net: Fix call to ->change_rx_flags(dev, IFF_MULTICAST) in dev_change_flags()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blob58296307787746e99da8bdcfe006b9b39af32de1
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
123 #include "net-sysfs.h"
126 * The list of packet types we will receive (as opposed to discard)
127 * and the routines to invoke.
129 * Why 16. Because with 16 the only overlap we get on a hash of the
130 * low nibble of the protocol value is RARP/SNAP/X.25.
132 * NOTE: That is no longer true with the addition of VLAN tags. Not
133 * sure which should go first, but I bet it won't make much
134 * difference if we are running VLANs. The good news is that
135 * this protocol won't be in the list unless compiled in, so
136 * the average user (w/out VLANs) will not be adversely affected.
137 * --BLG
139 * 0800 IP
140 * 8100 802.1Q VLAN
141 * 0001 802.3
142 * 0002 AX.25
143 * 0004 802.2
144 * 8035 RARP
145 * 0005 SNAP
146 * 0805 X.25
147 * 0806 ARP
148 * 8137 IPX
149 * 0009 Localtalk
150 * 86DD IPv6
153 #define PTYPE_HASH_SIZE (16)
154 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
156 static DEFINE_SPINLOCK(ptype_lock);
157 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 static struct list_head ptype_all __read_mostly; /* Taps */
160 #ifdef CONFIG_NET_DMA
161 struct net_dma {
162 struct dma_client client;
163 spinlock_t lock;
164 cpumask_t channel_mask;
165 struct dma_chan **channels;
168 static enum dma_state_client
169 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
170 enum dma_state state);
172 static struct net_dma net_dma = {
173 .client = {
174 .event_callback = netdev_dma_event,
177 #endif
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
183 * Pure readers hold dev_base_lock for reading.
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
198 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
202 #define NETDEV_HASHBITS 8
203 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
208 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
216 /* Device list insertion */
217 static int list_netdevice(struct net_device *dev)
219 struct net *net = dev_net(dev);
221 ASSERT_RTNL();
223 write_lock_bh(&dev_base_lock);
224 list_add_tail(&dev->dev_list, &net->dev_base_head);
225 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
226 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
227 write_unlock_bh(&dev_base_lock);
228 return 0;
231 /* Device list removal */
232 static void unlist_netdevice(struct net_device *dev)
234 ASSERT_RTNL();
236 /* Unlink dev from the device chain */
237 write_lock_bh(&dev_base_lock);
238 list_del(&dev->dev_list);
239 hlist_del(&dev->name_hlist);
240 hlist_del(&dev->index_hlist);
241 write_unlock_bh(&dev_base_lock);
245 * Our notifier list
248 static RAW_NOTIFIER_HEAD(netdev_chain);
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
255 DEFINE_PER_CPU(struct softnet_data, softnet_data);
257 #ifdef CONFIG_DEBUG_LOCK_ALLOC
259 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
260 * according to dev->type
262 static const unsigned short netdev_lock_type[] =
263 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
264 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
265 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
266 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
267 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
268 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
269 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
270 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
271 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
272 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
273 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
274 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
275 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
276 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
277 ARPHRD_NONE};
279 static const char *netdev_lock_name[] =
280 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
281 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
282 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
283 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
284 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
285 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
286 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
287 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
288 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
289 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
290 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
291 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
292 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
293 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
294 "_xmit_NONE"};
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 int i;
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
309 static inline void netdev_set_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
312 int i;
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
318 #else
319 static inline void netdev_set_lockdep_class(spinlock_t *lock,
320 unsigned short dev_type)
323 #endif
325 /*******************************************************************************
327 Protocol management and registration routines
329 *******************************************************************************/
332 * Add a protocol ID to the list. Now that the input handler is
333 * smarter we can dispense with all the messy stuff that used to be
334 * here.
336 * BEWARE!!! Protocol handlers, mangling input packets,
337 * MUST BE last in hash buckets and checking protocol handlers
338 * MUST start from promiscuous ptype_all chain in net_bh.
339 * It is true now, do not change it.
340 * Explanation follows: if protocol handler, mangling packet, will
341 * be the first on list, it is not able to sense, that packet
342 * is cloned and should be copied-on-write, so that it will
343 * change it and subsequent readers will get broken packet.
344 * --ANK (980803)
348 * dev_add_pack - add packet handler
349 * @pt: packet type declaration
351 * Add a protocol handler to the networking stack. The passed &packet_type
352 * is linked into kernel lists and may not be freed until it has been
353 * removed from the kernel lists.
355 * This call does not sleep therefore it can not
356 * guarantee all CPU's that are in middle of receiving packets
357 * will see the new packet type (until the next received packet).
360 void dev_add_pack(struct packet_type *pt)
362 int hash;
364 spin_lock_bh(&ptype_lock);
365 if (pt->type == htons(ETH_P_ALL))
366 list_add_rcu(&pt->list, &ptype_all);
367 else {
368 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
369 list_add_rcu(&pt->list, &ptype_base[hash]);
371 spin_unlock_bh(&ptype_lock);
375 * __dev_remove_pack - remove packet handler
376 * @pt: packet type declaration
378 * Remove a protocol handler that was previously added to the kernel
379 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
380 * from the kernel lists and can be freed or reused once this function
381 * returns.
383 * The packet type might still be in use by receivers
384 * and must not be freed until after all the CPU's have gone
385 * through a quiescent state.
387 void __dev_remove_pack(struct packet_type *pt)
389 struct list_head *head;
390 struct packet_type *pt1;
392 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 head = &ptype_all;
396 else
397 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
399 list_for_each_entry(pt1, head, list) {
400 if (pt == pt1) {
401 list_del_rcu(&pt->list);
402 goto out;
406 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
407 out:
408 spin_unlock_bh(&ptype_lock);
411 * dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
417 * returns.
419 * This call sleeps to guarantee that no CPU is looking at the packet
420 * type after return.
422 void dev_remove_pack(struct packet_type *pt)
424 __dev_remove_pack(pt);
426 synchronize_net();
429 /******************************************************************************
431 Device Boot-time Settings Routines
433 *******************************************************************************/
435 /* Boot time configuration table */
436 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439 * netdev_boot_setup_add - add new setup entry
440 * @name: name of the device
441 * @map: configured settings for the device
443 * Adds new setup entry to the dev_boot_setup list. The function
444 * returns 0 on error and 1 on success. This is a generic routine to
445 * all netdevices.
447 static int netdev_boot_setup_add(char *name, struct ifmap *map)
449 struct netdev_boot_setup *s;
450 int i;
452 s = dev_boot_setup;
453 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
454 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
455 memset(s[i].name, 0, sizeof(s[i].name));
456 strcpy(s[i].name, name);
457 memcpy(&s[i].map, map, sizeof(s[i].map));
458 break;
462 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
466 * netdev_boot_setup_check - check boot time settings
467 * @dev: the netdevice
469 * Check boot time settings for the device.
470 * The found settings are set for the device to be used
471 * later in the device probing.
472 * Returns 0 if no settings found, 1 if they are.
474 int netdev_boot_setup_check(struct net_device *dev)
476 struct netdev_boot_setup *s = dev_boot_setup;
477 int i;
479 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
480 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
481 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
482 dev->irq = s[i].map.irq;
483 dev->base_addr = s[i].map.base_addr;
484 dev->mem_start = s[i].map.mem_start;
485 dev->mem_end = s[i].map.mem_end;
486 return 1;
489 return 0;
494 * netdev_boot_base - get address from boot time settings
495 * @prefix: prefix for network device
496 * @unit: id for network device
498 * Check boot time settings for the base address of device.
499 * The found settings are set for the device to be used
500 * later in the device probing.
501 * Returns 0 if no settings found.
503 unsigned long netdev_boot_base(const char *prefix, int unit)
505 const struct netdev_boot_setup *s = dev_boot_setup;
506 char name[IFNAMSIZ];
507 int i;
509 sprintf(name, "%s%d", prefix, unit);
512 * If device already registered then return base of 1
513 * to indicate not to probe for this interface
515 if (__dev_get_by_name(&init_net, name))
516 return 1;
518 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
519 if (!strcmp(name, s[i].name))
520 return s[i].map.base_addr;
521 return 0;
525 * Saves at boot time configured settings for any netdevice.
527 int __init netdev_boot_setup(char *str)
529 int ints[5];
530 struct ifmap map;
532 str = get_options(str, ARRAY_SIZE(ints), ints);
533 if (!str || !*str)
534 return 0;
536 /* Save settings */
537 memset(&map, 0, sizeof(map));
538 if (ints[0] > 0)
539 map.irq = ints[1];
540 if (ints[0] > 1)
541 map.base_addr = ints[2];
542 if (ints[0] > 2)
543 map.mem_start = ints[3];
544 if (ints[0] > 3)
545 map.mem_end = ints[4];
547 /* Add new entry to the list */
548 return netdev_boot_setup_add(str, &map);
551 __setup("netdev=", netdev_boot_setup);
553 /*******************************************************************************
555 Device Interface Subroutines
557 *******************************************************************************/
560 * __dev_get_by_name - find a device by its name
561 * @net: the applicable net namespace
562 * @name: name to find
564 * Find an interface by name. Must be called under RTNL semaphore
565 * or @dev_base_lock. If the name is found a pointer to the device
566 * is returned. If the name is not found then %NULL is returned. The
567 * reference counters are not incremented so the caller must be
568 * careful with locks.
571 struct net_device *__dev_get_by_name(struct net *net, const char *name)
573 struct hlist_node *p;
575 hlist_for_each(p, dev_name_hash(net, name)) {
576 struct net_device *dev
577 = hlist_entry(p, struct net_device, name_hlist);
578 if (!strncmp(dev->name, name, IFNAMSIZ))
579 return dev;
581 return NULL;
585 * dev_get_by_name - find a device by its name
586 * @net: the applicable net namespace
587 * @name: name to find
589 * Find an interface by name. This can be called from any
590 * context and does its own locking. The returned handle has
591 * the usage count incremented and the caller must use dev_put() to
592 * release it when it is no longer needed. %NULL is returned if no
593 * matching device is found.
596 struct net_device *dev_get_by_name(struct net *net, const char *name)
598 struct net_device *dev;
600 read_lock(&dev_base_lock);
601 dev = __dev_get_by_name(net, name);
602 if (dev)
603 dev_hold(dev);
604 read_unlock(&dev_base_lock);
605 return dev;
609 * __dev_get_by_index - find a device by its ifindex
610 * @net: the applicable net namespace
611 * @ifindex: index of device
613 * Search for an interface by index. Returns %NULL if the device
614 * is not found or a pointer to the device. The device has not
615 * had its reference counter increased so the caller must be careful
616 * about locking. The caller must hold either the RTNL semaphore
617 * or @dev_base_lock.
620 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
622 struct hlist_node *p;
624 hlist_for_each(p, dev_index_hash(net, ifindex)) {
625 struct net_device *dev
626 = hlist_entry(p, struct net_device, index_hlist);
627 if (dev->ifindex == ifindex)
628 return dev;
630 return NULL;
635 * dev_get_by_index - find a device by its ifindex
636 * @net: the applicable net namespace
637 * @ifindex: index of device
639 * Search for an interface by index. Returns NULL if the device
640 * is not found or a pointer to the device. The device returned has
641 * had a reference added and the pointer is safe until the user calls
642 * dev_put to indicate they have finished with it.
645 struct net_device *dev_get_by_index(struct net *net, int ifindex)
647 struct net_device *dev;
649 read_lock(&dev_base_lock);
650 dev = __dev_get_by_index(net, ifindex);
651 if (dev)
652 dev_hold(dev);
653 read_unlock(&dev_base_lock);
654 return dev;
658 * dev_getbyhwaddr - find a device by its hardware address
659 * @net: the applicable net namespace
660 * @type: media type of device
661 * @ha: hardware address
663 * Search for an interface by MAC address. Returns NULL if the device
664 * is not found or a pointer to the device. The caller must hold the
665 * rtnl semaphore. The returned device has not had its ref count increased
666 * and the caller must therefore be careful about locking
668 * BUGS:
669 * If the API was consistent this would be __dev_get_by_hwaddr
672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
674 struct net_device *dev;
676 ASSERT_RTNL();
678 for_each_netdev(net, dev)
679 if (dev->type == type &&
680 !memcmp(dev->dev_addr, ha, dev->addr_len))
681 return dev;
683 return NULL;
686 EXPORT_SYMBOL(dev_getbyhwaddr);
688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
690 struct net_device *dev;
692 ASSERT_RTNL();
693 for_each_netdev(net, dev)
694 if (dev->type == type)
695 return dev;
697 return NULL;
700 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
704 struct net_device *dev;
706 rtnl_lock();
707 dev = __dev_getfirstbyhwtype(net, type);
708 if (dev)
709 dev_hold(dev);
710 rtnl_unlock();
711 return dev;
714 EXPORT_SYMBOL(dev_getfirstbyhwtype);
717 * dev_get_by_flags - find any device with given flags
718 * @net: the applicable net namespace
719 * @if_flags: IFF_* values
720 * @mask: bitmask of bits in if_flags to check
722 * Search for any interface with the given flags. Returns NULL if a device
723 * is not found or a pointer to the device. The device returned has
724 * had a reference added and the pointer is safe until the user calls
725 * dev_put to indicate they have finished with it.
728 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
730 struct net_device *dev, *ret;
732 ret = NULL;
733 read_lock(&dev_base_lock);
734 for_each_netdev(net, dev) {
735 if (((dev->flags ^ if_flags) & mask) == 0) {
736 dev_hold(dev);
737 ret = dev;
738 break;
741 read_unlock(&dev_base_lock);
742 return ret;
746 * dev_valid_name - check if name is okay for network device
747 * @name: name string
749 * Network device names need to be valid file names to
750 * to allow sysfs to work. We also disallow any kind of
751 * whitespace.
753 int dev_valid_name(const char *name)
755 if (*name == '\0')
756 return 0;
757 if (strlen(name) >= IFNAMSIZ)
758 return 0;
759 if (!strcmp(name, ".") || !strcmp(name, ".."))
760 return 0;
762 while (*name) {
763 if (*name == '/' || isspace(*name))
764 return 0;
765 name++;
767 return 1;
771 * __dev_alloc_name - allocate a name for a device
772 * @net: network namespace to allocate the device name in
773 * @name: name format string
774 * @buf: scratch buffer and result name string
776 * Passed a format string - eg "lt%d" it will try and find a suitable
777 * id. It scans list of devices to build up a free map, then chooses
778 * the first empty slot. The caller must hold the dev_base or rtnl lock
779 * while allocating the name and adding the device in order to avoid
780 * duplicates.
781 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
782 * Returns the number of the unit assigned or a negative errno code.
785 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
787 int i = 0;
788 const char *p;
789 const int max_netdevices = 8*PAGE_SIZE;
790 unsigned long *inuse;
791 struct net_device *d;
793 p = strnchr(name, IFNAMSIZ-1, '%');
794 if (p) {
796 * Verify the string as this thing may have come from
797 * the user. There must be either one "%d" and no other "%"
798 * characters.
800 if (p[1] != 'd' || strchr(p + 2, '%'))
801 return -EINVAL;
803 /* Use one page as a bit array of possible slots */
804 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
805 if (!inuse)
806 return -ENOMEM;
808 for_each_netdev(net, d) {
809 if (!sscanf(d->name, name, &i))
810 continue;
811 if (i < 0 || i >= max_netdevices)
812 continue;
814 /* avoid cases where sscanf is not exact inverse of printf */
815 snprintf(buf, IFNAMSIZ, name, i);
816 if (!strncmp(buf, d->name, IFNAMSIZ))
817 set_bit(i, inuse);
820 i = find_first_zero_bit(inuse, max_netdevices);
821 free_page((unsigned long) inuse);
824 snprintf(buf, IFNAMSIZ, name, i);
825 if (!__dev_get_by_name(net, buf))
826 return i;
828 /* It is possible to run out of possible slots
829 * when the name is long and there isn't enough space left
830 * for the digits, or if all bits are used.
832 return -ENFILE;
836 * dev_alloc_name - allocate a name for a device
837 * @dev: device
838 * @name: name format string
840 * Passed a format string - eg "lt%d" it will try and find a suitable
841 * id. It scans list of devices to build up a free map, then chooses
842 * the first empty slot. The caller must hold the dev_base or rtnl lock
843 * while allocating the name and adding the device in order to avoid
844 * duplicates.
845 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
846 * Returns the number of the unit assigned or a negative errno code.
849 int dev_alloc_name(struct net_device *dev, const char *name)
851 char buf[IFNAMSIZ];
852 struct net *net;
853 int ret;
855 BUG_ON(!dev_net(dev));
856 net = dev_net(dev);
857 ret = __dev_alloc_name(net, name, buf);
858 if (ret >= 0)
859 strlcpy(dev->name, buf, IFNAMSIZ);
860 return ret;
865 * dev_change_name - change name of a device
866 * @dev: device
867 * @newname: name (or format string) must be at least IFNAMSIZ
869 * Change name of a device, can pass format strings "eth%d".
870 * for wildcarding.
872 int dev_change_name(struct net_device *dev, char *newname)
874 char oldname[IFNAMSIZ];
875 int err = 0;
876 int ret;
877 struct net *net;
879 ASSERT_RTNL();
880 BUG_ON(!dev_net(dev));
882 net = dev_net(dev);
883 if (dev->flags & IFF_UP)
884 return -EBUSY;
886 if (!dev_valid_name(newname))
887 return -EINVAL;
889 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
890 return 0;
892 memcpy(oldname, dev->name, IFNAMSIZ);
894 if (strchr(newname, '%')) {
895 err = dev_alloc_name(dev, newname);
896 if (err < 0)
897 return err;
898 strcpy(newname, dev->name);
900 else if (__dev_get_by_name(net, newname))
901 return -EEXIST;
902 else
903 strlcpy(dev->name, newname, IFNAMSIZ);
905 rollback:
906 err = device_rename(&dev->dev, dev->name);
907 if (err) {
908 memcpy(dev->name, oldname, IFNAMSIZ);
909 return err;
912 write_lock_bh(&dev_base_lock);
913 hlist_del(&dev->name_hlist);
914 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
915 write_unlock_bh(&dev_base_lock);
917 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
918 ret = notifier_to_errno(ret);
920 if (ret) {
921 if (err) {
922 printk(KERN_ERR
923 "%s: name change rollback failed: %d.\n",
924 dev->name, ret);
925 } else {
926 err = ret;
927 memcpy(dev->name, oldname, IFNAMSIZ);
928 goto rollback;
932 return err;
936 * netdev_features_change - device changes features
937 * @dev: device to cause notification
939 * Called to indicate a device has changed features.
941 void netdev_features_change(struct net_device *dev)
943 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
945 EXPORT_SYMBOL(netdev_features_change);
948 * netdev_state_change - device changes state
949 * @dev: device to cause notification
951 * Called to indicate a device has changed state. This function calls
952 * the notifier chains for netdev_chain and sends a NEWLINK message
953 * to the routing socket.
955 void netdev_state_change(struct net_device *dev)
957 if (dev->flags & IFF_UP) {
958 call_netdevice_notifiers(NETDEV_CHANGE, dev);
959 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
964 * dev_load - load a network module
965 * @net: the applicable net namespace
966 * @name: name of interface
968 * If a network interface is not present and the process has suitable
969 * privileges this function loads the module. If module loading is not
970 * available in this kernel then it becomes a nop.
973 void dev_load(struct net *net, const char *name)
975 struct net_device *dev;
977 read_lock(&dev_base_lock);
978 dev = __dev_get_by_name(net, name);
979 read_unlock(&dev_base_lock);
981 if (!dev && capable(CAP_SYS_MODULE))
982 request_module("%s", name);
986 * dev_open - prepare an interface for use.
987 * @dev: device to open
989 * Takes a device from down to up state. The device's private open
990 * function is invoked and then the multicast lists are loaded. Finally
991 * the device is moved into the up state and a %NETDEV_UP message is
992 * sent to the netdev notifier chain.
994 * Calling this function on an active interface is a nop. On a failure
995 * a negative errno code is returned.
997 int dev_open(struct net_device *dev)
999 int ret = 0;
1001 ASSERT_RTNL();
1004 * Is it already up?
1007 if (dev->flags & IFF_UP)
1008 return 0;
1011 * Is it even present?
1013 if (!netif_device_present(dev))
1014 return -ENODEV;
1017 * Call device private open method
1019 set_bit(__LINK_STATE_START, &dev->state);
1021 if (dev->validate_addr)
1022 ret = dev->validate_addr(dev);
1024 if (!ret && dev->open)
1025 ret = dev->open(dev);
1028 * If it went open OK then:
1031 if (ret)
1032 clear_bit(__LINK_STATE_START, &dev->state);
1033 else {
1035 * Set the flags.
1037 dev->flags |= IFF_UP;
1040 * Initialize multicasting status
1042 dev_set_rx_mode(dev);
1045 * Wakeup transmit queue engine
1047 dev_activate(dev);
1050 * ... and announce new interface.
1052 call_netdevice_notifiers(NETDEV_UP, dev);
1055 return ret;
1059 * dev_close - shutdown an interface.
1060 * @dev: device to shutdown
1062 * This function moves an active device into down state. A
1063 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1064 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1065 * chain.
1067 int dev_close(struct net_device *dev)
1069 ASSERT_RTNL();
1071 might_sleep();
1073 if (!(dev->flags & IFF_UP))
1074 return 0;
1077 * Tell people we are going down, so that they can
1078 * prepare to death, when device is still operating.
1080 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1082 clear_bit(__LINK_STATE_START, &dev->state);
1084 /* Synchronize to scheduled poll. We cannot touch poll list,
1085 * it can be even on different cpu. So just clear netif_running().
1087 * dev->stop() will invoke napi_disable() on all of it's
1088 * napi_struct instances on this device.
1090 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1092 dev_deactivate(dev);
1095 * Call the device specific close. This cannot fail.
1096 * Only if device is UP
1098 * We allow it to be called even after a DETACH hot-plug
1099 * event.
1101 if (dev->stop)
1102 dev->stop(dev);
1105 * Device is now down.
1108 dev->flags &= ~IFF_UP;
1111 * Tell people we are down
1113 call_netdevice_notifiers(NETDEV_DOWN, dev);
1115 return 0;
1119 static int dev_boot_phase = 1;
1122 * Device change register/unregister. These are not inline or static
1123 * as we export them to the world.
1127 * register_netdevice_notifier - register a network notifier block
1128 * @nb: notifier
1130 * Register a notifier to be called when network device events occur.
1131 * The notifier passed is linked into the kernel structures and must
1132 * not be reused until it has been unregistered. A negative errno code
1133 * is returned on a failure.
1135 * When registered all registration and up events are replayed
1136 * to the new notifier to allow device to have a race free
1137 * view of the network device list.
1140 int register_netdevice_notifier(struct notifier_block *nb)
1142 struct net_device *dev;
1143 struct net_device *last;
1144 struct net *net;
1145 int err;
1147 rtnl_lock();
1148 err = raw_notifier_chain_register(&netdev_chain, nb);
1149 if (err)
1150 goto unlock;
1151 if (dev_boot_phase)
1152 goto unlock;
1153 for_each_net(net) {
1154 for_each_netdev(net, dev) {
1155 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1156 err = notifier_to_errno(err);
1157 if (err)
1158 goto rollback;
1160 if (!(dev->flags & IFF_UP))
1161 continue;
1163 nb->notifier_call(nb, NETDEV_UP, dev);
1167 unlock:
1168 rtnl_unlock();
1169 return err;
1171 rollback:
1172 last = dev;
1173 for_each_net(net) {
1174 for_each_netdev(net, dev) {
1175 if (dev == last)
1176 break;
1178 if (dev->flags & IFF_UP) {
1179 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1180 nb->notifier_call(nb, NETDEV_DOWN, dev);
1182 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1186 raw_notifier_chain_unregister(&netdev_chain, nb);
1187 goto unlock;
1191 * unregister_netdevice_notifier - unregister a network notifier block
1192 * @nb: notifier
1194 * Unregister a notifier previously registered by
1195 * register_netdevice_notifier(). The notifier is unlinked into the
1196 * kernel structures and may then be reused. A negative errno code
1197 * is returned on a failure.
1200 int unregister_netdevice_notifier(struct notifier_block *nb)
1202 int err;
1204 rtnl_lock();
1205 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1206 rtnl_unlock();
1207 return err;
1211 * call_netdevice_notifiers - call all network notifier blocks
1212 * @val: value passed unmodified to notifier function
1213 * @dev: net_device pointer passed unmodified to notifier function
1215 * Call all network notifier blocks. Parameters and return value
1216 * are as for raw_notifier_call_chain().
1219 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1221 return raw_notifier_call_chain(&netdev_chain, val, dev);
1224 /* When > 0 there are consumers of rx skb time stamps */
1225 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1227 void net_enable_timestamp(void)
1229 atomic_inc(&netstamp_needed);
1232 void net_disable_timestamp(void)
1234 atomic_dec(&netstamp_needed);
1237 static inline void net_timestamp(struct sk_buff *skb)
1239 if (atomic_read(&netstamp_needed))
1240 __net_timestamp(skb);
1241 else
1242 skb->tstamp.tv64 = 0;
1246 * Support routine. Sends outgoing frames to any network
1247 * taps currently in use.
1250 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1252 struct packet_type *ptype;
1254 net_timestamp(skb);
1256 rcu_read_lock();
1257 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1258 /* Never send packets back to the socket
1259 * they originated from - MvS (miquels@drinkel.ow.org)
1261 if ((ptype->dev == dev || !ptype->dev) &&
1262 (ptype->af_packet_priv == NULL ||
1263 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1264 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1265 if (!skb2)
1266 break;
1268 /* skb->nh should be correctly
1269 set by sender, so that the second statement is
1270 just protection against buggy protocols.
1272 skb_reset_mac_header(skb2);
1274 if (skb_network_header(skb2) < skb2->data ||
1275 skb2->network_header > skb2->tail) {
1276 if (net_ratelimit())
1277 printk(KERN_CRIT "protocol %04x is "
1278 "buggy, dev %s\n",
1279 skb2->protocol, dev->name);
1280 skb_reset_network_header(skb2);
1283 skb2->transport_header = skb2->network_header;
1284 skb2->pkt_type = PACKET_OUTGOING;
1285 ptype->func(skb2, skb->dev, ptype, skb->dev);
1288 rcu_read_unlock();
1292 void __netif_schedule(struct net_device *dev)
1294 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1295 unsigned long flags;
1296 struct softnet_data *sd;
1298 local_irq_save(flags);
1299 sd = &__get_cpu_var(softnet_data);
1300 dev->next_sched = sd->output_queue;
1301 sd->output_queue = dev;
1302 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1303 local_irq_restore(flags);
1306 EXPORT_SYMBOL(__netif_schedule);
1308 void dev_kfree_skb_irq(struct sk_buff *skb)
1310 if (atomic_dec_and_test(&skb->users)) {
1311 struct softnet_data *sd;
1312 unsigned long flags;
1314 local_irq_save(flags);
1315 sd = &__get_cpu_var(softnet_data);
1316 skb->next = sd->completion_queue;
1317 sd->completion_queue = skb;
1318 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1319 local_irq_restore(flags);
1322 EXPORT_SYMBOL(dev_kfree_skb_irq);
1324 void dev_kfree_skb_any(struct sk_buff *skb)
1326 if (in_irq() || irqs_disabled())
1327 dev_kfree_skb_irq(skb);
1328 else
1329 dev_kfree_skb(skb);
1331 EXPORT_SYMBOL(dev_kfree_skb_any);
1335 * netif_device_detach - mark device as removed
1336 * @dev: network device
1338 * Mark device as removed from system and therefore no longer available.
1340 void netif_device_detach(struct net_device *dev)
1342 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1343 netif_running(dev)) {
1344 netif_stop_queue(dev);
1347 EXPORT_SYMBOL(netif_device_detach);
1350 * netif_device_attach - mark device as attached
1351 * @dev: network device
1353 * Mark device as attached from system and restart if needed.
1355 void netif_device_attach(struct net_device *dev)
1357 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1358 netif_running(dev)) {
1359 netif_wake_queue(dev);
1360 __netdev_watchdog_up(dev);
1363 EXPORT_SYMBOL(netif_device_attach);
1367 * Invalidate hardware checksum when packet is to be mangled, and
1368 * complete checksum manually on outgoing path.
1370 int skb_checksum_help(struct sk_buff *skb)
1372 __wsum csum;
1373 int ret = 0, offset;
1375 if (skb->ip_summed == CHECKSUM_COMPLETE)
1376 goto out_set_summed;
1378 if (unlikely(skb_shinfo(skb)->gso_size)) {
1379 /* Let GSO fix up the checksum. */
1380 goto out_set_summed;
1383 offset = skb->csum_start - skb_headroom(skb);
1384 BUG_ON(offset >= skb_headlen(skb));
1385 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1387 offset += skb->csum_offset;
1388 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1390 if (skb_cloned(skb) &&
1391 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1392 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1393 if (ret)
1394 goto out;
1397 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1398 out_set_summed:
1399 skb->ip_summed = CHECKSUM_NONE;
1400 out:
1401 return ret;
1405 * skb_gso_segment - Perform segmentation on skb.
1406 * @skb: buffer to segment
1407 * @features: features for the output path (see dev->features)
1409 * This function segments the given skb and returns a list of segments.
1411 * It may return NULL if the skb requires no segmentation. This is
1412 * only possible when GSO is used for verifying header integrity.
1414 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1416 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1417 struct packet_type *ptype;
1418 __be16 type = skb->protocol;
1419 int err;
1421 BUG_ON(skb_shinfo(skb)->frag_list);
1423 skb_reset_mac_header(skb);
1424 skb->mac_len = skb->network_header - skb->mac_header;
1425 __skb_pull(skb, skb->mac_len);
1427 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1428 if (skb_header_cloned(skb) &&
1429 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1430 return ERR_PTR(err);
1433 rcu_read_lock();
1434 list_for_each_entry_rcu(ptype,
1435 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1436 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1437 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1438 err = ptype->gso_send_check(skb);
1439 segs = ERR_PTR(err);
1440 if (err || skb_gso_ok(skb, features))
1441 break;
1442 __skb_push(skb, (skb->data -
1443 skb_network_header(skb)));
1445 segs = ptype->gso_segment(skb, features);
1446 break;
1449 rcu_read_unlock();
1451 __skb_push(skb, skb->data - skb_mac_header(skb));
1453 return segs;
1456 EXPORT_SYMBOL(skb_gso_segment);
1458 /* Take action when hardware reception checksum errors are detected. */
1459 #ifdef CONFIG_BUG
1460 void netdev_rx_csum_fault(struct net_device *dev)
1462 if (net_ratelimit()) {
1463 printk(KERN_ERR "%s: hw csum failure.\n",
1464 dev ? dev->name : "<unknown>");
1465 dump_stack();
1468 EXPORT_SYMBOL(netdev_rx_csum_fault);
1469 #endif
1471 /* Actually, we should eliminate this check as soon as we know, that:
1472 * 1. IOMMU is present and allows to map all the memory.
1473 * 2. No high memory really exists on this machine.
1476 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1478 #ifdef CONFIG_HIGHMEM
1479 int i;
1481 if (dev->features & NETIF_F_HIGHDMA)
1482 return 0;
1484 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1485 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1486 return 1;
1488 #endif
1489 return 0;
1492 struct dev_gso_cb {
1493 void (*destructor)(struct sk_buff *skb);
1496 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1498 static void dev_gso_skb_destructor(struct sk_buff *skb)
1500 struct dev_gso_cb *cb;
1502 do {
1503 struct sk_buff *nskb = skb->next;
1505 skb->next = nskb->next;
1506 nskb->next = NULL;
1507 kfree_skb(nskb);
1508 } while (skb->next);
1510 cb = DEV_GSO_CB(skb);
1511 if (cb->destructor)
1512 cb->destructor(skb);
1516 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1517 * @skb: buffer to segment
1519 * This function segments the given skb and stores the list of segments
1520 * in skb->next.
1522 static int dev_gso_segment(struct sk_buff *skb)
1524 struct net_device *dev = skb->dev;
1525 struct sk_buff *segs;
1526 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1527 NETIF_F_SG : 0);
1529 segs = skb_gso_segment(skb, features);
1531 /* Verifying header integrity only. */
1532 if (!segs)
1533 return 0;
1535 if (IS_ERR(segs))
1536 return PTR_ERR(segs);
1538 skb->next = segs;
1539 DEV_GSO_CB(skb)->destructor = skb->destructor;
1540 skb->destructor = dev_gso_skb_destructor;
1542 return 0;
1545 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1547 if (likely(!skb->next)) {
1548 if (!list_empty(&ptype_all))
1549 dev_queue_xmit_nit(skb, dev);
1551 if (netif_needs_gso(dev, skb)) {
1552 if (unlikely(dev_gso_segment(skb)))
1553 goto out_kfree_skb;
1554 if (skb->next)
1555 goto gso;
1558 return dev->hard_start_xmit(skb, dev);
1561 gso:
1562 do {
1563 struct sk_buff *nskb = skb->next;
1564 int rc;
1566 skb->next = nskb->next;
1567 nskb->next = NULL;
1568 rc = dev->hard_start_xmit(nskb, dev);
1569 if (unlikely(rc)) {
1570 nskb->next = skb->next;
1571 skb->next = nskb;
1572 return rc;
1574 if (unlikely((netif_queue_stopped(dev) ||
1575 netif_subqueue_stopped(dev, skb)) &&
1576 skb->next))
1577 return NETDEV_TX_BUSY;
1578 } while (skb->next);
1580 skb->destructor = DEV_GSO_CB(skb)->destructor;
1582 out_kfree_skb:
1583 kfree_skb(skb);
1584 return 0;
1588 * dev_queue_xmit - transmit a buffer
1589 * @skb: buffer to transmit
1591 * Queue a buffer for transmission to a network device. The caller must
1592 * have set the device and priority and built the buffer before calling
1593 * this function. The function can be called from an interrupt.
1595 * A negative errno code is returned on a failure. A success does not
1596 * guarantee the frame will be transmitted as it may be dropped due
1597 * to congestion or traffic shaping.
1599 * -----------------------------------------------------------------------------------
1600 * I notice this method can also return errors from the queue disciplines,
1601 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1602 * be positive.
1604 * Regardless of the return value, the skb is consumed, so it is currently
1605 * difficult to retry a send to this method. (You can bump the ref count
1606 * before sending to hold a reference for retry if you are careful.)
1608 * When calling this method, interrupts MUST be enabled. This is because
1609 * the BH enable code must have IRQs enabled so that it will not deadlock.
1610 * --BLG
1613 int dev_queue_xmit(struct sk_buff *skb)
1615 struct net_device *dev = skb->dev;
1616 struct Qdisc *q;
1617 int rc = -ENOMEM;
1619 /* GSO will handle the following emulations directly. */
1620 if (netif_needs_gso(dev, skb))
1621 goto gso;
1623 if (skb_shinfo(skb)->frag_list &&
1624 !(dev->features & NETIF_F_FRAGLIST) &&
1625 __skb_linearize(skb))
1626 goto out_kfree_skb;
1628 /* Fragmented skb is linearized if device does not support SG,
1629 * or if at least one of fragments is in highmem and device
1630 * does not support DMA from it.
1632 if (skb_shinfo(skb)->nr_frags &&
1633 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1634 __skb_linearize(skb))
1635 goto out_kfree_skb;
1637 /* If packet is not checksummed and device does not support
1638 * checksumming for this protocol, complete checksumming here.
1640 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1641 skb_set_transport_header(skb, skb->csum_start -
1642 skb_headroom(skb));
1644 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1645 !((dev->features & NETIF_F_IP_CSUM) &&
1646 skb->protocol == htons(ETH_P_IP)) &&
1647 !((dev->features & NETIF_F_IPV6_CSUM) &&
1648 skb->protocol == htons(ETH_P_IPV6)))
1649 if (skb_checksum_help(skb))
1650 goto out_kfree_skb;
1653 gso:
1654 spin_lock_prefetch(&dev->queue_lock);
1656 /* Disable soft irqs for various locks below. Also
1657 * stops preemption for RCU.
1659 rcu_read_lock_bh();
1661 /* Updates of qdisc are serialized by queue_lock.
1662 * The struct Qdisc which is pointed to by qdisc is now a
1663 * rcu structure - it may be accessed without acquiring
1664 * a lock (but the structure may be stale.) The freeing of the
1665 * qdisc will be deferred until it's known that there are no
1666 * more references to it.
1668 * If the qdisc has an enqueue function, we still need to
1669 * hold the queue_lock before calling it, since queue_lock
1670 * also serializes access to the device queue.
1673 q = rcu_dereference(dev->qdisc);
1674 #ifdef CONFIG_NET_CLS_ACT
1675 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1676 #endif
1677 if (q->enqueue) {
1678 /* Grab device queue */
1679 spin_lock(&dev->queue_lock);
1680 q = dev->qdisc;
1681 if (q->enqueue) {
1682 /* reset queue_mapping to zero */
1683 skb_set_queue_mapping(skb, 0);
1684 rc = q->enqueue(skb, q);
1685 qdisc_run(dev);
1686 spin_unlock(&dev->queue_lock);
1688 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1689 goto out;
1691 spin_unlock(&dev->queue_lock);
1694 /* The device has no queue. Common case for software devices:
1695 loopback, all the sorts of tunnels...
1697 Really, it is unlikely that netif_tx_lock protection is necessary
1698 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1699 counters.)
1700 However, it is possible, that they rely on protection
1701 made by us here.
1703 Check this and shot the lock. It is not prone from deadlocks.
1704 Either shot noqueue qdisc, it is even simpler 8)
1706 if (dev->flags & IFF_UP) {
1707 int cpu = smp_processor_id(); /* ok because BHs are off */
1709 if (dev->xmit_lock_owner != cpu) {
1711 HARD_TX_LOCK(dev, cpu);
1713 if (!netif_queue_stopped(dev) &&
1714 !netif_subqueue_stopped(dev, skb)) {
1715 rc = 0;
1716 if (!dev_hard_start_xmit(skb, dev)) {
1717 HARD_TX_UNLOCK(dev);
1718 goto out;
1721 HARD_TX_UNLOCK(dev);
1722 if (net_ratelimit())
1723 printk(KERN_CRIT "Virtual device %s asks to "
1724 "queue packet!\n", dev->name);
1725 } else {
1726 /* Recursion is detected! It is possible,
1727 * unfortunately */
1728 if (net_ratelimit())
1729 printk(KERN_CRIT "Dead loop on virtual device "
1730 "%s, fix it urgently!\n", dev->name);
1734 rc = -ENETDOWN;
1735 rcu_read_unlock_bh();
1737 out_kfree_skb:
1738 kfree_skb(skb);
1739 return rc;
1740 out:
1741 rcu_read_unlock_bh();
1742 return rc;
1746 /*=======================================================================
1747 Receiver routines
1748 =======================================================================*/
1750 int netdev_max_backlog __read_mostly = 1000;
1751 int netdev_budget __read_mostly = 300;
1752 int weight_p __read_mostly = 64; /* old backlog weight */
1754 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1758 * netif_rx - post buffer to the network code
1759 * @skb: buffer to post
1761 * This function receives a packet from a device driver and queues it for
1762 * the upper (protocol) levels to process. It always succeeds. The buffer
1763 * may be dropped during processing for congestion control or by the
1764 * protocol layers.
1766 * return values:
1767 * NET_RX_SUCCESS (no congestion)
1768 * NET_RX_DROP (packet was dropped)
1772 int netif_rx(struct sk_buff *skb)
1774 struct softnet_data *queue;
1775 unsigned long flags;
1777 /* if netpoll wants it, pretend we never saw it */
1778 if (netpoll_rx(skb))
1779 return NET_RX_DROP;
1781 if (!skb->tstamp.tv64)
1782 net_timestamp(skb);
1785 * The code is rearranged so that the path is the most
1786 * short when CPU is congested, but is still operating.
1788 local_irq_save(flags);
1789 queue = &__get_cpu_var(softnet_data);
1791 __get_cpu_var(netdev_rx_stat).total++;
1792 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1793 if (queue->input_pkt_queue.qlen) {
1794 enqueue:
1795 dev_hold(skb->dev);
1796 __skb_queue_tail(&queue->input_pkt_queue, skb);
1797 local_irq_restore(flags);
1798 return NET_RX_SUCCESS;
1801 napi_schedule(&queue->backlog);
1802 goto enqueue;
1805 __get_cpu_var(netdev_rx_stat).dropped++;
1806 local_irq_restore(flags);
1808 kfree_skb(skb);
1809 return NET_RX_DROP;
1812 int netif_rx_ni(struct sk_buff *skb)
1814 int err;
1816 preempt_disable();
1817 err = netif_rx(skb);
1818 if (local_softirq_pending())
1819 do_softirq();
1820 preempt_enable();
1822 return err;
1825 EXPORT_SYMBOL(netif_rx_ni);
1827 static inline struct net_device *skb_bond(struct sk_buff *skb)
1829 struct net_device *dev = skb->dev;
1831 if (dev->master) {
1832 if (skb_bond_should_drop(skb)) {
1833 kfree_skb(skb);
1834 return NULL;
1836 skb->dev = dev->master;
1839 return dev;
1843 static void net_tx_action(struct softirq_action *h)
1845 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1847 if (sd->completion_queue) {
1848 struct sk_buff *clist;
1850 local_irq_disable();
1851 clist = sd->completion_queue;
1852 sd->completion_queue = NULL;
1853 local_irq_enable();
1855 while (clist) {
1856 struct sk_buff *skb = clist;
1857 clist = clist->next;
1859 BUG_TRAP(!atomic_read(&skb->users));
1860 __kfree_skb(skb);
1864 if (sd->output_queue) {
1865 struct net_device *head;
1867 local_irq_disable();
1868 head = sd->output_queue;
1869 sd->output_queue = NULL;
1870 local_irq_enable();
1872 while (head) {
1873 struct net_device *dev = head;
1874 head = head->next_sched;
1876 smp_mb__before_clear_bit();
1877 clear_bit(__LINK_STATE_SCHED, &dev->state);
1879 if (spin_trylock(&dev->queue_lock)) {
1880 qdisc_run(dev);
1881 spin_unlock(&dev->queue_lock);
1882 } else {
1883 netif_schedule(dev);
1889 static inline int deliver_skb(struct sk_buff *skb,
1890 struct packet_type *pt_prev,
1891 struct net_device *orig_dev)
1893 atomic_inc(&skb->users);
1894 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1897 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1898 /* These hooks defined here for ATM */
1899 struct net_bridge;
1900 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1901 unsigned char *addr);
1902 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1905 * If bridge module is loaded call bridging hook.
1906 * returns NULL if packet was consumed.
1908 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1909 struct sk_buff *skb) __read_mostly;
1910 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1911 struct packet_type **pt_prev, int *ret,
1912 struct net_device *orig_dev)
1914 struct net_bridge_port *port;
1916 if (skb->pkt_type == PACKET_LOOPBACK ||
1917 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1918 return skb;
1920 if (*pt_prev) {
1921 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1922 *pt_prev = NULL;
1925 return br_handle_frame_hook(port, skb);
1927 #else
1928 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1929 #endif
1931 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1932 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1933 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1935 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1936 struct packet_type **pt_prev,
1937 int *ret,
1938 struct net_device *orig_dev)
1940 if (skb->dev->macvlan_port == NULL)
1941 return skb;
1943 if (*pt_prev) {
1944 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1945 *pt_prev = NULL;
1947 return macvlan_handle_frame_hook(skb);
1949 #else
1950 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1951 #endif
1953 #ifdef CONFIG_NET_CLS_ACT
1954 /* TODO: Maybe we should just force sch_ingress to be compiled in
1955 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1956 * a compare and 2 stores extra right now if we dont have it on
1957 * but have CONFIG_NET_CLS_ACT
1958 * NOTE: This doesnt stop any functionality; if you dont have
1959 * the ingress scheduler, you just cant add policies on ingress.
1962 static int ing_filter(struct sk_buff *skb)
1964 struct Qdisc *q;
1965 struct net_device *dev = skb->dev;
1966 int result = TC_ACT_OK;
1967 u32 ttl = G_TC_RTTL(skb->tc_verd);
1969 if (MAX_RED_LOOP < ttl++) {
1970 printk(KERN_WARNING
1971 "Redir loop detected Dropping packet (%d->%d)\n",
1972 skb->iif, dev->ifindex);
1973 return TC_ACT_SHOT;
1976 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1977 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1979 spin_lock(&dev->ingress_lock);
1980 if ((q = dev->qdisc_ingress) != NULL)
1981 result = q->enqueue(skb, q);
1982 spin_unlock(&dev->ingress_lock);
1984 return result;
1987 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1988 struct packet_type **pt_prev,
1989 int *ret, struct net_device *orig_dev)
1991 if (!skb->dev->qdisc_ingress)
1992 goto out;
1994 if (*pt_prev) {
1995 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1996 *pt_prev = NULL;
1997 } else {
1998 /* Huh? Why does turning on AF_PACKET affect this? */
1999 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2002 switch (ing_filter(skb)) {
2003 case TC_ACT_SHOT:
2004 case TC_ACT_STOLEN:
2005 kfree_skb(skb);
2006 return NULL;
2009 out:
2010 skb->tc_verd = 0;
2011 return skb;
2013 #endif
2016 * netif_receive_skb - process receive buffer from network
2017 * @skb: buffer to process
2019 * netif_receive_skb() is the main receive data processing function.
2020 * It always succeeds. The buffer may be dropped during processing
2021 * for congestion control or by the protocol layers.
2023 * This function may only be called from softirq context and interrupts
2024 * should be enabled.
2026 * Return values (usually ignored):
2027 * NET_RX_SUCCESS: no congestion
2028 * NET_RX_DROP: packet was dropped
2030 int netif_receive_skb(struct sk_buff *skb)
2032 struct packet_type *ptype, *pt_prev;
2033 struct net_device *orig_dev;
2034 int ret = NET_RX_DROP;
2035 __be16 type;
2037 /* if we've gotten here through NAPI, check netpoll */
2038 if (netpoll_receive_skb(skb))
2039 return NET_RX_DROP;
2041 if (!skb->tstamp.tv64)
2042 net_timestamp(skb);
2044 if (!skb->iif)
2045 skb->iif = skb->dev->ifindex;
2047 orig_dev = skb_bond(skb);
2049 if (!orig_dev)
2050 return NET_RX_DROP;
2052 __get_cpu_var(netdev_rx_stat).total++;
2054 skb_reset_network_header(skb);
2055 skb_reset_transport_header(skb);
2056 skb->mac_len = skb->network_header - skb->mac_header;
2058 pt_prev = NULL;
2060 rcu_read_lock();
2062 #ifdef CONFIG_NET_CLS_ACT
2063 if (skb->tc_verd & TC_NCLS) {
2064 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2065 goto ncls;
2067 #endif
2069 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2070 if (!ptype->dev || ptype->dev == skb->dev) {
2071 if (pt_prev)
2072 ret = deliver_skb(skb, pt_prev, orig_dev);
2073 pt_prev = ptype;
2077 #ifdef CONFIG_NET_CLS_ACT
2078 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2079 if (!skb)
2080 goto out;
2081 ncls:
2082 #endif
2084 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2085 if (!skb)
2086 goto out;
2087 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2088 if (!skb)
2089 goto out;
2091 type = skb->protocol;
2092 list_for_each_entry_rcu(ptype,
2093 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2094 if (ptype->type == type &&
2095 (!ptype->dev || ptype->dev == skb->dev)) {
2096 if (pt_prev)
2097 ret = deliver_skb(skb, pt_prev, orig_dev);
2098 pt_prev = ptype;
2102 if (pt_prev) {
2103 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2104 } else {
2105 kfree_skb(skb);
2106 /* Jamal, now you will not able to escape explaining
2107 * me how you were going to use this. :-)
2109 ret = NET_RX_DROP;
2112 out:
2113 rcu_read_unlock();
2114 return ret;
2117 static int process_backlog(struct napi_struct *napi, int quota)
2119 int work = 0;
2120 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2121 unsigned long start_time = jiffies;
2123 napi->weight = weight_p;
2124 do {
2125 struct sk_buff *skb;
2126 struct net_device *dev;
2128 local_irq_disable();
2129 skb = __skb_dequeue(&queue->input_pkt_queue);
2130 if (!skb) {
2131 __napi_complete(napi);
2132 local_irq_enable();
2133 break;
2136 local_irq_enable();
2138 dev = skb->dev;
2140 netif_receive_skb(skb);
2142 dev_put(dev);
2143 } while (++work < quota && jiffies == start_time);
2145 return work;
2149 * __napi_schedule - schedule for receive
2150 * @n: entry to schedule
2152 * The entry's receive function will be scheduled to run
2154 void __napi_schedule(struct napi_struct *n)
2156 unsigned long flags;
2158 local_irq_save(flags);
2159 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2160 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2161 local_irq_restore(flags);
2163 EXPORT_SYMBOL(__napi_schedule);
2166 static void net_rx_action(struct softirq_action *h)
2168 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2169 unsigned long start_time = jiffies;
2170 int budget = netdev_budget;
2171 void *have;
2173 local_irq_disable();
2175 while (!list_empty(list)) {
2176 struct napi_struct *n;
2177 int work, weight;
2179 /* If softirq window is exhuasted then punt.
2181 * Note that this is a slight policy change from the
2182 * previous NAPI code, which would allow up to 2
2183 * jiffies to pass before breaking out. The test
2184 * used to be "jiffies - start_time > 1".
2186 if (unlikely(budget <= 0 || jiffies != start_time))
2187 goto softnet_break;
2189 local_irq_enable();
2191 /* Even though interrupts have been re-enabled, this
2192 * access is safe because interrupts can only add new
2193 * entries to the tail of this list, and only ->poll()
2194 * calls can remove this head entry from the list.
2196 n = list_entry(list->next, struct napi_struct, poll_list);
2198 have = netpoll_poll_lock(n);
2200 weight = n->weight;
2202 /* This NAPI_STATE_SCHED test is for avoiding a race
2203 * with netpoll's poll_napi(). Only the entity which
2204 * obtains the lock and sees NAPI_STATE_SCHED set will
2205 * actually make the ->poll() call. Therefore we avoid
2206 * accidently calling ->poll() when NAPI is not scheduled.
2208 work = 0;
2209 if (test_bit(NAPI_STATE_SCHED, &n->state))
2210 work = n->poll(n, weight);
2212 WARN_ON_ONCE(work > weight);
2214 budget -= work;
2216 local_irq_disable();
2218 /* Drivers must not modify the NAPI state if they
2219 * consume the entire weight. In such cases this code
2220 * still "owns" the NAPI instance and therefore can
2221 * move the instance around on the list at-will.
2223 if (unlikely(work == weight)) {
2224 if (unlikely(napi_disable_pending(n)))
2225 __napi_complete(n);
2226 else
2227 list_move_tail(&n->poll_list, list);
2230 netpoll_poll_unlock(have);
2232 out:
2233 local_irq_enable();
2235 #ifdef CONFIG_NET_DMA
2237 * There may not be any more sk_buffs coming right now, so push
2238 * any pending DMA copies to hardware
2240 if (!cpus_empty(net_dma.channel_mask)) {
2241 int chan_idx;
2242 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2243 struct dma_chan *chan = net_dma.channels[chan_idx];
2244 if (chan)
2245 dma_async_memcpy_issue_pending(chan);
2248 #endif
2250 return;
2252 softnet_break:
2253 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2254 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2255 goto out;
2258 static gifconf_func_t * gifconf_list [NPROTO];
2261 * register_gifconf - register a SIOCGIF handler
2262 * @family: Address family
2263 * @gifconf: Function handler
2265 * Register protocol dependent address dumping routines. The handler
2266 * that is passed must not be freed or reused until it has been replaced
2267 * by another handler.
2269 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2271 if (family >= NPROTO)
2272 return -EINVAL;
2273 gifconf_list[family] = gifconf;
2274 return 0;
2279 * Map an interface index to its name (SIOCGIFNAME)
2283 * We need this ioctl for efficient implementation of the
2284 * if_indextoname() function required by the IPv6 API. Without
2285 * it, we would have to search all the interfaces to find a
2286 * match. --pb
2289 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2291 struct net_device *dev;
2292 struct ifreq ifr;
2295 * Fetch the caller's info block.
2298 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2299 return -EFAULT;
2301 read_lock(&dev_base_lock);
2302 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2303 if (!dev) {
2304 read_unlock(&dev_base_lock);
2305 return -ENODEV;
2308 strcpy(ifr.ifr_name, dev->name);
2309 read_unlock(&dev_base_lock);
2311 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2312 return -EFAULT;
2313 return 0;
2317 * Perform a SIOCGIFCONF call. This structure will change
2318 * size eventually, and there is nothing I can do about it.
2319 * Thus we will need a 'compatibility mode'.
2322 static int dev_ifconf(struct net *net, char __user *arg)
2324 struct ifconf ifc;
2325 struct net_device *dev;
2326 char __user *pos;
2327 int len;
2328 int total;
2329 int i;
2332 * Fetch the caller's info block.
2335 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2336 return -EFAULT;
2338 pos = ifc.ifc_buf;
2339 len = ifc.ifc_len;
2342 * Loop over the interfaces, and write an info block for each.
2345 total = 0;
2346 for_each_netdev(net, dev) {
2347 for (i = 0; i < NPROTO; i++) {
2348 if (gifconf_list[i]) {
2349 int done;
2350 if (!pos)
2351 done = gifconf_list[i](dev, NULL, 0);
2352 else
2353 done = gifconf_list[i](dev, pos + total,
2354 len - total);
2355 if (done < 0)
2356 return -EFAULT;
2357 total += done;
2363 * All done. Write the updated control block back to the caller.
2365 ifc.ifc_len = total;
2368 * Both BSD and Solaris return 0 here, so we do too.
2370 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2373 #ifdef CONFIG_PROC_FS
2375 * This is invoked by the /proc filesystem handler to display a device
2376 * in detail.
2378 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2379 __acquires(dev_base_lock)
2381 struct net *net = seq_file_net(seq);
2382 loff_t off;
2383 struct net_device *dev;
2385 read_lock(&dev_base_lock);
2386 if (!*pos)
2387 return SEQ_START_TOKEN;
2389 off = 1;
2390 for_each_netdev(net, dev)
2391 if (off++ == *pos)
2392 return dev;
2394 return NULL;
2397 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2399 struct net *net = seq_file_net(seq);
2400 ++*pos;
2401 return v == SEQ_START_TOKEN ?
2402 first_net_device(net) : next_net_device((struct net_device *)v);
2405 void dev_seq_stop(struct seq_file *seq, void *v)
2406 __releases(dev_base_lock)
2408 read_unlock(&dev_base_lock);
2411 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2413 struct net_device_stats *stats = dev->get_stats(dev);
2415 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2416 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2417 dev->name, stats->rx_bytes, stats->rx_packets,
2418 stats->rx_errors,
2419 stats->rx_dropped + stats->rx_missed_errors,
2420 stats->rx_fifo_errors,
2421 stats->rx_length_errors + stats->rx_over_errors +
2422 stats->rx_crc_errors + stats->rx_frame_errors,
2423 stats->rx_compressed, stats->multicast,
2424 stats->tx_bytes, stats->tx_packets,
2425 stats->tx_errors, stats->tx_dropped,
2426 stats->tx_fifo_errors, stats->collisions,
2427 stats->tx_carrier_errors +
2428 stats->tx_aborted_errors +
2429 stats->tx_window_errors +
2430 stats->tx_heartbeat_errors,
2431 stats->tx_compressed);
2435 * Called from the PROCfs module. This now uses the new arbitrary sized
2436 * /proc/net interface to create /proc/net/dev
2438 static int dev_seq_show(struct seq_file *seq, void *v)
2440 if (v == SEQ_START_TOKEN)
2441 seq_puts(seq, "Inter-| Receive "
2442 " | Transmit\n"
2443 " face |bytes packets errs drop fifo frame "
2444 "compressed multicast|bytes packets errs "
2445 "drop fifo colls carrier compressed\n");
2446 else
2447 dev_seq_printf_stats(seq, v);
2448 return 0;
2451 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2453 struct netif_rx_stats *rc = NULL;
2455 while (*pos < nr_cpu_ids)
2456 if (cpu_online(*pos)) {
2457 rc = &per_cpu(netdev_rx_stat, *pos);
2458 break;
2459 } else
2460 ++*pos;
2461 return rc;
2464 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2466 return softnet_get_online(pos);
2469 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2471 ++*pos;
2472 return softnet_get_online(pos);
2475 static void softnet_seq_stop(struct seq_file *seq, void *v)
2479 static int softnet_seq_show(struct seq_file *seq, void *v)
2481 struct netif_rx_stats *s = v;
2483 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2484 s->total, s->dropped, s->time_squeeze, 0,
2485 0, 0, 0, 0, /* was fastroute */
2486 s->cpu_collision );
2487 return 0;
2490 static const struct seq_operations dev_seq_ops = {
2491 .start = dev_seq_start,
2492 .next = dev_seq_next,
2493 .stop = dev_seq_stop,
2494 .show = dev_seq_show,
2497 static int dev_seq_open(struct inode *inode, struct file *file)
2499 return seq_open_net(inode, file, &dev_seq_ops,
2500 sizeof(struct seq_net_private));
2503 static const struct file_operations dev_seq_fops = {
2504 .owner = THIS_MODULE,
2505 .open = dev_seq_open,
2506 .read = seq_read,
2507 .llseek = seq_lseek,
2508 .release = seq_release_net,
2511 static const struct seq_operations softnet_seq_ops = {
2512 .start = softnet_seq_start,
2513 .next = softnet_seq_next,
2514 .stop = softnet_seq_stop,
2515 .show = softnet_seq_show,
2518 static int softnet_seq_open(struct inode *inode, struct file *file)
2520 return seq_open(file, &softnet_seq_ops);
2523 static const struct file_operations softnet_seq_fops = {
2524 .owner = THIS_MODULE,
2525 .open = softnet_seq_open,
2526 .read = seq_read,
2527 .llseek = seq_lseek,
2528 .release = seq_release,
2531 static void *ptype_get_idx(loff_t pos)
2533 struct packet_type *pt = NULL;
2534 loff_t i = 0;
2535 int t;
2537 list_for_each_entry_rcu(pt, &ptype_all, list) {
2538 if (i == pos)
2539 return pt;
2540 ++i;
2543 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2544 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2545 if (i == pos)
2546 return pt;
2547 ++i;
2550 return NULL;
2553 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2554 __acquires(RCU)
2556 rcu_read_lock();
2557 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2560 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2562 struct packet_type *pt;
2563 struct list_head *nxt;
2564 int hash;
2566 ++*pos;
2567 if (v == SEQ_START_TOKEN)
2568 return ptype_get_idx(0);
2570 pt = v;
2571 nxt = pt->list.next;
2572 if (pt->type == htons(ETH_P_ALL)) {
2573 if (nxt != &ptype_all)
2574 goto found;
2575 hash = 0;
2576 nxt = ptype_base[0].next;
2577 } else
2578 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2580 while (nxt == &ptype_base[hash]) {
2581 if (++hash >= PTYPE_HASH_SIZE)
2582 return NULL;
2583 nxt = ptype_base[hash].next;
2585 found:
2586 return list_entry(nxt, struct packet_type, list);
2589 static void ptype_seq_stop(struct seq_file *seq, void *v)
2590 __releases(RCU)
2592 rcu_read_unlock();
2595 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2597 #ifdef CONFIG_KALLSYMS
2598 unsigned long offset = 0, symsize;
2599 const char *symname;
2600 char *modname;
2601 char namebuf[128];
2603 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2604 &modname, namebuf);
2606 if (symname) {
2607 char *delim = ":";
2609 if (!modname)
2610 modname = delim = "";
2611 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2612 symname, offset);
2613 return;
2615 #endif
2617 seq_printf(seq, "[%p]", sym);
2620 static int ptype_seq_show(struct seq_file *seq, void *v)
2622 struct packet_type *pt = v;
2624 if (v == SEQ_START_TOKEN)
2625 seq_puts(seq, "Type Device Function\n");
2626 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2627 if (pt->type == htons(ETH_P_ALL))
2628 seq_puts(seq, "ALL ");
2629 else
2630 seq_printf(seq, "%04x", ntohs(pt->type));
2632 seq_printf(seq, " %-8s ",
2633 pt->dev ? pt->dev->name : "");
2634 ptype_seq_decode(seq, pt->func);
2635 seq_putc(seq, '\n');
2638 return 0;
2641 static const struct seq_operations ptype_seq_ops = {
2642 .start = ptype_seq_start,
2643 .next = ptype_seq_next,
2644 .stop = ptype_seq_stop,
2645 .show = ptype_seq_show,
2648 static int ptype_seq_open(struct inode *inode, struct file *file)
2650 return seq_open_net(inode, file, &ptype_seq_ops,
2651 sizeof(struct seq_net_private));
2654 static const struct file_operations ptype_seq_fops = {
2655 .owner = THIS_MODULE,
2656 .open = ptype_seq_open,
2657 .read = seq_read,
2658 .llseek = seq_lseek,
2659 .release = seq_release_net,
2663 static int __net_init dev_proc_net_init(struct net *net)
2665 int rc = -ENOMEM;
2667 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2668 goto out;
2669 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2670 goto out_dev;
2671 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2672 goto out_softnet;
2674 if (wext_proc_init(net))
2675 goto out_ptype;
2676 rc = 0;
2677 out:
2678 return rc;
2679 out_ptype:
2680 proc_net_remove(net, "ptype");
2681 out_softnet:
2682 proc_net_remove(net, "softnet_stat");
2683 out_dev:
2684 proc_net_remove(net, "dev");
2685 goto out;
2688 static void __net_exit dev_proc_net_exit(struct net *net)
2690 wext_proc_exit(net);
2692 proc_net_remove(net, "ptype");
2693 proc_net_remove(net, "softnet_stat");
2694 proc_net_remove(net, "dev");
2697 static struct pernet_operations __net_initdata dev_proc_ops = {
2698 .init = dev_proc_net_init,
2699 .exit = dev_proc_net_exit,
2702 static int __init dev_proc_init(void)
2704 return register_pernet_subsys(&dev_proc_ops);
2706 #else
2707 #define dev_proc_init() 0
2708 #endif /* CONFIG_PROC_FS */
2712 * netdev_set_master - set up master/slave pair
2713 * @slave: slave device
2714 * @master: new master device
2716 * Changes the master device of the slave. Pass %NULL to break the
2717 * bonding. The caller must hold the RTNL semaphore. On a failure
2718 * a negative errno code is returned. On success the reference counts
2719 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2720 * function returns zero.
2722 int netdev_set_master(struct net_device *slave, struct net_device *master)
2724 struct net_device *old = slave->master;
2726 ASSERT_RTNL();
2728 if (master) {
2729 if (old)
2730 return -EBUSY;
2731 dev_hold(master);
2734 slave->master = master;
2736 synchronize_net();
2738 if (old)
2739 dev_put(old);
2741 if (master)
2742 slave->flags |= IFF_SLAVE;
2743 else
2744 slave->flags &= ~IFF_SLAVE;
2746 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2747 return 0;
2750 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2752 unsigned short old_flags = dev->flags;
2754 ASSERT_RTNL();
2756 if ((dev->promiscuity += inc) == 0)
2757 dev->flags &= ~IFF_PROMISC;
2758 else
2759 dev->flags |= IFF_PROMISC;
2760 if (dev->flags != old_flags) {
2761 printk(KERN_INFO "device %s %s promiscuous mode\n",
2762 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2763 "left");
2764 if (audit_enabled)
2765 audit_log(current->audit_context, GFP_ATOMIC,
2766 AUDIT_ANOM_PROMISCUOUS,
2767 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2768 dev->name, (dev->flags & IFF_PROMISC),
2769 (old_flags & IFF_PROMISC),
2770 audit_get_loginuid(current),
2771 current->uid, current->gid,
2772 audit_get_sessionid(current));
2774 if (dev->change_rx_flags)
2775 dev->change_rx_flags(dev, IFF_PROMISC);
2780 * dev_set_promiscuity - update promiscuity count on a device
2781 * @dev: device
2782 * @inc: modifier
2784 * Add or remove promiscuity from a device. While the count in the device
2785 * remains above zero the interface remains promiscuous. Once it hits zero
2786 * the device reverts back to normal filtering operation. A negative inc
2787 * value is used to drop promiscuity on the device.
2789 void dev_set_promiscuity(struct net_device *dev, int inc)
2791 unsigned short old_flags = dev->flags;
2793 __dev_set_promiscuity(dev, inc);
2794 if (dev->flags != old_flags)
2795 dev_set_rx_mode(dev);
2799 * dev_set_allmulti - update allmulti count on a device
2800 * @dev: device
2801 * @inc: modifier
2803 * Add or remove reception of all multicast frames to a device. While the
2804 * count in the device remains above zero the interface remains listening
2805 * to all interfaces. Once it hits zero the device reverts back to normal
2806 * filtering operation. A negative @inc value is used to drop the counter
2807 * when releasing a resource needing all multicasts.
2810 void dev_set_allmulti(struct net_device *dev, int inc)
2812 unsigned short old_flags = dev->flags;
2814 ASSERT_RTNL();
2816 dev->flags |= IFF_ALLMULTI;
2817 if ((dev->allmulti += inc) == 0)
2818 dev->flags &= ~IFF_ALLMULTI;
2819 if (dev->flags ^ old_flags) {
2820 if (dev->change_rx_flags)
2821 dev->change_rx_flags(dev, IFF_ALLMULTI);
2822 dev_set_rx_mode(dev);
2827 * Upload unicast and multicast address lists to device and
2828 * configure RX filtering. When the device doesn't support unicast
2829 * filtering it is put in promiscuous mode while unicast addresses
2830 * are present.
2832 void __dev_set_rx_mode(struct net_device *dev)
2834 /* dev_open will call this function so the list will stay sane. */
2835 if (!(dev->flags&IFF_UP))
2836 return;
2838 if (!netif_device_present(dev))
2839 return;
2841 if (dev->set_rx_mode)
2842 dev->set_rx_mode(dev);
2843 else {
2844 /* Unicast addresses changes may only happen under the rtnl,
2845 * therefore calling __dev_set_promiscuity here is safe.
2847 if (dev->uc_count > 0 && !dev->uc_promisc) {
2848 __dev_set_promiscuity(dev, 1);
2849 dev->uc_promisc = 1;
2850 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2851 __dev_set_promiscuity(dev, -1);
2852 dev->uc_promisc = 0;
2855 if (dev->set_multicast_list)
2856 dev->set_multicast_list(dev);
2860 void dev_set_rx_mode(struct net_device *dev)
2862 netif_tx_lock_bh(dev);
2863 __dev_set_rx_mode(dev);
2864 netif_tx_unlock_bh(dev);
2867 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2868 void *addr, int alen, int glbl)
2870 struct dev_addr_list *da;
2872 for (; (da = *list) != NULL; list = &da->next) {
2873 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2874 alen == da->da_addrlen) {
2875 if (glbl) {
2876 int old_glbl = da->da_gusers;
2877 da->da_gusers = 0;
2878 if (old_glbl == 0)
2879 break;
2881 if (--da->da_users)
2882 return 0;
2884 *list = da->next;
2885 kfree(da);
2886 (*count)--;
2887 return 0;
2890 return -ENOENT;
2893 int __dev_addr_add(struct dev_addr_list **list, int *count,
2894 void *addr, int alen, int glbl)
2896 struct dev_addr_list *da;
2898 for (da = *list; da != NULL; da = da->next) {
2899 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2900 da->da_addrlen == alen) {
2901 if (glbl) {
2902 int old_glbl = da->da_gusers;
2903 da->da_gusers = 1;
2904 if (old_glbl)
2905 return 0;
2907 da->da_users++;
2908 return 0;
2912 da = kzalloc(sizeof(*da), GFP_ATOMIC);
2913 if (da == NULL)
2914 return -ENOMEM;
2915 memcpy(da->da_addr, addr, alen);
2916 da->da_addrlen = alen;
2917 da->da_users = 1;
2918 da->da_gusers = glbl ? 1 : 0;
2919 da->next = *list;
2920 *list = da;
2921 (*count)++;
2922 return 0;
2926 * dev_unicast_delete - Release secondary unicast address.
2927 * @dev: device
2928 * @addr: address to delete
2929 * @alen: length of @addr
2931 * Release reference to a secondary unicast address and remove it
2932 * from the device if the reference count drops to zero.
2934 * The caller must hold the rtnl_mutex.
2936 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2938 int err;
2940 ASSERT_RTNL();
2942 netif_tx_lock_bh(dev);
2943 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2944 if (!err)
2945 __dev_set_rx_mode(dev);
2946 netif_tx_unlock_bh(dev);
2947 return err;
2949 EXPORT_SYMBOL(dev_unicast_delete);
2952 * dev_unicast_add - add a secondary unicast address
2953 * @dev: device
2954 * @addr: address to delete
2955 * @alen: length of @addr
2957 * Add a secondary unicast address to the device or increase
2958 * the reference count if it already exists.
2960 * The caller must hold the rtnl_mutex.
2962 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2964 int err;
2966 ASSERT_RTNL();
2968 netif_tx_lock_bh(dev);
2969 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2970 if (!err)
2971 __dev_set_rx_mode(dev);
2972 netif_tx_unlock_bh(dev);
2973 return err;
2975 EXPORT_SYMBOL(dev_unicast_add);
2977 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
2978 struct dev_addr_list **from, int *from_count)
2980 struct dev_addr_list *da, *next;
2981 int err = 0;
2983 da = *from;
2984 while (da != NULL) {
2985 next = da->next;
2986 if (!da->da_synced) {
2987 err = __dev_addr_add(to, to_count,
2988 da->da_addr, da->da_addrlen, 0);
2989 if (err < 0)
2990 break;
2991 da->da_synced = 1;
2992 da->da_users++;
2993 } else if (da->da_users == 1) {
2994 __dev_addr_delete(to, to_count,
2995 da->da_addr, da->da_addrlen, 0);
2996 __dev_addr_delete(from, from_count,
2997 da->da_addr, da->da_addrlen, 0);
2999 da = next;
3001 return err;
3004 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3005 struct dev_addr_list **from, int *from_count)
3007 struct dev_addr_list *da, *next;
3009 da = *from;
3010 while (da != NULL) {
3011 next = da->next;
3012 if (da->da_synced) {
3013 __dev_addr_delete(to, to_count,
3014 da->da_addr, da->da_addrlen, 0);
3015 da->da_synced = 0;
3016 __dev_addr_delete(from, from_count,
3017 da->da_addr, da->da_addrlen, 0);
3019 da = next;
3024 * dev_unicast_sync - Synchronize device's unicast list to another device
3025 * @to: destination device
3026 * @from: source device
3028 * Add newly added addresses to the destination device and release
3029 * addresses that have no users left. The source device must be
3030 * locked by netif_tx_lock_bh.
3032 * This function is intended to be called from the dev->set_rx_mode
3033 * function of layered software devices.
3035 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3037 int err = 0;
3039 netif_tx_lock_bh(to);
3040 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3041 &from->uc_list, &from->uc_count);
3042 if (!err)
3043 __dev_set_rx_mode(to);
3044 netif_tx_unlock_bh(to);
3045 return err;
3047 EXPORT_SYMBOL(dev_unicast_sync);
3050 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3051 * @to: destination device
3052 * @from: source device
3054 * Remove all addresses that were added to the destination device by
3055 * dev_unicast_sync(). This function is intended to be called from the
3056 * dev->stop function of layered software devices.
3058 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3060 netif_tx_lock_bh(from);
3061 netif_tx_lock_bh(to);
3063 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3064 &from->uc_list, &from->uc_count);
3065 __dev_set_rx_mode(to);
3067 netif_tx_unlock_bh(to);
3068 netif_tx_unlock_bh(from);
3070 EXPORT_SYMBOL(dev_unicast_unsync);
3072 static void __dev_addr_discard(struct dev_addr_list **list)
3074 struct dev_addr_list *tmp;
3076 while (*list != NULL) {
3077 tmp = *list;
3078 *list = tmp->next;
3079 if (tmp->da_users > tmp->da_gusers)
3080 printk("__dev_addr_discard: address leakage! "
3081 "da_users=%d\n", tmp->da_users);
3082 kfree(tmp);
3086 static void dev_addr_discard(struct net_device *dev)
3088 netif_tx_lock_bh(dev);
3090 __dev_addr_discard(&dev->uc_list);
3091 dev->uc_count = 0;
3093 __dev_addr_discard(&dev->mc_list);
3094 dev->mc_count = 0;
3096 netif_tx_unlock_bh(dev);
3099 unsigned dev_get_flags(const struct net_device *dev)
3101 unsigned flags;
3103 flags = (dev->flags & ~(IFF_PROMISC |
3104 IFF_ALLMULTI |
3105 IFF_RUNNING |
3106 IFF_LOWER_UP |
3107 IFF_DORMANT)) |
3108 (dev->gflags & (IFF_PROMISC |
3109 IFF_ALLMULTI));
3111 if (netif_running(dev)) {
3112 if (netif_oper_up(dev))
3113 flags |= IFF_RUNNING;
3114 if (netif_carrier_ok(dev))
3115 flags |= IFF_LOWER_UP;
3116 if (netif_dormant(dev))
3117 flags |= IFF_DORMANT;
3120 return flags;
3123 int dev_change_flags(struct net_device *dev, unsigned flags)
3125 int ret, changes;
3126 int old_flags = dev->flags;
3128 ASSERT_RTNL();
3131 * Set the flags on our device.
3134 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3135 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3136 IFF_AUTOMEDIA)) |
3137 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3138 IFF_ALLMULTI));
3141 * Load in the correct multicast list now the flags have changed.
3144 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3145 dev->change_rx_flags(dev, IFF_MULTICAST);
3147 dev_set_rx_mode(dev);
3150 * Have we downed the interface. We handle IFF_UP ourselves
3151 * according to user attempts to set it, rather than blindly
3152 * setting it.
3155 ret = 0;
3156 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3157 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3159 if (!ret)
3160 dev_set_rx_mode(dev);
3163 if (dev->flags & IFF_UP &&
3164 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3165 IFF_VOLATILE)))
3166 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3168 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3169 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3170 dev->gflags ^= IFF_PROMISC;
3171 dev_set_promiscuity(dev, inc);
3174 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3175 is important. Some (broken) drivers set IFF_PROMISC, when
3176 IFF_ALLMULTI is requested not asking us and not reporting.
3178 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3179 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3180 dev->gflags ^= IFF_ALLMULTI;
3181 dev_set_allmulti(dev, inc);
3184 /* Exclude state transition flags, already notified */
3185 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3186 if (changes)
3187 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3189 return ret;
3192 int dev_set_mtu(struct net_device *dev, int new_mtu)
3194 int err;
3196 if (new_mtu == dev->mtu)
3197 return 0;
3199 /* MTU must be positive. */
3200 if (new_mtu < 0)
3201 return -EINVAL;
3203 if (!netif_device_present(dev))
3204 return -ENODEV;
3206 err = 0;
3207 if (dev->change_mtu)
3208 err = dev->change_mtu(dev, new_mtu);
3209 else
3210 dev->mtu = new_mtu;
3211 if (!err && dev->flags & IFF_UP)
3212 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3213 return err;
3216 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3218 int err;
3220 if (!dev->set_mac_address)
3221 return -EOPNOTSUPP;
3222 if (sa->sa_family != dev->type)
3223 return -EINVAL;
3224 if (!netif_device_present(dev))
3225 return -ENODEV;
3226 err = dev->set_mac_address(dev, sa);
3227 if (!err)
3228 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3229 return err;
3233 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3235 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3237 int err;
3238 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3240 if (!dev)
3241 return -ENODEV;
3243 switch (cmd) {
3244 case SIOCGIFFLAGS: /* Get interface flags */
3245 ifr->ifr_flags = dev_get_flags(dev);
3246 return 0;
3248 case SIOCGIFMETRIC: /* Get the metric on the interface
3249 (currently unused) */
3250 ifr->ifr_metric = 0;
3251 return 0;
3253 case SIOCGIFMTU: /* Get the MTU of a device */
3254 ifr->ifr_mtu = dev->mtu;
3255 return 0;
3257 case SIOCGIFHWADDR:
3258 if (!dev->addr_len)
3259 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3260 else
3261 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3262 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3263 ifr->ifr_hwaddr.sa_family = dev->type;
3264 return 0;
3266 case SIOCGIFSLAVE:
3267 err = -EINVAL;
3268 break;
3270 case SIOCGIFMAP:
3271 ifr->ifr_map.mem_start = dev->mem_start;
3272 ifr->ifr_map.mem_end = dev->mem_end;
3273 ifr->ifr_map.base_addr = dev->base_addr;
3274 ifr->ifr_map.irq = dev->irq;
3275 ifr->ifr_map.dma = dev->dma;
3276 ifr->ifr_map.port = dev->if_port;
3277 return 0;
3279 case SIOCGIFINDEX:
3280 ifr->ifr_ifindex = dev->ifindex;
3281 return 0;
3283 case SIOCGIFTXQLEN:
3284 ifr->ifr_qlen = dev->tx_queue_len;
3285 return 0;
3287 default:
3288 /* dev_ioctl() should ensure this case
3289 * is never reached
3291 WARN_ON(1);
3292 err = -EINVAL;
3293 break;
3296 return err;
3300 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3302 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3304 int err;
3305 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3307 if (!dev)
3308 return -ENODEV;
3310 switch (cmd) {
3311 case SIOCSIFFLAGS: /* Set interface flags */
3312 return dev_change_flags(dev, ifr->ifr_flags);
3314 case SIOCSIFMETRIC: /* Set the metric on the interface
3315 (currently unused) */
3316 return -EOPNOTSUPP;
3318 case SIOCSIFMTU: /* Set the MTU of a device */
3319 return dev_set_mtu(dev, ifr->ifr_mtu);
3321 case SIOCSIFHWADDR:
3322 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3324 case SIOCSIFHWBROADCAST:
3325 if (ifr->ifr_hwaddr.sa_family != dev->type)
3326 return -EINVAL;
3327 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3328 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3329 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3330 return 0;
3332 case SIOCSIFMAP:
3333 if (dev->set_config) {
3334 if (!netif_device_present(dev))
3335 return -ENODEV;
3336 return dev->set_config(dev, &ifr->ifr_map);
3338 return -EOPNOTSUPP;
3340 case SIOCADDMULTI:
3341 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3342 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3343 return -EINVAL;
3344 if (!netif_device_present(dev))
3345 return -ENODEV;
3346 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3347 dev->addr_len, 1);
3349 case SIOCDELMULTI:
3350 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3351 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3352 return -EINVAL;
3353 if (!netif_device_present(dev))
3354 return -ENODEV;
3355 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3356 dev->addr_len, 1);
3358 case SIOCSIFTXQLEN:
3359 if (ifr->ifr_qlen < 0)
3360 return -EINVAL;
3361 dev->tx_queue_len = ifr->ifr_qlen;
3362 return 0;
3364 case SIOCSIFNAME:
3365 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3366 return dev_change_name(dev, ifr->ifr_newname);
3369 * Unknown or private ioctl
3372 default:
3373 if ((cmd >= SIOCDEVPRIVATE &&
3374 cmd <= SIOCDEVPRIVATE + 15) ||
3375 cmd == SIOCBONDENSLAVE ||
3376 cmd == SIOCBONDRELEASE ||
3377 cmd == SIOCBONDSETHWADDR ||
3378 cmd == SIOCBONDSLAVEINFOQUERY ||
3379 cmd == SIOCBONDINFOQUERY ||
3380 cmd == SIOCBONDCHANGEACTIVE ||
3381 cmd == SIOCGMIIPHY ||
3382 cmd == SIOCGMIIREG ||
3383 cmd == SIOCSMIIREG ||
3384 cmd == SIOCBRADDIF ||
3385 cmd == SIOCBRDELIF ||
3386 cmd == SIOCWANDEV) {
3387 err = -EOPNOTSUPP;
3388 if (dev->do_ioctl) {
3389 if (netif_device_present(dev))
3390 err = dev->do_ioctl(dev, ifr,
3391 cmd);
3392 else
3393 err = -ENODEV;
3395 } else
3396 err = -EINVAL;
3399 return err;
3403 * This function handles all "interface"-type I/O control requests. The actual
3404 * 'doing' part of this is dev_ifsioc above.
3408 * dev_ioctl - network device ioctl
3409 * @net: the applicable net namespace
3410 * @cmd: command to issue
3411 * @arg: pointer to a struct ifreq in user space
3413 * Issue ioctl functions to devices. This is normally called by the
3414 * user space syscall interfaces but can sometimes be useful for
3415 * other purposes. The return value is the return from the syscall if
3416 * positive or a negative errno code on error.
3419 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3421 struct ifreq ifr;
3422 int ret;
3423 char *colon;
3425 /* One special case: SIOCGIFCONF takes ifconf argument
3426 and requires shared lock, because it sleeps writing
3427 to user space.
3430 if (cmd == SIOCGIFCONF) {
3431 rtnl_lock();
3432 ret = dev_ifconf(net, (char __user *) arg);
3433 rtnl_unlock();
3434 return ret;
3436 if (cmd == SIOCGIFNAME)
3437 return dev_ifname(net, (struct ifreq __user *)arg);
3439 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3440 return -EFAULT;
3442 ifr.ifr_name[IFNAMSIZ-1] = 0;
3444 colon = strchr(ifr.ifr_name, ':');
3445 if (colon)
3446 *colon = 0;
3449 * See which interface the caller is talking about.
3452 switch (cmd) {
3454 * These ioctl calls:
3455 * - can be done by all.
3456 * - atomic and do not require locking.
3457 * - return a value
3459 case SIOCGIFFLAGS:
3460 case SIOCGIFMETRIC:
3461 case SIOCGIFMTU:
3462 case SIOCGIFHWADDR:
3463 case SIOCGIFSLAVE:
3464 case SIOCGIFMAP:
3465 case SIOCGIFINDEX:
3466 case SIOCGIFTXQLEN:
3467 dev_load(net, ifr.ifr_name);
3468 read_lock(&dev_base_lock);
3469 ret = dev_ifsioc_locked(net, &ifr, cmd);
3470 read_unlock(&dev_base_lock);
3471 if (!ret) {
3472 if (colon)
3473 *colon = ':';
3474 if (copy_to_user(arg, &ifr,
3475 sizeof(struct ifreq)))
3476 ret = -EFAULT;
3478 return ret;
3480 case SIOCETHTOOL:
3481 dev_load(net, ifr.ifr_name);
3482 rtnl_lock();
3483 ret = dev_ethtool(net, &ifr);
3484 rtnl_unlock();
3485 if (!ret) {
3486 if (colon)
3487 *colon = ':';
3488 if (copy_to_user(arg, &ifr,
3489 sizeof(struct ifreq)))
3490 ret = -EFAULT;
3492 return ret;
3495 * These ioctl calls:
3496 * - require superuser power.
3497 * - require strict serialization.
3498 * - return a value
3500 case SIOCGMIIPHY:
3501 case SIOCGMIIREG:
3502 case SIOCSIFNAME:
3503 if (!capable(CAP_NET_ADMIN))
3504 return -EPERM;
3505 dev_load(net, ifr.ifr_name);
3506 rtnl_lock();
3507 ret = dev_ifsioc(net, &ifr, cmd);
3508 rtnl_unlock();
3509 if (!ret) {
3510 if (colon)
3511 *colon = ':';
3512 if (copy_to_user(arg, &ifr,
3513 sizeof(struct ifreq)))
3514 ret = -EFAULT;
3516 return ret;
3519 * These ioctl calls:
3520 * - require superuser power.
3521 * - require strict serialization.
3522 * - do not return a value
3524 case SIOCSIFFLAGS:
3525 case SIOCSIFMETRIC:
3526 case SIOCSIFMTU:
3527 case SIOCSIFMAP:
3528 case SIOCSIFHWADDR:
3529 case SIOCSIFSLAVE:
3530 case SIOCADDMULTI:
3531 case SIOCDELMULTI:
3532 case SIOCSIFHWBROADCAST:
3533 case SIOCSIFTXQLEN:
3534 case SIOCSMIIREG:
3535 case SIOCBONDENSLAVE:
3536 case SIOCBONDRELEASE:
3537 case SIOCBONDSETHWADDR:
3538 case SIOCBONDCHANGEACTIVE:
3539 case SIOCBRADDIF:
3540 case SIOCBRDELIF:
3541 if (!capable(CAP_NET_ADMIN))
3542 return -EPERM;
3543 /* fall through */
3544 case SIOCBONDSLAVEINFOQUERY:
3545 case SIOCBONDINFOQUERY:
3546 dev_load(net, ifr.ifr_name);
3547 rtnl_lock();
3548 ret = dev_ifsioc(net, &ifr, cmd);
3549 rtnl_unlock();
3550 return ret;
3552 case SIOCGIFMEM:
3553 /* Get the per device memory space. We can add this but
3554 * currently do not support it */
3555 case SIOCSIFMEM:
3556 /* Set the per device memory buffer space.
3557 * Not applicable in our case */
3558 case SIOCSIFLINK:
3559 return -EINVAL;
3562 * Unknown or private ioctl.
3564 default:
3565 if (cmd == SIOCWANDEV ||
3566 (cmd >= SIOCDEVPRIVATE &&
3567 cmd <= SIOCDEVPRIVATE + 15)) {
3568 dev_load(net, ifr.ifr_name);
3569 rtnl_lock();
3570 ret = dev_ifsioc(net, &ifr, cmd);
3571 rtnl_unlock();
3572 if (!ret && copy_to_user(arg, &ifr,
3573 sizeof(struct ifreq)))
3574 ret = -EFAULT;
3575 return ret;
3577 /* Take care of Wireless Extensions */
3578 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3579 return wext_handle_ioctl(net, &ifr, cmd, arg);
3580 return -EINVAL;
3586 * dev_new_index - allocate an ifindex
3587 * @net: the applicable net namespace
3589 * Returns a suitable unique value for a new device interface
3590 * number. The caller must hold the rtnl semaphore or the
3591 * dev_base_lock to be sure it remains unique.
3593 static int dev_new_index(struct net *net)
3595 static int ifindex;
3596 for (;;) {
3597 if (++ifindex <= 0)
3598 ifindex = 1;
3599 if (!__dev_get_by_index(net, ifindex))
3600 return ifindex;
3604 /* Delayed registration/unregisteration */
3605 static DEFINE_SPINLOCK(net_todo_list_lock);
3606 static LIST_HEAD(net_todo_list);
3608 static void net_set_todo(struct net_device *dev)
3610 spin_lock(&net_todo_list_lock);
3611 list_add_tail(&dev->todo_list, &net_todo_list);
3612 spin_unlock(&net_todo_list_lock);
3615 static void rollback_registered(struct net_device *dev)
3617 BUG_ON(dev_boot_phase);
3618 ASSERT_RTNL();
3620 /* Some devices call without registering for initialization unwind. */
3621 if (dev->reg_state == NETREG_UNINITIALIZED) {
3622 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3623 "was registered\n", dev->name, dev);
3625 WARN_ON(1);
3626 return;
3629 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3631 /* If device is running, close it first. */
3632 dev_close(dev);
3634 /* And unlink it from device chain. */
3635 unlist_netdevice(dev);
3637 dev->reg_state = NETREG_UNREGISTERING;
3639 synchronize_net();
3641 /* Shutdown queueing discipline. */
3642 dev_shutdown(dev);
3645 /* Notify protocols, that we are about to destroy
3646 this device. They should clean all the things.
3648 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3651 * Flush the unicast and multicast chains
3653 dev_addr_discard(dev);
3655 if (dev->uninit)
3656 dev->uninit(dev);
3658 /* Notifier chain MUST detach us from master device. */
3659 BUG_TRAP(!dev->master);
3661 /* Remove entries from kobject tree */
3662 netdev_unregister_kobject(dev);
3664 synchronize_net();
3666 dev_put(dev);
3670 * register_netdevice - register a network device
3671 * @dev: device to register
3673 * Take a completed network device structure and add it to the kernel
3674 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3675 * chain. 0 is returned on success. A negative errno code is returned
3676 * on a failure to set up the device, or if the name is a duplicate.
3678 * Callers must hold the rtnl semaphore. You may want
3679 * register_netdev() instead of this.
3681 * BUGS:
3682 * The locking appears insufficient to guarantee two parallel registers
3683 * will not get the same name.
3686 int register_netdevice(struct net_device *dev)
3688 struct hlist_head *head;
3689 struct hlist_node *p;
3690 int ret;
3691 struct net *net;
3693 BUG_ON(dev_boot_phase);
3694 ASSERT_RTNL();
3696 might_sleep();
3698 /* When net_device's are persistent, this will be fatal. */
3699 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3700 BUG_ON(!dev_net(dev));
3701 net = dev_net(dev);
3703 spin_lock_init(&dev->queue_lock);
3704 spin_lock_init(&dev->_xmit_lock);
3705 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3706 dev->xmit_lock_owner = -1;
3707 spin_lock_init(&dev->ingress_lock);
3709 dev->iflink = -1;
3711 /* Init, if this function is available */
3712 if (dev->init) {
3713 ret = dev->init(dev);
3714 if (ret) {
3715 if (ret > 0)
3716 ret = -EIO;
3717 goto out;
3721 if (!dev_valid_name(dev->name)) {
3722 ret = -EINVAL;
3723 goto err_uninit;
3726 dev->ifindex = dev_new_index(net);
3727 if (dev->iflink == -1)
3728 dev->iflink = dev->ifindex;
3730 /* Check for existence of name */
3731 head = dev_name_hash(net, dev->name);
3732 hlist_for_each(p, head) {
3733 struct net_device *d
3734 = hlist_entry(p, struct net_device, name_hlist);
3735 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3736 ret = -EEXIST;
3737 goto err_uninit;
3741 /* Fix illegal checksum combinations */
3742 if ((dev->features & NETIF_F_HW_CSUM) &&
3743 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3744 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3745 dev->name);
3746 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3749 if ((dev->features & NETIF_F_NO_CSUM) &&
3750 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3751 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3752 dev->name);
3753 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3757 /* Fix illegal SG+CSUM combinations. */
3758 if ((dev->features & NETIF_F_SG) &&
3759 !(dev->features & NETIF_F_ALL_CSUM)) {
3760 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3761 dev->name);
3762 dev->features &= ~NETIF_F_SG;
3765 /* TSO requires that SG is present as well. */
3766 if ((dev->features & NETIF_F_TSO) &&
3767 !(dev->features & NETIF_F_SG)) {
3768 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3769 dev->name);
3770 dev->features &= ~NETIF_F_TSO;
3772 if (dev->features & NETIF_F_UFO) {
3773 if (!(dev->features & NETIF_F_HW_CSUM)) {
3774 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3775 "NETIF_F_HW_CSUM feature.\n",
3776 dev->name);
3777 dev->features &= ~NETIF_F_UFO;
3779 if (!(dev->features & NETIF_F_SG)) {
3780 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3781 "NETIF_F_SG feature.\n",
3782 dev->name);
3783 dev->features &= ~NETIF_F_UFO;
3787 netdev_initialize_kobject(dev);
3788 ret = netdev_register_kobject(dev);
3789 if (ret)
3790 goto err_uninit;
3791 dev->reg_state = NETREG_REGISTERED;
3794 * Default initial state at registry is that the
3795 * device is present.
3798 set_bit(__LINK_STATE_PRESENT, &dev->state);
3800 dev_init_scheduler(dev);
3801 dev_hold(dev);
3802 list_netdevice(dev);
3804 /* Notify protocols, that a new device appeared. */
3805 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3806 ret = notifier_to_errno(ret);
3807 if (ret) {
3808 rollback_registered(dev);
3809 dev->reg_state = NETREG_UNREGISTERED;
3812 out:
3813 return ret;
3815 err_uninit:
3816 if (dev->uninit)
3817 dev->uninit(dev);
3818 goto out;
3822 * register_netdev - register a network device
3823 * @dev: device to register
3825 * Take a completed network device structure and add it to the kernel
3826 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3827 * chain. 0 is returned on success. A negative errno code is returned
3828 * on a failure to set up the device, or if the name is a duplicate.
3830 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3831 * and expands the device name if you passed a format string to
3832 * alloc_netdev.
3834 int register_netdev(struct net_device *dev)
3836 int err;
3838 rtnl_lock();
3841 * If the name is a format string the caller wants us to do a
3842 * name allocation.
3844 if (strchr(dev->name, '%')) {
3845 err = dev_alloc_name(dev, dev->name);
3846 if (err < 0)
3847 goto out;
3850 err = register_netdevice(dev);
3851 out:
3852 rtnl_unlock();
3853 return err;
3855 EXPORT_SYMBOL(register_netdev);
3858 * netdev_wait_allrefs - wait until all references are gone.
3860 * This is called when unregistering network devices.
3862 * Any protocol or device that holds a reference should register
3863 * for netdevice notification, and cleanup and put back the
3864 * reference if they receive an UNREGISTER event.
3865 * We can get stuck here if buggy protocols don't correctly
3866 * call dev_put.
3868 static void netdev_wait_allrefs(struct net_device *dev)
3870 unsigned long rebroadcast_time, warning_time;
3872 rebroadcast_time = warning_time = jiffies;
3873 while (atomic_read(&dev->refcnt) != 0) {
3874 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3875 rtnl_lock();
3877 /* Rebroadcast unregister notification */
3878 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3880 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3881 &dev->state)) {
3882 /* We must not have linkwatch events
3883 * pending on unregister. If this
3884 * happens, we simply run the queue
3885 * unscheduled, resulting in a noop
3886 * for this device.
3888 linkwatch_run_queue();
3891 __rtnl_unlock();
3893 rebroadcast_time = jiffies;
3896 msleep(250);
3898 if (time_after(jiffies, warning_time + 10 * HZ)) {
3899 printk(KERN_EMERG "unregister_netdevice: "
3900 "waiting for %s to become free. Usage "
3901 "count = %d\n",
3902 dev->name, atomic_read(&dev->refcnt));
3903 warning_time = jiffies;
3908 /* The sequence is:
3910 * rtnl_lock();
3911 * ...
3912 * register_netdevice(x1);
3913 * register_netdevice(x2);
3914 * ...
3915 * unregister_netdevice(y1);
3916 * unregister_netdevice(y2);
3917 * ...
3918 * rtnl_unlock();
3919 * free_netdev(y1);
3920 * free_netdev(y2);
3922 * We are invoked by rtnl_unlock() after it drops the semaphore.
3923 * This allows us to deal with problems:
3924 * 1) We can delete sysfs objects which invoke hotplug
3925 * without deadlocking with linkwatch via keventd.
3926 * 2) Since we run with the RTNL semaphore not held, we can sleep
3927 * safely in order to wait for the netdev refcnt to drop to zero.
3929 static DEFINE_MUTEX(net_todo_run_mutex);
3930 void netdev_run_todo(void)
3932 struct list_head list;
3934 /* Need to guard against multiple cpu's getting out of order. */
3935 mutex_lock(&net_todo_run_mutex);
3937 /* Not safe to do outside the semaphore. We must not return
3938 * until all unregister events invoked by the local processor
3939 * have been completed (either by this todo run, or one on
3940 * another cpu).
3942 if (list_empty(&net_todo_list))
3943 goto out;
3945 /* Snapshot list, allow later requests */
3946 spin_lock(&net_todo_list_lock);
3947 list_replace_init(&net_todo_list, &list);
3948 spin_unlock(&net_todo_list_lock);
3950 while (!list_empty(&list)) {
3951 struct net_device *dev
3952 = list_entry(list.next, struct net_device, todo_list);
3953 list_del(&dev->todo_list);
3955 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3956 printk(KERN_ERR "network todo '%s' but state %d\n",
3957 dev->name, dev->reg_state);
3958 dump_stack();
3959 continue;
3962 dev->reg_state = NETREG_UNREGISTERED;
3964 netdev_wait_allrefs(dev);
3966 /* paranoia */
3967 BUG_ON(atomic_read(&dev->refcnt));
3968 BUG_TRAP(!dev->ip_ptr);
3969 BUG_TRAP(!dev->ip6_ptr);
3970 BUG_TRAP(!dev->dn_ptr);
3972 if (dev->destructor)
3973 dev->destructor(dev);
3975 /* Free network device */
3976 kobject_put(&dev->dev.kobj);
3979 out:
3980 mutex_unlock(&net_todo_run_mutex);
3983 static struct net_device_stats *internal_stats(struct net_device *dev)
3985 return &dev->stats;
3989 * alloc_netdev_mq - allocate network device
3990 * @sizeof_priv: size of private data to allocate space for
3991 * @name: device name format string
3992 * @setup: callback to initialize device
3993 * @queue_count: the number of subqueues to allocate
3995 * Allocates a struct net_device with private data area for driver use
3996 * and performs basic initialization. Also allocates subquue structs
3997 * for each queue on the device at the end of the netdevice.
3999 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4000 void (*setup)(struct net_device *), unsigned int queue_count)
4002 void *p;
4003 struct net_device *dev;
4004 int alloc_size;
4006 BUG_ON(strlen(name) >= sizeof(dev->name));
4008 alloc_size = sizeof(struct net_device) +
4009 sizeof(struct net_device_subqueue) * (queue_count - 1);
4010 if (sizeof_priv) {
4011 /* ensure 32-byte alignment of private area */
4012 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4013 alloc_size += sizeof_priv;
4015 /* ensure 32-byte alignment of whole construct */
4016 alloc_size += NETDEV_ALIGN_CONST;
4018 p = kzalloc(alloc_size, GFP_KERNEL);
4019 if (!p) {
4020 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4021 return NULL;
4024 dev = (struct net_device *)
4025 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4026 dev->padded = (char *)dev - (char *)p;
4027 dev_net_set(dev, &init_net);
4029 if (sizeof_priv) {
4030 dev->priv = ((char *)dev +
4031 ((sizeof(struct net_device) +
4032 (sizeof(struct net_device_subqueue) *
4033 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4034 & ~NETDEV_ALIGN_CONST));
4037 dev->egress_subqueue_count = queue_count;
4038 dev->gso_max_size = GSO_MAX_SIZE;
4040 dev->get_stats = internal_stats;
4041 netpoll_netdev_init(dev);
4042 setup(dev);
4043 strcpy(dev->name, name);
4044 return dev;
4046 EXPORT_SYMBOL(alloc_netdev_mq);
4049 * free_netdev - free network device
4050 * @dev: device
4052 * This function does the last stage of destroying an allocated device
4053 * interface. The reference to the device object is released.
4054 * If this is the last reference then it will be freed.
4056 void free_netdev(struct net_device *dev)
4058 release_net(dev_net(dev));
4060 /* Compatibility with error handling in drivers */
4061 if (dev->reg_state == NETREG_UNINITIALIZED) {
4062 kfree((char *)dev - dev->padded);
4063 return;
4066 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4067 dev->reg_state = NETREG_RELEASED;
4069 /* will free via device release */
4070 put_device(&dev->dev);
4073 /* Synchronize with packet receive processing. */
4074 void synchronize_net(void)
4076 might_sleep();
4077 synchronize_rcu();
4081 * unregister_netdevice - remove device from the kernel
4082 * @dev: device
4084 * This function shuts down a device interface and removes it
4085 * from the kernel tables.
4087 * Callers must hold the rtnl semaphore. You may want
4088 * unregister_netdev() instead of this.
4091 void unregister_netdevice(struct net_device *dev)
4093 ASSERT_RTNL();
4095 rollback_registered(dev);
4096 /* Finish processing unregister after unlock */
4097 net_set_todo(dev);
4101 * unregister_netdev - remove device from the kernel
4102 * @dev: device
4104 * This function shuts down a device interface and removes it
4105 * from the kernel tables.
4107 * This is just a wrapper for unregister_netdevice that takes
4108 * the rtnl semaphore. In general you want to use this and not
4109 * unregister_netdevice.
4111 void unregister_netdev(struct net_device *dev)
4113 rtnl_lock();
4114 unregister_netdevice(dev);
4115 rtnl_unlock();
4118 EXPORT_SYMBOL(unregister_netdev);
4121 * dev_change_net_namespace - move device to different nethost namespace
4122 * @dev: device
4123 * @net: network namespace
4124 * @pat: If not NULL name pattern to try if the current device name
4125 * is already taken in the destination network namespace.
4127 * This function shuts down a device interface and moves it
4128 * to a new network namespace. On success 0 is returned, on
4129 * a failure a netagive errno code is returned.
4131 * Callers must hold the rtnl semaphore.
4134 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4136 char buf[IFNAMSIZ];
4137 const char *destname;
4138 int err;
4140 ASSERT_RTNL();
4142 /* Don't allow namespace local devices to be moved. */
4143 err = -EINVAL;
4144 if (dev->features & NETIF_F_NETNS_LOCAL)
4145 goto out;
4147 /* Ensure the device has been registrered */
4148 err = -EINVAL;
4149 if (dev->reg_state != NETREG_REGISTERED)
4150 goto out;
4152 /* Get out if there is nothing todo */
4153 err = 0;
4154 if (net_eq(dev_net(dev), net))
4155 goto out;
4157 /* Pick the destination device name, and ensure
4158 * we can use it in the destination network namespace.
4160 err = -EEXIST;
4161 destname = dev->name;
4162 if (__dev_get_by_name(net, destname)) {
4163 /* We get here if we can't use the current device name */
4164 if (!pat)
4165 goto out;
4166 if (!dev_valid_name(pat))
4167 goto out;
4168 if (strchr(pat, '%')) {
4169 if (__dev_alloc_name(net, pat, buf) < 0)
4170 goto out;
4171 destname = buf;
4172 } else
4173 destname = pat;
4174 if (__dev_get_by_name(net, destname))
4175 goto out;
4179 * And now a mini version of register_netdevice unregister_netdevice.
4182 /* If device is running close it first. */
4183 dev_close(dev);
4185 /* And unlink it from device chain */
4186 err = -ENODEV;
4187 unlist_netdevice(dev);
4189 synchronize_net();
4191 /* Shutdown queueing discipline. */
4192 dev_shutdown(dev);
4194 /* Notify protocols, that we are about to destroy
4195 this device. They should clean all the things.
4197 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4200 * Flush the unicast and multicast chains
4202 dev_addr_discard(dev);
4204 /* Actually switch the network namespace */
4205 dev_net_set(dev, net);
4207 /* Assign the new device name */
4208 if (destname != dev->name)
4209 strcpy(dev->name, destname);
4211 /* If there is an ifindex conflict assign a new one */
4212 if (__dev_get_by_index(net, dev->ifindex)) {
4213 int iflink = (dev->iflink == dev->ifindex);
4214 dev->ifindex = dev_new_index(net);
4215 if (iflink)
4216 dev->iflink = dev->ifindex;
4219 /* Fixup kobjects */
4220 netdev_unregister_kobject(dev);
4221 err = netdev_register_kobject(dev);
4222 WARN_ON(err);
4224 /* Add the device back in the hashes */
4225 list_netdevice(dev);
4227 /* Notify protocols, that a new device appeared. */
4228 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4230 synchronize_net();
4231 err = 0;
4232 out:
4233 return err;
4236 static int dev_cpu_callback(struct notifier_block *nfb,
4237 unsigned long action,
4238 void *ocpu)
4240 struct sk_buff **list_skb;
4241 struct net_device **list_net;
4242 struct sk_buff *skb;
4243 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4244 struct softnet_data *sd, *oldsd;
4246 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4247 return NOTIFY_OK;
4249 local_irq_disable();
4250 cpu = smp_processor_id();
4251 sd = &per_cpu(softnet_data, cpu);
4252 oldsd = &per_cpu(softnet_data, oldcpu);
4254 /* Find end of our completion_queue. */
4255 list_skb = &sd->completion_queue;
4256 while (*list_skb)
4257 list_skb = &(*list_skb)->next;
4258 /* Append completion queue from offline CPU. */
4259 *list_skb = oldsd->completion_queue;
4260 oldsd->completion_queue = NULL;
4262 /* Find end of our output_queue. */
4263 list_net = &sd->output_queue;
4264 while (*list_net)
4265 list_net = &(*list_net)->next_sched;
4266 /* Append output queue from offline CPU. */
4267 *list_net = oldsd->output_queue;
4268 oldsd->output_queue = NULL;
4270 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4271 local_irq_enable();
4273 /* Process offline CPU's input_pkt_queue */
4274 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4275 netif_rx(skb);
4277 return NOTIFY_OK;
4280 #ifdef CONFIG_NET_DMA
4282 * net_dma_rebalance - try to maintain one DMA channel per CPU
4283 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4285 * This is called when the number of channels allocated to the net_dma client
4286 * changes. The net_dma client tries to have one DMA channel per CPU.
4289 static void net_dma_rebalance(struct net_dma *net_dma)
4291 unsigned int cpu, i, n, chan_idx;
4292 struct dma_chan *chan;
4294 if (cpus_empty(net_dma->channel_mask)) {
4295 for_each_online_cpu(cpu)
4296 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4297 return;
4300 i = 0;
4301 cpu = first_cpu(cpu_online_map);
4303 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4304 chan = net_dma->channels[chan_idx];
4306 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4307 + (i < (num_online_cpus() %
4308 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4310 while(n) {
4311 per_cpu(softnet_data, cpu).net_dma = chan;
4312 cpu = next_cpu(cpu, cpu_online_map);
4313 n--;
4315 i++;
4320 * netdev_dma_event - event callback for the net_dma_client
4321 * @client: should always be net_dma_client
4322 * @chan: DMA channel for the event
4323 * @state: DMA state to be handled
4325 static enum dma_state_client
4326 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4327 enum dma_state state)
4329 int i, found = 0, pos = -1;
4330 struct net_dma *net_dma =
4331 container_of(client, struct net_dma, client);
4332 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4334 spin_lock(&net_dma->lock);
4335 switch (state) {
4336 case DMA_RESOURCE_AVAILABLE:
4337 for (i = 0; i < nr_cpu_ids; i++)
4338 if (net_dma->channels[i] == chan) {
4339 found = 1;
4340 break;
4341 } else if (net_dma->channels[i] == NULL && pos < 0)
4342 pos = i;
4344 if (!found && pos >= 0) {
4345 ack = DMA_ACK;
4346 net_dma->channels[pos] = chan;
4347 cpu_set(pos, net_dma->channel_mask);
4348 net_dma_rebalance(net_dma);
4350 break;
4351 case DMA_RESOURCE_REMOVED:
4352 for (i = 0; i < nr_cpu_ids; i++)
4353 if (net_dma->channels[i] == chan) {
4354 found = 1;
4355 pos = i;
4356 break;
4359 if (found) {
4360 ack = DMA_ACK;
4361 cpu_clear(pos, net_dma->channel_mask);
4362 net_dma->channels[i] = NULL;
4363 net_dma_rebalance(net_dma);
4365 break;
4366 default:
4367 break;
4369 spin_unlock(&net_dma->lock);
4371 return ack;
4375 * netdev_dma_regiser - register the networking subsystem as a DMA client
4377 static int __init netdev_dma_register(void)
4379 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4380 GFP_KERNEL);
4381 if (unlikely(!net_dma.channels)) {
4382 printk(KERN_NOTICE
4383 "netdev_dma: no memory for net_dma.channels\n");
4384 return -ENOMEM;
4386 spin_lock_init(&net_dma.lock);
4387 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4388 dma_async_client_register(&net_dma.client);
4389 dma_async_client_chan_request(&net_dma.client);
4390 return 0;
4393 #else
4394 static int __init netdev_dma_register(void) { return -ENODEV; }
4395 #endif /* CONFIG_NET_DMA */
4398 * netdev_compute_feature - compute conjunction of two feature sets
4399 * @all: first feature set
4400 * @one: second feature set
4402 * Computes a new feature set after adding a device with feature set
4403 * @one to the master device with current feature set @all. Returns
4404 * the new feature set.
4406 int netdev_compute_features(unsigned long all, unsigned long one)
4408 /* if device needs checksumming, downgrade to hw checksumming */
4409 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4410 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4412 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4413 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4414 all ^= NETIF_F_HW_CSUM
4415 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4417 if (one & NETIF_F_GSO)
4418 one |= NETIF_F_GSO_SOFTWARE;
4419 one |= NETIF_F_GSO;
4421 /* If even one device supports robust GSO, enable it for all. */
4422 if (one & NETIF_F_GSO_ROBUST)
4423 all |= NETIF_F_GSO_ROBUST;
4425 all &= one | NETIF_F_LLTX;
4427 if (!(all & NETIF_F_ALL_CSUM))
4428 all &= ~NETIF_F_SG;
4429 if (!(all & NETIF_F_SG))
4430 all &= ~NETIF_F_GSO_MASK;
4432 return all;
4434 EXPORT_SYMBOL(netdev_compute_features);
4436 static struct hlist_head *netdev_create_hash(void)
4438 int i;
4439 struct hlist_head *hash;
4441 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4442 if (hash != NULL)
4443 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4444 INIT_HLIST_HEAD(&hash[i]);
4446 return hash;
4449 /* Initialize per network namespace state */
4450 static int __net_init netdev_init(struct net *net)
4452 INIT_LIST_HEAD(&net->dev_base_head);
4454 net->dev_name_head = netdev_create_hash();
4455 if (net->dev_name_head == NULL)
4456 goto err_name;
4458 net->dev_index_head = netdev_create_hash();
4459 if (net->dev_index_head == NULL)
4460 goto err_idx;
4462 return 0;
4464 err_idx:
4465 kfree(net->dev_name_head);
4466 err_name:
4467 return -ENOMEM;
4470 static void __net_exit netdev_exit(struct net *net)
4472 kfree(net->dev_name_head);
4473 kfree(net->dev_index_head);
4476 static struct pernet_operations __net_initdata netdev_net_ops = {
4477 .init = netdev_init,
4478 .exit = netdev_exit,
4481 static void __net_exit default_device_exit(struct net *net)
4483 struct net_device *dev, *next;
4485 * Push all migratable of the network devices back to the
4486 * initial network namespace
4488 rtnl_lock();
4489 for_each_netdev_safe(net, dev, next) {
4490 int err;
4491 char fb_name[IFNAMSIZ];
4493 /* Ignore unmoveable devices (i.e. loopback) */
4494 if (dev->features & NETIF_F_NETNS_LOCAL)
4495 continue;
4497 /* Push remaing network devices to init_net */
4498 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4499 err = dev_change_net_namespace(dev, &init_net, fb_name);
4500 if (err) {
4501 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4502 __func__, dev->name, err);
4503 BUG();
4506 rtnl_unlock();
4509 static struct pernet_operations __net_initdata default_device_ops = {
4510 .exit = default_device_exit,
4514 * Initialize the DEV module. At boot time this walks the device list and
4515 * unhooks any devices that fail to initialise (normally hardware not
4516 * present) and leaves us with a valid list of present and active devices.
4521 * This is called single threaded during boot, so no need
4522 * to take the rtnl semaphore.
4524 static int __init net_dev_init(void)
4526 int i, rc = -ENOMEM;
4528 BUG_ON(!dev_boot_phase);
4530 if (dev_proc_init())
4531 goto out;
4533 if (netdev_kobject_init())
4534 goto out;
4536 INIT_LIST_HEAD(&ptype_all);
4537 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4538 INIT_LIST_HEAD(&ptype_base[i]);
4540 if (register_pernet_subsys(&netdev_net_ops))
4541 goto out;
4543 if (register_pernet_device(&default_device_ops))
4544 goto out;
4547 * Initialise the packet receive queues.
4550 for_each_possible_cpu(i) {
4551 struct softnet_data *queue;
4553 queue = &per_cpu(softnet_data, i);
4554 skb_queue_head_init(&queue->input_pkt_queue);
4555 queue->completion_queue = NULL;
4556 INIT_LIST_HEAD(&queue->poll_list);
4558 queue->backlog.poll = process_backlog;
4559 queue->backlog.weight = weight_p;
4562 netdev_dma_register();
4564 dev_boot_phase = 0;
4566 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4567 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4569 hotcpu_notifier(dev_cpu_callback, 0);
4570 dst_init();
4571 dev_mcast_init();
4572 rc = 0;
4573 out:
4574 return rc;
4577 subsys_initcall(net_dev_init);
4579 EXPORT_SYMBOL(__dev_get_by_index);
4580 EXPORT_SYMBOL(__dev_get_by_name);
4581 EXPORT_SYMBOL(__dev_remove_pack);
4582 EXPORT_SYMBOL(dev_valid_name);
4583 EXPORT_SYMBOL(dev_add_pack);
4584 EXPORT_SYMBOL(dev_alloc_name);
4585 EXPORT_SYMBOL(dev_close);
4586 EXPORT_SYMBOL(dev_get_by_flags);
4587 EXPORT_SYMBOL(dev_get_by_index);
4588 EXPORT_SYMBOL(dev_get_by_name);
4589 EXPORT_SYMBOL(dev_open);
4590 EXPORT_SYMBOL(dev_queue_xmit);
4591 EXPORT_SYMBOL(dev_remove_pack);
4592 EXPORT_SYMBOL(dev_set_allmulti);
4593 EXPORT_SYMBOL(dev_set_promiscuity);
4594 EXPORT_SYMBOL(dev_change_flags);
4595 EXPORT_SYMBOL(dev_set_mtu);
4596 EXPORT_SYMBOL(dev_set_mac_address);
4597 EXPORT_SYMBOL(free_netdev);
4598 EXPORT_SYMBOL(netdev_boot_setup_check);
4599 EXPORT_SYMBOL(netdev_set_master);
4600 EXPORT_SYMBOL(netdev_state_change);
4601 EXPORT_SYMBOL(netif_receive_skb);
4602 EXPORT_SYMBOL(netif_rx);
4603 EXPORT_SYMBOL(register_gifconf);
4604 EXPORT_SYMBOL(register_netdevice);
4605 EXPORT_SYMBOL(register_netdevice_notifier);
4606 EXPORT_SYMBOL(skb_checksum_help);
4607 EXPORT_SYMBOL(synchronize_net);
4608 EXPORT_SYMBOL(unregister_netdevice);
4609 EXPORT_SYMBOL(unregister_netdevice_notifier);
4610 EXPORT_SYMBOL(net_enable_timestamp);
4611 EXPORT_SYMBOL(net_disable_timestamp);
4612 EXPORT_SYMBOL(dev_get_flags);
4614 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4615 EXPORT_SYMBOL(br_handle_frame_hook);
4616 EXPORT_SYMBOL(br_fdb_get_hook);
4617 EXPORT_SYMBOL(br_fdb_put_hook);
4618 #endif
4620 #ifdef CONFIG_KMOD
4621 EXPORT_SYMBOL(dev_load);
4622 #endif
4624 EXPORT_PER_CPU_SYMBOL(softnet_data);