drm/i915: Remove a bad BUG_ON in the fence management code.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob78eb8552818b6b94d4add7ec06ecdc881add1f67
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
35 #include <linux/fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
40 #include "internal.h"
42 #include <asm/uaccess.h>
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51 #else
52 #define do_swap_account (0)
53 #endif
55 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
58 * Statistics for memory cgroup.
60 enum mem_cgroup_stat_index {
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
66 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
69 MEM_CGROUP_STAT_NSTATS,
72 struct mem_cgroup_stat_cpu {
73 s64 count[MEM_CGROUP_STAT_NSTATS];
74 } ____cacheline_aligned_in_smp;
76 struct mem_cgroup_stat {
77 struct mem_cgroup_stat_cpu cpustat[0];
81 * For accounting under irq disable, no need for increment preempt count.
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84 enum mem_cgroup_stat_index idx, int val)
86 stat->count[idx] += val;
89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 enum mem_cgroup_stat_index idx)
92 int cpu;
93 s64 ret = 0;
94 for_each_possible_cpu(cpu)
95 ret += stat->cpustat[cpu].count[idx];
96 return ret;
99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
101 s64 ret;
103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105 return ret;
109 * per-zone information in memory controller.
111 struct mem_cgroup_per_zone {
113 * spin_lock to protect the per cgroup LRU
115 struct list_head lists[NR_LRU_LISTS];
116 unsigned long count[NR_LRU_LISTS];
118 struct zone_reclaim_stat reclaim_stat;
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123 struct mem_cgroup_per_node {
124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
127 struct mem_cgroup_lru_info {
128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
142 struct mem_cgroup {
143 struct cgroup_subsys_state css;
145 * the counter to account for memory usage
147 struct res_counter res;
149 * the counter to account for mem+swap usage.
151 struct res_counter memsw;
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
156 struct mem_cgroup_lru_info info;
159 protect against reclaim related member.
161 spinlock_t reclaim_param_lock;
163 int prev_priority; /* for recording reclaim priority */
166 * While reclaiming in a hiearchy, we cache the last child we
167 * reclaimed from.
169 int last_scanned_child;
171 * Should the accounting and control be hierarchical, per subtree?
173 bool use_hierarchy;
174 unsigned long last_oom_jiffies;
175 atomic_t refcnt;
177 unsigned int swappiness;
180 * statistics. This must be placed at the end of memcg.
182 struct mem_cgroup_stat stat;
185 enum charge_type {
186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
189 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
191 NR_CHARGE_TYPE,
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE (1UL << PCG_CACHE)
196 #define PCGF_USED (1UL << PCG_USED)
197 #define PCGF_LOCK (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags[NR_CHARGE_TYPE] = {
200 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201 PCGF_USED | PCGF_LOCK, /* Anon */
202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
203 0, /* FORCE */
206 /* for encoding cft->private value on file */
207 #define _MEM (0)
208 #define _MEMSWAP (1)
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val) ((val) & 0xffff)
213 static void mem_cgroup_get(struct mem_cgroup *mem);
214 static void mem_cgroup_put(struct mem_cgroup *mem);
215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 struct page_cgroup *pc,
219 bool charge)
221 int val = (charge)? 1 : -1;
222 struct mem_cgroup_stat *stat = &mem->stat;
223 struct mem_cgroup_stat_cpu *cpustat;
224 int cpu = get_cpu();
226 cpustat = &stat->cpustat[cpu];
227 if (PageCgroupCache(pc))
228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
229 else
230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
232 if (charge)
233 __mem_cgroup_stat_add_safe(cpustat,
234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
235 else
236 __mem_cgroup_stat_add_safe(cpustat,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
238 put_cpu();
241 static struct mem_cgroup_per_zone *
242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
244 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
247 static struct mem_cgroup_per_zone *
248 page_cgroup_zoneinfo(struct page_cgroup *pc)
250 struct mem_cgroup *mem = pc->mem_cgroup;
251 int nid = page_cgroup_nid(pc);
252 int zid = page_cgroup_zid(pc);
254 if (!mem)
255 return NULL;
257 return mem_cgroup_zoneinfo(mem, nid, zid);
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
261 enum lru_list idx)
263 int nid, zid;
264 struct mem_cgroup_per_zone *mz;
265 u64 total = 0;
267 for_each_online_node(nid)
268 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 total += MEM_CGROUP_ZSTAT(mz, idx);
272 return total;
275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
277 return container_of(cgroup_subsys_state(cont,
278 mem_cgroup_subsys_id), struct mem_cgroup,
279 css);
282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
289 if (unlikely(!p))
290 return NULL;
292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 struct mem_cgroup, css);
296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
298 struct mem_cgroup *mem = NULL;
300 if (!mm)
301 return NULL;
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
307 rcu_read_lock();
308 do {
309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
310 if (unlikely(!mem))
311 break;
312 } while (!css_tryget(&mem->css));
313 rcu_read_unlock();
314 return mem;
318 * Call callback function against all cgroup under hierarchy tree.
320 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
321 int (*func)(struct mem_cgroup *, void *))
323 int found, ret, nextid;
324 struct cgroup_subsys_state *css;
325 struct mem_cgroup *mem;
327 if (!root->use_hierarchy)
328 return (*func)(root, data);
330 nextid = 1;
331 do {
332 ret = 0;
333 mem = NULL;
335 rcu_read_lock();
336 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
337 &found);
338 if (css && css_tryget(css))
339 mem = container_of(css, struct mem_cgroup, css);
340 rcu_read_unlock();
342 if (mem) {
343 ret = (*func)(mem, data);
344 css_put(&mem->css);
346 nextid = found + 1;
347 } while (!ret && css);
349 return ret;
353 * Following LRU functions are allowed to be used without PCG_LOCK.
354 * Operations are called by routine of global LRU independently from memcg.
355 * What we have to take care of here is validness of pc->mem_cgroup.
357 * Changes to pc->mem_cgroup happens when
358 * 1. charge
359 * 2. moving account
360 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
361 * It is added to LRU before charge.
362 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
363 * When moving account, the page is not on LRU. It's isolated.
366 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
368 struct page_cgroup *pc;
369 struct mem_cgroup *mem;
370 struct mem_cgroup_per_zone *mz;
372 if (mem_cgroup_disabled())
373 return;
374 pc = lookup_page_cgroup(page);
375 /* can happen while we handle swapcache. */
376 if (list_empty(&pc->lru) || !pc->mem_cgroup)
377 return;
379 * We don't check PCG_USED bit. It's cleared when the "page" is finally
380 * removed from global LRU.
382 mz = page_cgroup_zoneinfo(pc);
383 mem = pc->mem_cgroup;
384 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
385 list_del_init(&pc->lru);
386 return;
389 void mem_cgroup_del_lru(struct page *page)
391 mem_cgroup_del_lru_list(page, page_lru(page));
394 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
396 struct mem_cgroup_per_zone *mz;
397 struct page_cgroup *pc;
399 if (mem_cgroup_disabled())
400 return;
402 pc = lookup_page_cgroup(page);
404 * Used bit is set without atomic ops but after smp_wmb().
405 * For making pc->mem_cgroup visible, insert smp_rmb() here.
407 smp_rmb();
408 /* unused page is not rotated. */
409 if (!PageCgroupUsed(pc))
410 return;
411 mz = page_cgroup_zoneinfo(pc);
412 list_move(&pc->lru, &mz->lists[lru]);
415 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
417 struct page_cgroup *pc;
418 struct mem_cgroup_per_zone *mz;
420 if (mem_cgroup_disabled())
421 return;
422 pc = lookup_page_cgroup(page);
424 * Used bit is set without atomic ops but after smp_wmb().
425 * For making pc->mem_cgroup visible, insert smp_rmb() here.
427 smp_rmb();
428 if (!PageCgroupUsed(pc))
429 return;
431 mz = page_cgroup_zoneinfo(pc);
432 MEM_CGROUP_ZSTAT(mz, lru) += 1;
433 list_add(&pc->lru, &mz->lists[lru]);
437 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
438 * lru because the page may.be reused after it's fully uncharged (because of
439 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
440 * it again. This function is only used to charge SwapCache. It's done under
441 * lock_page and expected that zone->lru_lock is never held.
443 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
445 unsigned long flags;
446 struct zone *zone = page_zone(page);
447 struct page_cgroup *pc = lookup_page_cgroup(page);
449 spin_lock_irqsave(&zone->lru_lock, flags);
451 * Forget old LRU when this page_cgroup is *not* used. This Used bit
452 * is guarded by lock_page() because the page is SwapCache.
454 if (!PageCgroupUsed(pc))
455 mem_cgroup_del_lru_list(page, page_lru(page));
456 spin_unlock_irqrestore(&zone->lru_lock, flags);
459 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
461 unsigned long flags;
462 struct zone *zone = page_zone(page);
463 struct page_cgroup *pc = lookup_page_cgroup(page);
465 spin_lock_irqsave(&zone->lru_lock, flags);
466 /* link when the page is linked to LRU but page_cgroup isn't */
467 if (PageLRU(page) && list_empty(&pc->lru))
468 mem_cgroup_add_lru_list(page, page_lru(page));
469 spin_unlock_irqrestore(&zone->lru_lock, flags);
473 void mem_cgroup_move_lists(struct page *page,
474 enum lru_list from, enum lru_list to)
476 if (mem_cgroup_disabled())
477 return;
478 mem_cgroup_del_lru_list(page, from);
479 mem_cgroup_add_lru_list(page, to);
482 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
484 int ret;
485 struct mem_cgroup *curr = NULL;
487 task_lock(task);
488 rcu_read_lock();
489 curr = try_get_mem_cgroup_from_mm(task->mm);
490 rcu_read_unlock();
491 task_unlock(task);
492 if (!curr)
493 return 0;
494 if (curr->use_hierarchy)
495 ret = css_is_ancestor(&curr->css, &mem->css);
496 else
497 ret = (curr == mem);
498 css_put(&curr->css);
499 return ret;
503 * prev_priority control...this will be used in memory reclaim path.
505 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
507 int prev_priority;
509 spin_lock(&mem->reclaim_param_lock);
510 prev_priority = mem->prev_priority;
511 spin_unlock(&mem->reclaim_param_lock);
513 return prev_priority;
516 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
518 spin_lock(&mem->reclaim_param_lock);
519 if (priority < mem->prev_priority)
520 mem->prev_priority = priority;
521 spin_unlock(&mem->reclaim_param_lock);
524 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
526 spin_lock(&mem->reclaim_param_lock);
527 mem->prev_priority = priority;
528 spin_unlock(&mem->reclaim_param_lock);
531 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
533 unsigned long active;
534 unsigned long inactive;
535 unsigned long gb;
536 unsigned long inactive_ratio;
538 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
539 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
541 gb = (inactive + active) >> (30 - PAGE_SHIFT);
542 if (gb)
543 inactive_ratio = int_sqrt(10 * gb);
544 else
545 inactive_ratio = 1;
547 if (present_pages) {
548 present_pages[0] = inactive;
549 present_pages[1] = active;
552 return inactive_ratio;
555 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
557 unsigned long active;
558 unsigned long inactive;
559 unsigned long present_pages[2];
560 unsigned long inactive_ratio;
562 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
564 inactive = present_pages[0];
565 active = present_pages[1];
567 if (inactive * inactive_ratio < active)
568 return 1;
570 return 0;
573 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
574 struct zone *zone,
575 enum lru_list lru)
577 int nid = zone->zone_pgdat->node_id;
578 int zid = zone_idx(zone);
579 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
581 return MEM_CGROUP_ZSTAT(mz, lru);
584 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
585 struct zone *zone)
587 int nid = zone->zone_pgdat->node_id;
588 int zid = zone_idx(zone);
589 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
591 return &mz->reclaim_stat;
594 struct zone_reclaim_stat *
595 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
597 struct page_cgroup *pc;
598 struct mem_cgroup_per_zone *mz;
600 if (mem_cgroup_disabled())
601 return NULL;
603 pc = lookup_page_cgroup(page);
605 * Used bit is set without atomic ops but after smp_wmb().
606 * For making pc->mem_cgroup visible, insert smp_rmb() here.
608 smp_rmb();
609 if (!PageCgroupUsed(pc))
610 return NULL;
612 mz = page_cgroup_zoneinfo(pc);
613 if (!mz)
614 return NULL;
616 return &mz->reclaim_stat;
619 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
620 struct list_head *dst,
621 unsigned long *scanned, int order,
622 int mode, struct zone *z,
623 struct mem_cgroup *mem_cont,
624 int active, int file)
626 unsigned long nr_taken = 0;
627 struct page *page;
628 unsigned long scan;
629 LIST_HEAD(pc_list);
630 struct list_head *src;
631 struct page_cgroup *pc, *tmp;
632 int nid = z->zone_pgdat->node_id;
633 int zid = zone_idx(z);
634 struct mem_cgroup_per_zone *mz;
635 int lru = LRU_FILE * !!file + !!active;
637 BUG_ON(!mem_cont);
638 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
639 src = &mz->lists[lru];
641 scan = 0;
642 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
643 if (scan >= nr_to_scan)
644 break;
646 page = pc->page;
647 if (unlikely(!PageCgroupUsed(pc)))
648 continue;
649 if (unlikely(!PageLRU(page)))
650 continue;
652 scan++;
653 if (__isolate_lru_page(page, mode, file) == 0) {
654 list_move(&page->lru, dst);
655 nr_taken++;
659 *scanned = scan;
660 return nr_taken;
663 #define mem_cgroup_from_res_counter(counter, member) \
664 container_of(counter, struct mem_cgroup, member)
666 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
668 if (do_swap_account) {
669 if (res_counter_check_under_limit(&mem->res) &&
670 res_counter_check_under_limit(&mem->memsw))
671 return true;
672 } else
673 if (res_counter_check_under_limit(&mem->res))
674 return true;
675 return false;
678 static unsigned int get_swappiness(struct mem_cgroup *memcg)
680 struct cgroup *cgrp = memcg->css.cgroup;
681 unsigned int swappiness;
683 /* root ? */
684 if (cgrp->parent == NULL)
685 return vm_swappiness;
687 spin_lock(&memcg->reclaim_param_lock);
688 swappiness = memcg->swappiness;
689 spin_unlock(&memcg->reclaim_param_lock);
691 return swappiness;
694 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
696 int *val = data;
697 (*val)++;
698 return 0;
702 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
703 * @memcg: The memory cgroup that went over limit
704 * @p: Task that is going to be killed
706 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
707 * enabled
709 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
711 struct cgroup *task_cgrp;
712 struct cgroup *mem_cgrp;
714 * Need a buffer in BSS, can't rely on allocations. The code relies
715 * on the assumption that OOM is serialized for memory controller.
716 * If this assumption is broken, revisit this code.
718 static char memcg_name[PATH_MAX];
719 int ret;
721 if (!memcg)
722 return;
725 rcu_read_lock();
727 mem_cgrp = memcg->css.cgroup;
728 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
730 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
731 if (ret < 0) {
733 * Unfortunately, we are unable to convert to a useful name
734 * But we'll still print out the usage information
736 rcu_read_unlock();
737 goto done;
739 rcu_read_unlock();
741 printk(KERN_INFO "Task in %s killed", memcg_name);
743 rcu_read_lock();
744 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
745 if (ret < 0) {
746 rcu_read_unlock();
747 goto done;
749 rcu_read_unlock();
752 * Continues from above, so we don't need an KERN_ level
754 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
755 done:
757 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
758 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
759 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
760 res_counter_read_u64(&memcg->res, RES_FAILCNT));
761 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
762 "failcnt %llu\n",
763 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
764 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
765 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
769 * This function returns the number of memcg under hierarchy tree. Returns
770 * 1(self count) if no children.
772 static int mem_cgroup_count_children(struct mem_cgroup *mem)
774 int num = 0;
775 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
776 return num;
780 * Visit the first child (need not be the first child as per the ordering
781 * of the cgroup list, since we track last_scanned_child) of @mem and use
782 * that to reclaim free pages from.
784 static struct mem_cgroup *
785 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
787 struct mem_cgroup *ret = NULL;
788 struct cgroup_subsys_state *css;
789 int nextid, found;
791 if (!root_mem->use_hierarchy) {
792 css_get(&root_mem->css);
793 ret = root_mem;
796 while (!ret) {
797 rcu_read_lock();
798 nextid = root_mem->last_scanned_child + 1;
799 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
800 &found);
801 if (css && css_tryget(css))
802 ret = container_of(css, struct mem_cgroup, css);
804 rcu_read_unlock();
805 /* Updates scanning parameter */
806 spin_lock(&root_mem->reclaim_param_lock);
807 if (!css) {
808 /* this means start scan from ID:1 */
809 root_mem->last_scanned_child = 0;
810 } else
811 root_mem->last_scanned_child = found;
812 spin_unlock(&root_mem->reclaim_param_lock);
815 return ret;
819 * Scan the hierarchy if needed to reclaim memory. We remember the last child
820 * we reclaimed from, so that we don't end up penalizing one child extensively
821 * based on its position in the children list.
823 * root_mem is the original ancestor that we've been reclaim from.
825 * We give up and return to the caller when we visit root_mem twice.
826 * (other groups can be removed while we're walking....)
828 * If shrink==true, for avoiding to free too much, this returns immedieately.
830 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
831 gfp_t gfp_mask, bool noswap, bool shrink)
833 struct mem_cgroup *victim;
834 int ret, total = 0;
835 int loop = 0;
837 while (loop < 2) {
838 victim = mem_cgroup_select_victim(root_mem);
839 if (victim == root_mem)
840 loop++;
841 if (!mem_cgroup_local_usage(&victim->stat)) {
842 /* this cgroup's local usage == 0 */
843 css_put(&victim->css);
844 continue;
846 /* we use swappiness of local cgroup */
847 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
848 get_swappiness(victim));
849 css_put(&victim->css);
851 * At shrinking usage, we can't check we should stop here or
852 * reclaim more. It's depends on callers. last_scanned_child
853 * will work enough for keeping fairness under tree.
855 if (shrink)
856 return ret;
857 total += ret;
858 if (mem_cgroup_check_under_limit(root_mem))
859 return 1 + total;
861 return total;
864 bool mem_cgroup_oom_called(struct task_struct *task)
866 bool ret = false;
867 struct mem_cgroup *mem;
868 struct mm_struct *mm;
870 rcu_read_lock();
871 mm = task->mm;
872 if (!mm)
873 mm = &init_mm;
874 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
875 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
876 ret = true;
877 rcu_read_unlock();
878 return ret;
881 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
883 mem->last_oom_jiffies = jiffies;
884 return 0;
887 static void record_last_oom(struct mem_cgroup *mem)
889 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
894 * Unlike exported interface, "oom" parameter is added. if oom==true,
895 * oom-killer can be invoked.
897 static int __mem_cgroup_try_charge(struct mm_struct *mm,
898 gfp_t gfp_mask, struct mem_cgroup **memcg,
899 bool oom)
901 struct mem_cgroup *mem, *mem_over_limit;
902 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
903 struct res_counter *fail_res;
905 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
906 /* Don't account this! */
907 *memcg = NULL;
908 return 0;
912 * We always charge the cgroup the mm_struct belongs to.
913 * The mm_struct's mem_cgroup changes on task migration if the
914 * thread group leader migrates. It's possible that mm is not
915 * set, if so charge the init_mm (happens for pagecache usage).
917 mem = *memcg;
918 if (likely(!mem)) {
919 mem = try_get_mem_cgroup_from_mm(mm);
920 *memcg = mem;
921 } else {
922 css_get(&mem->css);
924 if (unlikely(!mem))
925 return 0;
927 VM_BUG_ON(css_is_removed(&mem->css));
929 while (1) {
930 int ret;
931 bool noswap = false;
933 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
934 if (likely(!ret)) {
935 if (!do_swap_account)
936 break;
937 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
938 &fail_res);
939 if (likely(!ret))
940 break;
941 /* mem+swap counter fails */
942 res_counter_uncharge(&mem->res, PAGE_SIZE);
943 noswap = true;
944 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
945 memsw);
946 } else
947 /* mem counter fails */
948 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
949 res);
951 if (!(gfp_mask & __GFP_WAIT))
952 goto nomem;
954 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
955 noswap, false);
956 if (ret)
957 continue;
960 * try_to_free_mem_cgroup_pages() might not give us a full
961 * picture of reclaim. Some pages are reclaimed and might be
962 * moved to swap cache or just unmapped from the cgroup.
963 * Check the limit again to see if the reclaim reduced the
964 * current usage of the cgroup before giving up
967 if (mem_cgroup_check_under_limit(mem_over_limit))
968 continue;
970 if (!nr_retries--) {
971 if (oom) {
972 mutex_lock(&memcg_tasklist);
973 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
974 mutex_unlock(&memcg_tasklist);
975 record_last_oom(mem_over_limit);
977 goto nomem;
980 return 0;
981 nomem:
982 css_put(&mem->css);
983 return -ENOMEM;
988 * A helper function to get mem_cgroup from ID. must be called under
989 * rcu_read_lock(). The caller must check css_is_removed() or some if
990 * it's concern. (dropping refcnt from swap can be called against removed
991 * memcg.)
993 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
995 struct cgroup_subsys_state *css;
997 /* ID 0 is unused ID */
998 if (!id)
999 return NULL;
1000 css = css_lookup(&mem_cgroup_subsys, id);
1001 if (!css)
1002 return NULL;
1003 return container_of(css, struct mem_cgroup, css);
1006 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1008 struct mem_cgroup *mem;
1009 struct page_cgroup *pc;
1010 unsigned short id;
1011 swp_entry_t ent;
1013 VM_BUG_ON(!PageLocked(page));
1015 if (!PageSwapCache(page))
1016 return NULL;
1018 pc = lookup_page_cgroup(page);
1019 lock_page_cgroup(pc);
1020 if (PageCgroupUsed(pc)) {
1021 mem = pc->mem_cgroup;
1022 if (mem && !css_tryget(&mem->css))
1023 mem = NULL;
1024 } else {
1025 ent.val = page_private(page);
1026 id = lookup_swap_cgroup(ent);
1027 rcu_read_lock();
1028 mem = mem_cgroup_lookup(id);
1029 if (mem && !css_tryget(&mem->css))
1030 mem = NULL;
1031 rcu_read_unlock();
1033 unlock_page_cgroup(pc);
1034 return mem;
1038 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1039 * USED state. If already USED, uncharge and return.
1042 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1043 struct page_cgroup *pc,
1044 enum charge_type ctype)
1046 /* try_charge() can return NULL to *memcg, taking care of it. */
1047 if (!mem)
1048 return;
1050 lock_page_cgroup(pc);
1051 if (unlikely(PageCgroupUsed(pc))) {
1052 unlock_page_cgroup(pc);
1053 res_counter_uncharge(&mem->res, PAGE_SIZE);
1054 if (do_swap_account)
1055 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1056 css_put(&mem->css);
1057 return;
1059 pc->mem_cgroup = mem;
1060 smp_wmb();
1061 pc->flags = pcg_default_flags[ctype];
1063 mem_cgroup_charge_statistics(mem, pc, true);
1065 unlock_page_cgroup(pc);
1069 * mem_cgroup_move_account - move account of the page
1070 * @pc: page_cgroup of the page.
1071 * @from: mem_cgroup which the page is moved from.
1072 * @to: mem_cgroup which the page is moved to. @from != @to.
1074 * The caller must confirm following.
1075 * - page is not on LRU (isolate_page() is useful.)
1077 * returns 0 at success,
1078 * returns -EBUSY when lock is busy or "pc" is unstable.
1080 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1081 * new cgroup. It should be done by a caller.
1084 static int mem_cgroup_move_account(struct page_cgroup *pc,
1085 struct mem_cgroup *from, struct mem_cgroup *to)
1087 struct mem_cgroup_per_zone *from_mz, *to_mz;
1088 int nid, zid;
1089 int ret = -EBUSY;
1091 VM_BUG_ON(from == to);
1092 VM_BUG_ON(PageLRU(pc->page));
1094 nid = page_cgroup_nid(pc);
1095 zid = page_cgroup_zid(pc);
1096 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1097 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1099 if (!trylock_page_cgroup(pc))
1100 return ret;
1102 if (!PageCgroupUsed(pc))
1103 goto out;
1105 if (pc->mem_cgroup != from)
1106 goto out;
1108 res_counter_uncharge(&from->res, PAGE_SIZE);
1109 mem_cgroup_charge_statistics(from, pc, false);
1110 if (do_swap_account)
1111 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1112 css_put(&from->css);
1114 css_get(&to->css);
1115 pc->mem_cgroup = to;
1116 mem_cgroup_charge_statistics(to, pc, true);
1117 ret = 0;
1118 out:
1119 unlock_page_cgroup(pc);
1120 return ret;
1124 * move charges to its parent.
1127 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1128 struct mem_cgroup *child,
1129 gfp_t gfp_mask)
1131 struct page *page = pc->page;
1132 struct cgroup *cg = child->css.cgroup;
1133 struct cgroup *pcg = cg->parent;
1134 struct mem_cgroup *parent;
1135 int ret;
1137 /* Is ROOT ? */
1138 if (!pcg)
1139 return -EINVAL;
1142 parent = mem_cgroup_from_cont(pcg);
1145 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1146 if (ret || !parent)
1147 return ret;
1149 if (!get_page_unless_zero(page)) {
1150 ret = -EBUSY;
1151 goto uncharge;
1154 ret = isolate_lru_page(page);
1156 if (ret)
1157 goto cancel;
1159 ret = mem_cgroup_move_account(pc, child, parent);
1161 putback_lru_page(page);
1162 if (!ret) {
1163 put_page(page);
1164 /* drop extra refcnt by try_charge() */
1165 css_put(&parent->css);
1166 return 0;
1169 cancel:
1170 put_page(page);
1171 uncharge:
1172 /* drop extra refcnt by try_charge() */
1173 css_put(&parent->css);
1174 /* uncharge if move fails */
1175 res_counter_uncharge(&parent->res, PAGE_SIZE);
1176 if (do_swap_account)
1177 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1178 return ret;
1182 * Charge the memory controller for page usage.
1183 * Return
1184 * 0 if the charge was successful
1185 * < 0 if the cgroup is over its limit
1187 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1188 gfp_t gfp_mask, enum charge_type ctype,
1189 struct mem_cgroup *memcg)
1191 struct mem_cgroup *mem;
1192 struct page_cgroup *pc;
1193 int ret;
1195 pc = lookup_page_cgroup(page);
1196 /* can happen at boot */
1197 if (unlikely(!pc))
1198 return 0;
1199 prefetchw(pc);
1201 mem = memcg;
1202 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1203 if (ret || !mem)
1204 return ret;
1206 __mem_cgroup_commit_charge(mem, pc, ctype);
1207 return 0;
1210 int mem_cgroup_newpage_charge(struct page *page,
1211 struct mm_struct *mm, gfp_t gfp_mask)
1213 if (mem_cgroup_disabled())
1214 return 0;
1215 if (PageCompound(page))
1216 return 0;
1218 * If already mapped, we don't have to account.
1219 * If page cache, page->mapping has address_space.
1220 * But page->mapping may have out-of-use anon_vma pointer,
1221 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1222 * is NULL.
1224 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1225 return 0;
1226 if (unlikely(!mm))
1227 mm = &init_mm;
1228 return mem_cgroup_charge_common(page, mm, gfp_mask,
1229 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1232 static void
1233 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1234 enum charge_type ctype);
1236 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1237 gfp_t gfp_mask)
1239 struct mem_cgroup *mem = NULL;
1240 int ret;
1242 if (mem_cgroup_disabled())
1243 return 0;
1244 if (PageCompound(page))
1245 return 0;
1247 * Corner case handling. This is called from add_to_page_cache()
1248 * in usual. But some FS (shmem) precharges this page before calling it
1249 * and call add_to_page_cache() with GFP_NOWAIT.
1251 * For GFP_NOWAIT case, the page may be pre-charged before calling
1252 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1253 * charge twice. (It works but has to pay a bit larger cost.)
1254 * And when the page is SwapCache, it should take swap information
1255 * into account. This is under lock_page() now.
1257 if (!(gfp_mask & __GFP_WAIT)) {
1258 struct page_cgroup *pc;
1261 pc = lookup_page_cgroup(page);
1262 if (!pc)
1263 return 0;
1264 lock_page_cgroup(pc);
1265 if (PageCgroupUsed(pc)) {
1266 unlock_page_cgroup(pc);
1267 return 0;
1269 unlock_page_cgroup(pc);
1272 if (unlikely(!mm && !mem))
1273 mm = &init_mm;
1275 if (page_is_file_cache(page))
1276 return mem_cgroup_charge_common(page, mm, gfp_mask,
1277 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1279 /* shmem */
1280 if (PageSwapCache(page)) {
1281 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1282 if (!ret)
1283 __mem_cgroup_commit_charge_swapin(page, mem,
1284 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1285 } else
1286 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1287 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1289 return ret;
1293 * While swap-in, try_charge -> commit or cancel, the page is locked.
1294 * And when try_charge() successfully returns, one refcnt to memcg without
1295 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1296 * "commit()" or removed by "cancel()"
1298 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1299 struct page *page,
1300 gfp_t mask, struct mem_cgroup **ptr)
1302 struct mem_cgroup *mem;
1303 int ret;
1305 if (mem_cgroup_disabled())
1306 return 0;
1308 if (!do_swap_account)
1309 goto charge_cur_mm;
1311 * A racing thread's fault, or swapoff, may have already updated
1312 * the pte, and even removed page from swap cache: return success
1313 * to go on to do_swap_page()'s pte_same() test, which should fail.
1315 if (!PageSwapCache(page))
1316 return 0;
1317 mem = try_get_mem_cgroup_from_swapcache(page);
1318 if (!mem)
1319 goto charge_cur_mm;
1320 *ptr = mem;
1321 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1322 /* drop extra refcnt from tryget */
1323 css_put(&mem->css);
1324 return ret;
1325 charge_cur_mm:
1326 if (unlikely(!mm))
1327 mm = &init_mm;
1328 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1331 static void
1332 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1333 enum charge_type ctype)
1335 struct page_cgroup *pc;
1337 if (mem_cgroup_disabled())
1338 return;
1339 if (!ptr)
1340 return;
1341 pc = lookup_page_cgroup(page);
1342 mem_cgroup_lru_del_before_commit_swapcache(page);
1343 __mem_cgroup_commit_charge(ptr, pc, ctype);
1344 mem_cgroup_lru_add_after_commit_swapcache(page);
1346 * Now swap is on-memory. This means this page may be
1347 * counted both as mem and swap....double count.
1348 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1349 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1350 * may call delete_from_swap_cache() before reach here.
1352 if (do_swap_account && PageSwapCache(page)) {
1353 swp_entry_t ent = {.val = page_private(page)};
1354 unsigned short id;
1355 struct mem_cgroup *memcg;
1357 id = swap_cgroup_record(ent, 0);
1358 rcu_read_lock();
1359 memcg = mem_cgroup_lookup(id);
1360 if (memcg) {
1362 * This recorded memcg can be obsolete one. So, avoid
1363 * calling css_tryget
1365 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1366 mem_cgroup_put(memcg);
1368 rcu_read_unlock();
1370 /* add this page(page_cgroup) to the LRU we want. */
1374 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1376 __mem_cgroup_commit_charge_swapin(page, ptr,
1377 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1380 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1382 if (mem_cgroup_disabled())
1383 return;
1384 if (!mem)
1385 return;
1386 res_counter_uncharge(&mem->res, PAGE_SIZE);
1387 if (do_swap_account)
1388 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1389 css_put(&mem->css);
1394 * uncharge if !page_mapped(page)
1396 static struct mem_cgroup *
1397 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1399 struct page_cgroup *pc;
1400 struct mem_cgroup *mem = NULL;
1401 struct mem_cgroup_per_zone *mz;
1403 if (mem_cgroup_disabled())
1404 return NULL;
1406 if (PageSwapCache(page))
1407 return NULL;
1410 * Check if our page_cgroup is valid
1412 pc = lookup_page_cgroup(page);
1413 if (unlikely(!pc || !PageCgroupUsed(pc)))
1414 return NULL;
1416 lock_page_cgroup(pc);
1418 mem = pc->mem_cgroup;
1420 if (!PageCgroupUsed(pc))
1421 goto unlock_out;
1423 switch (ctype) {
1424 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1425 if (page_mapped(page))
1426 goto unlock_out;
1427 break;
1428 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1429 if (!PageAnon(page)) { /* Shared memory */
1430 if (page->mapping && !page_is_file_cache(page))
1431 goto unlock_out;
1432 } else if (page_mapped(page)) /* Anon */
1433 goto unlock_out;
1434 break;
1435 default:
1436 break;
1439 res_counter_uncharge(&mem->res, PAGE_SIZE);
1440 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1441 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1442 mem_cgroup_charge_statistics(mem, pc, false);
1444 ClearPageCgroupUsed(pc);
1446 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1447 * freed from LRU. This is safe because uncharged page is expected not
1448 * to be reused (freed soon). Exception is SwapCache, it's handled by
1449 * special functions.
1452 mz = page_cgroup_zoneinfo(pc);
1453 unlock_page_cgroup(pc);
1455 /* at swapout, this memcg will be accessed to record to swap */
1456 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1457 css_put(&mem->css);
1459 return mem;
1461 unlock_out:
1462 unlock_page_cgroup(pc);
1463 return NULL;
1466 void mem_cgroup_uncharge_page(struct page *page)
1468 /* early check. */
1469 if (page_mapped(page))
1470 return;
1471 if (page->mapping && !PageAnon(page))
1472 return;
1473 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1476 void mem_cgroup_uncharge_cache_page(struct page *page)
1478 VM_BUG_ON(page_mapped(page));
1479 VM_BUG_ON(page->mapping);
1480 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1483 #ifdef CONFIG_SWAP
1485 * called after __delete_from_swap_cache() and drop "page" account.
1486 * memcg information is recorded to swap_cgroup of "ent"
1488 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1490 struct mem_cgroup *memcg;
1492 memcg = __mem_cgroup_uncharge_common(page,
1493 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1494 /* record memcg information */
1495 if (do_swap_account && memcg) {
1496 swap_cgroup_record(ent, css_id(&memcg->css));
1497 mem_cgroup_get(memcg);
1499 if (memcg)
1500 css_put(&memcg->css);
1502 #endif
1504 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1506 * called from swap_entry_free(). remove record in swap_cgroup and
1507 * uncharge "memsw" account.
1509 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1511 struct mem_cgroup *memcg;
1512 unsigned short id;
1514 if (!do_swap_account)
1515 return;
1517 id = swap_cgroup_record(ent, 0);
1518 rcu_read_lock();
1519 memcg = mem_cgroup_lookup(id);
1520 if (memcg) {
1522 * We uncharge this because swap is freed.
1523 * This memcg can be obsolete one. We avoid calling css_tryget
1525 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1526 mem_cgroup_put(memcg);
1528 rcu_read_unlock();
1530 #endif
1533 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1534 * page belongs to.
1536 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1538 struct page_cgroup *pc;
1539 struct mem_cgroup *mem = NULL;
1540 int ret = 0;
1542 if (mem_cgroup_disabled())
1543 return 0;
1545 pc = lookup_page_cgroup(page);
1546 lock_page_cgroup(pc);
1547 if (PageCgroupUsed(pc)) {
1548 mem = pc->mem_cgroup;
1549 css_get(&mem->css);
1551 unlock_page_cgroup(pc);
1553 if (mem) {
1554 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1555 css_put(&mem->css);
1557 *ptr = mem;
1558 return ret;
1561 /* remove redundant charge if migration failed*/
1562 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1563 struct page *oldpage, struct page *newpage)
1565 struct page *target, *unused;
1566 struct page_cgroup *pc;
1567 enum charge_type ctype;
1569 if (!mem)
1570 return;
1572 /* at migration success, oldpage->mapping is NULL. */
1573 if (oldpage->mapping) {
1574 target = oldpage;
1575 unused = NULL;
1576 } else {
1577 target = newpage;
1578 unused = oldpage;
1581 if (PageAnon(target))
1582 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1583 else if (page_is_file_cache(target))
1584 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1585 else
1586 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1588 /* unused page is not on radix-tree now. */
1589 if (unused)
1590 __mem_cgroup_uncharge_common(unused, ctype);
1592 pc = lookup_page_cgroup(target);
1594 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1595 * So, double-counting is effectively avoided.
1597 __mem_cgroup_commit_charge(mem, pc, ctype);
1600 * Both of oldpage and newpage are still under lock_page().
1601 * Then, we don't have to care about race in radix-tree.
1602 * But we have to be careful that this page is unmapped or not.
1604 * There is a case for !page_mapped(). At the start of
1605 * migration, oldpage was mapped. But now, it's zapped.
1606 * But we know *target* page is not freed/reused under us.
1607 * mem_cgroup_uncharge_page() does all necessary checks.
1609 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1610 mem_cgroup_uncharge_page(target);
1614 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1615 * Calling hierarchical_reclaim is not enough because we should update
1616 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1617 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1618 * not from the memcg which this page would be charged to.
1619 * try_charge_swapin does all of these works properly.
1621 int mem_cgroup_shmem_charge_fallback(struct page *page,
1622 struct mm_struct *mm,
1623 gfp_t gfp_mask)
1625 struct mem_cgroup *mem = NULL;
1626 int ret;
1628 if (mem_cgroup_disabled())
1629 return 0;
1631 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1632 if (!ret)
1633 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1635 return ret;
1638 static DEFINE_MUTEX(set_limit_mutex);
1640 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1641 unsigned long long val)
1643 int retry_count;
1644 int progress;
1645 u64 memswlimit;
1646 int ret = 0;
1647 int children = mem_cgroup_count_children(memcg);
1648 u64 curusage, oldusage;
1651 * For keeping hierarchical_reclaim simple, how long we should retry
1652 * is depends on callers. We set our retry-count to be function
1653 * of # of children which we should visit in this loop.
1655 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1657 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1659 while (retry_count) {
1660 if (signal_pending(current)) {
1661 ret = -EINTR;
1662 break;
1665 * Rather than hide all in some function, I do this in
1666 * open coded manner. You see what this really does.
1667 * We have to guarantee mem->res.limit < mem->memsw.limit.
1669 mutex_lock(&set_limit_mutex);
1670 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1671 if (memswlimit < val) {
1672 ret = -EINVAL;
1673 mutex_unlock(&set_limit_mutex);
1674 break;
1676 ret = res_counter_set_limit(&memcg->res, val);
1677 mutex_unlock(&set_limit_mutex);
1679 if (!ret)
1680 break;
1682 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1683 false, true);
1684 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1685 /* Usage is reduced ? */
1686 if (curusage >= oldusage)
1687 retry_count--;
1688 else
1689 oldusage = curusage;
1692 return ret;
1695 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1696 unsigned long long val)
1698 int retry_count;
1699 u64 memlimit, oldusage, curusage;
1700 int children = mem_cgroup_count_children(memcg);
1701 int ret = -EBUSY;
1703 if (!do_swap_account)
1704 return -EINVAL;
1705 /* see mem_cgroup_resize_res_limit */
1706 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1707 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1708 while (retry_count) {
1709 if (signal_pending(current)) {
1710 ret = -EINTR;
1711 break;
1714 * Rather than hide all in some function, I do this in
1715 * open coded manner. You see what this really does.
1716 * We have to guarantee mem->res.limit < mem->memsw.limit.
1718 mutex_lock(&set_limit_mutex);
1719 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1720 if (memlimit > val) {
1721 ret = -EINVAL;
1722 mutex_unlock(&set_limit_mutex);
1723 break;
1725 ret = res_counter_set_limit(&memcg->memsw, val);
1726 mutex_unlock(&set_limit_mutex);
1728 if (!ret)
1729 break;
1731 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1732 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1733 /* Usage is reduced ? */
1734 if (curusage >= oldusage)
1735 retry_count--;
1736 else
1737 oldusage = curusage;
1739 return ret;
1743 * This routine traverse page_cgroup in given list and drop them all.
1744 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1746 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1747 int node, int zid, enum lru_list lru)
1749 struct zone *zone;
1750 struct mem_cgroup_per_zone *mz;
1751 struct page_cgroup *pc, *busy;
1752 unsigned long flags, loop;
1753 struct list_head *list;
1754 int ret = 0;
1756 zone = &NODE_DATA(node)->node_zones[zid];
1757 mz = mem_cgroup_zoneinfo(mem, node, zid);
1758 list = &mz->lists[lru];
1760 loop = MEM_CGROUP_ZSTAT(mz, lru);
1761 /* give some margin against EBUSY etc...*/
1762 loop += 256;
1763 busy = NULL;
1764 while (loop--) {
1765 ret = 0;
1766 spin_lock_irqsave(&zone->lru_lock, flags);
1767 if (list_empty(list)) {
1768 spin_unlock_irqrestore(&zone->lru_lock, flags);
1769 break;
1771 pc = list_entry(list->prev, struct page_cgroup, lru);
1772 if (busy == pc) {
1773 list_move(&pc->lru, list);
1774 busy = 0;
1775 spin_unlock_irqrestore(&zone->lru_lock, flags);
1776 continue;
1778 spin_unlock_irqrestore(&zone->lru_lock, flags);
1780 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1781 if (ret == -ENOMEM)
1782 break;
1784 if (ret == -EBUSY || ret == -EINVAL) {
1785 /* found lock contention or "pc" is obsolete. */
1786 busy = pc;
1787 cond_resched();
1788 } else
1789 busy = NULL;
1792 if (!ret && !list_empty(list))
1793 return -EBUSY;
1794 return ret;
1798 * make mem_cgroup's charge to be 0 if there is no task.
1799 * This enables deleting this mem_cgroup.
1801 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1803 int ret;
1804 int node, zid, shrink;
1805 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1806 struct cgroup *cgrp = mem->css.cgroup;
1808 css_get(&mem->css);
1810 shrink = 0;
1811 /* should free all ? */
1812 if (free_all)
1813 goto try_to_free;
1814 move_account:
1815 while (mem->res.usage > 0) {
1816 ret = -EBUSY;
1817 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1818 goto out;
1819 ret = -EINTR;
1820 if (signal_pending(current))
1821 goto out;
1822 /* This is for making all *used* pages to be on LRU. */
1823 lru_add_drain_all();
1824 ret = 0;
1825 for_each_node_state(node, N_HIGH_MEMORY) {
1826 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1827 enum lru_list l;
1828 for_each_lru(l) {
1829 ret = mem_cgroup_force_empty_list(mem,
1830 node, zid, l);
1831 if (ret)
1832 break;
1835 if (ret)
1836 break;
1838 /* it seems parent cgroup doesn't have enough mem */
1839 if (ret == -ENOMEM)
1840 goto try_to_free;
1841 cond_resched();
1843 ret = 0;
1844 out:
1845 css_put(&mem->css);
1846 return ret;
1848 try_to_free:
1849 /* returns EBUSY if there is a task or if we come here twice. */
1850 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1851 ret = -EBUSY;
1852 goto out;
1854 /* we call try-to-free pages for make this cgroup empty */
1855 lru_add_drain_all();
1856 /* try to free all pages in this cgroup */
1857 shrink = 1;
1858 while (nr_retries && mem->res.usage > 0) {
1859 int progress;
1861 if (signal_pending(current)) {
1862 ret = -EINTR;
1863 goto out;
1865 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1866 false, get_swappiness(mem));
1867 if (!progress) {
1868 nr_retries--;
1869 /* maybe some writeback is necessary */
1870 congestion_wait(WRITE, HZ/10);
1874 lru_add_drain();
1875 /* try move_account...there may be some *locked* pages. */
1876 if (mem->res.usage)
1877 goto move_account;
1878 ret = 0;
1879 goto out;
1882 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1884 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1888 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1890 return mem_cgroup_from_cont(cont)->use_hierarchy;
1893 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1894 u64 val)
1896 int retval = 0;
1897 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1898 struct cgroup *parent = cont->parent;
1899 struct mem_cgroup *parent_mem = NULL;
1901 if (parent)
1902 parent_mem = mem_cgroup_from_cont(parent);
1904 cgroup_lock();
1906 * If parent's use_hiearchy is set, we can't make any modifications
1907 * in the child subtrees. If it is unset, then the change can
1908 * occur, provided the current cgroup has no children.
1910 * For the root cgroup, parent_mem is NULL, we allow value to be
1911 * set if there are no children.
1913 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1914 (val == 1 || val == 0)) {
1915 if (list_empty(&cont->children))
1916 mem->use_hierarchy = val;
1917 else
1918 retval = -EBUSY;
1919 } else
1920 retval = -EINVAL;
1921 cgroup_unlock();
1923 return retval;
1926 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1928 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1929 u64 val = 0;
1930 int type, name;
1932 type = MEMFILE_TYPE(cft->private);
1933 name = MEMFILE_ATTR(cft->private);
1934 switch (type) {
1935 case _MEM:
1936 val = res_counter_read_u64(&mem->res, name);
1937 break;
1938 case _MEMSWAP:
1939 if (do_swap_account)
1940 val = res_counter_read_u64(&mem->memsw, name);
1941 break;
1942 default:
1943 BUG();
1944 break;
1946 return val;
1949 * The user of this function is...
1950 * RES_LIMIT.
1952 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1953 const char *buffer)
1955 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1956 int type, name;
1957 unsigned long long val;
1958 int ret;
1960 type = MEMFILE_TYPE(cft->private);
1961 name = MEMFILE_ATTR(cft->private);
1962 switch (name) {
1963 case RES_LIMIT:
1964 /* This function does all necessary parse...reuse it */
1965 ret = res_counter_memparse_write_strategy(buffer, &val);
1966 if (ret)
1967 break;
1968 if (type == _MEM)
1969 ret = mem_cgroup_resize_limit(memcg, val);
1970 else
1971 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1972 break;
1973 default:
1974 ret = -EINVAL; /* should be BUG() ? */
1975 break;
1977 return ret;
1980 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1981 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1983 struct cgroup *cgroup;
1984 unsigned long long min_limit, min_memsw_limit, tmp;
1986 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1987 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1988 cgroup = memcg->css.cgroup;
1989 if (!memcg->use_hierarchy)
1990 goto out;
1992 while (cgroup->parent) {
1993 cgroup = cgroup->parent;
1994 memcg = mem_cgroup_from_cont(cgroup);
1995 if (!memcg->use_hierarchy)
1996 break;
1997 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1998 min_limit = min(min_limit, tmp);
1999 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2000 min_memsw_limit = min(min_memsw_limit, tmp);
2002 out:
2003 *mem_limit = min_limit;
2004 *memsw_limit = min_memsw_limit;
2005 return;
2008 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2010 struct mem_cgroup *mem;
2011 int type, name;
2013 mem = mem_cgroup_from_cont(cont);
2014 type = MEMFILE_TYPE(event);
2015 name = MEMFILE_ATTR(event);
2016 switch (name) {
2017 case RES_MAX_USAGE:
2018 if (type == _MEM)
2019 res_counter_reset_max(&mem->res);
2020 else
2021 res_counter_reset_max(&mem->memsw);
2022 break;
2023 case RES_FAILCNT:
2024 if (type == _MEM)
2025 res_counter_reset_failcnt(&mem->res);
2026 else
2027 res_counter_reset_failcnt(&mem->memsw);
2028 break;
2030 return 0;
2034 /* For read statistics */
2035 enum {
2036 MCS_CACHE,
2037 MCS_RSS,
2038 MCS_PGPGIN,
2039 MCS_PGPGOUT,
2040 MCS_INACTIVE_ANON,
2041 MCS_ACTIVE_ANON,
2042 MCS_INACTIVE_FILE,
2043 MCS_ACTIVE_FILE,
2044 MCS_UNEVICTABLE,
2045 NR_MCS_STAT,
2048 struct mcs_total_stat {
2049 s64 stat[NR_MCS_STAT];
2052 struct {
2053 char *local_name;
2054 char *total_name;
2055 } memcg_stat_strings[NR_MCS_STAT] = {
2056 {"cache", "total_cache"},
2057 {"rss", "total_rss"},
2058 {"pgpgin", "total_pgpgin"},
2059 {"pgpgout", "total_pgpgout"},
2060 {"inactive_anon", "total_inactive_anon"},
2061 {"active_anon", "total_active_anon"},
2062 {"inactive_file", "total_inactive_file"},
2063 {"active_file", "total_active_file"},
2064 {"unevictable", "total_unevictable"}
2068 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2070 struct mcs_total_stat *s = data;
2071 s64 val;
2073 /* per cpu stat */
2074 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2075 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2076 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2077 s->stat[MCS_RSS] += val * PAGE_SIZE;
2078 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2079 s->stat[MCS_PGPGIN] += val;
2080 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2081 s->stat[MCS_PGPGOUT] += val;
2083 /* per zone stat */
2084 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2085 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2086 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2087 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2088 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2089 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2090 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2091 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2092 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2093 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2094 return 0;
2097 static void
2098 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2100 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2103 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2104 struct cgroup_map_cb *cb)
2106 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2107 struct mcs_total_stat mystat;
2108 int i;
2110 memset(&mystat, 0, sizeof(mystat));
2111 mem_cgroup_get_local_stat(mem_cont, &mystat);
2113 for (i = 0; i < NR_MCS_STAT; i++)
2114 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2116 /* Hierarchical information */
2118 unsigned long long limit, memsw_limit;
2119 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2120 cb->fill(cb, "hierarchical_memory_limit", limit);
2121 if (do_swap_account)
2122 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2125 memset(&mystat, 0, sizeof(mystat));
2126 mem_cgroup_get_total_stat(mem_cont, &mystat);
2127 for (i = 0; i < NR_MCS_STAT; i++)
2128 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2131 #ifdef CONFIG_DEBUG_VM
2132 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2135 int nid, zid;
2136 struct mem_cgroup_per_zone *mz;
2137 unsigned long recent_rotated[2] = {0, 0};
2138 unsigned long recent_scanned[2] = {0, 0};
2140 for_each_online_node(nid)
2141 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2142 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2144 recent_rotated[0] +=
2145 mz->reclaim_stat.recent_rotated[0];
2146 recent_rotated[1] +=
2147 mz->reclaim_stat.recent_rotated[1];
2148 recent_scanned[0] +=
2149 mz->reclaim_stat.recent_scanned[0];
2150 recent_scanned[1] +=
2151 mz->reclaim_stat.recent_scanned[1];
2153 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2154 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2155 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2156 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2158 #endif
2160 return 0;
2163 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2165 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2167 return get_swappiness(memcg);
2170 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2171 u64 val)
2173 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2174 struct mem_cgroup *parent;
2176 if (val > 100)
2177 return -EINVAL;
2179 if (cgrp->parent == NULL)
2180 return -EINVAL;
2182 parent = mem_cgroup_from_cont(cgrp->parent);
2184 cgroup_lock();
2186 /* If under hierarchy, only empty-root can set this value */
2187 if ((parent->use_hierarchy) ||
2188 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2189 cgroup_unlock();
2190 return -EINVAL;
2193 spin_lock(&memcg->reclaim_param_lock);
2194 memcg->swappiness = val;
2195 spin_unlock(&memcg->reclaim_param_lock);
2197 cgroup_unlock();
2199 return 0;
2203 static struct cftype mem_cgroup_files[] = {
2205 .name = "usage_in_bytes",
2206 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2207 .read_u64 = mem_cgroup_read,
2210 .name = "max_usage_in_bytes",
2211 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2212 .trigger = mem_cgroup_reset,
2213 .read_u64 = mem_cgroup_read,
2216 .name = "limit_in_bytes",
2217 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2218 .write_string = mem_cgroup_write,
2219 .read_u64 = mem_cgroup_read,
2222 .name = "failcnt",
2223 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2224 .trigger = mem_cgroup_reset,
2225 .read_u64 = mem_cgroup_read,
2228 .name = "stat",
2229 .read_map = mem_control_stat_show,
2232 .name = "force_empty",
2233 .trigger = mem_cgroup_force_empty_write,
2236 .name = "use_hierarchy",
2237 .write_u64 = mem_cgroup_hierarchy_write,
2238 .read_u64 = mem_cgroup_hierarchy_read,
2241 .name = "swappiness",
2242 .read_u64 = mem_cgroup_swappiness_read,
2243 .write_u64 = mem_cgroup_swappiness_write,
2247 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2248 static struct cftype memsw_cgroup_files[] = {
2250 .name = "memsw.usage_in_bytes",
2251 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2252 .read_u64 = mem_cgroup_read,
2255 .name = "memsw.max_usage_in_bytes",
2256 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2257 .trigger = mem_cgroup_reset,
2258 .read_u64 = mem_cgroup_read,
2261 .name = "memsw.limit_in_bytes",
2262 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2263 .write_string = mem_cgroup_write,
2264 .read_u64 = mem_cgroup_read,
2267 .name = "memsw.failcnt",
2268 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2269 .trigger = mem_cgroup_reset,
2270 .read_u64 = mem_cgroup_read,
2274 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2276 if (!do_swap_account)
2277 return 0;
2278 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2279 ARRAY_SIZE(memsw_cgroup_files));
2281 #else
2282 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2284 return 0;
2286 #endif
2288 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2290 struct mem_cgroup_per_node *pn;
2291 struct mem_cgroup_per_zone *mz;
2292 enum lru_list l;
2293 int zone, tmp = node;
2295 * This routine is called against possible nodes.
2296 * But it's BUG to call kmalloc() against offline node.
2298 * TODO: this routine can waste much memory for nodes which will
2299 * never be onlined. It's better to use memory hotplug callback
2300 * function.
2302 if (!node_state(node, N_NORMAL_MEMORY))
2303 tmp = -1;
2304 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2305 if (!pn)
2306 return 1;
2308 mem->info.nodeinfo[node] = pn;
2309 memset(pn, 0, sizeof(*pn));
2311 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2312 mz = &pn->zoneinfo[zone];
2313 for_each_lru(l)
2314 INIT_LIST_HEAD(&mz->lists[l]);
2316 return 0;
2319 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2321 kfree(mem->info.nodeinfo[node]);
2324 static int mem_cgroup_size(void)
2326 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2327 return sizeof(struct mem_cgroup) + cpustat_size;
2330 static struct mem_cgroup *mem_cgroup_alloc(void)
2332 struct mem_cgroup *mem;
2333 int size = mem_cgroup_size();
2335 if (size < PAGE_SIZE)
2336 mem = kmalloc(size, GFP_KERNEL);
2337 else
2338 mem = vmalloc(size);
2340 if (mem)
2341 memset(mem, 0, size);
2342 return mem;
2346 * At destroying mem_cgroup, references from swap_cgroup can remain.
2347 * (scanning all at force_empty is too costly...)
2349 * Instead of clearing all references at force_empty, we remember
2350 * the number of reference from swap_cgroup and free mem_cgroup when
2351 * it goes down to 0.
2353 * Removal of cgroup itself succeeds regardless of refs from swap.
2356 static void __mem_cgroup_free(struct mem_cgroup *mem)
2358 int node;
2360 free_css_id(&mem_cgroup_subsys, &mem->css);
2362 for_each_node_state(node, N_POSSIBLE)
2363 free_mem_cgroup_per_zone_info(mem, node);
2365 if (mem_cgroup_size() < PAGE_SIZE)
2366 kfree(mem);
2367 else
2368 vfree(mem);
2371 static void mem_cgroup_get(struct mem_cgroup *mem)
2373 atomic_inc(&mem->refcnt);
2376 static void mem_cgroup_put(struct mem_cgroup *mem)
2378 if (atomic_dec_and_test(&mem->refcnt)) {
2379 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2380 __mem_cgroup_free(mem);
2381 if (parent)
2382 mem_cgroup_put(parent);
2387 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2389 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2391 if (!mem->res.parent)
2392 return NULL;
2393 return mem_cgroup_from_res_counter(mem->res.parent, res);
2396 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2397 static void __init enable_swap_cgroup(void)
2399 if (!mem_cgroup_disabled() && really_do_swap_account)
2400 do_swap_account = 1;
2402 #else
2403 static void __init enable_swap_cgroup(void)
2406 #endif
2408 static struct cgroup_subsys_state * __ref
2409 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2411 struct mem_cgroup *mem, *parent;
2412 long error = -ENOMEM;
2413 int node;
2415 mem = mem_cgroup_alloc();
2416 if (!mem)
2417 return ERR_PTR(error);
2419 for_each_node_state(node, N_POSSIBLE)
2420 if (alloc_mem_cgroup_per_zone_info(mem, node))
2421 goto free_out;
2422 /* root ? */
2423 if (cont->parent == NULL) {
2424 enable_swap_cgroup();
2425 parent = NULL;
2426 } else {
2427 parent = mem_cgroup_from_cont(cont->parent);
2428 mem->use_hierarchy = parent->use_hierarchy;
2431 if (parent && parent->use_hierarchy) {
2432 res_counter_init(&mem->res, &parent->res);
2433 res_counter_init(&mem->memsw, &parent->memsw);
2435 * We increment refcnt of the parent to ensure that we can
2436 * safely access it on res_counter_charge/uncharge.
2437 * This refcnt will be decremented when freeing this
2438 * mem_cgroup(see mem_cgroup_put).
2440 mem_cgroup_get(parent);
2441 } else {
2442 res_counter_init(&mem->res, NULL);
2443 res_counter_init(&mem->memsw, NULL);
2445 mem->last_scanned_child = 0;
2446 spin_lock_init(&mem->reclaim_param_lock);
2448 if (parent)
2449 mem->swappiness = get_swappiness(parent);
2450 atomic_set(&mem->refcnt, 1);
2451 return &mem->css;
2452 free_out:
2453 __mem_cgroup_free(mem);
2454 return ERR_PTR(error);
2457 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2458 struct cgroup *cont)
2460 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2462 return mem_cgroup_force_empty(mem, false);
2465 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2466 struct cgroup *cont)
2468 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2470 mem_cgroup_put(mem);
2473 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2474 struct cgroup *cont)
2476 int ret;
2478 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2479 ARRAY_SIZE(mem_cgroup_files));
2481 if (!ret)
2482 ret = register_memsw_files(cont, ss);
2483 return ret;
2486 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2487 struct cgroup *cont,
2488 struct cgroup *old_cont,
2489 struct task_struct *p)
2491 mutex_lock(&memcg_tasklist);
2493 * FIXME: It's better to move charges of this process from old
2494 * memcg to new memcg. But it's just on TODO-List now.
2496 mutex_unlock(&memcg_tasklist);
2499 struct cgroup_subsys mem_cgroup_subsys = {
2500 .name = "memory",
2501 .subsys_id = mem_cgroup_subsys_id,
2502 .create = mem_cgroup_create,
2503 .pre_destroy = mem_cgroup_pre_destroy,
2504 .destroy = mem_cgroup_destroy,
2505 .populate = mem_cgroup_populate,
2506 .attach = mem_cgroup_move_task,
2507 .early_init = 0,
2508 .use_id = 1,
2511 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2513 static int __init disable_swap_account(char *s)
2515 really_do_swap_account = 0;
2516 return 1;
2518 __setup("noswapaccount", disable_swap_account);
2519 #endif