dm ioctl: only issue uevent on resume if state changed
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / tty_io.c
blobdcb9083ecde0982dd061720be8e2e324d3bde5ed
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 #ifdef CONFIG_COMPAT
147 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
148 unsigned long arg);
149 #else
150 #define tty_compat_ioctl NULL
151 #endif
152 static int tty_fasync(int fd, struct file *filp, int on);
153 static void release_tty(struct tty_struct *tty, int idx);
154 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
155 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 * alloc_tty_struct - allocate a tty object
160 * Return a new empty tty structure. The data fields have not
161 * been initialized in any way but has been zeroed
163 * Locking: none
166 struct tty_struct *alloc_tty_struct(void)
168 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 * free_tty_struct - free a disused tty
173 * @tty: tty struct to free
175 * Free the write buffers, tty queue and tty memory itself.
177 * Locking: none. Must be called after tty is definitely unused
180 void free_tty_struct(struct tty_struct *tty)
182 kfree(tty->write_buf);
183 tty_buffer_free_all(tty);
184 kfree(tty);
187 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
190 * tty_name - return tty naming
191 * @tty: tty structure
192 * @buf: buffer for output
194 * Convert a tty structure into a name. The name reflects the kernel
195 * naming policy and if udev is in use may not reflect user space
197 * Locking: none
200 char *tty_name(struct tty_struct *tty, char *buf)
202 if (!tty) /* Hmm. NULL pointer. That's fun. */
203 strcpy(buf, "NULL tty");
204 else
205 strcpy(buf, tty->name);
206 return buf;
209 EXPORT_SYMBOL(tty_name);
211 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
212 const char *routine)
214 #ifdef TTY_PARANOIA_CHECK
215 if (!tty) {
216 printk(KERN_WARNING
217 "null TTY for (%d:%d) in %s\n",
218 imajor(inode), iminor(inode), routine);
219 return 1;
221 if (tty->magic != TTY_MAGIC) {
222 printk(KERN_WARNING
223 "bad magic number for tty struct (%d:%d) in %s\n",
224 imajor(inode), iminor(inode), routine);
225 return 1;
227 #endif
228 return 0;
231 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 #ifdef CHECK_TTY_COUNT
234 struct list_head *p;
235 int count = 0;
237 file_list_lock();
238 list_for_each(p, &tty->tty_files) {
239 count++;
241 file_list_unlock();
242 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
243 tty->driver->subtype == PTY_TYPE_SLAVE &&
244 tty->link && tty->link->count)
245 count++;
246 if (tty->count != count) {
247 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
248 "!= #fd's(%d) in %s\n",
249 tty->name, tty->count, count, routine);
250 return count;
252 #endif
253 return 0;
257 * get_tty_driver - find device of a tty
258 * @dev_t: device identifier
259 * @index: returns the index of the tty
261 * This routine returns a tty driver structure, given a device number
262 * and also passes back the index number.
264 * Locking: caller must hold tty_mutex
267 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 struct tty_driver *p;
271 list_for_each_entry(p, &tty_drivers, tty_drivers) {
272 dev_t base = MKDEV(p->major, p->minor_start);
273 if (device < base || device >= base + p->num)
274 continue;
275 *index = device - base;
276 return tty_driver_kref_get(p);
278 return NULL;
281 #ifdef CONFIG_CONSOLE_POLL
284 * tty_find_polling_driver - find device of a polled tty
285 * @name: name string to match
286 * @line: pointer to resulting tty line nr
288 * This routine returns a tty driver structure, given a name
289 * and the condition that the tty driver is capable of polled
290 * operation.
292 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 struct tty_driver *p, *res = NULL;
295 int tty_line = 0;
296 int len;
297 char *str, *stp;
299 for (str = name; *str; str++)
300 if ((*str >= '0' && *str <= '9') || *str == ',')
301 break;
302 if (!*str)
303 return NULL;
305 len = str - name;
306 tty_line = simple_strtoul(str, &str, 10);
308 mutex_lock(&tty_mutex);
309 /* Search through the tty devices to look for a match */
310 list_for_each_entry(p, &tty_drivers, tty_drivers) {
311 if (strncmp(name, p->name, len) != 0)
312 continue;
313 stp = str;
314 if (*stp == ',')
315 stp++;
316 if (*stp == '\0')
317 stp = NULL;
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
326 mutex_unlock(&tty_mutex);
328 return res;
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
341 * Locking: ctrl_lock
344 int tty_check_change(struct tty_struct *tty)
346 unsigned long flags;
347 int ret = 0;
349 if (current->signal->tty != tty)
350 return 0;
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370 out:
371 return ret;
372 out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
377 EXPORT_SYMBOL(tty_check_change);
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
382 return 0;
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
388 return -EIO;
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
403 static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
409 static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
421 static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
433 static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
447 * tty_wakeup - request more data
448 * @tty: terminal
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
455 void tty_wakeup(struct tty_struct *tty)
457 struct tty_ldisc *ld;
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
467 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
470 EXPORT_SYMBOL_GPL(tty_wakeup);
473 * do_tty_hangup - actual handler for hangup events
474 * @work: tty device
476 * This can be called by the "eventd" kernel thread. That is process
477 * synchronous but doesn't hold any locks, so we need to make sure we
478 * have the appropriate locks for what we're doing.
480 * The hangup event clears any pending redirections onto the hung up
481 * device. It ensures future writes will error and it does the needed
482 * line discipline hangup and signal delivery. The tty object itself
483 * remains intact.
485 * Locking:
486 * BKL
487 * redirect lock for undoing redirection
488 * file list lock for manipulating list of ttys
489 * tty_ldisc_lock from called functions
490 * termios_mutex resetting termios data
491 * tasklist_lock to walk task list for hangup event
492 * ->siglock to protect ->signal/->sighand
494 static void do_tty_hangup(struct work_struct *work)
496 struct tty_struct *tty =
497 container_of(work, struct tty_struct, hangup_work);
498 struct file *cons_filp = NULL;
499 struct file *filp, *f = NULL;
500 struct task_struct *p;
501 int closecount = 0, n;
502 unsigned long flags;
503 int refs = 0;
505 if (!tty)
506 return;
509 spin_lock(&redirect_lock);
510 if (redirect && redirect->private_data == tty) {
511 f = redirect;
512 redirect = NULL;
514 spin_unlock(&redirect_lock);
516 /* inuse_filps is protected by the single kernel lock */
517 lock_kernel();
518 check_tty_count(tty, "do_tty_hangup");
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
531 file_list_unlock();
533 tty_ldisc_hangup(tty);
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
559 read_unlock(&tasklist_lock);
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
610 void tty_hangup(struct tty_struct *tty)
612 #ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615 #endif
616 schedule_work(&tty->hangup_work);
619 EXPORT_SYMBOL(tty_hangup);
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
630 void tty_vhangup(struct tty_struct *tty)
632 #ifdef TTY_DEBUG_HANGUP
633 char buf[64];
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636 #endif
637 do_tty_hangup(&tty->hangup_work);
640 EXPORT_SYMBOL(tty_vhangup);
643 * tty_vhangup_self - process vhangup for own ctty
645 * Perform a vhangup on the current controlling tty
648 void tty_vhangup_self(void)
650 struct tty_struct *tty;
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
667 int tty_hung_up_p(struct file *filp)
669 return (filp->f_op == &hung_up_tty_fops);
672 EXPORT_SYMBOL(tty_hung_up_p);
674 static void session_clear_tty(struct pid *session)
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
706 void disassociate_ctty(int on_exit)
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
711 if (!current->signal->leader)
712 return;
714 tty = get_current_tty();
715 if (tty) {
716 tty_pgrp = get_pid(tty->pgrp);
717 lock_kernel();
718 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
719 tty_vhangup(tty);
720 unlock_kernel();
721 tty_kref_put(tty);
722 } else if (on_exit) {
723 struct pid *old_pgrp;
724 spin_lock_irq(&current->sighand->siglock);
725 old_pgrp = current->signal->tty_old_pgrp;
726 current->signal->tty_old_pgrp = NULL;
727 spin_unlock_irq(&current->sighand->siglock);
728 if (old_pgrp) {
729 kill_pgrp(old_pgrp, SIGHUP, on_exit);
730 kill_pgrp(old_pgrp, SIGCONT, on_exit);
731 put_pid(old_pgrp);
733 return;
735 if (tty_pgrp) {
736 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
737 if (!on_exit)
738 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
739 put_pid(tty_pgrp);
742 spin_lock_irq(&current->sighand->siglock);
743 put_pid(current->signal->tty_old_pgrp);
744 current->signal->tty_old_pgrp = NULL;
745 spin_unlock_irq(&current->sighand->siglock);
747 tty = get_current_tty();
748 if (tty) {
749 unsigned long flags;
750 spin_lock_irqsave(&tty->ctrl_lock, flags);
751 put_pid(tty->session);
752 put_pid(tty->pgrp);
753 tty->session = NULL;
754 tty->pgrp = NULL;
755 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
756 tty_kref_put(tty);
757 } else {
758 #ifdef TTY_DEBUG_HANGUP
759 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
760 " = NULL", tty);
761 #endif
764 /* Now clear signal->tty under the lock */
765 read_lock(&tasklist_lock);
766 session_clear_tty(task_session(current));
767 read_unlock(&tasklist_lock);
772 * no_tty - Ensure the current process does not have a controlling tty
774 void no_tty(void)
776 struct task_struct *tsk = current;
777 lock_kernel();
778 disassociate_ctty(0);
779 unlock_kernel();
780 proc_clear_tty(tsk);
785 * stop_tty - propagate flow control
786 * @tty: tty to stop
788 * Perform flow control to the driver. For PTY/TTY pairs we
789 * must also propagate the TIOCKPKT status. May be called
790 * on an already stopped device and will not re-call the driver
791 * method.
793 * This functionality is used by both the line disciplines for
794 * halting incoming flow and by the driver. It may therefore be
795 * called from any context, may be under the tty atomic_write_lock
796 * but not always.
798 * Locking:
799 * Uses the tty control lock internally
802 void stop_tty(struct tty_struct *tty)
804 unsigned long flags;
805 spin_lock_irqsave(&tty->ctrl_lock, flags);
806 if (tty->stopped) {
807 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
808 return;
810 tty->stopped = 1;
811 if (tty->link && tty->link->packet) {
812 tty->ctrl_status &= ~TIOCPKT_START;
813 tty->ctrl_status |= TIOCPKT_STOP;
814 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
816 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
817 if (tty->ops->stop)
818 (tty->ops->stop)(tty);
821 EXPORT_SYMBOL(stop_tty);
824 * start_tty - propagate flow control
825 * @tty: tty to start
827 * Start a tty that has been stopped if at all possible. Perform
828 * any necessary wakeups and propagate the TIOCPKT status. If this
829 * is the tty was previous stopped and is being started then the
830 * driver start method is invoked and the line discipline woken.
832 * Locking:
833 * ctrl_lock
836 void start_tty(struct tty_struct *tty)
838 unsigned long flags;
839 spin_lock_irqsave(&tty->ctrl_lock, flags);
840 if (!tty->stopped || tty->flow_stopped) {
841 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
842 return;
844 tty->stopped = 0;
845 if (tty->link && tty->link->packet) {
846 tty->ctrl_status &= ~TIOCPKT_STOP;
847 tty->ctrl_status |= TIOCPKT_START;
848 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
850 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
851 if (tty->ops->start)
852 (tty->ops->start)(tty);
853 /* If we have a running line discipline it may need kicking */
854 tty_wakeup(tty);
857 EXPORT_SYMBOL(start_tty);
860 * tty_read - read method for tty device files
861 * @file: pointer to tty file
862 * @buf: user buffer
863 * @count: size of user buffer
864 * @ppos: unused
866 * Perform the read system call function on this terminal device. Checks
867 * for hung up devices before calling the line discipline method.
869 * Locking:
870 * Locks the line discipline internally while needed. Multiple
871 * read calls may be outstanding in parallel.
874 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
875 loff_t *ppos)
877 int i;
878 struct tty_struct *tty;
879 struct inode *inode;
880 struct tty_ldisc *ld;
882 tty = (struct tty_struct *)file->private_data;
883 inode = file->f_path.dentry->d_inode;
884 if (tty_paranoia_check(tty, inode, "tty_read"))
885 return -EIO;
886 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
887 return -EIO;
889 /* We want to wait for the line discipline to sort out in this
890 situation */
891 ld = tty_ldisc_ref_wait(tty);
892 if (ld->ops->read)
893 i = (ld->ops->read)(tty, file, buf, count);
894 else
895 i = -EIO;
896 tty_ldisc_deref(ld);
897 if (i > 0)
898 inode->i_atime = current_fs_time(inode->i_sb);
899 return i;
902 void tty_write_unlock(struct tty_struct *tty)
904 mutex_unlock(&tty->atomic_write_lock);
905 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
908 int tty_write_lock(struct tty_struct *tty, int ndelay)
910 if (!mutex_trylock(&tty->atomic_write_lock)) {
911 if (ndelay)
912 return -EAGAIN;
913 if (mutex_lock_interruptible(&tty->atomic_write_lock))
914 return -ERESTARTSYS;
916 return 0;
920 * Split writes up in sane blocksizes to avoid
921 * denial-of-service type attacks
923 static inline ssize_t do_tty_write(
924 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
925 struct tty_struct *tty,
926 struct file *file,
927 const char __user *buf,
928 size_t count)
930 ssize_t ret, written = 0;
931 unsigned int chunk;
933 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
934 if (ret < 0)
935 return ret;
938 * We chunk up writes into a temporary buffer. This
939 * simplifies low-level drivers immensely, since they
940 * don't have locking issues and user mode accesses.
942 * But if TTY_NO_WRITE_SPLIT is set, we should use a
943 * big chunk-size..
945 * The default chunk-size is 2kB, because the NTTY
946 * layer has problems with bigger chunks. It will
947 * claim to be able to handle more characters than
948 * it actually does.
950 * FIXME: This can probably go away now except that 64K chunks
951 * are too likely to fail unless switched to vmalloc...
953 chunk = 2048;
954 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
955 chunk = 65536;
956 if (count < chunk)
957 chunk = count;
959 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
960 if (tty->write_cnt < chunk) {
961 unsigned char *buf_chunk;
963 if (chunk < 1024)
964 chunk = 1024;
966 buf_chunk = kmalloc(chunk, GFP_KERNEL);
967 if (!buf_chunk) {
968 ret = -ENOMEM;
969 goto out;
971 kfree(tty->write_buf);
972 tty->write_cnt = chunk;
973 tty->write_buf = buf_chunk;
976 /* Do the write .. */
977 for (;;) {
978 size_t size = count;
979 if (size > chunk)
980 size = chunk;
981 ret = -EFAULT;
982 if (copy_from_user(tty->write_buf, buf, size))
983 break;
984 ret = write(tty, file, tty->write_buf, size);
985 if (ret <= 0)
986 break;
987 written += ret;
988 buf += ret;
989 count -= ret;
990 if (!count)
991 break;
992 ret = -ERESTARTSYS;
993 if (signal_pending(current))
994 break;
995 cond_resched();
997 if (written) {
998 struct inode *inode = file->f_path.dentry->d_inode;
999 inode->i_mtime = current_fs_time(inode->i_sb);
1000 ret = written;
1002 out:
1003 tty_write_unlock(tty);
1004 return ret;
1008 * tty_write_message - write a message to a certain tty, not just the console.
1009 * @tty: the destination tty_struct
1010 * @msg: the message to write
1012 * This is used for messages that need to be redirected to a specific tty.
1013 * We don't put it into the syslog queue right now maybe in the future if
1014 * really needed.
1016 * We must still hold the BKL and test the CLOSING flag for the moment.
1019 void tty_write_message(struct tty_struct *tty, char *msg)
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 lock_kernel();
1024 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1025 unlock_kernel();
1026 tty->ops->write(tty, msg, strlen(msg));
1027 } else
1028 unlock_kernel();
1029 tty_write_unlock(tty);
1031 return;
1036 * tty_write - write method for tty device file
1037 * @file: tty file pointer
1038 * @buf: user data to write
1039 * @count: bytes to write
1040 * @ppos: unused
1042 * Write data to a tty device via the line discipline.
1044 * Locking:
1045 * Locks the line discipline as required
1046 * Writes to the tty driver are serialized by the atomic_write_lock
1047 * and are then processed in chunks to the device. The line discipline
1048 * write method will not be invoked in parallel for each device.
1051 static ssize_t tty_write(struct file *file, const char __user *buf,
1052 size_t count, loff_t *ppos)
1054 struct tty_struct *tty;
1055 struct inode *inode = file->f_path.dentry->d_inode;
1056 ssize_t ret;
1057 struct tty_ldisc *ld;
1059 tty = (struct tty_struct *)file->private_data;
1060 if (tty_paranoia_check(tty, inode, "tty_write"))
1061 return -EIO;
1062 if (!tty || !tty->ops->write ||
1063 (test_bit(TTY_IO_ERROR, &tty->flags)))
1064 return -EIO;
1065 /* Short term debug to catch buggy drivers */
1066 if (tty->ops->write_room == NULL)
1067 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1068 tty->driver->name);
1069 ld = tty_ldisc_ref_wait(tty);
1070 if (!ld->ops->write)
1071 ret = -EIO;
1072 else
1073 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1074 tty_ldisc_deref(ld);
1075 return ret;
1078 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1079 size_t count, loff_t *ppos)
1081 struct file *p = NULL;
1083 spin_lock(&redirect_lock);
1084 if (redirect) {
1085 get_file(redirect);
1086 p = redirect;
1088 spin_unlock(&redirect_lock);
1090 if (p) {
1091 ssize_t res;
1092 res = vfs_write(p, buf, count, &p->f_pos);
1093 fput(p);
1094 return res;
1096 return tty_write(file, buf, count, ppos);
1099 static char ptychar[] = "pqrstuvwxyzabcde";
1102 * pty_line_name - generate name for a pty
1103 * @driver: the tty driver in use
1104 * @index: the minor number
1105 * @p: output buffer of at least 6 bytes
1107 * Generate a name from a driver reference and write it to the output
1108 * buffer.
1110 * Locking: None
1112 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1114 int i = index + driver->name_base;
1115 /* ->name is initialized to "ttyp", but "tty" is expected */
1116 sprintf(p, "%s%c%x",
1117 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 ptychar[i >> 4 & 0xf], i & 0xf);
1122 * tty_line_name - generate name for a tty
1123 * @driver: the tty driver in use
1124 * @index: the minor number
1125 * @p: output buffer of at least 7 bytes
1127 * Generate a name from a driver reference and write it to the output
1128 * buffer.
1130 * Locking: None
1132 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1134 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1138 * tty_driver_lookup_tty() - find an existing tty, if any
1139 * @driver: the driver for the tty
1140 * @idx: the minor number
1142 * Return the tty, if found or ERR_PTR() otherwise.
1144 * Locking: tty_mutex must be held. If tty is found, the mutex must
1145 * be held until the 'fast-open' is also done. Will change once we
1146 * have refcounting in the driver and per driver locking
1148 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1149 struct inode *inode, int idx)
1151 struct tty_struct *tty;
1153 if (driver->ops->lookup)
1154 return driver->ops->lookup(driver, inode, idx);
1156 tty = driver->ttys[idx];
1157 return tty;
1161 * tty_init_termios - helper for termios setup
1162 * @tty: the tty to set up
1164 * Initialise the termios structures for this tty. Thus runs under
1165 * the tty_mutex currently so we can be relaxed about ordering.
1168 int tty_init_termios(struct tty_struct *tty)
1170 struct ktermios *tp;
1171 int idx = tty->index;
1173 tp = tty->driver->termios[idx];
1174 if (tp == NULL) {
1175 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1176 if (tp == NULL)
1177 return -ENOMEM;
1178 memcpy(tp, &tty->driver->init_termios,
1179 sizeof(struct ktermios));
1180 tty->driver->termios[idx] = tp;
1182 tty->termios = tp;
1183 tty->termios_locked = tp + 1;
1185 /* Compatibility until drivers always set this */
1186 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1187 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1188 return 0;
1190 EXPORT_SYMBOL_GPL(tty_init_termios);
1193 * tty_driver_install_tty() - install a tty entry in the driver
1194 * @driver: the driver for the tty
1195 * @tty: the tty
1197 * Install a tty object into the driver tables. The tty->index field
1198 * will be set by the time this is called. This method is responsible
1199 * for ensuring any need additional structures are allocated and
1200 * configured.
1202 * Locking: tty_mutex for now
1204 static int tty_driver_install_tty(struct tty_driver *driver,
1205 struct tty_struct *tty)
1207 int idx = tty->index;
1208 int ret;
1210 if (driver->ops->install) {
1211 lock_kernel();
1212 ret = driver->ops->install(driver, tty);
1213 unlock_kernel();
1214 return ret;
1217 if (tty_init_termios(tty) == 0) {
1218 lock_kernel();
1219 tty_driver_kref_get(driver);
1220 tty->count++;
1221 driver->ttys[idx] = tty;
1222 unlock_kernel();
1223 return 0;
1225 return -ENOMEM;
1229 * tty_driver_remove_tty() - remove a tty from the driver tables
1230 * @driver: the driver for the tty
1231 * @idx: the minor number
1233 * Remvoe a tty object from the driver tables. The tty->index field
1234 * will be set by the time this is called.
1236 * Locking: tty_mutex for now
1238 static void tty_driver_remove_tty(struct tty_driver *driver,
1239 struct tty_struct *tty)
1241 if (driver->ops->remove)
1242 driver->ops->remove(driver, tty);
1243 else
1244 driver->ttys[tty->index] = NULL;
1248 * tty_reopen() - fast re-open of an open tty
1249 * @tty - the tty to open
1251 * Return 0 on success, -errno on error.
1253 * Locking: tty_mutex must be held from the time the tty was found
1254 * till this open completes.
1256 static int tty_reopen(struct tty_struct *tty)
1258 struct tty_driver *driver = tty->driver;
1260 if (test_bit(TTY_CLOSING, &tty->flags))
1261 return -EIO;
1263 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1264 driver->subtype == PTY_TYPE_MASTER) {
1266 * special case for PTY masters: only one open permitted,
1267 * and the slave side open count is incremented as well.
1269 if (tty->count)
1270 return -EIO;
1272 tty->link->count++;
1274 tty->count++;
1275 tty->driver = driver; /* N.B. why do this every time?? */
1277 mutex_lock(&tty->ldisc_mutex);
1278 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1279 mutex_unlock(&tty->ldisc_mutex);
1281 return 0;
1285 * tty_init_dev - initialise a tty device
1286 * @driver: tty driver we are opening a device on
1287 * @idx: device index
1288 * @ret_tty: returned tty structure
1289 * @first_ok: ok to open a new device (used by ptmx)
1291 * Prepare a tty device. This may not be a "new" clean device but
1292 * could also be an active device. The pty drivers require special
1293 * handling because of this.
1295 * Locking:
1296 * The function is called under the tty_mutex, which
1297 * protects us from the tty struct or driver itself going away.
1299 * On exit the tty device has the line discipline attached and
1300 * a reference count of 1. If a pair was created for pty/tty use
1301 * and the other was a pty master then it too has a reference count of 1.
1303 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1304 * failed open. The new code protects the open with a mutex, so it's
1305 * really quite straightforward. The mutex locking can probably be
1306 * relaxed for the (most common) case of reopening a tty.
1309 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1310 int first_ok)
1312 struct tty_struct *tty;
1313 int retval;
1315 lock_kernel();
1316 /* Check if pty master is being opened multiple times */
1317 if (driver->subtype == PTY_TYPE_MASTER &&
1318 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1319 unlock_kernel();
1320 return ERR_PTR(-EIO);
1322 unlock_kernel();
1325 * First time open is complex, especially for PTY devices.
1326 * This code guarantees that either everything succeeds and the
1327 * TTY is ready for operation, or else the table slots are vacated
1328 * and the allocated memory released. (Except that the termios
1329 * and locked termios may be retained.)
1332 if (!try_module_get(driver->owner))
1333 return ERR_PTR(-ENODEV);
1335 tty = alloc_tty_struct();
1336 if (!tty)
1337 goto fail_no_mem;
1338 initialize_tty_struct(tty, driver, idx);
1340 retval = tty_driver_install_tty(driver, tty);
1341 if (retval < 0) {
1342 free_tty_struct(tty);
1343 module_put(driver->owner);
1344 return ERR_PTR(retval);
1348 * Structures all installed ... call the ldisc open routines.
1349 * If we fail here just call release_tty to clean up. No need
1350 * to decrement the use counts, as release_tty doesn't care.
1352 retval = tty_ldisc_setup(tty, tty->link);
1353 if (retval)
1354 goto release_mem_out;
1355 return tty;
1357 fail_no_mem:
1358 module_put(driver->owner);
1359 return ERR_PTR(-ENOMEM);
1361 /* call the tty release_tty routine to clean out this slot */
1362 release_mem_out:
1363 if (printk_ratelimit())
1364 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1365 "clearing slot %d\n", idx);
1366 lock_kernel();
1367 release_tty(tty, idx);
1368 unlock_kernel();
1369 return ERR_PTR(retval);
1372 void tty_free_termios(struct tty_struct *tty)
1374 struct ktermios *tp;
1375 int idx = tty->index;
1376 /* Kill this flag and push into drivers for locking etc */
1377 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1378 /* FIXME: Locking on ->termios array */
1379 tp = tty->termios;
1380 tty->driver->termios[idx] = NULL;
1381 kfree(tp);
1384 EXPORT_SYMBOL(tty_free_termios);
1386 void tty_shutdown(struct tty_struct *tty)
1388 tty_driver_remove_tty(tty->driver, tty);
1389 tty_free_termios(tty);
1391 EXPORT_SYMBOL(tty_shutdown);
1394 * release_one_tty - release tty structure memory
1395 * @kref: kref of tty we are obliterating
1397 * Releases memory associated with a tty structure, and clears out the
1398 * driver table slots. This function is called when a device is no longer
1399 * in use. It also gets called when setup of a device fails.
1401 * Locking:
1402 * tty_mutex - sometimes only
1403 * takes the file list lock internally when working on the list
1404 * of ttys that the driver keeps.
1406 * This method gets called from a work queue so that the driver private
1407 * cleanup ops can sleep (needed for USB at least)
1409 static void release_one_tty(struct work_struct *work)
1411 struct tty_struct *tty =
1412 container_of(work, struct tty_struct, hangup_work);
1413 struct tty_driver *driver = tty->driver;
1415 if (tty->ops->cleanup)
1416 tty->ops->cleanup(tty);
1418 tty->magic = 0;
1419 tty_driver_kref_put(driver);
1420 module_put(driver->owner);
1422 file_list_lock();
1423 list_del_init(&tty->tty_files);
1424 file_list_unlock();
1426 free_tty_struct(tty);
1429 static void queue_release_one_tty(struct kref *kref)
1431 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1433 if (tty->ops->shutdown)
1434 tty->ops->shutdown(tty);
1435 else
1436 tty_shutdown(tty);
1438 /* The hangup queue is now free so we can reuse it rather than
1439 waste a chunk of memory for each port */
1440 INIT_WORK(&tty->hangup_work, release_one_tty);
1441 schedule_work(&tty->hangup_work);
1445 * tty_kref_put - release a tty kref
1446 * @tty: tty device
1448 * Release a reference to a tty device and if need be let the kref
1449 * layer destruct the object for us
1452 void tty_kref_put(struct tty_struct *tty)
1454 if (tty)
1455 kref_put(&tty->kref, queue_release_one_tty);
1457 EXPORT_SYMBOL(tty_kref_put);
1460 * release_tty - release tty structure memory
1462 * Release both @tty and a possible linked partner (think pty pair),
1463 * and decrement the refcount of the backing module.
1465 * Locking:
1466 * tty_mutex - sometimes only
1467 * takes the file list lock internally when working on the list
1468 * of ttys that the driver keeps.
1469 * FIXME: should we require tty_mutex is held here ??
1472 static void release_tty(struct tty_struct *tty, int idx)
1474 /* This should always be true but check for the moment */
1475 WARN_ON(tty->index != idx);
1477 if (tty->link)
1478 tty_kref_put(tty->link);
1479 tty_kref_put(tty);
1483 * tty_release - vfs callback for close
1484 * @inode: inode of tty
1485 * @filp: file pointer for handle to tty
1487 * Called the last time each file handle is closed that references
1488 * this tty. There may however be several such references.
1490 * Locking:
1491 * Takes bkl. See tty_release_dev
1493 * Even releasing the tty structures is a tricky business.. We have
1494 * to be very careful that the structures are all released at the
1495 * same time, as interrupts might otherwise get the wrong pointers.
1497 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1498 * lead to double frees or releasing memory still in use.
1501 int tty_release(struct inode *inode, struct file *filp)
1503 struct tty_struct *tty, *o_tty;
1504 int pty_master, tty_closing, o_tty_closing, do_sleep;
1505 int devpts;
1506 int idx;
1507 char buf[64];
1509 tty = (struct tty_struct *)filp->private_data;
1510 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1511 return 0;
1513 lock_kernel();
1514 check_tty_count(tty, "tty_release_dev");
1516 tty_fasync(-1, filp, 0);
1518 idx = tty->index;
1519 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1520 tty->driver->subtype == PTY_TYPE_MASTER);
1521 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1522 o_tty = tty->link;
1524 #ifdef TTY_PARANOIA_CHECK
1525 if (idx < 0 || idx >= tty->driver->num) {
1526 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1527 "free (%s)\n", tty->name);
1528 unlock_kernel();
1529 return 0;
1531 if (!devpts) {
1532 if (tty != tty->driver->ttys[idx]) {
1533 unlock_kernel();
1534 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1535 "for (%s)\n", idx, tty->name);
1536 return 0;
1538 if (tty->termios != tty->driver->termios[idx]) {
1539 unlock_kernel();
1540 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1541 "for (%s)\n",
1542 idx, tty->name);
1543 return 0;
1546 #endif
1548 #ifdef TTY_DEBUG_HANGUP
1549 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1550 tty_name(tty, buf), tty->count);
1551 #endif
1553 #ifdef TTY_PARANOIA_CHECK
1554 if (tty->driver->other &&
1555 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1556 if (o_tty != tty->driver->other->ttys[idx]) {
1557 unlock_kernel();
1558 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1559 "not o_tty for (%s)\n",
1560 idx, tty->name);
1561 return 0 ;
1563 if (o_tty->termios != tty->driver->other->termios[idx]) {
1564 unlock_kernel();
1565 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1566 "not o_termios for (%s)\n",
1567 idx, tty->name);
1568 return 0;
1570 if (o_tty->link != tty) {
1571 unlock_kernel();
1572 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1573 return 0;
1576 #endif
1577 if (tty->ops->close)
1578 tty->ops->close(tty, filp);
1580 unlock_kernel();
1582 * Sanity check: if tty->count is going to zero, there shouldn't be
1583 * any waiters on tty->read_wait or tty->write_wait. We test the
1584 * wait queues and kick everyone out _before_ actually starting to
1585 * close. This ensures that we won't block while releasing the tty
1586 * structure.
1588 * The test for the o_tty closing is necessary, since the master and
1589 * slave sides may close in any order. If the slave side closes out
1590 * first, its count will be one, since the master side holds an open.
1591 * Thus this test wouldn't be triggered at the time the slave closes,
1592 * so we do it now.
1594 * Note that it's possible for the tty to be opened again while we're
1595 * flushing out waiters. By recalculating the closing flags before
1596 * each iteration we avoid any problems.
1598 while (1) {
1599 /* Guard against races with tty->count changes elsewhere and
1600 opens on /dev/tty */
1602 mutex_lock(&tty_mutex);
1603 lock_kernel();
1604 tty_closing = tty->count <= 1;
1605 o_tty_closing = o_tty &&
1606 (o_tty->count <= (pty_master ? 1 : 0));
1607 do_sleep = 0;
1609 if (tty_closing) {
1610 if (waitqueue_active(&tty->read_wait)) {
1611 wake_up_poll(&tty->read_wait, POLLIN);
1612 do_sleep++;
1614 if (waitqueue_active(&tty->write_wait)) {
1615 wake_up_poll(&tty->write_wait, POLLOUT);
1616 do_sleep++;
1619 if (o_tty_closing) {
1620 if (waitqueue_active(&o_tty->read_wait)) {
1621 wake_up_poll(&o_tty->read_wait, POLLIN);
1622 do_sleep++;
1624 if (waitqueue_active(&o_tty->write_wait)) {
1625 wake_up_poll(&o_tty->write_wait, POLLOUT);
1626 do_sleep++;
1629 if (!do_sleep)
1630 break;
1632 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1633 "active!\n", tty_name(tty, buf));
1634 unlock_kernel();
1635 mutex_unlock(&tty_mutex);
1636 schedule();
1640 * The closing flags are now consistent with the open counts on
1641 * both sides, and we've completed the last operation that could
1642 * block, so it's safe to proceed with closing.
1644 if (pty_master) {
1645 if (--o_tty->count < 0) {
1646 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1647 "(%d) for %s\n",
1648 o_tty->count, tty_name(o_tty, buf));
1649 o_tty->count = 0;
1652 if (--tty->count < 0) {
1653 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1654 tty->count, tty_name(tty, buf));
1655 tty->count = 0;
1659 * We've decremented tty->count, so we need to remove this file
1660 * descriptor off the tty->tty_files list; this serves two
1661 * purposes:
1662 * - check_tty_count sees the correct number of file descriptors
1663 * associated with this tty.
1664 * - do_tty_hangup no longer sees this file descriptor as
1665 * something that needs to be handled for hangups.
1667 file_kill(filp);
1668 filp->private_data = NULL;
1671 * Perform some housekeeping before deciding whether to return.
1673 * Set the TTY_CLOSING flag if this was the last open. In the
1674 * case of a pty we may have to wait around for the other side
1675 * to close, and TTY_CLOSING makes sure we can't be reopened.
1677 if (tty_closing)
1678 set_bit(TTY_CLOSING, &tty->flags);
1679 if (o_tty_closing)
1680 set_bit(TTY_CLOSING, &o_tty->flags);
1683 * If _either_ side is closing, make sure there aren't any
1684 * processes that still think tty or o_tty is their controlling
1685 * tty.
1687 if (tty_closing || o_tty_closing) {
1688 read_lock(&tasklist_lock);
1689 session_clear_tty(tty->session);
1690 if (o_tty)
1691 session_clear_tty(o_tty->session);
1692 read_unlock(&tasklist_lock);
1695 mutex_unlock(&tty_mutex);
1697 /* check whether both sides are closing ... */
1698 if (!tty_closing || (o_tty && !o_tty_closing)) {
1699 unlock_kernel();
1700 return 0;
1703 #ifdef TTY_DEBUG_HANGUP
1704 printk(KERN_DEBUG "freeing tty structure...");
1705 #endif
1707 * Ask the line discipline code to release its structures
1709 tty_ldisc_release(tty, o_tty);
1711 * The release_tty function takes care of the details of clearing
1712 * the slots and preserving the termios structure.
1714 release_tty(tty, idx);
1716 /* Make this pty number available for reallocation */
1717 if (devpts)
1718 devpts_kill_index(inode, idx);
1719 unlock_kernel();
1720 return 0;
1724 * tty_open - open a tty device
1725 * @inode: inode of device file
1726 * @filp: file pointer to tty
1728 * tty_open and tty_release keep up the tty count that contains the
1729 * number of opens done on a tty. We cannot use the inode-count, as
1730 * different inodes might point to the same tty.
1732 * Open-counting is needed for pty masters, as well as for keeping
1733 * track of serial lines: DTR is dropped when the last close happens.
1734 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1736 * The termios state of a pty is reset on first open so that
1737 * settings don't persist across reuse.
1739 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1740 * tty->count should protect the rest.
1741 * ->siglock protects ->signal/->sighand
1744 static int tty_open(struct inode *inode, struct file *filp)
1746 struct tty_struct *tty = NULL;
1747 int noctty, retval;
1748 struct tty_driver *driver;
1749 int index;
1750 dev_t device = inode->i_rdev;
1751 unsigned saved_flags = filp->f_flags;
1753 nonseekable_open(inode, filp);
1755 retry_open:
1756 noctty = filp->f_flags & O_NOCTTY;
1757 index = -1;
1758 retval = 0;
1760 mutex_lock(&tty_mutex);
1761 lock_kernel();
1763 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1764 tty = get_current_tty();
1765 if (!tty) {
1766 unlock_kernel();
1767 mutex_unlock(&tty_mutex);
1768 return -ENXIO;
1770 driver = tty_driver_kref_get(tty->driver);
1771 index = tty->index;
1772 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1773 /* noctty = 1; */
1774 /* FIXME: Should we take a driver reference ? */
1775 tty_kref_put(tty);
1776 goto got_driver;
1778 #ifdef CONFIG_VT
1779 if (device == MKDEV(TTY_MAJOR, 0)) {
1780 extern struct tty_driver *console_driver;
1781 driver = tty_driver_kref_get(console_driver);
1782 index = fg_console;
1783 noctty = 1;
1784 goto got_driver;
1786 #endif
1787 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1788 struct tty_driver *console_driver = console_device(&index);
1789 if (console_driver) {
1790 driver = tty_driver_kref_get(console_driver);
1791 if (driver) {
1792 /* Don't let /dev/console block */
1793 filp->f_flags |= O_NONBLOCK;
1794 noctty = 1;
1795 goto got_driver;
1798 unlock_kernel();
1799 mutex_unlock(&tty_mutex);
1800 return -ENODEV;
1803 driver = get_tty_driver(device, &index);
1804 if (!driver) {
1805 unlock_kernel();
1806 mutex_unlock(&tty_mutex);
1807 return -ENODEV;
1809 got_driver:
1810 if (!tty) {
1811 /* check whether we're reopening an existing tty */
1812 tty = tty_driver_lookup_tty(driver, inode, index);
1814 if (IS_ERR(tty)) {
1815 unlock_kernel();
1816 mutex_unlock(&tty_mutex);
1817 return PTR_ERR(tty);
1821 if (tty) {
1822 retval = tty_reopen(tty);
1823 if (retval)
1824 tty = ERR_PTR(retval);
1825 } else
1826 tty = tty_init_dev(driver, index, 0);
1828 mutex_unlock(&tty_mutex);
1829 tty_driver_kref_put(driver);
1830 if (IS_ERR(tty)) {
1831 unlock_kernel();
1832 return PTR_ERR(tty);
1835 filp->private_data = tty;
1836 file_move(filp, &tty->tty_files);
1837 check_tty_count(tty, "tty_open");
1838 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1839 tty->driver->subtype == PTY_TYPE_MASTER)
1840 noctty = 1;
1841 #ifdef TTY_DEBUG_HANGUP
1842 printk(KERN_DEBUG "opening %s...", tty->name);
1843 #endif
1844 if (!retval) {
1845 if (tty->ops->open)
1846 retval = tty->ops->open(tty, filp);
1847 else
1848 retval = -ENODEV;
1850 filp->f_flags = saved_flags;
1852 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1853 !capable(CAP_SYS_ADMIN))
1854 retval = -EBUSY;
1856 if (retval) {
1857 #ifdef TTY_DEBUG_HANGUP
1858 printk(KERN_DEBUG "error %d in opening %s...", retval,
1859 tty->name);
1860 #endif
1861 tty_release(inode, filp);
1862 if (retval != -ERESTARTSYS) {
1863 unlock_kernel();
1864 return retval;
1866 if (signal_pending(current)) {
1867 unlock_kernel();
1868 return retval;
1870 schedule();
1872 * Need to reset f_op in case a hangup happened.
1874 if (filp->f_op == &hung_up_tty_fops)
1875 filp->f_op = &tty_fops;
1876 goto retry_open;
1878 unlock_kernel();
1881 mutex_lock(&tty_mutex);
1882 lock_kernel();
1883 spin_lock_irq(&current->sighand->siglock);
1884 if (!noctty &&
1885 current->signal->leader &&
1886 !current->signal->tty &&
1887 tty->session == NULL)
1888 __proc_set_tty(current, tty);
1889 spin_unlock_irq(&current->sighand->siglock);
1890 unlock_kernel();
1891 mutex_unlock(&tty_mutex);
1892 return 0;
1898 * tty_poll - check tty status
1899 * @filp: file being polled
1900 * @wait: poll wait structures to update
1902 * Call the line discipline polling method to obtain the poll
1903 * status of the device.
1905 * Locking: locks called line discipline but ldisc poll method
1906 * may be re-entered freely by other callers.
1909 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1911 struct tty_struct *tty;
1912 struct tty_ldisc *ld;
1913 int ret = 0;
1915 tty = (struct tty_struct *)filp->private_data;
1916 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1917 return 0;
1919 ld = tty_ldisc_ref_wait(tty);
1920 if (ld->ops->poll)
1921 ret = (ld->ops->poll)(tty, filp, wait);
1922 tty_ldisc_deref(ld);
1923 return ret;
1926 static int tty_fasync(int fd, struct file *filp, int on)
1928 struct tty_struct *tty;
1929 unsigned long flags;
1930 int retval = 0;
1932 lock_kernel();
1933 tty = (struct tty_struct *)filp->private_data;
1934 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1935 goto out;
1937 retval = fasync_helper(fd, filp, on, &tty->fasync);
1938 if (retval <= 0)
1939 goto out;
1941 if (on) {
1942 enum pid_type type;
1943 struct pid *pid;
1944 if (!waitqueue_active(&tty->read_wait))
1945 tty->minimum_to_wake = 1;
1946 spin_lock_irqsave(&tty->ctrl_lock, flags);
1947 if (tty->pgrp) {
1948 pid = tty->pgrp;
1949 type = PIDTYPE_PGID;
1950 } else {
1951 pid = task_pid(current);
1952 type = PIDTYPE_PID;
1954 get_pid(pid);
1955 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1956 retval = __f_setown(filp, pid, type, 0);
1957 put_pid(pid);
1958 if (retval)
1959 goto out;
1960 } else {
1961 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1962 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1964 retval = 0;
1965 out:
1966 unlock_kernel();
1967 return retval;
1971 * tiocsti - fake input character
1972 * @tty: tty to fake input into
1973 * @p: pointer to character
1975 * Fake input to a tty device. Does the necessary locking and
1976 * input management.
1978 * FIXME: does not honour flow control ??
1980 * Locking:
1981 * Called functions take tty_ldisc_lock
1982 * current->signal->tty check is safe without locks
1984 * FIXME: may race normal receive processing
1987 static int tiocsti(struct tty_struct *tty, char __user *p)
1989 char ch, mbz = 0;
1990 struct tty_ldisc *ld;
1992 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1993 return -EPERM;
1994 if (get_user(ch, p))
1995 return -EFAULT;
1996 tty_audit_tiocsti(tty, ch);
1997 ld = tty_ldisc_ref_wait(tty);
1998 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1999 tty_ldisc_deref(ld);
2000 return 0;
2004 * tiocgwinsz - implement window query ioctl
2005 * @tty; tty
2006 * @arg: user buffer for result
2008 * Copies the kernel idea of the window size into the user buffer.
2010 * Locking: tty->termios_mutex is taken to ensure the winsize data
2011 * is consistent.
2014 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2016 int err;
2018 mutex_lock(&tty->termios_mutex);
2019 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2020 mutex_unlock(&tty->termios_mutex);
2022 return err ? -EFAULT: 0;
2026 * tty_do_resize - resize event
2027 * @tty: tty being resized
2028 * @rows: rows (character)
2029 * @cols: cols (character)
2031 * Update the termios variables and send the neccessary signals to
2032 * peform a terminal resize correctly
2035 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2037 struct pid *pgrp;
2038 unsigned long flags;
2040 /* Lock the tty */
2041 mutex_lock(&tty->termios_mutex);
2042 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2043 goto done;
2044 /* Get the PID values and reference them so we can
2045 avoid holding the tty ctrl lock while sending signals */
2046 spin_lock_irqsave(&tty->ctrl_lock, flags);
2047 pgrp = get_pid(tty->pgrp);
2048 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2050 if (pgrp)
2051 kill_pgrp(pgrp, SIGWINCH, 1);
2052 put_pid(pgrp);
2054 tty->winsize = *ws;
2055 done:
2056 mutex_unlock(&tty->termios_mutex);
2057 return 0;
2061 * tiocswinsz - implement window size set ioctl
2062 * @tty; tty side of tty
2063 * @arg: user buffer for result
2065 * Copies the user idea of the window size to the kernel. Traditionally
2066 * this is just advisory information but for the Linux console it
2067 * actually has driver level meaning and triggers a VC resize.
2069 * Locking:
2070 * Driver dependant. The default do_resize method takes the
2071 * tty termios mutex and ctrl_lock. The console takes its own lock
2072 * then calls into the default method.
2075 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2077 struct winsize tmp_ws;
2078 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2079 return -EFAULT;
2081 if (tty->ops->resize)
2082 return tty->ops->resize(tty, &tmp_ws);
2083 else
2084 return tty_do_resize(tty, &tmp_ws);
2088 * tioccons - allow admin to move logical console
2089 * @file: the file to become console
2091 * Allow the adminstrator to move the redirected console device
2093 * Locking: uses redirect_lock to guard the redirect information
2096 static int tioccons(struct file *file)
2098 if (!capable(CAP_SYS_ADMIN))
2099 return -EPERM;
2100 if (file->f_op->write == redirected_tty_write) {
2101 struct file *f;
2102 spin_lock(&redirect_lock);
2103 f = redirect;
2104 redirect = NULL;
2105 spin_unlock(&redirect_lock);
2106 if (f)
2107 fput(f);
2108 return 0;
2110 spin_lock(&redirect_lock);
2111 if (redirect) {
2112 spin_unlock(&redirect_lock);
2113 return -EBUSY;
2115 get_file(file);
2116 redirect = file;
2117 spin_unlock(&redirect_lock);
2118 return 0;
2122 * fionbio - non blocking ioctl
2123 * @file: file to set blocking value
2124 * @p: user parameter
2126 * Historical tty interfaces had a blocking control ioctl before
2127 * the generic functionality existed. This piece of history is preserved
2128 * in the expected tty API of posix OS's.
2130 * Locking: none, the open file handle ensures it won't go away.
2133 static int fionbio(struct file *file, int __user *p)
2135 int nonblock;
2137 if (get_user(nonblock, p))
2138 return -EFAULT;
2140 spin_lock(&file->f_lock);
2141 if (nonblock)
2142 file->f_flags |= O_NONBLOCK;
2143 else
2144 file->f_flags &= ~O_NONBLOCK;
2145 spin_unlock(&file->f_lock);
2146 return 0;
2150 * tiocsctty - set controlling tty
2151 * @tty: tty structure
2152 * @arg: user argument
2154 * This ioctl is used to manage job control. It permits a session
2155 * leader to set this tty as the controlling tty for the session.
2157 * Locking:
2158 * Takes tty_mutex() to protect tty instance
2159 * Takes tasklist_lock internally to walk sessions
2160 * Takes ->siglock() when updating signal->tty
2163 static int tiocsctty(struct tty_struct *tty, int arg)
2165 int ret = 0;
2166 if (current->signal->leader && (task_session(current) == tty->session))
2167 return ret;
2169 mutex_lock(&tty_mutex);
2171 * The process must be a session leader and
2172 * not have a controlling tty already.
2174 if (!current->signal->leader || current->signal->tty) {
2175 ret = -EPERM;
2176 goto unlock;
2179 if (tty->session) {
2181 * This tty is already the controlling
2182 * tty for another session group!
2184 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2186 * Steal it away
2188 read_lock(&tasklist_lock);
2189 session_clear_tty(tty->session);
2190 read_unlock(&tasklist_lock);
2191 } else {
2192 ret = -EPERM;
2193 goto unlock;
2196 proc_set_tty(current, tty);
2197 unlock:
2198 mutex_unlock(&tty_mutex);
2199 return ret;
2203 * tty_get_pgrp - return a ref counted pgrp pid
2204 * @tty: tty to read
2206 * Returns a refcounted instance of the pid struct for the process
2207 * group controlling the tty.
2210 struct pid *tty_get_pgrp(struct tty_struct *tty)
2212 unsigned long flags;
2213 struct pid *pgrp;
2215 spin_lock_irqsave(&tty->ctrl_lock, flags);
2216 pgrp = get_pid(tty->pgrp);
2217 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2219 return pgrp;
2221 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2224 * tiocgpgrp - get process group
2225 * @tty: tty passed by user
2226 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2227 * @p: returned pid
2229 * Obtain the process group of the tty. If there is no process group
2230 * return an error.
2232 * Locking: none. Reference to current->signal->tty is safe.
2235 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2237 struct pid *pid;
2238 int ret;
2240 * (tty == real_tty) is a cheap way of
2241 * testing if the tty is NOT a master pty.
2243 if (tty == real_tty && current->signal->tty != real_tty)
2244 return -ENOTTY;
2245 pid = tty_get_pgrp(real_tty);
2246 ret = put_user(pid_vnr(pid), p);
2247 put_pid(pid);
2248 return ret;
2252 * tiocspgrp - attempt to set process group
2253 * @tty: tty passed by user
2254 * @real_tty: tty side device matching tty passed by user
2255 * @p: pid pointer
2257 * Set the process group of the tty to the session passed. Only
2258 * permitted where the tty session is our session.
2260 * Locking: RCU, ctrl lock
2263 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2265 struct pid *pgrp;
2266 pid_t pgrp_nr;
2267 int retval = tty_check_change(real_tty);
2268 unsigned long flags;
2270 if (retval == -EIO)
2271 return -ENOTTY;
2272 if (retval)
2273 return retval;
2274 if (!current->signal->tty ||
2275 (current->signal->tty != real_tty) ||
2276 (real_tty->session != task_session(current)))
2277 return -ENOTTY;
2278 if (get_user(pgrp_nr, p))
2279 return -EFAULT;
2280 if (pgrp_nr < 0)
2281 return -EINVAL;
2282 rcu_read_lock();
2283 pgrp = find_vpid(pgrp_nr);
2284 retval = -ESRCH;
2285 if (!pgrp)
2286 goto out_unlock;
2287 retval = -EPERM;
2288 if (session_of_pgrp(pgrp) != task_session(current))
2289 goto out_unlock;
2290 retval = 0;
2291 spin_lock_irqsave(&tty->ctrl_lock, flags);
2292 put_pid(real_tty->pgrp);
2293 real_tty->pgrp = get_pid(pgrp);
2294 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2295 out_unlock:
2296 rcu_read_unlock();
2297 return retval;
2301 * tiocgsid - get session id
2302 * @tty: tty passed by user
2303 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2304 * @p: pointer to returned session id
2306 * Obtain the session id of the tty. If there is no session
2307 * return an error.
2309 * Locking: none. Reference to current->signal->tty is safe.
2312 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2315 * (tty == real_tty) is a cheap way of
2316 * testing if the tty is NOT a master pty.
2318 if (tty == real_tty && current->signal->tty != real_tty)
2319 return -ENOTTY;
2320 if (!real_tty->session)
2321 return -ENOTTY;
2322 return put_user(pid_vnr(real_tty->session), p);
2326 * tiocsetd - set line discipline
2327 * @tty: tty device
2328 * @p: pointer to user data
2330 * Set the line discipline according to user request.
2332 * Locking: see tty_set_ldisc, this function is just a helper
2335 static int tiocsetd(struct tty_struct *tty, int __user *p)
2337 int ldisc;
2338 int ret;
2340 if (get_user(ldisc, p))
2341 return -EFAULT;
2343 ret = tty_set_ldisc(tty, ldisc);
2345 return ret;
2349 * send_break - performed time break
2350 * @tty: device to break on
2351 * @duration: timeout in mS
2353 * Perform a timed break on hardware that lacks its own driver level
2354 * timed break functionality.
2356 * Locking:
2357 * atomic_write_lock serializes
2361 static int send_break(struct tty_struct *tty, unsigned int duration)
2363 int retval;
2365 if (tty->ops->break_ctl == NULL)
2366 return 0;
2368 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2369 retval = tty->ops->break_ctl(tty, duration);
2370 else {
2371 /* Do the work ourselves */
2372 if (tty_write_lock(tty, 0) < 0)
2373 return -EINTR;
2374 retval = tty->ops->break_ctl(tty, -1);
2375 if (retval)
2376 goto out;
2377 if (!signal_pending(current))
2378 msleep_interruptible(duration);
2379 retval = tty->ops->break_ctl(tty, 0);
2380 out:
2381 tty_write_unlock(tty);
2382 if (signal_pending(current))
2383 retval = -EINTR;
2385 return retval;
2389 * tty_tiocmget - get modem status
2390 * @tty: tty device
2391 * @file: user file pointer
2392 * @p: pointer to result
2394 * Obtain the modem status bits from the tty driver if the feature
2395 * is supported. Return -EINVAL if it is not available.
2397 * Locking: none (up to the driver)
2400 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2402 int retval = -EINVAL;
2404 if (tty->ops->tiocmget) {
2405 retval = tty->ops->tiocmget(tty, file);
2407 if (retval >= 0)
2408 retval = put_user(retval, p);
2410 return retval;
2414 * tty_tiocmset - set modem status
2415 * @tty: tty device
2416 * @file: user file pointer
2417 * @cmd: command - clear bits, set bits or set all
2418 * @p: pointer to desired bits
2420 * Set the modem status bits from the tty driver if the feature
2421 * is supported. Return -EINVAL if it is not available.
2423 * Locking: none (up to the driver)
2426 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2427 unsigned __user *p)
2429 int retval;
2430 unsigned int set, clear, val;
2432 if (tty->ops->tiocmset == NULL)
2433 return -EINVAL;
2435 retval = get_user(val, p);
2436 if (retval)
2437 return retval;
2438 set = clear = 0;
2439 switch (cmd) {
2440 case TIOCMBIS:
2441 set = val;
2442 break;
2443 case TIOCMBIC:
2444 clear = val;
2445 break;
2446 case TIOCMSET:
2447 set = val;
2448 clear = ~val;
2449 break;
2451 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2452 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2453 return tty->ops->tiocmset(tty, file, set, clear);
2456 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2458 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2459 tty->driver->subtype == PTY_TYPE_MASTER)
2460 tty = tty->link;
2461 return tty;
2463 EXPORT_SYMBOL(tty_pair_get_tty);
2465 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2467 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2468 tty->driver->subtype == PTY_TYPE_MASTER)
2469 return tty;
2470 return tty->link;
2472 EXPORT_SYMBOL(tty_pair_get_pty);
2475 * Split this up, as gcc can choke on it otherwise..
2477 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2479 struct tty_struct *tty, *real_tty;
2480 void __user *p = (void __user *)arg;
2481 int retval;
2482 struct tty_ldisc *ld;
2483 struct inode *inode = file->f_dentry->d_inode;
2485 tty = (struct tty_struct *)file->private_data;
2486 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2487 return -EINVAL;
2489 real_tty = tty_pair_get_tty(tty);
2492 * Factor out some common prep work
2494 switch (cmd) {
2495 case TIOCSETD:
2496 case TIOCSBRK:
2497 case TIOCCBRK:
2498 case TCSBRK:
2499 case TCSBRKP:
2500 retval = tty_check_change(tty);
2501 if (retval)
2502 return retval;
2503 if (cmd != TIOCCBRK) {
2504 tty_wait_until_sent(tty, 0);
2505 if (signal_pending(current))
2506 return -EINTR;
2508 break;
2512 * Now do the stuff.
2514 switch (cmd) {
2515 case TIOCSTI:
2516 return tiocsti(tty, p);
2517 case TIOCGWINSZ:
2518 return tiocgwinsz(real_tty, p);
2519 case TIOCSWINSZ:
2520 return tiocswinsz(real_tty, p);
2521 case TIOCCONS:
2522 return real_tty != tty ? -EINVAL : tioccons(file);
2523 case FIONBIO:
2524 return fionbio(file, p);
2525 case TIOCEXCL:
2526 set_bit(TTY_EXCLUSIVE, &tty->flags);
2527 return 0;
2528 case TIOCNXCL:
2529 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2530 return 0;
2531 case TIOCNOTTY:
2532 if (current->signal->tty != tty)
2533 return -ENOTTY;
2534 no_tty();
2535 return 0;
2536 case TIOCSCTTY:
2537 return tiocsctty(tty, arg);
2538 case TIOCGPGRP:
2539 return tiocgpgrp(tty, real_tty, p);
2540 case TIOCSPGRP:
2541 return tiocspgrp(tty, real_tty, p);
2542 case TIOCGSID:
2543 return tiocgsid(tty, real_tty, p);
2544 case TIOCGETD:
2545 return put_user(tty->ldisc->ops->num, (int __user *)p);
2546 case TIOCSETD:
2547 return tiocsetd(tty, p);
2549 * Break handling
2551 case TIOCSBRK: /* Turn break on, unconditionally */
2552 if (tty->ops->break_ctl)
2553 return tty->ops->break_ctl(tty, -1);
2554 return 0;
2555 case TIOCCBRK: /* Turn break off, unconditionally */
2556 if (tty->ops->break_ctl)
2557 return tty->ops->break_ctl(tty, 0);
2558 return 0;
2559 case TCSBRK: /* SVID version: non-zero arg --> no break */
2560 /* non-zero arg means wait for all output data
2561 * to be sent (performed above) but don't send break.
2562 * This is used by the tcdrain() termios function.
2564 if (!arg)
2565 return send_break(tty, 250);
2566 return 0;
2567 case TCSBRKP: /* support for POSIX tcsendbreak() */
2568 return send_break(tty, arg ? arg*100 : 250);
2570 case TIOCMGET:
2571 return tty_tiocmget(tty, file, p);
2572 case TIOCMSET:
2573 case TIOCMBIC:
2574 case TIOCMBIS:
2575 return tty_tiocmset(tty, file, cmd, p);
2576 case TCFLSH:
2577 switch (arg) {
2578 case TCIFLUSH:
2579 case TCIOFLUSH:
2580 /* flush tty buffer and allow ldisc to process ioctl */
2581 tty_buffer_flush(tty);
2582 break;
2584 break;
2586 if (tty->ops->ioctl) {
2587 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2588 if (retval != -ENOIOCTLCMD)
2589 return retval;
2591 ld = tty_ldisc_ref_wait(tty);
2592 retval = -EINVAL;
2593 if (ld->ops->ioctl) {
2594 retval = ld->ops->ioctl(tty, file, cmd, arg);
2595 if (retval == -ENOIOCTLCMD)
2596 retval = -EINVAL;
2598 tty_ldisc_deref(ld);
2599 return retval;
2602 #ifdef CONFIG_COMPAT
2603 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2604 unsigned long arg)
2606 struct inode *inode = file->f_dentry->d_inode;
2607 struct tty_struct *tty = file->private_data;
2608 struct tty_ldisc *ld;
2609 int retval = -ENOIOCTLCMD;
2611 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2612 return -EINVAL;
2614 if (tty->ops->compat_ioctl) {
2615 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2616 if (retval != -ENOIOCTLCMD)
2617 return retval;
2620 ld = tty_ldisc_ref_wait(tty);
2621 if (ld->ops->compat_ioctl)
2622 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2623 tty_ldisc_deref(ld);
2625 return retval;
2627 #endif
2630 * This implements the "Secure Attention Key" --- the idea is to
2631 * prevent trojan horses by killing all processes associated with this
2632 * tty when the user hits the "Secure Attention Key". Required for
2633 * super-paranoid applications --- see the Orange Book for more details.
2635 * This code could be nicer; ideally it should send a HUP, wait a few
2636 * seconds, then send a INT, and then a KILL signal. But you then
2637 * have to coordinate with the init process, since all processes associated
2638 * with the current tty must be dead before the new getty is allowed
2639 * to spawn.
2641 * Now, if it would be correct ;-/ The current code has a nasty hole -
2642 * it doesn't catch files in flight. We may send the descriptor to ourselves
2643 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2645 * Nasty bug: do_SAK is being called in interrupt context. This can
2646 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2648 void __do_SAK(struct tty_struct *tty)
2650 #ifdef TTY_SOFT_SAK
2651 tty_hangup(tty);
2652 #else
2653 struct task_struct *g, *p;
2654 struct pid *session;
2655 int i;
2656 struct file *filp;
2657 struct fdtable *fdt;
2659 if (!tty)
2660 return;
2661 session = tty->session;
2663 tty_ldisc_flush(tty);
2665 tty_driver_flush_buffer(tty);
2667 read_lock(&tasklist_lock);
2668 /* Kill the entire session */
2669 do_each_pid_task(session, PIDTYPE_SID, p) {
2670 printk(KERN_NOTICE "SAK: killed process %d"
2671 " (%s): task_session(p)==tty->session\n",
2672 task_pid_nr(p), p->comm);
2673 send_sig(SIGKILL, p, 1);
2674 } while_each_pid_task(session, PIDTYPE_SID, p);
2675 /* Now kill any processes that happen to have the
2676 * tty open.
2678 do_each_thread(g, p) {
2679 if (p->signal->tty == tty) {
2680 printk(KERN_NOTICE "SAK: killed process %d"
2681 " (%s): task_session(p)==tty->session\n",
2682 task_pid_nr(p), p->comm);
2683 send_sig(SIGKILL, p, 1);
2684 continue;
2686 task_lock(p);
2687 if (p->files) {
2689 * We don't take a ref to the file, so we must
2690 * hold ->file_lock instead.
2692 spin_lock(&p->files->file_lock);
2693 fdt = files_fdtable(p->files);
2694 for (i = 0; i < fdt->max_fds; i++) {
2695 filp = fcheck_files(p->files, i);
2696 if (!filp)
2697 continue;
2698 if (filp->f_op->read == tty_read &&
2699 filp->private_data == tty) {
2700 printk(KERN_NOTICE "SAK: killed process %d"
2701 " (%s): fd#%d opened to the tty\n",
2702 task_pid_nr(p), p->comm, i);
2703 force_sig(SIGKILL, p);
2704 break;
2707 spin_unlock(&p->files->file_lock);
2709 task_unlock(p);
2710 } while_each_thread(g, p);
2711 read_unlock(&tasklist_lock);
2712 #endif
2715 static void do_SAK_work(struct work_struct *work)
2717 struct tty_struct *tty =
2718 container_of(work, struct tty_struct, SAK_work);
2719 __do_SAK(tty);
2723 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2724 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2725 * the values which we write to it will be identical to the values which it
2726 * already has. --akpm
2728 void do_SAK(struct tty_struct *tty)
2730 if (!tty)
2731 return;
2732 schedule_work(&tty->SAK_work);
2735 EXPORT_SYMBOL(do_SAK);
2738 * initialize_tty_struct
2739 * @tty: tty to initialize
2741 * This subroutine initializes a tty structure that has been newly
2742 * allocated.
2744 * Locking: none - tty in question must not be exposed at this point
2747 void initialize_tty_struct(struct tty_struct *tty,
2748 struct tty_driver *driver, int idx)
2750 memset(tty, 0, sizeof(struct tty_struct));
2751 kref_init(&tty->kref);
2752 tty->magic = TTY_MAGIC;
2753 tty_ldisc_init(tty);
2754 tty->session = NULL;
2755 tty->pgrp = NULL;
2756 tty->overrun_time = jiffies;
2757 tty->buf.head = tty->buf.tail = NULL;
2758 tty_buffer_init(tty);
2759 mutex_init(&tty->termios_mutex);
2760 mutex_init(&tty->ldisc_mutex);
2761 init_waitqueue_head(&tty->write_wait);
2762 init_waitqueue_head(&tty->read_wait);
2763 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2764 mutex_init(&tty->atomic_read_lock);
2765 mutex_init(&tty->atomic_write_lock);
2766 mutex_init(&tty->output_lock);
2767 mutex_init(&tty->echo_lock);
2768 spin_lock_init(&tty->read_lock);
2769 spin_lock_init(&tty->ctrl_lock);
2770 INIT_LIST_HEAD(&tty->tty_files);
2771 INIT_WORK(&tty->SAK_work, do_SAK_work);
2773 tty->driver = driver;
2774 tty->ops = driver->ops;
2775 tty->index = idx;
2776 tty_line_name(driver, idx, tty->name);
2780 * tty_put_char - write one character to a tty
2781 * @tty: tty
2782 * @ch: character
2784 * Write one byte to the tty using the provided put_char method
2785 * if present. Returns the number of characters successfully output.
2787 * Note: the specific put_char operation in the driver layer may go
2788 * away soon. Don't call it directly, use this method
2791 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2793 if (tty->ops->put_char)
2794 return tty->ops->put_char(tty, ch);
2795 return tty->ops->write(tty, &ch, 1);
2797 EXPORT_SYMBOL_GPL(tty_put_char);
2799 struct class *tty_class;
2802 * tty_register_device - register a tty device
2803 * @driver: the tty driver that describes the tty device
2804 * @index: the index in the tty driver for this tty device
2805 * @device: a struct device that is associated with this tty device.
2806 * This field is optional, if there is no known struct device
2807 * for this tty device it can be set to NULL safely.
2809 * Returns a pointer to the struct device for this tty device
2810 * (or ERR_PTR(-EFOO) on error).
2812 * This call is required to be made to register an individual tty device
2813 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2814 * that bit is not set, this function should not be called by a tty
2815 * driver.
2817 * Locking: ??
2820 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2821 struct device *device)
2823 char name[64];
2824 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2826 if (index >= driver->num) {
2827 printk(KERN_ERR "Attempt to register invalid tty line number "
2828 " (%d).\n", index);
2829 return ERR_PTR(-EINVAL);
2832 if (driver->type == TTY_DRIVER_TYPE_PTY)
2833 pty_line_name(driver, index, name);
2834 else
2835 tty_line_name(driver, index, name);
2837 return device_create(tty_class, device, dev, NULL, name);
2839 EXPORT_SYMBOL(tty_register_device);
2842 * tty_unregister_device - unregister a tty device
2843 * @driver: the tty driver that describes the tty device
2844 * @index: the index in the tty driver for this tty device
2846 * If a tty device is registered with a call to tty_register_device() then
2847 * this function must be called when the tty device is gone.
2849 * Locking: ??
2852 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2854 device_destroy(tty_class,
2855 MKDEV(driver->major, driver->minor_start) + index);
2857 EXPORT_SYMBOL(tty_unregister_device);
2859 struct tty_driver *alloc_tty_driver(int lines)
2861 struct tty_driver *driver;
2863 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2864 if (driver) {
2865 kref_init(&driver->kref);
2866 driver->magic = TTY_DRIVER_MAGIC;
2867 driver->num = lines;
2868 /* later we'll move allocation of tables here */
2870 return driver;
2872 EXPORT_SYMBOL(alloc_tty_driver);
2874 static void destruct_tty_driver(struct kref *kref)
2876 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2877 int i;
2878 struct ktermios *tp;
2879 void *p;
2881 if (driver->flags & TTY_DRIVER_INSTALLED) {
2883 * Free the termios and termios_locked structures because
2884 * we don't want to get memory leaks when modular tty
2885 * drivers are removed from the kernel.
2887 for (i = 0; i < driver->num; i++) {
2888 tp = driver->termios[i];
2889 if (tp) {
2890 driver->termios[i] = NULL;
2891 kfree(tp);
2893 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2894 tty_unregister_device(driver, i);
2896 p = driver->ttys;
2897 proc_tty_unregister_driver(driver);
2898 driver->ttys = NULL;
2899 driver->termios = NULL;
2900 kfree(p);
2901 cdev_del(&driver->cdev);
2903 kfree(driver);
2906 void tty_driver_kref_put(struct tty_driver *driver)
2908 kref_put(&driver->kref, destruct_tty_driver);
2910 EXPORT_SYMBOL(tty_driver_kref_put);
2912 void tty_set_operations(struct tty_driver *driver,
2913 const struct tty_operations *op)
2915 driver->ops = op;
2917 EXPORT_SYMBOL(tty_set_operations);
2919 void put_tty_driver(struct tty_driver *d)
2921 tty_driver_kref_put(d);
2923 EXPORT_SYMBOL(put_tty_driver);
2926 * Called by a tty driver to register itself.
2928 int tty_register_driver(struct tty_driver *driver)
2930 int error;
2931 int i;
2932 dev_t dev;
2933 void **p = NULL;
2935 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2936 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2937 if (!p)
2938 return -ENOMEM;
2941 if (!driver->major) {
2942 error = alloc_chrdev_region(&dev, driver->minor_start,
2943 driver->num, driver->name);
2944 if (!error) {
2945 driver->major = MAJOR(dev);
2946 driver->minor_start = MINOR(dev);
2948 } else {
2949 dev = MKDEV(driver->major, driver->minor_start);
2950 error = register_chrdev_region(dev, driver->num, driver->name);
2952 if (error < 0) {
2953 kfree(p);
2954 return error;
2957 if (p) {
2958 driver->ttys = (struct tty_struct **)p;
2959 driver->termios = (struct ktermios **)(p + driver->num);
2960 } else {
2961 driver->ttys = NULL;
2962 driver->termios = NULL;
2965 cdev_init(&driver->cdev, &tty_fops);
2966 driver->cdev.owner = driver->owner;
2967 error = cdev_add(&driver->cdev, dev, driver->num);
2968 if (error) {
2969 unregister_chrdev_region(dev, driver->num);
2970 driver->ttys = NULL;
2971 driver->termios = NULL;
2972 kfree(p);
2973 return error;
2976 mutex_lock(&tty_mutex);
2977 list_add(&driver->tty_drivers, &tty_drivers);
2978 mutex_unlock(&tty_mutex);
2980 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2981 for (i = 0; i < driver->num; i++)
2982 tty_register_device(driver, i, NULL);
2984 proc_tty_register_driver(driver);
2985 driver->flags |= TTY_DRIVER_INSTALLED;
2986 return 0;
2989 EXPORT_SYMBOL(tty_register_driver);
2992 * Called by a tty driver to unregister itself.
2994 int tty_unregister_driver(struct tty_driver *driver)
2996 #if 0
2997 /* FIXME */
2998 if (driver->refcount)
2999 return -EBUSY;
3000 #endif
3001 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3002 driver->num);
3003 mutex_lock(&tty_mutex);
3004 list_del(&driver->tty_drivers);
3005 mutex_unlock(&tty_mutex);
3006 return 0;
3009 EXPORT_SYMBOL(tty_unregister_driver);
3011 dev_t tty_devnum(struct tty_struct *tty)
3013 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3015 EXPORT_SYMBOL(tty_devnum);
3017 void proc_clear_tty(struct task_struct *p)
3019 unsigned long flags;
3020 struct tty_struct *tty;
3021 spin_lock_irqsave(&p->sighand->siglock, flags);
3022 tty = p->signal->tty;
3023 p->signal->tty = NULL;
3024 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3025 tty_kref_put(tty);
3028 /* Called under the sighand lock */
3030 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3032 if (tty) {
3033 unsigned long flags;
3034 /* We should not have a session or pgrp to put here but.... */
3035 spin_lock_irqsave(&tty->ctrl_lock, flags);
3036 put_pid(tty->session);
3037 put_pid(tty->pgrp);
3038 tty->pgrp = get_pid(task_pgrp(tsk));
3039 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3040 tty->session = get_pid(task_session(tsk));
3041 if (tsk->signal->tty) {
3042 printk(KERN_DEBUG "tty not NULL!!\n");
3043 tty_kref_put(tsk->signal->tty);
3046 put_pid(tsk->signal->tty_old_pgrp);
3047 tsk->signal->tty = tty_kref_get(tty);
3048 tsk->signal->tty_old_pgrp = NULL;
3051 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3053 spin_lock_irq(&tsk->sighand->siglock);
3054 __proc_set_tty(tsk, tty);
3055 spin_unlock_irq(&tsk->sighand->siglock);
3058 struct tty_struct *get_current_tty(void)
3060 struct tty_struct *tty;
3061 unsigned long flags;
3063 spin_lock_irqsave(&current->sighand->siglock, flags);
3064 tty = tty_kref_get(current->signal->tty);
3065 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3066 return tty;
3068 EXPORT_SYMBOL_GPL(get_current_tty);
3070 void tty_default_fops(struct file_operations *fops)
3072 *fops = tty_fops;
3076 * Initialize the console device. This is called *early*, so
3077 * we can't necessarily depend on lots of kernel help here.
3078 * Just do some early initializations, and do the complex setup
3079 * later.
3081 void __init console_init(void)
3083 initcall_t *call;
3085 /* Setup the default TTY line discipline. */
3086 tty_ldisc_begin();
3089 * set up the console device so that later boot sequences can
3090 * inform about problems etc..
3092 call = __con_initcall_start;
3093 while (call < __con_initcall_end) {
3094 (*call)();
3095 call++;
3099 static char *tty_devnode(struct device *dev, mode_t *mode)
3101 if (!mode)
3102 return NULL;
3103 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3104 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3105 *mode = 0666;
3106 return NULL;
3109 static int __init tty_class_init(void)
3111 tty_class = class_create(THIS_MODULE, "tty");
3112 if (IS_ERR(tty_class))
3113 return PTR_ERR(tty_class);
3114 tty_class->devnode = tty_devnode;
3115 return 0;
3118 postcore_initcall(tty_class_init);
3120 /* 3/2004 jmc: why do these devices exist? */
3122 static struct cdev tty_cdev, console_cdev;
3125 * Ok, now we can initialize the rest of the tty devices and can count
3126 * on memory allocations, interrupts etc..
3128 static int __init tty_init(void)
3130 cdev_init(&tty_cdev, &tty_fops);
3131 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3132 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3133 panic("Couldn't register /dev/tty driver\n");
3134 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3135 "tty");
3137 cdev_init(&console_cdev, &console_fops);
3138 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3139 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3140 panic("Couldn't register /dev/console driver\n");
3141 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3142 "console");
3144 #ifdef CONFIG_VT
3145 vty_init(&console_fops);
3146 #endif
3147 return 0;
3149 module_init(tty_init);