *64* byte alignment of the buffer which makes life
1443 * less fun than would be ideal.
1446 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1448 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1449 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1451 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1452 if (rd_info->skb == NULL)
1453 return -ENOMEM;
1456 * Do the gymnastics to get the buffer head for data at
1457 * 64byte alignment.
1459 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1460 rd_info->skb->dev = vptr->dev;
1461 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1464 * Fill in the descriptor to match
1467 *((u32 *) & (rd->rdesc0)) = 0;
1468 rd->len = cpu_to_le32(vptr->rx_buf_sz);
1469 rd->inten = 1;
1470 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1471 rd->pa_high = 0;
1472 return 0;
1476 * tx_srv - transmit interrupt service
1477 * @vptr; Velocity
1478 * @status:
1480 * Scan the queues looking for transmitted packets that
1481 * we can complete and clean up. Update any statistics as
1482 * neccessary/
1485 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1487 struct tx_desc *td;
1488 int qnum;
1489 int full = 0;
1490 int idx;
1491 int works = 0;
1492 struct velocity_td_info *tdinfo;
1493 struct net_device_stats *stats = &vptr->stats;
1495 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1496 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1497 idx = (idx + 1) % vptr->options.numtx) {
1500 * Get Tx Descriptor
1502 td = &(vptr->td_rings[qnum][idx]);
1503 tdinfo = &(vptr->td_infos[qnum][idx]);
1505 if (td->tdesc0.owner == OWNED_BY_NIC)
1506 break;
1508 if ((works++ > 15))
1509 break;
1511 if (td->tdesc0.TSR & TSR0_TERR) {
1512 stats->tx_errors++;
1513 stats->tx_dropped++;
1514 if (td->tdesc0.TSR & TSR0_CDH)
1515 stats->tx_heartbeat_errors++;
1516 if (td->tdesc0.TSR & TSR0_CRS)
1517 stats->tx_carrier_errors++;
1518 if (td->tdesc0.TSR & TSR0_ABT)
1519 stats->tx_aborted_errors++;
1520 if (td->tdesc0.TSR & TSR0_OWC)
1521 stats->tx_window_errors++;
1522 } else {
1523 stats->tx_packets++;
1524 stats->tx_bytes += tdinfo->skb->len;
1526 velocity_free_tx_buf(vptr, tdinfo);
1527 vptr->td_used[qnum]--;
1529 vptr->td_tail[qnum] = idx;
1531 if (AVAIL_TD(vptr, qnum) < 1) {
1532 full = 1;
1536 * Look to see if we should kick the transmit network
1537 * layer for more work.
1539 if (netif_queue_stopped(vptr->dev) && (full == 0)
1540 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1541 netif_wake_queue(vptr->dev);
1543 return works;
1547 * velocity_print_link_status - link status reporting
1548 * @vptr: velocity to report on
1550 * Turn the link status of the velocity card into a kernel log
1551 * description of the new link state, detailing speed and duplex
1552 * status
1555 static void velocity_print_link_status(struct velocity_info *vptr)
1558 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1559 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1560 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1561 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link autonegation", vptr->dev->name);
1563 if (vptr->mii_status & VELOCITY_SPEED_1000)
1564 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1565 else if (vptr->mii_status & VELOCITY_SPEED_100)
1566 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1567 else
1568 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1570 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1571 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1572 else
1573 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1574 } else {
1575 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1576 switch (vptr->options.spd_dpx) {
1577 case SPD_DPX_100_HALF:
1578 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1579 break;
1580 case SPD_DPX_100_FULL:
1581 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1582 break;
1583 case SPD_DPX_10_HALF:
1584 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1585 break;
1586 case SPD_DPX_10_FULL:
1587 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1588 break;
1589 default:
1590 break;
1596 * velocity_error - handle error from controller
1597 * @vptr: velocity
1598 * @status: card status
1600 * Process an error report from the hardware and attempt to recover
1601 * the card itself. At the moment we cannot recover from some
1602 * theoretically impossible errors but this could be fixed using
1603 * the pci_device_failed logic to bounce the hardware
1607 static void velocity_error(struct velocity_info *vptr, int status)
1610 if (status & ISR_TXSTLI) {
1611 struct mac_regs __iomem * regs = vptr->mac_regs;
1613 printk(KERN_ERR "TD structure errror TDindex=%hx\n", readw(&regs->TDIdx[0]));
1614 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1615 writew(TRDCSR_RUN, &regs->TDCSRClr);
1616 netif_stop_queue(vptr->dev);
1618 /* FIXME: port over the pci_device_failed code and use it
1619 here */
1622 if (status & ISR_SRCI) {
1623 struct mac_regs __iomem * regs = vptr->mac_regs;
1624 int linked;
1626 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1627 vptr->mii_status = check_connection_type(regs);
1630 * If it is a 3119, disable frame bursting in
1631 * halfduplex mode and enable it in fullduplex
1632 * mode
1634 if (vptr->rev_id < REV_ID_VT3216_A0) {
1635 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1636 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1637 else
1638 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1641 * Only enable CD heart beat counter in 10HD mode
1643 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1644 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1645 } else {
1646 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1650 * Get link status from PHYSR0
1652 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1654 if (linked) {
1655 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1656 netif_carrier_on(vptr->dev);
1657 } else {
1658 vptr->mii_status |= VELOCITY_LINK_FAIL;
1659 netif_carrier_off(vptr->dev);
1662 velocity_print_link_status(vptr);
1663 enable_flow_control_ability(vptr);
1666 * Re-enable auto-polling because SRCI will disable
1667 * auto-polling
1670 enable_mii_autopoll(regs);
1672 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1673 netif_stop_queue(vptr->dev);
1674 else
1675 netif_wake_queue(vptr->dev);
1678 if (status & ISR_MIBFI)
1679 velocity_update_hw_mibs(vptr);
1680 if (status & ISR_LSTEI)
1681 mac_rx_queue_wake(vptr->mac_regs);
1685 * velocity_free_tx_buf - free transmit buffer
1686 * @vptr: velocity
1687 * @tdinfo: buffer
1689 * Release an transmit buffer. If the buffer was preallocated then
1690 * recycle it, if not then unmap the buffer.
1693 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1695 struct sk_buff *skb = tdinfo->skb;
1696 int i;
1699 * Don't unmap the pre-allocated tx_bufs
1701 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1703 for (i = 0; i < tdinfo->nskb_dma; i++) {
1704 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1705 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
1706 #else
1707 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1708 #endif
1709 tdinfo->skb_dma[i] = 0;
1712 dev_kfree_skb_irq(skb);
1713 tdinfo->skb = NULL;
1717 * velocity_open - interface activation callback
1718 * @dev: network layer device to open
1720 * Called when the network layer brings the interface up. Returns
1721 * a negative posix error code on failure, or zero on success.
1723 * All the ring allocation and set up is done on open for this
1724 * adapter to minimise memory usage when inactive
1727 static int velocity_open(struct net_device *dev)
1729 struct velocity_info *vptr = netdev_priv(dev);
1730 int ret;
1732 vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
1734 ret = velocity_init_rings(vptr);
1735 if (ret < 0)
1736 goto out;
1738 ret = velocity_init_rd_ring(vptr);
1739 if (ret < 0)
1740 goto err_free_desc_rings;
1742 ret = velocity_init_td_ring(vptr);
1743 if (ret < 0)
1744 goto err_free_rd_ring;
1746 /* Ensure chip is running */
1747 pci_set_power_state(vptr->pdev, PCI_D0);
1749 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1751 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1752 dev->name, dev);
1753 if (ret < 0) {
1754 /* Power down the chip */
1755 pci_set_power_state(vptr->pdev, PCI_D3hot);
1756 goto err_free_td_ring;
1759 mac_enable_int(vptr->mac_regs);
1760 netif_start_queue(dev);
1761 vptr->flags |= VELOCITY_FLAGS_OPENED;
1762 out:
1763 return ret;
1765 err_free_td_ring:
1766 velocity_free_td_ring(vptr);
1767 err_free_rd_ring:
1768 velocity_free_rd_ring(vptr);
1769 err_free_desc_rings:
1770 velocity_free_rings(vptr);
1771 goto out;
1775 * velocity_change_mtu - MTU change callback
1776 * @dev: network device
1777 * @new_mtu: desired MTU
1779 * Handle requests from the networking layer for MTU change on
1780 * this interface. It gets called on a change by the network layer.
1781 * Return zero for success or negative posix error code.
1784 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1786 struct velocity_info *vptr = netdev_priv(dev);
1787 unsigned long flags;
1788 int oldmtu = dev->mtu;
1789 int ret = 0;
1791 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1792 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1793 vptr->dev->name);
1794 return -EINVAL;
1797 if (new_mtu != oldmtu) {
1798 spin_lock_irqsave(&vptr->lock, flags);
1800 netif_stop_queue(dev);
1801 velocity_shutdown(vptr);
1803 velocity_free_td_ring(vptr);
1804 velocity_free_rd_ring(vptr);
1806 dev->mtu = new_mtu;
1807 if (new_mtu > 8192)
1808 vptr->rx_buf_sz = 9 * 1024;
1809 else if (new_mtu > 4096)
1810 vptr->rx_buf_sz = 8192;
1811 else
1812 vptr->rx_buf_sz = 4 * 1024;
1814 ret = velocity_init_rd_ring(vptr);
1815 if (ret < 0)
1816 goto out_unlock;
1818 ret = velocity_init_td_ring(vptr);
1819 if (ret < 0)
1820 goto out_unlock;
1822 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1824 mac_enable_int(vptr->mac_regs);
1825 netif_start_queue(dev);
1826 out_unlock:
1827 spin_unlock_irqrestore(&vptr->lock, flags);
1830 return ret;
1834 * velocity_shutdown - shut down the chip
1835 * @vptr: velocity to deactivate
1837 * Shuts down the internal operations of the velocity and
1838 * disables interrupts, autopolling, transmit and receive
1841 static void velocity_shutdown(struct velocity_info *vptr)
1843 struct mac_regs __iomem * regs = vptr->mac_regs;
1844 mac_disable_int(regs);
1845 writel(CR0_STOP, &regs->CR0Set);
1846 writew(0xFFFF, &regs->TDCSRClr);
1847 writeb(0xFF, &regs->RDCSRClr);
1848 safe_disable_mii_autopoll(regs);
1849 mac_clear_isr(regs);
1853 * velocity_close - close adapter callback
1854 * @dev: network device
1856 * Callback from the network layer when the velocity is being
1857 * deactivated by the network layer
1860 static int velocity_close(struct net_device *dev)
1862 struct velocity_info *vptr = netdev_priv(dev);
1864 netif_stop_queue(dev);
1865 velocity_shutdown(vptr);
1867 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
1868 velocity_get_ip(vptr);
1869 if (dev->irq != 0)
1870 free_irq(dev->irq, dev);
1872 /* Power down the chip */
1873 pci_set_power_state(vptr->pdev, PCI_D3hot);
1875 /* Free the resources */
1876 velocity_free_td_ring(vptr);
1877 velocity_free_rd_ring(vptr);
1878 velocity_free_rings(vptr);
1880 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
1881 return 0;
1885 * velocity_xmit - transmit packet callback
1886 * @skb: buffer to transmit
1887 * @dev: network device
1889 * Called by the networ layer to request a packet is queued to
1890 * the velocity. Returns zero on success.
1893 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
1895 struct velocity_info *vptr = netdev_priv(dev);
1896 int qnum = 0;
1897 struct tx_desc *td_ptr;
1898 struct velocity_td_info *tdinfo;
1899 unsigned long flags;
1900 int index;
1902 int pktlen = skb->len;
1904 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1905 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
1906 kfree_skb(skb);
1907 return 0;
1909 #endif
1911 spin_lock_irqsave(&vptr->lock, flags);
1913 index = vptr->td_curr[qnum];
1914 td_ptr = &(vptr->td_rings[qnum][index]);
1915 tdinfo = &(vptr->td_infos[qnum][index]);
1917 td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
1918 td_ptr->tdesc1.TCR = TCR0_TIC;
1919 td_ptr->td_buf[0].queue = 0;
1922 * Pad short frames.
1924 if (pktlen < ETH_ZLEN) {
1925 /* Cannot occur until ZC support */
1926 pktlen = ETH_ZLEN;
1927 memcpy(tdinfo->buf, skb->data, skb->len);
1928 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
1929 tdinfo->skb = skb;
1930 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1931 td_ptr->tdesc0.pktsize = pktlen;
1932 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1933 td_ptr->td_buf[0].pa_high = 0;
1934 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1935 tdinfo->nskb_dma = 1;
1936 td_ptr->tdesc1.CMDZ = 2;
1937 } else
1938 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1939 if (skb_shinfo(skb)->nr_frags > 0) {
1940 int nfrags = skb_shinfo(skb)->nr_frags;
1941 tdinfo->skb = skb;
1942 if (nfrags > 6) {
1943 memcpy(tdinfo->buf, skb->data, skb->len);
1944 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1945 td_ptr->tdesc0.pktsize =
1946 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1947 td_ptr->td_buf[0].pa_high = 0;
1948 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1949 tdinfo->nskb_dma = 1;
1950 td_ptr->tdesc1.CMDZ = 2;
1951 } else {
1952 int i = 0;
1953 tdinfo->nskb_dma = 0;
1954 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
1956 td_ptr->tdesc0.pktsize = pktlen;
1958 /* FIXME: support 48bit DMA later */
1959 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
1960 td_ptr->td_buf[i].pa_high = 0;
1961 td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
1963 for (i = 0; i < nfrags; i++) {
1964 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1965 void *addr = ((void *) page_address(frag->page + frag->page_offset));
1967 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
1969 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
1970 td_ptr->td_buf[i + 1].pa_high = 0;
1971 td_ptr->td_buf[i + 1].bufsize = frag->size;
1973 tdinfo->nskb_dma = i - 1;
1974 td_ptr->tdesc1.CMDZ = i;
1977 } else
1978 #endif
1981 * Map the linear network buffer into PCI space and
1982 * add it to the transmit ring.
1984 tdinfo->skb = skb;
1985 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
1986 td_ptr->tdesc0.pktsize = pktlen;
1987 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1988 td_ptr->td_buf[0].pa_high = 0;
1989 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1990 tdinfo->nskb_dma = 1;
1991 td_ptr->tdesc1.CMDZ = 2;
1994 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
1995 td_ptr->tdesc1.pqinf.VID = (vptr->options.vid & 0xfff);
1996 td_ptr->tdesc1.pqinf.priority = 0;
1997 td_ptr->tdesc1.pqinf.CFI = 0;
1998 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2002 * Handle hardware checksum
2004 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2005 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2006 struct iphdr *ip = skb->nh.iph;
2007 if (ip->protocol == IPPROTO_TCP)
2008 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2009 else if (ip->protocol == IPPROTO_UDP)
2010 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2011 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2015 int prev = index - 1;
2017 if (prev < 0)
2018 prev = vptr->options.numtx - 1;
2019 td_ptr->tdesc0.owner = OWNED_BY_NIC;
2020 vptr->td_used[qnum]++;
2021 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2023 if (AVAIL_TD(vptr, qnum) < 1)
2024 netif_stop_queue(dev);
2026 td_ptr = &(vptr->td_rings[qnum][prev]);
2027 td_ptr->td_buf[0].queue = 1;
2028 mac_tx_queue_wake(vptr->mac_regs, qnum);
2030 dev->trans_start = jiffies;
2031 spin_unlock_irqrestore(&vptr->lock, flags);
2032 return 0;
2036 * velocity_intr - interrupt callback
2037 * @irq: interrupt number
2038 * @dev_instance: interrupting device
2039 * @pt_regs: CPU register state at interrupt
2041 * Called whenever an interrupt is generated by the velocity
2042 * adapter IRQ line. We may not be the source of the interrupt
2043 * and need to identify initially if we are, and if not exit as
2044 * efficiently as possible.
2047 static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs)
2049 struct net_device *dev = dev_instance;
2050 struct velocity_info *vptr = netdev_priv(dev);
2051 u32 isr_status;
2052 int max_count = 0;
2055 spin_lock(&vptr->lock);
2056 isr_status = mac_read_isr(vptr->mac_regs);
2058 /* Not us ? */
2059 if (isr_status == 0) {
2060 spin_unlock(&vptr->lock);
2061 return IRQ_NONE;
2064 mac_disable_int(vptr->mac_regs);
2067 * Keep processing the ISR until we have completed
2068 * processing and the isr_status becomes zero
2071 while (isr_status != 0) {
2072 mac_write_isr(vptr->mac_regs, isr_status);
2073 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2074 velocity_error(vptr, isr_status);
2075 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2076 max_count += velocity_rx_srv(vptr, isr_status);
2077 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2078 max_count += velocity_tx_srv(vptr, isr_status);
2079 isr_status = mac_read_isr(vptr->mac_regs);
2080 if (max_count > vptr->options.int_works)
2082 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2083 dev->name);
2084 max_count = 0;
2087 spin_unlock(&vptr->lock);
2088 mac_enable_int(vptr->mac_regs);
2089 return IRQ_HANDLED;
2095 * velocity_set_multi - filter list change callback
2096 * @dev: network device
2098 * Called by the network layer when the filter lists need to change
2099 * for a velocity adapter. Reload the CAMs with the new address
2100 * filter ruleset.
2103 static void velocity_set_multi(struct net_device *dev)
2105 struct velocity_info *vptr = netdev_priv(dev);
2106 struct mac_regs __iomem * regs = vptr->mac_regs;
2107 u8 rx_mode;
2108 int i;
2109 struct dev_mc_list *mclist;
2111 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2112 writel(0xffffffff, &regs->MARCAM[0]);
2113 writel(0xffffffff, &regs->MARCAM[4]);
2114 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2115 } else if ((dev->mc_count > vptr->multicast_limit)
2116 || (dev->flags & IFF_ALLMULTI)) {
2117 writel(0xffffffff, &regs->MARCAM[0]);
2118 writel(0xffffffff, &regs->MARCAM[4]);
2119 rx_mode = (RCR_AM | RCR_AB);
2120 } else {
2121 int offset = MCAM_SIZE - vptr->multicast_limit;
2122 mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2124 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2125 mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
2126 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2129 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2130 rx_mode = (RCR_AM | RCR_AB);
2132 if (dev->mtu > 1500)
2133 rx_mode |= RCR_AL;
2135 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2140 * velocity_get_status - statistics callback
2141 * @dev: network device
2143 * Callback from the network layer to allow driver statistics
2144 * to be resynchronized with hardware collected state. In the
2145 * case of the velocity we need to pull the MIB counters from
2146 * the hardware into the counters before letting the network
2147 * layer display them.
2150 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2152 struct velocity_info *vptr = netdev_priv(dev);
2154 /* If the hardware is down, don't touch MII */
2155 if(!netif_running(dev))
2156 return &vptr->stats;
2158 spin_lock_irq(&vptr->lock);
2159 velocity_update_hw_mibs(vptr);
2160 spin_unlock_irq(&vptr->lock);
2162 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2163 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2164 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2166 // unsigned long rx_dropped; /* no space in linux buffers */
2167 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2168 /* detailed rx_errors: */
2169 // unsigned long rx_length_errors;
2170 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2171 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2172 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2173 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2174 // unsigned long rx_missed_errors; /* receiver missed packet */
2176 /* detailed tx_errors */
2177 // unsigned long tx_fifo_errors;
2179 return &vptr->stats;
2184 * velocity_ioctl - ioctl entry point
2185 * @dev: network device
2186 * @rq: interface request ioctl
2187 * @cmd: command code
2189 * Called when the user issues an ioctl request to the network
2190 * device in question. The velocity interface supports MII.
2193 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2195 struct velocity_info *vptr = netdev_priv(dev);
2196 int ret;
2198 /* If we are asked for information and the device is power
2199 saving then we need to bring the device back up to talk to it */
2201 if (!netif_running(dev))
2202 pci_set_power_state(vptr->pdev, PCI_D0);
2204 switch (cmd) {
2205 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2206 case SIOCGMIIREG: /* Read MII PHY register. */
2207 case SIOCSMIIREG: /* Write to MII PHY register. */
2208 ret = velocity_mii_ioctl(dev, rq, cmd);
2209 break;
2211 default:
2212 ret = -EOPNOTSUPP;
2214 if (!netif_running(dev))
2215 pci_set_power_state(vptr->pdev, PCI_D3hot);
2218 return ret;
2222 * Definition for our device driver. The PCI layer interface
2223 * uses this to handle all our card discover and plugging
2226 static struct pci_driver velocity_driver = {
2227 .name = VELOCITY_NAME,
2228 .id_table = velocity_id_table,
2229 .probe = velocity_found1,
2230 .remove = __devexit_p(velocity_remove1),
2231 #ifdef CONFIG_PM
2232 .suspend = velocity_suspend,
2233 .resume = velocity_resume,
2234 #endif
2238 * velocity_init_module - load time function
2240 * Called when the velocity module is loaded. The PCI driver
2241 * is registered with the PCI layer, and in turn will call
2242 * the probe functions for each velocity adapter installed
2243 * in the system.
2246 static int __init velocity_init_module(void)
2248 int ret;
2250 velocity_register_notifier();
2251 ret = pci_register_driver(&velocity_driver);
2252 if (ret < 0)
2253 velocity_unregister_notifier();
2254 return ret;
2258 * velocity_cleanup - module unload
2260 * When the velocity hardware is unloaded this function is called.
2261 * It will clean up the notifiers and the unregister the PCI
2262 * driver interface for this hardware. This in turn cleans up
2263 * all discovered interfaces before returning from the function
2266 static void __exit velocity_cleanup_module(void)
2268 velocity_unregister_notifier();
2269 pci_unregister_driver(&velocity_driver);
2272 module_init(velocity_init_module);
2273 module_exit(velocity_cleanup_module);
2277 * MII access , media link mode setting functions
2282 * mii_init - set up MII
2283 * @vptr: velocity adapter
2284 * @mii_status: links tatus
2286 * Set up the PHY for the current link state.
2289 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2291 u16 BMCR;
2293 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2294 case PHYID_CICADA_CS8201:
2296 * Reset to hardware default
2298 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2300 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2301 * off it in NWay-forced half mode for NWay-forced v.s.
2302 * legacy-forced issue.
2304 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2305 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2306 else
2307 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2309 * Turn on Link/Activity LED enable bit for CIS8201
2311 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2312 break;
2313 case PHYID_VT3216_32BIT:
2314 case PHYID_VT3216_64BIT:
2316 * Reset to hardware default
2318 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2320 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2321 * off it in NWay-forced half mode for NWay-forced v.s.
2322 * legacy-forced issue
2324 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2325 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2326 else
2327 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2328 break;
2330 case PHYID_MARVELL_1000:
2331 case PHYID_MARVELL_1000S:
2333 * Assert CRS on Transmit
2335 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2337 * Reset to hardware default
2339 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2340 break;
2341 default:
2344 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2345 if (BMCR & BMCR_ISO) {
2346 BMCR &= ~BMCR_ISO;
2347 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2352 * safe_disable_mii_autopoll - autopoll off
2353 * @regs: velocity registers
2355 * Turn off the autopoll and wait for it to disable on the chip
2358 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2360 u16 ww;
2362 /* turn off MAUTO */
2363 writeb(0, &regs->MIICR);
2364 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2365 udelay(1);
2366 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2367 break;
2372 * enable_mii_autopoll - turn on autopolling
2373 * @regs: velocity registers
2375 * Enable the MII link status autopoll feature on the Velocity
2376 * hardware. Wait for it to enable.
2379 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2381 int ii;
2383 writeb(0, &(regs->MIICR));
2384 writeb(MIIADR_SWMPL, &regs->MIIADR);
2386 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2387 udelay(1);
2388 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2389 break;
2392 writeb(MIICR_MAUTO, &regs->MIICR);
2394 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2395 udelay(1);
2396 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2397 break;
2403 * velocity_mii_read - read MII data
2404 * @regs: velocity registers
2405 * @index: MII register index
2406 * @data: buffer for received data
2408 * Perform a single read of an MII 16bit register. Returns zero
2409 * on success or -ETIMEDOUT if the PHY did not respond.
2412 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2414 u16 ww;
2417 * Disable MIICR_MAUTO, so that mii addr can be set normally
2419 safe_disable_mii_autopoll(regs);
2421 writeb(index, &regs->MIIADR);
2423 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2425 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2426 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2427 break;
2430 *data = readw(&regs->MIIDATA);
2432 enable_mii_autopoll(regs);
2433 if (ww == W_MAX_TIMEOUT)
2434 return -ETIMEDOUT;
2435 return 0;
2439 * velocity_mii_write - write MII data
2440 * @regs: velocity registers
2441 * @index: MII register index
2442 * @data: 16bit data for the MII register
2444 * Perform a single write to an MII 16bit register. Returns zero
2445 * on success or -ETIMEDOUT if the PHY did not respond.
2448 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2450 u16 ww;
2453 * Disable MIICR_MAUTO, so that mii addr can be set normally
2455 safe_disable_mii_autopoll(regs);
2457 /* MII reg offset */
2458 writeb(mii_addr, &regs->MIIADR);
2459 /* set MII data */
2460 writew(data, &regs->MIIDATA);
2462 /* turn on MIICR_WCMD */
2463 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2465 /* W_MAX_TIMEOUT is the timeout period */
2466 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2467 udelay(5);
2468 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2469 break;
2471 enable_mii_autopoll(regs);
2473 if (ww == W_MAX_TIMEOUT)
2474 return -ETIMEDOUT;
2475 return 0;
2479 * velocity_get_opt_media_mode - get media selection
2480 * @vptr: velocity adapter
2482 * Get the media mode stored in EEPROM or module options and load
2483 * mii_status accordingly. The requested link state information
2484 * is also returned.
2487 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2489 u32 status = 0;
2491 switch (vptr->options.spd_dpx) {
2492 case SPD_DPX_AUTO:
2493 status = VELOCITY_AUTONEG_ENABLE;
2494 break;
2495 case SPD_DPX_100_FULL:
2496 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2497 break;
2498 case SPD_DPX_10_FULL:
2499 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2500 break;
2501 case SPD_DPX_100_HALF:
2502 status = VELOCITY_SPEED_100;
2503 break;
2504 case SPD_DPX_10_HALF:
2505 status = VELOCITY_SPEED_10;
2506 break;
2508 vptr->mii_status = status;
2509 return status;
2513 * mii_set_auto_on - autonegotiate on
2514 * @vptr: velocity
2516 * Enable autonegotation on this interface
2519 static void mii_set_auto_on(struct velocity_info *vptr)
2521 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2522 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2523 else
2524 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2529 static void mii_set_auto_off(struct velocity_info * vptr)
2531 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2536 * set_mii_flow_control - flow control setup
2537 * @vptr: velocity interface
2539 * Set up the flow control on this interface according to
2540 * the supplied user/eeprom options.
2543 static void set_mii_flow_control(struct velocity_info *vptr)
2545 /*Enable or Disable PAUSE in ANAR */
2546 switch (vptr->options.flow_cntl) {
2547 case FLOW_CNTL_TX:
2548 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2549 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2550 break;
2552 case FLOW_CNTL_RX:
2553 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2554 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2555 break;
2557 case FLOW_CNTL_TX_RX:
2558 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2559 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2560 break;
2562 case FLOW_CNTL_DISABLE:
2563 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2564 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2565 break;
2566 default:
2567 break;
2572 * velocity_set_media_mode - set media mode
2573 * @mii_status: old MII link state
2575 * Check the media link state and configure the flow control
2576 * PHY and also velocity hardware setup accordingly. In particular
2577 * we need to set up CD polling and frame bursting.
2580 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2582 u32 curr_status;
2583 struct mac_regs __iomem * regs = vptr->mac_regs;
2585 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2586 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2588 /* Set mii link status */
2589 set_mii_flow_control(vptr);
2592 Check if new status is consisent with current status
2593 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2594 || (mii_status==curr_status)) {
2595 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2596 vptr->mii_status=check_connection_type(vptr->mac_regs);
2597 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2598 return 0;
2602 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2603 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2607 * If connection type is AUTO
2609 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2610 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2611 /* clear force MAC mode bit */
2612 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2613 /* set duplex mode of MAC according to duplex mode of MII */
2614 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2615 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2616 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2618 /* enable AUTO-NEGO mode */
2619 mii_set_auto_on(vptr);
2620 } else {
2621 u16 ANAR;
2622 u8 CHIPGCR;
2625 * 1. if it's 3119, disable frame bursting in halfduplex mode
2626 * and enable it in fullduplex mode
2627 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2628 * 3. only enable CD heart beat counter in 10HD mode
2631 /* set force MAC mode bit */
2632 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2634 CHIPGCR = readb(&regs->CHIPGCR);
2635 CHIPGCR &= ~CHIPGCR_FCGMII;
2637 if (mii_status & VELOCITY_DUPLEX_FULL) {
2638 CHIPGCR |= CHIPGCR_FCFDX;
2639 writeb(CHIPGCR, &regs->CHIPGCR);
2640 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2641 if (vptr->rev_id < REV_ID_VT3216_A0)
2642 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2643 } else {
2644 CHIPGCR &= ~CHIPGCR_FCFDX;
2645 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2646 writeb(CHIPGCR, &regs->CHIPGCR);
2647 if (vptr->rev_id < REV_ID_VT3216_A0)
2648 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2651 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2653 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2654 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2655 } else {
2656 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2658 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2659 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2660 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2661 if (mii_status & VELOCITY_SPEED_100) {
2662 if (mii_status & VELOCITY_DUPLEX_FULL)
2663 ANAR |= ANAR_TXFD;
2664 else
2665 ANAR |= ANAR_TX;
2666 } else {
2667 if (mii_status & VELOCITY_DUPLEX_FULL)
2668 ANAR |= ANAR_10FD;
2669 else
2670 ANAR |= ANAR_10;
2672 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2673 /* enable AUTO-NEGO mode */
2674 mii_set_auto_on(vptr);
2675 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2677 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2678 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2679 return VELOCITY_LINK_CHANGE;
2683 * mii_check_media_mode - check media state
2684 * @regs: velocity registers
2686 * Check the current MII status and determine the link status
2687 * accordingly
2690 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2692 u32 status = 0;
2693 u16 ANAR;
2695 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2696 status |= VELOCITY_LINK_FAIL;
2698 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2699 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2700 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2701 status |= (VELOCITY_SPEED_1000);
2702 else {
2703 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2704 if (ANAR & ANAR_TXFD)
2705 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2706 else if (ANAR & ANAR_TX)
2707 status |= VELOCITY_SPEED_100;
2708 else if (ANAR & ANAR_10FD)
2709 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2710 else
2711 status |= (VELOCITY_SPEED_10);
2714 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2715 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2716 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2717 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2718 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2719 status |= VELOCITY_AUTONEG_ENABLE;
2723 return status;
2726 static u32 check_connection_type(struct mac_regs __iomem * regs)
2728 u32 status = 0;
2729 u8 PHYSR0;
2730 u16 ANAR;
2731 PHYSR0 = readb(&regs->PHYSR0);
2734 if (!(PHYSR0 & PHYSR0_LINKGD))
2735 status|=VELOCITY_LINK_FAIL;
2738 if (PHYSR0 & PHYSR0_FDPX)
2739 status |= VELOCITY_DUPLEX_FULL;
2741 if (PHYSR0 & PHYSR0_SPDG)
2742 status |= VELOCITY_SPEED_1000;
2743 else if (PHYSR0 & PHYSR0_SPD10)
2744 status |= VELOCITY_SPEED_10;
2745 else
2746 status |= VELOCITY_SPEED_100;
2748 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2749 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2750 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2751 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2752 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2753 status |= VELOCITY_AUTONEG_ENABLE;
2757 return status;
2761 * enable_flow_control_ability - flow control
2762 * @vptr: veloity to configure
2764 * Set up flow control according to the flow control options
2765 * determined by the eeprom/configuration.
2768 static void enable_flow_control_ability(struct velocity_info *vptr)
2771 struct mac_regs __iomem * regs = vptr->mac_regs;
2773 switch (vptr->options.flow_cntl) {
2775 case FLOW_CNTL_DEFAULT:
2776 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2777 writel(CR0_FDXRFCEN, &regs->CR0Set);
2778 else
2779 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2781 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2782 writel(CR0_FDXTFCEN, &regs->CR0Set);
2783 else
2784 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2785 break;
2787 case FLOW_CNTL_TX:
2788 writel(CR0_FDXTFCEN, &regs->CR0Set);
2789 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2790 break;
2792 case FLOW_CNTL_RX:
2793 writel(CR0_FDXRFCEN, &regs->CR0Set);
2794 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2795 break;
2797 case FLOW_CNTL_TX_RX:
2798 writel(CR0_FDXTFCEN, &regs->CR0Set);
2799 writel(CR0_FDXRFCEN, &regs->CR0Set);
2800 break;
2802 case FLOW_CNTL_DISABLE:
2803 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2804 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2805 break;
2807 default:
2808 break;
2815 * velocity_ethtool_up - pre hook for ethtool
2816 * @dev: network device
2818 * Called before an ethtool operation. We need to make sure the
2819 * chip is out of D3 state before we poke at it.
2822 static int velocity_ethtool_up(struct net_device *dev)
2824 struct velocity_info *vptr = netdev_priv(dev);
2825 if (!netif_running(dev))
2826 pci_set_power_state(vptr->pdev, PCI_D0);
2827 return 0;
2831 * velocity_ethtool_down - post hook for ethtool
2832 * @dev: network device
2834 * Called after an ethtool operation. Restore the chip back to D3
2835 * state if it isn't running.
2838 static void velocity_ethtool_down(struct net_device *dev)
2840 struct velocity_info *vptr = netdev_priv(dev);
2841 if (!netif_running(dev))
2842 pci_set_power_state(vptr->pdev, PCI_D3hot);
2845 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2847 struct velocity_info *vptr = netdev_priv(dev);
2848 struct mac_regs __iomem * regs = vptr->mac_regs;
2849 u32 status;
2850 status = check_connection_type(vptr->mac_regs);
2852 cmd->supported = SUPPORTED_TP |
2853 SUPPORTED_Autoneg |
2854 SUPPORTED_10baseT_Half |
2855 SUPPORTED_10baseT_Full |
2856 SUPPORTED_100baseT_Half |
2857 SUPPORTED_100baseT_Full |
2858 SUPPORTED_1000baseT_Half |
2859 SUPPORTED_1000baseT_Full;
2860 if (status & VELOCITY_SPEED_1000)
2861 cmd->speed = SPEED_1000;
2862 else if (status & VELOCITY_SPEED_100)
2863 cmd->speed = SPEED_100;
2864 else
2865 cmd->speed = SPEED_10;
2866 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2867 cmd->port = PORT_TP;
2868 cmd->transceiver = XCVR_INTERNAL;
2869 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2871 if (status & VELOCITY_DUPLEX_FULL)
2872 cmd->duplex = DUPLEX_FULL;
2873 else
2874 cmd->duplex = DUPLEX_HALF;
2876 return 0;
2879 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2881 struct velocity_info *vptr = netdev_priv(dev);
2882 u32 curr_status;
2883 u32 new_status = 0;
2884 int ret = 0;
2886 curr_status = check_connection_type(vptr->mac_regs);
2887 curr_status &= (~VELOCITY_LINK_FAIL);
2889 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
2890 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
2891 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
2892 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
2894 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
2895 ret = -EINVAL;
2896 else
2897 velocity_set_media_mode(vptr, new_status);
2899 return ret;
2902 static u32 velocity_get_link(struct net_device *dev)
2904 struct velocity_info *vptr = netdev_priv(dev);
2905 struct mac_regs __iomem * regs = vptr->mac_regs;
2906 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2909 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2911 struct velocity_info *vptr = netdev_priv(dev);
2912 strcpy(info->driver, VELOCITY_NAME);
2913 strcpy(info->version, VELOCITY_VERSION);
2914 strcpy(info->bus_info, pci_name(vptr->pdev));
2917 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2919 struct velocity_info *vptr = netdev_priv(dev);
2920 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
2921 wol->wolopts |= WAKE_MAGIC;
2923 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2924 wol.wolopts|=WAKE_PHY;
2926 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2927 wol->wolopts |= WAKE_UCAST;
2928 if (vptr->wol_opts & VELOCITY_WOL_ARP)
2929 wol->wolopts |= WAKE_ARP;
2930 memcpy(&wol->sopass, vptr->wol_passwd, 6);
2933 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2935 struct velocity_info *vptr = netdev_priv(dev);
2937 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
2938 return -EFAULT;
2939 vptr->wol_opts = VELOCITY_WOL_MAGIC;
2942 if (wol.wolopts & WAKE_PHY) {
2943 vptr->wol_opts|=VELOCITY_WOL_PHY;
2944 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
2948 if (wol->wolopts & WAKE_MAGIC) {
2949 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
2950 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2952 if (wol->wolopts & WAKE_UCAST) {
2953 vptr->wol_opts |= VELOCITY_WOL_UCAST;
2954 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2956 if (wol->wolopts & WAKE_ARP) {
2957 vptr->wol_opts |= VELOCITY_WOL_ARP;
2958 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2960 memcpy(vptr->wol_passwd, wol->sopass, 6);
2961 return 0;
2964 static u32 velocity_get_msglevel(struct net_device *dev)
2966 return msglevel;
2969 static void velocity_set_msglevel(struct net_device *dev, u32 value)
2971 msglevel = value;
2974 static const struct ethtool_ops velocity_ethtool_ops = {
2975 .get_settings = velocity_get_settings,
2976 .set_settings = velocity_set_settings,
2977 .get_drvinfo = velocity_get_drvinfo,
2978 .get_wol = velocity_ethtool_get_wol,
2979 .set_wol = velocity_ethtool_set_wol,
2980 .get_msglevel = velocity_get_msglevel,
2981 .set_msglevel = velocity_set_msglevel,
2982 .get_link = velocity_get_link,
2983 .begin = velocity_ethtool_up,
2984 .complete = velocity_ethtool_down
2988 * velocity_mii_ioctl - MII ioctl handler
2989 * @dev: network device
2990 * @ifr: the ifreq block for the ioctl
2991 * @cmd: the command
2993 * Process MII requests made via ioctl from the network layer. These
2994 * are used by tools like kudzu to interrogate the link state of the
2995 * hardware
2998 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3000 struct velocity_info *vptr = netdev_priv(dev);
3001 struct mac_regs __iomem * regs = vptr->mac_regs;
3002 unsigned long flags;
3003 struct mii_ioctl_data *miidata = if_mii(ifr);
3004 int err;
3006 switch (cmd) {
3007 case SIOCGMIIPHY:
3008 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3009 break;
3010 case SIOCGMIIREG:
3011 if (!capable(CAP_NET_ADMIN))
3012 return -EPERM;
3013 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3014 return -ETIMEDOUT;
3015 break;
3016 case SIOCSMIIREG:
3017 if (!capable(CAP_NET_ADMIN))
3018 return -EPERM;
3019 spin_lock_irqsave(&vptr->lock, flags);
3020 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3021 spin_unlock_irqrestore(&vptr->lock, flags);
3022 check_connection_type(vptr->mac_regs);
3023 if(err)
3024 return err;
3025 break;
3026 default:
3027 return -EOPNOTSUPP;
3029 return 0;
3032 #ifdef CONFIG_PM
3035 * velocity_save_context - save registers
3036 * @vptr: velocity
3037 * @context: buffer for stored context
3039 * Retrieve the current configuration from the velocity hardware
3040 * and stash it in the context structure, for use by the context
3041 * restore functions. This allows us to save things we need across
3042 * power down states
3045 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3047 struct mac_regs __iomem * regs = vptr->mac_regs;
3048 u16 i;
3049 u8 __iomem *ptr = (u8 __iomem *)regs;
3051 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3052 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3054 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3055 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3057 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3058 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3063 * velocity_restore_context - restore registers
3064 * @vptr: velocity
3065 * @context: buffer for stored context
3067 * Reload the register configuration from the velocity context
3068 * created by velocity_save_context.
3071 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3073 struct mac_regs __iomem * regs = vptr->mac_regs;
3074 int i;
3075 u8 __iomem *ptr = (u8 __iomem *)regs;
3077 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3078 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3081 /* Just skip cr0 */
3082 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3083 /* Clear */
3084 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3085 /* Set */
3086 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3089 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3090 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3093 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3094 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3097 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3098 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3104 * wol_calc_crc - WOL CRC
3105 * @pattern: data pattern
3106 * @mask_pattern: mask
3108 * Compute the wake on lan crc hashes for the packet header
3109 * we are interested in.
3112 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3114 u16 crc = 0xFFFF;
3115 u8 mask;
3116 int i, j;
3118 for (i = 0; i < size; i++) {
3119 mask = mask_pattern[i];
3121 /* Skip this loop if the mask equals to zero */
3122 if (mask == 0x00)
3123 continue;
3125 for (j = 0; j < 8; j++) {
3126 if ((mask & 0x01) == 0) {
3127 mask >>= 1;
3128 continue;
3130 mask >>= 1;
3131 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3134 /* Finally, invert the result once to get the correct data */
3135 crc = ~crc;
3136 return bitreverse(crc) >> 16;
3140 * velocity_set_wol - set up for wake on lan
3141 * @vptr: velocity to set WOL status on
3143 * Set a card up for wake on lan either by unicast or by
3144 * ARP packet.
3146 * FIXME: check static buffer is safe here
3149 static int velocity_set_wol(struct velocity_info *vptr)
3151 struct mac_regs __iomem * regs = vptr->mac_regs;
3152 static u8 buf[256];
3153 int i;
3155 static u32 mask_pattern[2][4] = {
3156 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3157 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3160 writew(0xFFFF, &regs->WOLCRClr);
3161 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3162 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3165 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3166 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3169 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3170 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3173 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3174 struct arp_packet *arp = (struct arp_packet *) buf;
3175 u16 crc;
3176 memset(buf, 0, sizeof(struct arp_packet) + 7);
3178 for (i = 0; i < 4; i++)
3179 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3181 arp->type = htons(ETH_P_ARP);
3182 arp->ar_op = htons(1);
3184 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3186 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3187 (u8 *) & mask_pattern[0][0]);
3189 writew(crc, &regs->PatternCRC[0]);
3190 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3193 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3194 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3196 writew(0x0FFF, &regs->WOLSRClr);
3198 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3199 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3200 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3202 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3205 if (vptr->mii_status & VELOCITY_SPEED_1000)
3206 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3208 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3211 u8 GCR;
3212 GCR = readb(&regs->CHIPGCR);
3213 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3214 writeb(GCR, &regs->CHIPGCR);
3217 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3218 /* Turn on SWPTAG just before entering power mode */
3219 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3220 /* Go to bed ..... */
3221 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3223 return 0;
3226 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3228 struct net_device *dev = pci_get_drvdata(pdev);
3229 struct velocity_info *vptr = netdev_priv(dev);
3230 unsigned long flags;
3232 if(!netif_running(vptr->dev))
3233 return 0;
3235 netif_device_detach(vptr->dev);
3237 spin_lock_irqsave(&vptr->lock, flags);
3238 pci_save_state(pdev);
3239 #ifdef ETHTOOL_GWOL
3240 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3241 velocity_get_ip(vptr);
3242 velocity_save_context(vptr, &vptr->context);
3243 velocity_shutdown(vptr);
3244 velocity_set_wol(vptr);
3245 pci_enable_wake(pdev, 3, 1);
3246 pci_set_power_state(pdev, PCI_D3hot);
3247 } else {
3248 velocity_save_context(vptr, &vptr->context);
3249 velocity_shutdown(vptr);
3250 pci_disable_device(pdev);
3251 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3253 #else
3254 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3255 #endif
3256 spin_unlock_irqrestore(&vptr->lock, flags);
3257 return 0;
3260 static int velocity_resume(struct pci_dev *pdev)
3262 struct net_device *dev = pci_get_drvdata(pdev);
3263 struct velocity_info *vptr = netdev_priv(dev);
3264 unsigned long flags;
3265 int i;
3267 if(!netif_running(vptr->dev))
3268 return 0;
3270 pci_set_power_state(pdev, PCI_D0);
3271 pci_enable_wake(pdev, 0, 0);
3272 pci_restore_state(pdev);
3274 mac_wol_reset(vptr->mac_regs);
3276 spin_lock_irqsave(&vptr->lock, flags);
3277 velocity_restore_context(vptr, &vptr->context);
3278 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3279 mac_disable_int(vptr->mac_regs);
3281 velocity_tx_srv(vptr, 0);
3283 for (i = 0; i < vptr->num_txq; i++) {
3284 if (vptr->td_used[i]) {
3285 mac_tx_queue_wake(vptr->mac_regs, i);
3289 mac_enable_int(vptr->mac_regs);
3290 spin_unlock_irqrestore(&vptr->lock, flags);
3291 netif_device_attach(vptr->dev);
3293 return 0;
3296 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3298 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3300 if (ifa) {
3301 struct net_device *dev = ifa->ifa_dev->dev;
3302 struct velocity_info *vptr;
3303 unsigned long flags;
3305 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3306 list_for_each_entry(vptr, &velocity_dev_list, list) {
3307 if (vptr->dev == dev) {
3308 velocity_get_ip(vptr);
3309 break;
3312 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3314 return NOTIFY_DONE;
3316 #endif